1
|
Farias L, Beszteri B, Burfeid Castellanos AM, Doliwa A, Enss J, Feld CK, Grabner D, Lampert KP, Mayombo NAS, Prati S, Schürings C, Smollich E, Schäfer RB, Sures B, Le TTY. Influence of salinity on the thermal tolerance of aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176120. [PMID: 39260473 DOI: 10.1016/j.scitotenv.2024.176120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Aquatic organisms are challenged by changes in their external environment, such as temperature and salinity fluctuations. If these variables interacted with each other, the response of organisms to temperature changes would be modified by salinity and vice versa. We tested for potential interaction between temperature and salinity effects on freshwater, brackish, and marine organisms, including algae, macrophytes, heterotrophic protists, parasites, invertebrates, and fish. We performed a meta-analysis that compared the thermal tolerance (characterised by the temperature optimum, lower and upper temperature limits, and thermal breadth) at various salinities. The meta-analysis was based on 90 articles (algae: 15; heterotrophic protists: 1; invertebrates: 43; and fish: 31). Studies on macrophytes and parasites were lacking. We found that decreasing salinity significantly increased and decreased the lower and upper temperature limits, respectively, in all groups. Thus, a lowered salinity increased the thermal sensitivity of organisms. These findings mainly reflect the response of brackish and marine organisms to salinity changes, which dominated our database. The few studies on freshwater species showed that their lower thermal limits increased and the upper thermal limits decreased with increasing salinity, albeit statistically nonsignificant. Although non-significant, the response of thermal tolerance to salinity changes differed between various organism groups. It generally decreased in the order of: algae > invertebrates > fish. Overall, our findings indicate adverse effects of salinity changes on the temperature tolerance of aquatic organisms. For freshwater species, studies are comparatively scarce and further studies on their thermal performance at various salinity gradients are required to obtain more robust evidence for interactions between salinity and temperature tolerance. Considering test conditions such as acclimation temperature and potential infection with parasites in future studies may decrease the variability in the relationship between salinity and thermal tolerance.
Collapse
Affiliation(s)
- Luan Farias
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Germany
| | - Bánk Beszteri
- Centre for Water and Environmental Research, University of Duisburg-Essen, Germany; Department of Phycology, Faculty of Biology, University of Duisburg-Essen, Germany
| | | | - Annemie Doliwa
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Germany
| | - Julian Enss
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Germany
| | - Christian K Feld
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Germany
| | | | | | - Sebastian Prati
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Germany
| | - Christian Schürings
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Germany
| | - Esther Smollich
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Germany
| | - Ralf B Schäfer
- Centre for Water and Environmental Research, University of Duisburg-Essen, Germany; Ecotoxicology, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Biology, University of Duisburg-Essen, Germany
| | - Bernd Sures
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Biology, University of Duisburg-Essen, Germany
| | - T T Yen Le
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Germany.
| |
Collapse
|
2
|
Somé BM, Guissou E, Da DF, Richard Q, Choisy M, Yameogo KB, Hien DF, Yerbanga RS, Ouedraogo GA, Dabiré KR, Djidjou-Demasse R, Cohuet A, Lefèvre T. Mosquito ageing modulates the development, virulence and transmission potential of pathogens. Proc Biol Sci 2024; 291:20232097. [PMID: 38166422 PMCID: PMC10762442 DOI: 10.1098/rspb.2023.2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 01/04/2024] Open
Abstract
Host age variation is a striking source of heterogeneity that can shape the evolution and transmission dynamic of pathogens. Compared with vertebrate systems, our understanding of the impact of host age on invertebrate-pathogen interactions remains limited. We examined the influence of mosquito age on key life-history traits driving human malaria transmission. Females of Anopheles coluzzii, a major malaria vector, belonging to three age classes (4-, 8- and 12-day-old), were experimentally infected with Plasmodium falciparum field isolates. Our findings revealed reduced competence in 12-day-old mosquitoes, characterized by lower oocyst/sporozoite rates and intensities compared with younger mosquitoes. Despite shorter median longevities in older age classes, infected 12-day-old mosquitoes exhibited improved survival, suggesting that the infection might act as a fountain of youth for older mosquitoes specifically. The timing of sporozoite appearance in the salivary glands remained consistent across mosquito age classes, with an extrinsic incubation period of approximately 13 days. Integrating these results into an epidemiological model revealed a lower vectorial capacity for older mosquitoes compared with younger ones, albeit still substantial owing to extended longevity in the presence of infection. Considering age heterogeneity provides valuable insights for ecological and epidemiological studies, informing targeted control strategies to mitigate pathogen transmission.
Collapse
Affiliation(s)
- Bernard M. Somé
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
| | - Edwige Guissou
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
- Ecole Normale Supérieure, BP 376 Koudougou, Burkina Faso
| | - Dari F. Da
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
| | - Quentin Richard
- IMAG, Université de Montpellier, CNRS, 34090 Montpellier, France
| | - Marc Choisy
- Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 700000, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Koudraogo B. Yameogo
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Domombabele FdS. Hien
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Rakiswende S. Yerbanga
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | - Georges A. Ouedraogo
- Département de Biochimie, Université Nazi Boni, 01 BP 1091 Bobo Dioulasso, Burkina Faso
| | - Kounbobr R. Dabiré
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
| | | | - Anna Cohuet
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
| | - Thierry Lefèvre
- Unité Paludisme et Maladies Tropicales Négligées, Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545 Bobo Dioulasso, Burkina Faso
- Laboratoire Mixte International sur les Vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- MIVEGEC, IRD, CNRS, University of Montpellier, 34090 Montpellier cedex 5, France
| |
Collapse
|
3
|
Krishnan N, Rózsa L, Szilágyi A, Garay J. Coevolutionary stability of host-symbiont systems with mixed-mode transmission. J Theor Biol 2024; 576:111620. [PMID: 37708987 DOI: 10.1016/j.jtbi.2023.111620] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/30/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The coevolution of hosts and symbionts based on virulence and mode of transmission is a complex and diverse biological phenomenon. We introduced a conceptual model to study the stable coexistence and coevolution of an obligate symbiont (mutualist or parasite) with mixed-mode transmission and its host. Using an age-structured Leslie model for the host, we demonstrated how the obligate symbiont could modify the host's life history traits (survival and fecundity) and the long-term growth rate of the infected lineage. When the symbiont is vertically transmitted, we found that the host and its symbiont could maximize the infected lineage's evolutionary success (multi-level selection). Our model showed that symbionts' effect on host longevity and reproduction might differ, even be opposing, and their net effect might often be counterintuitive. The evolutionary stability of the ecologically stable coexistence was analyzed in the framework of coevolutionary dynamics. Moreover, we found conditions for the ecological and evolutionary stability of the resident host-symbiont pair, which does not allow invasion by rare mutants (each mutant dies out by ecological selection). We concluded that, within the context of our simplified model conditions, a host-symbiont system with mixed-mode transmission is evolutionarily stable unconditionally only if the host can maximize the Malthusian parameters of the infected and non-infected lineages using the same strategy. Finally, we performed a game-theoretical analysis of our selection situation and compared two stability definitions.
Collapse
Affiliation(s)
- Nandakishor Krishnan
- Institute of Evolution, Centre for Ecological Research, Konkoly-Thege M. út 29-33, Budapest 1121, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest 1117, Hungary.
| | - Lajos Rózsa
- Institute of Evolution, Centre for Ecological Research, Konkoly-Thege M. út 29-33, Budapest 1121, Hungary; Centre for Eco-Epidemiology, National Laboratory for Health Security, Hungary
| | - András Szilágyi
- Institute of Evolution, Centre for Ecological Research, Konkoly-Thege M. út 29-33, Budapest 1121, Hungary
| | - József Garay
- Institute of Evolution, Centre for Ecological Research, Konkoly-Thege M. út 29-33, Budapest 1121, Hungary
| |
Collapse
|
4
|
Prati S, Enß J, Grabner DS, Huesken A, Feld CK, Doliwa A, Sures B. Possible seasonal and diurnal modulation of Gammarus pulex (Crustacea, Amphipoda) drift by microsporidian parasites. Sci Rep 2023; 13:9474. [PMID: 37301923 PMCID: PMC10257654 DOI: 10.1038/s41598-023-36630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023] Open
Abstract
In lotic freshwater ecosystems, the drift or downstream movement of animals (e.g., macroinvertebrates) constitutes a key dispersal pathway, thus shaping ecological and evolutionary patterns. There is evidence that macroinvertebrate drift may be modulated by parasites. However, most studies on parasite modulation of host drifting behavior have focused on acanthocephalans, whereas other parasites, such as microsporidians, have been largely neglected. This study provides new insight into possible seasonal and diurnal modulation of amphipod (Crustacea: Gammaridae) drift by microsporidian parasites. Three 72 h drift experiments were deployed in a German lowland stream in October 2021, April, and July 2022. The prevalence and composition of ten microsporidian parasites in Gammarus pulex clade E varied seasonally, diurnally, and between drifting and stationary specimens of G. pulex. Prevalence was generally higher in drifting amphipods than in stationary ones, mainly due to differences in host size. However, for two parasites, the prevalence in drift samples was highest during daytime suggesting changes in host phototaxis likely related to the parasite's mode of transmission and site of infection. Alterations in drifting behavior may have important implications for G. pulex population dynamics and microsporidians' dispersal. The underlying mechanisms are more complex than previously thought.
Collapse
Affiliation(s)
- Sebastian Prati
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany.
| | - Julian Enß
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Daniel S Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Annabell Huesken
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany
| | - Christian K Feld
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Annemie Doliwa
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
5
|
The Tapeworm Hymenolepis diminuta as an Important Model Organism in the Experimental Parasitology of the 21st Century. Pathogens 2022; 11:pathogens11121439. [PMID: 36558772 PMCID: PMC9784563 DOI: 10.3390/pathogens11121439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The tapeworm Hymenolepis diminuta is a common parasite of the small intestine in rodents but it can also infect humans. Due to its characteristics and ease of maintenance in the laboratory, H. diminuta is also an important model species in studies of cestodiasis, including the search for new drugs, treatments, diagnostics and biochemical processes, as well as its host-parasite interrelationships. A great deal of attention has been devoted to the immune response caused by H. diminuta in the host, and several studies indicate that infection with H. diminuta can reduce the severity of concomitant disease. Here, we present a critical review of the experimental research conducted with the use of H. diminuta as a model organism for over more than two decades (in the 21st century). The present review evaluates the tapeworm H. diminuta as a model organism for studying the molecular biology, biochemistry and immunology aspects of parasitology, as well as certain clinical applications. It also systematizes the latest research on this species. Its findings may contribute to a better understanding of the biology of tapeworms and their adaptation to parasitism, including complex correlations between H. diminuta and invertebrate and vertebrate hosts. It places particular emphasis on its value for the further development of modern experimental parasitology.
Collapse
|
6
|
Teulière J, Bernard C, Bapteste E. Interspecific interactions that affect ageing: Age-distorters manipulate host ageing to their own evolutionary benefits. Ageing Res Rev 2021; 70:101375. [PMID: 34082078 DOI: 10.1016/j.arr.2021.101375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Genetic causes for ageing are traditionally investigated within a species. Yet, the lifecycles of many organisms intersect. Additional evolutionary and genetic causes of ageing, external to a focal species/organism, may thus be overlooked. Here, we introduce the phrase and concept of age-distorters and its evidence. Age-distorters carry ageing interfering genes, used to manipulate the biological age of other entities upon which the reproduction of age-distorters relies, e.g. age-distorters bias the reproduction/maintenance trade-offs of cells/organisms for their own evolutionary interests. Candidate age-distorters include viruses, parasites and symbionts, operating through specific, genetically encoded interferences resulting from co-evolution and arms race between manipulative non-kins and manipulable species. This interference results in organismal ageing when age-distorters prompt manipulated organisms to favor their reproduction at the expense of their maintenance, turning these hosts into expanded disposable soma. By relying on reproduction/maintenance trade-offs affecting disposable entities, which are left ageing to the reproductive benefit of other physically connected lineages with conflicting evolutionary interests, the concept of age-distorters expands the logic of the Disposable Soma theory beyond species with fixed germen/soma distinctions. Moreover, acknowledging age-distorters as external sources of mutation accumulation and antagonistic pleiotropic genes expands the scope of the mutation accumulation and of the antagonistic pleiotropy theories.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université des Antilles, Paris, France.
| |
Collapse
|
7
|
Silva JOS, Colaço-Fernandes TR, Costa AC, Carvalho LN, Takemoto RM. Effect of burrowing cymothoid parasitism on loricariids. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 16:30-36. [PMID: 34401321 PMCID: PMC8350457 DOI: 10.1016/j.ijppaw.2021.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022]
Abstract
Cymothoids belong to the order Isopoda and are ectoparasites of fishes, and their main parasitism strategies are by penetrating, burrowing, and lodging in the abdominal cavity of the hosts. Due to this complex parasitism strategy, they are considered highly host-specific parasites. We investigated the effects of parasitism of the burrowing cymothoid Artystone sp. on the loricarids Hisonotus chromodontus and Curculionichthys luteofrenatus in the Selma stream, a tributary of the Teles Pires river, Southern Amazon. The hypothesis under study is that parasitism causes negative effects on the feeding, reproduction, and length-weight relationship of the hosts. The presence of alternative hosts was also investigated. The parasitic interaction of Artystone sp. with Curculionichthys luteofrenatus and Hisonotus chromodontus was monitored for one year with standardized monthly collections, and was found to be highly specific when there were no other parasitized fish species. Parasitic castration caused by Artystone sp. occurred in Curculionichthys luteofrenatus and Hisonotus chromodontus hosts, and there was a higher prevalence of infestation in females. The weight-length relationship was lower in parasitized Hisonotus chromodontus hosts, indicating a negative effect on somatic increment, although all hosts had fully replete stomachs and gastrointestinal tracts. The greatest standard-length values for both species were observed in the parasitized hosts. The presence of parasitized young specimens with undifferentiated sex and immature males and females suggests that the parasitic interaction in both species starts at a young age. Burrowing cymothoids have a negative effect on the weight-length relationship of hosts. Burrowing cymothoids can castrate the host. Burrowing cymothoids have high host specificity.
Collapse
Affiliation(s)
- João Otávio Santos Silva
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais - PEA, Universidade Estadual de Maringá - UEM, Av. Colombo, 5790, C.P 87020-900, Maringá, PR, Brazil
- Laboratório de Ictioparasitologia, Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura - Nupélia, Universidade Estadual de Maringá - UEM, Maringá, PR, Brazil
- Laboratório de Ictiologia Tropical – LIT, Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso - UFMT, Campus Universitário de Sinop, Sinop, MT, Brazil
- Corresponding author. Laboratório de Ictiologia Tropical – LIT, Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso - UFMT, Campus Universitário de Sinop, Sinop, MT, Brazil.
| | - Talles Romeu Colaço-Fernandes
- Laboratório de Ictiologia Tropical – LIT, Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso - UFMT, Campus Universitário de Sinop, Sinop, MT, Brazil
| | - Andressa Cristina Costa
- Laboratório de Ictiologia Tropical – LIT, Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso - UFMT, Campus Universitário de Sinop, Sinop, MT, Brazil
- Programa de Pós-Graduação em Ciências Ambientais - PPGCAM, Universidade Federal de Mato Grosso - UFMT, Campus Universitário de Sinop, Sinop, MT, Brazil
| | - Lucélia Nobre Carvalho
- Laboratório de Ictiologia Tropical – LIT, Instituto de Ciências Naturais, Humanas e Sociais, Universidade Federal de Mato Grosso - UFMT, Campus Universitário de Sinop, Sinop, MT, Brazil
- Programa de Pós-Graduação em Ciências Ambientais - PPGCAM, Universidade Federal de Mato Grosso - UFMT, Campus Universitário de Sinop, Sinop, MT, Brazil
| | - Ricardo Massato Takemoto
- Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais - PEA, Universidade Estadual de Maringá - UEM, Av. Colombo, 5790, C.P 87020-900, Maringá, PR, Brazil
- Laboratório de Ictioparasitologia, Núcleo de Pesquisas em Limnologia, Ictiologia e Aqüicultura - Nupélia, Universidade Estadual de Maringá - UEM, Maringá, PR, Brazil
- Programa de Pós-graduação em Biologia Comparada - PGB, Universidade Estadual de Maringá - UEM, Maringá, PR, Brazil
| |
Collapse
|
8
|
Benesh DP, Parker G, Chubb JC. Life-cycle complexity in helminths: What are the benefits? Evolution 2021; 75:1936-1952. [PMID: 34184269 DOI: 10.1111/evo.14299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/23/2021] [Accepted: 06/06/2021] [Indexed: 12/22/2022]
Abstract
Parasitic worms (i.e., helminths) commonly infect multiple hosts in succession. With every transmission step, they risk not infecting the next host and thus dying before reproducing. Given this risk, what are the benefits of complex life cycles? Using a dataset for 973 species of trophically transmitted acanthocephalans, cestodes, and nematodes, we tested whether hosts at the start of a life cycle increase transmission and whether hosts at the end of a life cycle enable growth to larger, more fecund sizes. Helminths with longer life cycles, that is, more successive hosts, infected conspicuously smaller first hosts, slightly larger final hosts, and exploited trophic links with lower predator-prey mass ratios. Smaller first hosts likely facilitate transmission because of their higher abundance and because parasite propagules were the size of their normal food. Bigger definitive hosts likely increase fecundity because parasites grew larger in big hosts, particularly endotherms. Helminths with long life cycles attained larger adult sizes through later maturation, not faster growth. Our results indicate that complex helminth life cycles are ubiquitous because growth and reproduction are highest in large, endothermic hosts that are typically only accessible via small intermediate hosts, that is, the best hosts for growth and transmission are not the same.
Collapse
Affiliation(s)
- Daniel P Benesh
- Molecular Parasitology, Humboldt University, Berlin, Germany.,Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Geoff Parker
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - James C Chubb
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| |
Collapse
|
9
|
Infection with Borrelia afzelii and manipulation of the egg surface microbiota have no effect on the fitness of immature Ixodes ricinus ticks. Sci Rep 2021; 11:10686. [PMID: 34021230 PMCID: PMC8140075 DOI: 10.1038/s41598-021-90177-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/29/2021] [Indexed: 12/20/2022] Open
Abstract
Arthropod vectors carry vector-borne pathogens that cause infectious disease in vertebrate hosts, and arthropod-associated microbiota, which consists of non-pathogenic microorganisms. Vector-borne pathogens and the microbiota can both influence the fitness of their arthropod vectors, and hence the epidemiology of vector-borne diseases. The bacterium Borrelia afzelii, which causes Lyme borreliosis in Europe, is transmitted among vertebrate reservoir hosts by Ixodes ricinus ticks, which also harbour a diverse microbiota of non-pathogenic bacteria. The purpose of this controlled study was to test whether B. afzelii and the tick-associated microbiota influence the fitness of I. ricinus. Eggs obtained from field-collected adult female ticks were surface sterilized (with bleach and ethanol), which reduced the abundance of the bacterial microbiota in the hatched I. ricinus larvae by 28-fold compared to larvae that hatched from control eggs washed with water. The dysbiosed and control larvae were subsequently fed on B. afzelii-infected or uninfected control mice, and the engorged larvae were left to moult into nymphs under laboratory conditions. I. ricinus larvae that fed on B. afzelii-infected mice had a significantly faster larva-to-nymph moulting time compared to larvae that fed on uninfected control mice, but the effect was small (2.4% reduction) and unlikely to be biologically significant. We found no evidence that B. afzelii infection or reduction of the larval microbiota influenced the four other life history traits of the immature I. ricinus ticks, which included engorged larval weight, unfed nymphal weight, larva-to-nymph moulting success, and immature tick survival. A retrospective power analysis found that our sampling effort had sufficient power (> 80%) to detect small effects (differences of 5% to 10%) of our treatments. Under the environmental conditions of this study, we conclude that B. afzelii and the egg surface microbiota had no meaningful effects on tick fitness and hence on the R0 of Lyme borreliosis.
Collapse
|
10
|
Beros S, Lenhart A, Scharf I, Negroni MA, Menzel F, Foitzik S. Extreme lifespan extension in tapeworm-infected ant workers. ROYAL SOCIETY OPEN SCIENCE 2021; 8:202118. [PMID: 34017599 PMCID: PMC8131941 DOI: 10.1098/rsos.202118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/22/2021] [Indexed: 06/01/2023]
Abstract
Social insects are hosts of diverse parasites, but the influence of these parasites on phenotypic host traits is not yet well understood. Here, we tracked the survival of tapeworm-infected ant workers, their uninfected nest-mates and of ants from unparasitized colonies. Our multi-year study on the ant Temnothorax nylanderi, the intermediate host of the tapeworm Anomotaenia brevis, revealed a prolonged lifespan of infected workers compared with their uninfected peers. Intriguingly, their survival over 3 years did not differ from those of (uninfected) queens, whose lifespan can reach two decades. By contrast, uninfected workers from parasitized colonies suffered from increased mortality compared with uninfected workers from unparasitized colonies. Infected workers exhibited a metabolic rate and lipid content similar to young workers in this species, and they received more social care than uninfected workers and queens in their colonies. This increased attention could be mediated by their deviant chemical profile, which we determined to elicit more interest from uninfected nest-mates in a separate experiment. In conclusion, our study demonstrates an extreme lifespan extension in a social host following tapeworm infection, which appears to enable host workers to retain traits typical for young workers.
Collapse
Affiliation(s)
- Sara Beros
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Anna Lenhart
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Inon Scharf
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Matteo Antoine Negroni
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Florian Menzel
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
11
|
Beani L, Dallai R, Cappa F, Manfredini F, Zaccaroni M, Lorenzi MC, Mercati D. A Stresipteran parasite extends the lifespan of workers in a social wasp. Sci Rep 2021; 11:7235. [PMID: 33790321 PMCID: PMC8012566 DOI: 10.1038/s41598-021-86182-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
In social wasps, female lifespan depends on caste and colony tasks: workers usually live a few weeks while queens as long as 1 year. Polistes dominula paper wasps infected by the strepsipteran parasite Xenos vesparum avoid all colony tasks, cluster on vegetation where parasite dispersal and mating occur, hibernate and infect the next generation of wasp larvae. Here, we compared the survival rate of infected and uninfected wasp workers. Workers' survival was significantly affected by parasite sex: two-third of workers parasitized by a X. vesparum female survived and overwintered like future queens did, while all workers infected by a X. vesparum male died during the summer, like uninfected workers that we used as controls. We measured a set of host and parasite traits possibly associated with the observed lifespan extension. Infected overwintering workers had larger fat bodies than infected workers that died in the summer, but they had similar body size and ovary development. Furthermore, we recorded a positive correlation between parasite and host body sizes. We hypothesize that the manipulation of worker's longevity operated by X. vesparum enhances parasite's fitness: if workers infected by a female overwinter, they can spread infective parasite larvae in the spring like parasitized gynes do, thus contributing to parasite transmission.
Collapse
Affiliation(s)
- Laura Beani
- Dipartimento di Biologia, Università di Firenze, Via Madonna del piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Romano Dallai
- Dipartimento di Scienze Della Vita, Università di Siena, Via Aldo Moro, 53100, Siena, Italy
| | - Federico Cappa
- Dipartimento di Biologia, Università di Firenze, Via Madonna del piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Fabio Manfredini
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Marco Zaccaroni
- Dipartimento di Biologia, Università di Firenze, Via Madonna del piano 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Maria Cristina Lorenzi
- LEEC, Laboratoire d'Éthologie Expérimentale et Comparée, Université Sorbonne Paris Nord, Villetaneuse, France
| | - David Mercati
- Dipartimento di Scienze Della Vita, Università di Siena, Via Aldo Moro, 53100, Siena, Italy
| |
Collapse
|
12
|
Froelick S, Gramolini L, Benesh DP. Comparative analysis of helminth infectivity: growth in intermediate hosts increases establishment rates in the next host. Proc Biol Sci 2021; 288:20210142. [PMID: 33726588 DOI: 10.1098/rspb.2021.0142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Parasitic worms (i.e. helminths) commonly infect multiple hosts in succession before reproducing. At each life cycle step, worms may fail to infect the next host, and this risk accumulates as life cycles include more successive hosts. Risk accumulation can be minimized by having high establishment success in the next host, but comparisons of establishment probabilities across parasite life stages are lacking. We compiled recovery rates (i.e. the proportion of parasites recovered from an administered dose) from experimental infections with acanthocephalans, cestodes and nematodes. Our data covered 127 helminth species and 16 913 exposed hosts. Recovery rates increased with life cycle progression (11%, 29% and 46% in first, second and third hosts, respectively), because larger worm larvae had higher recovery, both within and across life stages. Recovery declined in bigger hosts but less than it increased with worm size. Higher doses were used in systems with lower recovery, suggesting that high doses are chosen when few worms are expected to establish infection. Our results indicate that growing in the small and short-lived hosts at the start of a complex life cycle, though dangerous, may substantially improve parasites' chances of completing their life cycles.
Collapse
Affiliation(s)
- Spencer Froelick
- Molecular Parasitology, Humboldt University, Philippstr. 13, Haus 14, 10115 Berlin, Germany
| | - Laura Gramolini
- Molecular Parasitology, Humboldt University, Philippstr. 13, Haus 14, 10115 Berlin, Germany.,Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587 Berlin, Germany
| | - Daniel P Benesh
- Molecular Parasitology, Humboldt University, Philippstr. 13, Haus 14, 10115 Berlin, Germany.,Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587 Berlin, Germany
| |
Collapse
|
13
|
Stoldt M, Klein L, Beros S, Butter F, Jongepier E, Feldmeyer B, Foitzik S. Parasite Presence Induces Gene Expression Changes in an Ant Host Related to Immunity and Longevity. Genes (Basel) 2021; 12:95. [PMID: 33451085 PMCID: PMC7828512 DOI: 10.3390/genes12010095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/22/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Most species are either parasites or exploited by parasites, making parasite-host interactions a driver of evolution. Parasites with complex life cycles often evolve strategies to facilitate transmission to the definitive host by manipulating their intermediate host. Such manipulations could explain phenotypic changes in the ant Temnothorax nylanderi, the intermediate host of the cestode Anomotaenia brevis. In addition to behavioral and morphological alterations, infected workers exhibit prolonged lifespans, comparable to that of queens, which live up to two decades. We used transcriptomic data from cestodes and ants of different castes and infection status to investigate the molecular underpinnings of phenotypic alterations in infected workers and explored whether the extended lifespan of queens and infected workers has a common molecular basis. Infected workers and queens commonly upregulated only six genes, one of them with a known anti-aging function. Both groups overexpressed immune genes, although not the same ones. Our findings suggest that the lifespan extension of infected workers is not achieved via the expression of queen-specific genes. The analysis of the cestodes' transcriptome revealed dominant expression of genes of the mitochondrial respiratory transport chain, which indicates an active metabolism and shedding light on the physiology of the parasite in its cysticercoid stage.
Collapse
Affiliation(s)
- Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (L.K.); (S.F.)
| | - Linda Klein
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (L.K.); (S.F.)
| | - Sara Beros
- Max Planck Institute for the Biology of Ageing, 50931 Cologne, Germany;
| | - Falk Butter
- Institute for Molecular Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Evelien Jongepier
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany;
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Center (SBiK-F), Molecular Ecology, 60325 Frankfurt, Germany;
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (L.K.); (S.F.)
| |
Collapse
|
14
|
Janoušková E, Berec L. Fecundity-Longevity Trade-Off, Vertical Transmission, and Evolution of Virulence in Sterilizing Pathogens. Am Nat 2019; 195:95-106. [PMID: 31868533 DOI: 10.1086/706182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sterilizing pathogens are common, yet studies focused on how such pathogens respond adaptively to fecundity reductions caused in their hosts are rare. Here we assume that the infected hosts, as a result of redistributing energy resources saved by reduced fecundity, have increased longevity and focus on exploring the consequences of such a fecundity-longevity trade-off on sterility virulence evolution in the pathogens. We find that the trade-off itself cannot prevent the evolution of full sterilization. Therefore, we allow for vertical transmission and reveal that the fecundity-longevity trade-off strongly determines the threshold efficiency of vertical transmission above which partial host sterilization evolves. Partial sterilization may appear as an intermediate level of sterility virulence or as a stable dimorphism at which avirulent and highly virulent strains coexist. The fecundity-longevity trade-off significantly contributes to determining the actual outcome, in many cases countering predictions made in the absence of this trade-off. It is known that in well-mixed populations, partial sterilization may evolve in pathogens under a combination of horizontal and vertical transmission. Our study highlights that this is independent of the form of horizontal transmission and the type of density dependence in host demography and that the fecundity-longevity trade-off is an important player in sterility virulence evolution.
Collapse
|
15
|
|
16
|
Longitudinal study of parasite-induced mortality of a long-lived host: the importance of exposure to non-parasitic stressors. Parasitology 2017; 144:1943-1955. [PMID: 28693632 DOI: 10.1017/s0031182017001251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hosts face mortality from parasitic and environmental stressors, but interactions of parasitism with other stressors are not well understood, particularly for long-lived hosts. We monitored survival of flour beetles (Tribolium confusum) in a longitudinal design incorporating cestode (Hymenolepis diminuta) infection, starvation and exposure to the pesticide diatomaceous earth (DE). We found that cestode cysticercoids exhibit increasing morphological damage and decreasing ability to excyst over time, but were never eliminated from the host. In the presence of even mild environmental stressors, host lifespan was reduced sufficiently that extensive degradation of cysticercoids was never realized. Median host lifespan was 200 days in the absence of stressors, and 3-197 days with parasitism, starvation and/or DE. Early survival of parasitized hosts was higher relative to controls in the presence of intermediate concentrations of DE, but reduced under all other conditions tested. Parasitism increased host mortality in the presence of other stressors at times when parasitism alone did not cause mortality, consistent with an interpretation of synergy. Environmental stressors modified the parasite numbers needed to reveal intensity-dependent host mortality, but only rarely masked intensity dependence. The longitudinal approach produced observations that would have been overlooked or misinterpreted if survival had only been monitored at a single time point.
Collapse
|
17
|
Gupta V, Venkatesan S, Chatterjee M, Syed ZA, Nivsarkar V, Prasad NG. No apparent cost of evolved immune response in Drosophila melanogaster. Evolution 2016; 70:934-43. [PMID: 26932243 DOI: 10.1111/evo.12896] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Maintenance and deployment of the immune system are costly and are hence predicted to trade-off with other resource-demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes-I (Infection with Pseudomonas entomophila), S (Sham-infection with MgSO4 ), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade-offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade-offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life-history trade-offs might play little role in maintaining variation in immunity.
Collapse
Affiliation(s)
- Vanika Gupta
- Indian Institute of Science Education and Research, P.O. Manauli, Mohali, Punjab, 140306, India
| | - Saudamini Venkatesan
- Indian Institute of Science Education and Research, P.O. Manauli, Mohali, Punjab, 140306, India
| | - Martik Chatterjee
- Indian Institute of Science Education and Research, P.O. Manauli, Mohali, Punjab, 140306, India
| | - Zeeshan A Syed
- Indian Institute of Science Education and Research, P.O. Manauli, Mohali, Punjab, 140306, India
| | - Vaishnavi Nivsarkar
- Indian Institute of Science Education and Research, P.O. Manauli, Mohali, Punjab, 140306, India
| | - Nagaraj G Prasad
- Indian Institute of Science Education and Research, P.O. Manauli, Mohali, Punjab, 140306, India.
| |
Collapse
|
18
|
Feldmeyer B, Mazur J, Beros S, Lerp H, Binder H, Foitzik S. Gene expression patterns underlying parasite-induced alterations in host behaviour and life history. Mol Ecol 2016; 25:648-60. [DOI: 10.1111/mec.13498] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Barbara Feldmeyer
- Evolutionary Biology; Johannes Gutenberg University Mainz; Johannes-von-Müller-Weg 6 55128 Mainz Germany
- Biodiversity and Climate Research Centre; Senckenberg Gesellschaft für Naturforschung; Senckenberganlage 25 60325 Frankfurt Germany
| | - Johanna Mazur
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI); University Medical Center Johannes Gutenberg University Mainz; Obere Zahlbacher Str. 69 55131 Mainz Germany
| | - Sara Beros
- Evolutionary Biology; Johannes Gutenberg University Mainz; Johannes-von-Müller-Weg 6 55128 Mainz Germany
| | - Hannes Lerp
- Evolutionary Biology; Johannes Gutenberg University Mainz; Johannes-von-Müller-Weg 6 55128 Mainz Germany
- Natural History Collections; Museum Wiesbaden; Friedrich-Ebert-Allee 2 65185 Wiesbaden Germany
| | - Harald Binder
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI); University Medical Center Johannes Gutenberg University Mainz; Obere Zahlbacher Str. 69 55131 Mainz Germany
| | - Susanne Foitzik
- Evolutionary Biology; Johannes Gutenberg University Mainz; Johannes-von-Müller-Weg 6 55128 Mainz Germany
| |
Collapse
|
19
|
Beros S, Jongepier E, Hagemeier F, Foitzik S. The parasite's long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host. Proc Biol Sci 2015; 282:20151473. [PMID: 26582019 PMCID: PMC4685803 DOI: 10.1098/rspb.2015.1473] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/19/2015] [Indexed: 01/09/2023] Open
Abstract
Parasites can induce alterations in host phenotypes in order to enhance their own survival and transmission. Parasites of social insects might not only benefit from altering their individual hosts, but also from inducing changes in uninfected group members. Temnothorax nylanderi ant workers infected with the tapeworm Anomotaenia brevis are known to be chemically distinct from nest-mates and do not contribute to colony fitness, but are tolerated in their colonies and well cared for. Here, we investigated how tapeworm- infected workers affect colony aggression by manipulating their presence in ant colonies and analysing whether their absence or presence resulted in behavioural alterations in their nest-mates. We report a parasite-induced shift in colony aggression, shown by lower aggression of uninfected nest-mates from parasitized colonies towards conspecifics, potentially explaining the tolerance towards infected ants. We also demonstrate that tapeworm-infected workers showed a reduced flight response and higher survival, while their presence caused a decrease in survival of uninfected nest-mates. This anomalous behaviour of infected ants, coupled with their increased survival, could facilitate the parasites' transmission to its definitive hosts, woodpeckers. We conclude that parasites exploiting individuals that are part of a society not only induce phenotypic changes within their individual hosts, but in uninfected group members as well.
Collapse
Affiliation(s)
- Sara Beros
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, Mainz 55128, Germany
| | - Evelien Jongepier
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, Mainz 55128, Germany
| | - Felizitas Hagemeier
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, Mainz 55128, Germany
| | - Susanne Foitzik
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, Mainz 55128, Germany
| |
Collapse
|
20
|
De Gasperin O, Duarte A, Kilner RM. Interspecific interactions explain variation in the duration of paternal care in the burying beetle. Anim Behav 2015; 109:199-207. [PMID: 26778845 PMCID: PMC4686539 DOI: 10.1016/j.anbehav.2015.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Why is there so much variation within species in the extent to which males contribute to offspring care? Answers to this question commonly focus on intraspecific sources of variation in the relative costs and benefits of supplying paternal investment. With experiments in the laboratory on the burying beetle, Nicrophorus vespilloides, and its phoretic mite Poecilochirus carabi, we investigated whether interactions with a second species might also account for intraspecific variation in the extent of paternal care, and whether this variation is due to adaptation or constraint. In our first experiment we bred beetles in the presence or absence of phoretic mites, using a breeding box that mimicked natural conditions by allowing parents to leave the breeding attempt at a time of their choosing. We found that males abandoned their brood sooner when breeding alongside mites than when breeding in their absence. Female patterns of care were unchanged by the mites. Nevertheless, in this experiment, no correlates of beetle fitness were affected by the presence of the mites during reproduction (neither paternal life span after reproduction nor brood size or average larval mass). In a second experiment, we again bred beetles with or without mites but this time we prevented parents from abandoning the brood. This time we found that both parents and the brood suffered fitness costs when breeding alongside mites, compared with families breeding in the absence of mites. We conclude that males adaptively reduce their contributions to care when mites are present, so as to defend their offspring's fitness and their own residual fitness. Interspecific interactions thus account for intraspecific variation in the duration of paternal care. The extent of paternal care varies greatly within species. Some of this variation might be due to interspecific interactions. We investigated how mites influence paternal care in the burying beetle. We found that males leave their brood earlier when mites are present. We show that this is adaptive because it enhances offspring fitness.
Collapse
Affiliation(s)
| | - Ana Duarte
- Department of Zoology, University of Cambridge, Cambridge, U.K
| | | |
Collapse
|
21
|
Redón S, Amat F, Sánchez MI, Green AJ. Comparing cestode infections and their consequences for host fitness in two sexual branchiopods: alien Artemia franciscana and native A. salina from syntopic-populations. PeerJ 2015; 3:e1073. [PMID: 26157636 PMCID: PMC4493677 DOI: 10.7717/peerj.1073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/12/2015] [Indexed: 11/28/2022] Open
Abstract
The American brine shrimp Artemia franciscana is invasive in the Mediterranean region where it has displaced native species (the sexual A. salina, and the clonal A. parthenogenetica) from many salt pond complexes. Artemia populations are parasitized by numerous avian cestodes whose effects have been studied in native species. We present a study from the Ebro Delta salterns (NE Spain), in a salt pond where both A. franciscana and native A. salina populations coexist, providing a unique opportunity to compare the parasite loads of the two sexual species in syntopy. The native species had consistently higher infection parameters, largely because the dominant cestode in A. salina adults and juveniles (Flamingolepis liguloides) was much rarer in A. franciscana. The most abundant cestodes in the alien species were Eurycestus avoceti (in adults) and Flamingolepis flamingo (in juveniles). The abundance of E. avoceti and F. liguloides was higher in the A. franciscana population syntopic with A. salina than in a population sampled at the same time in another pond where the native brine shrimp was absent, possibly because the native shrimp provides a better reservoir for parasite circulation. Infection by cestodes caused red colouration in adult and juvenile A. salina, and also led to castration in a high proportion of adult females. Both these effects were significantly stronger in the native host than in A. franciscana with the same parasite loads. However, for the first time, significant castration effects (for E. avoceti and F. liguloides) and colour change (for six cestode species) were observed in infected A. franciscana. Avian cestodes are likely to help A. franciscana outcompete native species. At the same time, they are likely to reduce the production of A. franciscana cysts in areas where they are harvested commercially.
Collapse
Affiliation(s)
- Stella Redón
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n , Castellón , Spain
| | - Francisco Amat
- Instituto de Acuicultura de Torre de la Sal (IATS-CSIC), Ribera de Cabanes s/n , Castellón , Spain
| | - Marta I Sánchez
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC) , Américo Vespucio s/n, Sevilla , Spain
| | - Andy J Green
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC) , Américo Vespucio s/n, Sevilla , Spain
| |
Collapse
|
22
|
McElroy EJ, de Buron I. Host Performance as a Target of Manipulation by Parasites: A Meta-Analysis. J Parasitol 2014; 100:399-410. [DOI: 10.1645/13-488.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
23
|
Shostak AW. Hymenolepis diminuta infections in tenebrionid beetles as a model system for ecological interactions between helminth parasites and terrestrial intermediate hosts: a review and meta-analysis. J Parasitol 2013; 100:46-58. [PMID: 23952690 DOI: 10.1645/13-347.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The cestode Hymenolepis diminuta (Cyclophyllidea) uses a variety of insects as its intermediate host, where ingestion of eggs results in development in the hemocoel of a cysticercoid that is infective to a rat definitive host. Species in 2 genera, Tenebrio and Tribolium (Coleoptera: Tenebrionidae) have been used extensively as laboratory intermediate hosts. This review examines experimental studies on ecological aspects of the relationship between H. diminuta and tenebrionid beetles, including the acquisition and establishment of the parasite, host effects on the parasite, and parasite effects on the host. A meta-analysis of infection results from the literature revealed strong relationships across host species and strains between (1) prevalence and intensity of infection, (2) efficiency of cysticercoid production and exposure conditions, and (3) variance in abundance or intensity of infection relative to their respective means. The underlying mechanisms producing these patterns remain elusive. Comparative studies are infrequent, and the use of divergent methodologies hampers comparisons among studies. In spite of these problems, there is much to recommend this as a terrestrial host-parasite model system. It represents those relationships in which mostly minor, but occasionally major, responses to parasitic infection occur, and in which host genetics and environmental conditions can serve as modifying factors. Moreover, this is a tractable experimental system, and is backed by an extensive literature on host biology.
Collapse
Affiliation(s)
- Allen W Shostak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
24
|
Goblirsch M, Huang ZY, Spivak M. Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection. PLoS One 2013; 8:e58165. [PMID: 23483987 PMCID: PMC3590174 DOI: 10.1371/journal.pone.0058165] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 02/01/2013] [Indexed: 12/14/2022] Open
Abstract
Persistent exposure to mite pests, poor nutrition, pesticides, and pathogens threaten honey bee survival. In healthy colonies, the interaction of the yolk precursor protein, vitellogenin (Vg), and endocrine factor, juvenile hormone (JH), functions as a pacemaker driving the sequence of behaviors that workers perform throughout their lives. Young bees perform nursing duties within the hive and have high Vg and low JH; as older bees transition to foraging, this trend reverses. Pathogens and parasites can alter this regulatory network. For example, infection with the microsporidian, Nosema apis, has been shown to advance behavioral maturation in workers. We investigated the effects of infection with a recent honey bee pathogen on physiological factors underlying the division of labor in workers. Bees infected with N. ceranae were nearly twice as likely to engage in precocious foraging and lived 9 days less, on average, compared to controls. We also show that Vg transcript was low, while JH titer spiked, in infected nurse-aged bees in cages. This pattern of expression is atypical and the reverse of what would be expected for healthy, non-infected bees. Disruption of the basic underpinnings of temporal polyethism due to infection may be a contributing factor to recent high colony mortality, as workers may lose flexibility in their response to colony demands.
Collapse
Affiliation(s)
- Mike Goblirsch
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, USA.
| | | | | |
Collapse
|
25
|
Maure F, Brodeur J, Hughes D, Thomas F. How much energy should manipulative parasites leave to their hosts to ensure altered behaviours? J Exp Biol 2013; 216:43-6. [DOI: 10.1242/jeb.073163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Although host manipulation is likely to be costly for parasites, we still have a poor understanding of the energetic aspects underlying this strategy. It is traditionally assumed that physiological costs are inevitably associated with mechanisms evolved by parasites to induce the required changes in host behaviours. While most energetic expenditures of parasites relate primarily to bringing about the altered behaviours, manipulative parasites also have to consider the condition of their host during the manipulation. Here, we suggest that because of this trade-off, the energy required to accomplish parasite-induced behaviours may represent a key energetic constraint for parasites. Depending on the energetic expenditures specific to each type of manipulation, parasites should undergo selection to secure resources for their host to allow them to perform manipulated behaviours.
Collapse
Affiliation(s)
- Fanny Maure
- IRD, MIVEGEC (UMR CNRS/IRD/UM1/UM2), 911 Avenue Agropolis, BP 64501, FR-34394 Montpellier cedex 5, France
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal 4101, rue Sherbrooke est, Montréal, Québec, CanadaH1X 2B2
| | - Jacques Brodeur
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal 4101, rue Sherbrooke est, Montréal, Québec, CanadaH1X 2B2
| | - David Hughes
- Center for Infectious Disease Dynamics, Department of Entomology and Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Frédéric Thomas
- IRD, MIVEGEC (UMR CNRS/IRD/UM1/UM2), 911 Avenue Agropolis, BP 64501, FR-34394 Montpellier cedex 5, France
| |
Collapse
|
26
|
A laboratory study on the effect of Paraiotonchium autumnale parasitism on the longevity of Musca autumnalis. Parasitology 2012; 139:1580-6. [DOI: 10.1017/s0031182012000959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Minguez L, Buronfosse T, Giambérini L. Different host exploitation strategies in two zebra mussel-trematode systems: adjustments of host life history traits. PLoS One 2012; 7:e34029. [PMID: 22448287 PMCID: PMC3309008 DOI: 10.1371/journal.pone.0034029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 02/21/2012] [Indexed: 11/30/2022] Open
Abstract
The zebra mussel is the intermediate host for two digenean trematodes, Phyllodistomum folium and Bucephalus polymorphus, infecting gills and the gonad respectively. Many gray areas exist relating to the host physiological disturbances associated with these infections, and the strategies used by these parasites to exploit their host without killing it. The aim of this study was to examine the host exploitation strategies of these trematodes and the associated host physiological disturbances. We hypothesized that these two parasite species, by infecting two different organs (gills or gonads), do not induce the same physiological changes. Four cellular responses (lysosomal and peroxisomal defence systems, lipidic peroxidation and lipidic reserves) in the host digestive gland were studied by histochemistry and stereology, as well as the energetic reserves available in gonads. Moreover, two indices were calculated related to the reproductive status and the physiological condition of the organisms. Both parasites induced adjustments of zebra mussel life history traits. The host-exploitation strategy adopted by P. folium would occur during a short-term period due to gill deformation, and could be defined as "virulent." Moreover, this parasite had significant host gender-dependent effects: infected males displayed a slowed-down metabolism and energetic reserves more allocated to growth, whereas females displayed better defences and would allocate more energy to reproduction and maintenance. In contrast, B. polymorphus would be a more "prudent" parasite, exploiting its host during a long-term period through the consumption of reserves allocated to reproduction.
Collapse
Affiliation(s)
- Laëtitia Minguez
- Université de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Campus Bridoux, Metz, France
| | - Thierry Buronfosse
- Université de Lyon, Laboratoire d'endocrinologie, Ecole Nationale Vétérinaire de Lyon, Marcy l'Etoile, France
| | - Laure Giambérini
- Université de Lorraine, Laboratoire des Interactions Ecotoxicologie, Biodiversité, Ecosystèmes (LIEBE), CNRS UMR 7146, Campus Bridoux, Metz, France
| |
Collapse
|
28
|
Demuth JP, Naidu A, Mydlarz LD. Sex, war, and disease: the role of parasite infection on weapon development and mating success in a horned beetle (Gnatocerus cornutus). PLoS One 2012; 7:e28690. [PMID: 22247759 PMCID: PMC3256137 DOI: 10.1371/journal.pone.0028690] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/14/2011] [Indexed: 11/18/2022] Open
Abstract
While parasites and immunity are widely believed to play important roles in the evolution of male ornaments, their potential influence on systems where male weaponry is the object of sexual selection is poorly understood. We experimentally infect larval broad-horned flour beetles with a tapeworm and study the consequent effects on: 1) adult male morphology 2) male-male contests for mating opportunities, and 3) induction of the innate immune system. We find that infection significantly reduces adult male size in ways that are expected to reduce mating opportunities in nature. The sum of our morphological, competition, and immunological data indicate that during a life history stage where no new resources are acquired, males allocate their finite resources in a way that increases future mating potential.
Collapse
Affiliation(s)
- Jeffery P Demuth
- Department of Biology, The University of Texas at Arlington, Arlington, Texas, United States of America.
| | | | | |
Collapse
|
29
|
MARTINEZ J, FLEURY F, VARALDI J. Heritable variation in an extended phenotype: the case of a parasitoid manipulated by a virus. J Evol Biol 2011; 25:54-65. [DOI: 10.1111/j.1420-9101.2011.02405.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
SCHARF INON, BAUER SABINE, FISCHER-BLASS BIRGIT, FOITZIK SUSANNE. Impact of a social parasite on ant host populations depends on host species, habitat and year. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01638.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Intensity-dependent host mortality: what can it tell us about larval growth strategies in complex life cycle helminths? Parasitology 2011; 138:913-25. [DOI: 10.1017/s0031182011000370] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYComplex life cycle helminths use their intermediate hosts as both a source of nutrients and as transportation. There is an assumed trade-off between these functions in that parasite growth may reduce host survival and thus transmission. The virulence of larval helminths can be assessed by experimentally increasing infection intensities and recording how parasite biomass and host mortality scale with intensity. I summarize the literature on these relationships in larval helminths and I provide an empirical example using the nematodeCamallanus lacustrisin its copepod first host. In all species studied thus far, includingC. lacustris, overall parasite volume increases with intensity. Although a few studies observed host survival to decrease predictably with intensity, several studies found no intensity-dependent mortality or elevated mortality only at extreme intensities. For instance, no intensity-dependent mortality was observed in male copepods infected withC. lacustris, whereas female survival was reduced only at high intensities (>3) and only after worms were fully developed. These observations suggest that at low, natural intensity levels parasites do not exploit intermediate hosts as much as they presumably could and that increased growth would not obviously entail survival costs.
Collapse
|
32
|
Benesh DP, Valtonen ET. Effects of Acanthocephalus lucii (Acanthocephala) on intermediate host survival and growth: implications for exploitation strategies. J Parasitol 2010; 93:735-41. [PMID: 17918350 DOI: 10.1645/ge-1093r.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Intermediate host exploitation by parasites is presumably constrained by the need to maintain host viability until transmission occurs. The relationship between parasitism and host survival, though, likely varies as the energetic requirements of parasites change during ontogeny. An experimental infection of an acanthocephalan (Acanthocephalus lucii) in its isopod intermediate host (Asellus aquaticus) was conducted to investigate host survival and growth throughout the course of parasite development. Individual isopods were infected by exposure to fish feces containing parasite eggs. Isopods exposed to A. lucii had reduced survival, but only early in the infection. Mean infection intensity was high relative to natural levels, but host mortality was not intensity dependent. Similarly, a group of naturally infected isopods harboring multiple cystacanths did not have lower survival than singly infected isopods. Isopods that were not exposed to the parasite exhibited sexual differences in survival and molting, but these patterns were reversed or absent in exposed isopods, possibly as a consequence of castration. Further, exposed isopods seemed to have accelerated molting relative to unexposed controls. Infection had no apparent effect on isopod growth. The effects of A. lucii on isopod survival and growth undermine common assumptions concerning parasite-induced host mortality and the resource constraints experienced by developing parasites.
Collapse
Affiliation(s)
- Daniel P Benesh
- Department of Biological and Environmental Science, P.O. Box 35, FI-40014 University of Jyväskylä, Finland.
| | | |
Collapse
|
33
|
Dieng H, Saifur RGM, Hassan AA, Salmah MRC, Boots M, Satho T, Jaal Z, AbuBakar S. Indoor-breeding of Aedes albopictus in northern peninsular Malaysia and its potential epidemiological implications. PLoS One 2010; 5:e11790. [PMID: 20668543 PMCID: PMC2910701 DOI: 10.1371/journal.pone.0011790] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 06/22/2010] [Indexed: 12/01/2022] Open
Abstract
Background The mosquito Ae. albopictus is usually adapted to the peri-domestic environment and typically breeds outdoors. However, we observed its larvae in most containers within homes in northern peninsular Malaysia. To anticipate the epidemiological implications of this indoor-breeding, we assessed some fitness traits affecting vectorial capacity during colonization process. Specifically, we examined whether Ae. albopictus exhibits increased survival, gonotrophic activity and fecundity due to the potential increase in blood feeding opportunities. Methodology/Principal Findings In a series of experiments involving outdoors and indoors breeding populations, we found that Ae. albopictus lives longer in the indoor environment. We also observed increased nighttime biting activity and lifetime fecundity in indoor/domestic adapted females, although they were similar to recently colonized females in body size. Conclusion/Significance Taken together these data suggest that accommodation of Ae. albopictus to indoor/domestic environment may increase its lifespan, blood feeding success, nuisance and thus vectorial capacity (both in terms of increased vector-host contacts and vector population density). These changes in the breeding behavior of Ae. albopictus, a potential vector of several human pathogens including dengue viruses, require special attention.
Collapse
Affiliation(s)
- Hamady Dieng
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Hurd H. Evolutionary drivers of parasite-induced changes in insect life-history traits from theory to underlying mechanisms. ADVANCES IN PARASITOLOGY 2009; 68:85-110. [PMID: 19289191 DOI: 10.1016/s0065-308x(08)00604-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many hosts are able to tolerate infection by altering life-history traits that are traded-off one against another. Here the reproductive fitness of insect hosts and vectors is reviewed in the context of theories concerning evolutionary mechanisms driving such alterations. These include the concepts that changes in host reproductive fitness are by-products of infection, parasite manipulations, host adaptations, mafia-like strategies or host compensatory responses. Two models are examined in depth, a tapeworm/beetle association, Hymenolepis diminuta/Tenebrio molitor and malaria infections in anopheline mosquitoes. Parasite-induced impairment of vitellogenesis ultimately leads to a decrease in female reproductive success in both cases, though by different means. Evidence is put forwards for both a manipulator molecule of parasite origin and for host-initiated regulation. These models are backed by other examples in which mechanisms underlying fecundity reduction or fecundity compensation are explored. It is concluded that evolutionary theories must be supported by empirical evidence gained from studying molecular, biochemical and physiological mechanisms underlying changes in host life-history traits, ideally using organisms that have evolved together and that are in their natural environment.
Collapse
Affiliation(s)
- Hilary Hurd
- Institute for Science and Technology in Medicine, Centre for Applied Entomology and Parasitilogy, School of life Sciences, Keele University, United Kingdom
| |
Collapse
|
36
|
Granovitch AI, Yagunova EB, Maximovich AN, Sokolova IM. Elevated female fecundity as a possible compensatory mechanism in response to trematode infestation in populations of Littorina saxatilis (Olivi). Int J Parasitol 2009; 39:1011-9. [PMID: 19275903 DOI: 10.1016/j.ijpara.2009.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Revised: 02/01/2009] [Accepted: 02/02/2009] [Indexed: 11/24/2022]
Abstract
Co-evolution between parasites and their hosts may lead to changes in the life-history traits of the host that promote sustainability of their populations despite parasite pressure. Such changes are expected to be especially pronounced in the host-parasite systems where parasites cause complete castration of their hosts. We have studied populations of the rough periwinkle, Littorina saxatilis, infested by castrating trematode species, in order to determine whether high infestation levels are associated with a compensatory increase in host fecundity. To test this hypothesis, we determined female fecundity in populations with trematode prevalence spanning from <1% to 30-75%, and followed long-term changes in female fecundity and trematode infestation in two heavily infested populations of L. saxatilis. The broad-scale geographic analysis of populations with different trematode burdens showed that fecundity of uninfected females is significantly higher in highly infested L. saxatilis populations than in those with low trematode burdens. This is also supported by a comparison of fecundity in two pairs of geographically adjacent populations with contrasting trematode levels, revealing higher fecundity of uninfected females in heavily infested populations. Higher fecundity could be explained by the larger size of uninfected females in some heavily infested populations but not in others. Long-term (15-20 years) intra-population analysis performed in two heavily infested L. saxatilis populations showed that female fecundity increased in parallel with a long-term increase in trematode prevalence from 20% to >75% in one population, but remained high and relatively stable in the second population, reflecting its consistently high trematode prevalence (40-65%). These data support the hypothesis that an increase in female fecundity may be a population compensation mechanism in response to heavy trematode infestation in L. saxatilis and suggest the possible involvement of both natural selection and fast (physiological) regulation mechanisms.
Collapse
Affiliation(s)
- A I Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia.
| | | | | | | |
Collapse
|
37
|
BARRETT ELB, MOORE AJ, MOORE PJ. Diet and social conditions during sexual maturation have unpredictable influences on female life history trade-offs. J Evol Biol 2009; 22:571-81. [DOI: 10.1111/j.1420-9101.2008.01671.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
ROTH O, KURTZ J. The stimulation of immune defence accelerates development in the red flour beetle (Tribolium castaneum). J Evol Biol 2008; 21:1703-10. [DOI: 10.1111/j.1420-9101.2008.01584.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Shostak AW. Effect of Age of the Intermediate Host Tribolium confusum (Coleoptera) on Infection by Hymenolepis diminuta (Cestoda). J Parasitol 2008; 94:152-7. [PMID: 18372635 DOI: 10.1645/ge-1300.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Allen W Shostak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 1W4, Canada.
| |
Collapse
|
40
|
Vainikka A, Rantala MJ, Seppälä O, Suhonen J. Do male mealworm beetles, Tenebrio molitor, sustain the honesty of pheromone signals under immune challenge? Acta Ethol 2007. [DOI: 10.1007/s10211-007-0031-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Warr E, Meredith JM, Nimmo DD, Basu S, Hurd H, Eggleston P. A tapeworm molecule manipulates vitellogenin expression in the beetle Tenebrio molitor. INSECT MOLECULAR BIOLOGY 2006; 15:497-505. [PMID: 16907836 PMCID: PMC1602060 DOI: 10.1111/j.1365-2583.2006.00663.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Metacestodes of Hymenolepis diminuta secrete a molecule that decreases vitellogenin (Vg) synthesis in the beetle host, Tenebrio molitor. The 5608 bp T. molitor Vg cDNA represents a single-copy gene encoding a single open reading frame of 1821 amino acids with a predicted molecular mass of 206 kDa. Northern blot analysis revealed detectable levels of transcripts only in adult females. In vivo, Vg mRNA abundance was significantly higher in fat bodies from infected females compared with control females at all but the earliest time point. In vitro, Vg mRNA abundance was significantly increased in fat bodies incubated with live stage I-II parasites. The apparent conflict between increased Vg mRNA abundance and decreased Vg protein in fat bodies from infected females is discussed.
Collapse
Affiliation(s)
- E Warr
- Centre for Applied Entomology and Parasitology, Institute for Science and Technology in Medicine, School of Life Sciences, Keele University, Staffordshire, UK
| | | | | | | | | | | |
Collapse
|
42
|
Shostak AW, Walsh JG, Wong YC. SHAPE VARIATION OF CYSTICERCOIDS OF HYMENOLEPIS DIMINUTA (CYCLOPHYLLIDEA) FROM FED, PARTIALLY FED, AND FASTED TRIBOLIUM CONFUSUM (COLEOPTERA). J Parasitol 2006; 92:756-63. [PMID: 16995393 DOI: 10.1645/ge-765r.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Quantitative studies of a crowding effect on cysticercoids of Hymenolepis diminuta in the intermediate host are few and limited in scope. In this study, we developed a technique to rapidly collect morphological information on large numbers of parasites, and verified the utility of geometric models for simple and accurate estimation of cysticercoid size for quantitative studies. These models were tested using measurements from 4,899 H. diminuta obtained from 666 Tribolium confusum exposed 1-4 wk previously. Length, width, and depth of the body and cercomer (when present) can be used in conjunction with these models to provide the most accurate estimation of parasite size. However, parasite body length alone can be used, with adjustment for effects of host diet and infection intensity, to predict the remaining measurements in incomplete specimens. Parasites that developed in higher intensity infections, or in hosts with reduced food intake, were narrower and had a proportionately shorter cercomer. Host age, sex, and mating status, and parasite age also had statistically significant, but small-magnitude, effects on parasite shape.
Collapse
Affiliation(s)
- Allen W Shostak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 1W4, Canada.
| | | | | |
Collapse
|
43
|
Blaser M, Schmid-Hempel P. Determinants of virulence for the parasite Nosema whitei in its host Tribolium castaneum. J Invertebr Pathol 2006; 89:251-7. [PMID: 15963529 DOI: 10.1016/j.jip.2005.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/20/2005] [Accepted: 04/28/2005] [Indexed: 11/26/2022]
Abstract
For many parasites, especially those that obligately kill the host for transmission, host age is crucially important to determine success. Here, we have experimentally investigated this relationship with the microsporidian parasite, Nosema whitei, in its host, the Red Flour Beetle, Tribolium castaneum. We find that infection is only possible in young larvae and that spore load at the time of transmission (i.e., host death) correlates with host body size. The data suggested that an infection by N. whitei prolongs the life span of the infected larva and prevents them from pupation. Together, virulence to the host and success for the parasite is mainly determined by the host age at infection. The patterns are consistent with theoretical predictions for obligate killer parasites.
Collapse
Affiliation(s)
- Martin Blaser
- Ecology and Evolution, ETH Zürich, ETH-Zentrum NW, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
44
|
Kokkotis T, McLaughlin JD. Pathogenicity of the hymenolepidid cestodeMicrosomacanthus hopkinsiin its intermediate host,Hyalella azteca: implications for transmission, host fitness, and host populations. CAN J ZOOL 2006. [DOI: 10.1139/z05-173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Infection by larval parasites can have severe consequences on intermediate hosts that affect transmission, fecundity and fitness of the host, and host population structure. This study examines the pathogenic effects of cysticercoid larvae of the hymenolepidid cestode Microsomacanthus hopkinsi (Schiller, 1951) on its amphipod intermediate host, Hyalella azteca Saussure, 1858. There was a significant, positive relationship between oncosphere consumption, cysticercoid burden, and age in short-term experiments in which groups of H. azteca were exposed individually to single egg packets of M. hopkinsi during instars 1, 2, 3, 4, 6, 8, and 9; however, there was no correlation between oncosphere consumption and the intensity of infection in the amphipod hosts within each instar. The mean number of moults over a 14 day experimental period was significantly less in infected amphipods than in their respective controls. In short-term experiments, the greatest mortality appeared to be limited to amphipods exposed during the earliest instars; little mortality was observed in amphipods exposed during instar 4 or later. Long-term experiments revealed a significant negative effect of infection on the overall life span of both male and female H. azteca exposed individually to a single egg packet during instar 4. Of 72 females infected during instar 4 and provided with mates during instar 6, only 1 and 4 produced broods in instars 8 and 9, respectively, compared with 58 and 57 of 72 control females. Broods produced by infected females were significantly smaller than those of control females. Infected individuals were less likely to mate successfully. The results are discussed in terms of their consequences for transmission, host fitness, and potential effects on host populations.
Collapse
|
45
|
Shea JF. The effect of Hymenolepis diminuta (Cestoda) cysticercoids on the weight change, frass production, and food intake of the intermediate host, Tenebrio molitor (Coleoptera). Parasitol Res 2005; 98:1-4. [PMID: 16231174 DOI: 10.1007/s00436-005-0021-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 09/15/2005] [Indexed: 11/26/2022]
Abstract
Parasitism results in nutritionally related changes in hosts, often leading to altered feeding behavior. Infected hosts that increase their feeding also increase their probability of reinfection. To study this, I used a beetle (Tenebrio molitor)-tapeworm (Hymenolepis diminuta) system. Infected and uninfected male and female beetles were individually housed in vials with food. Each beetle's weight change, food intake, and frass production were measured over 24-h periods at 3, 7, 12, and 16 days postinfection. Treatment (infection) had no effect on weight change, but males lost more weight and produced more frass than females. Additionally, treatment had no effect on food consumption, but males had a higher food intake than females. These results suggest that infection status will not alter the probability of reinfection, but males will be more susceptible to infection than females. However, despite the male's greater food intake during the experimental infection period, parasite loads did not differ between males and females.
Collapse
Affiliation(s)
- John F Shea
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 300 Aronoff Laboratory, 318 West 12th Ave., Columbus, OH 43210, USA.
| |
Collapse
|
46
|
Vizoso DB, Ebert D. Phenotypic plasticity of host-parasite interactions in response to the route of infection. J Evol Biol 2005; 18:911-21. [PMID: 16033563 DOI: 10.1111/j.1420-9101.2005.00920.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The microsporidium Octosporea bayeri can infect its host, the planktonic crustacean Daphnia magna, vertically and horizontally. The two routes differ greatly in the way the parasite leaves the harbouring host (transmission) and in the way it enters a new, susceptible host (infection). Infections resulting from each route may thus vary in the way they affect host and parasite life-histories and, subsequently, host and parasite fitness. We conducted a life-table experiment to compare D. magna infected with O. bayeri either horizontally or vertically, using three different parasite isolates. Both the infection route and the parasite isolate had significant effects on host life-history. Hosts matured at different ages depending on the parasite isolate, and at a size that varied with infection route. The frequency of host sterility and the host's life-time reproductive success were affected by both the infection route and the parasite isolate. The infection route also affected parasite life-history. The production of parasite spores was much higher in vertically than in horizontally infected hosts. We found a trade-off between the production of spores (the parasite's horizontal fitness component) and the production of infected host offspring (the parasite's vertical fitness component). This study shows that hosts and parasites can react plastically to different routes of infection, suggesting that ecological factors that may influence the relative importance of horizontal and vertical transmission can shape the evolution of host and parasite life histories, and, consequently, the evolution of virulence.
Collapse
Affiliation(s)
- D B Vizoso
- Département de Biologie, Unité d'Ecologie & Evolution, Université de Fribourg, Fribourg, Switzerland.
| | | |
Collapse
|
47
|
Varaldi J, Boulétreau M, Fleury F. Cost induced by viral particles manipulating superparasitism behaviour in the parasitoid Leptopilina boulardi. Parasitology 2005; 131:161-8. [PMID: 16145933 DOI: 10.1017/s0031182005007602] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Vertically transmitted symbionts can be maintained in a host population only if they do not reduce host fitness, unless they compensate by manipulation of their host's reproduction or have alternative mode of transmission. In Leptopilina boulardi, a parasitoid of Drosophila larvae, some females are infected by viral particles showing both maternal and horizontal transmission. Horizontal transmission occurs when larvae from infected and uninfected individuals of L. boulardi compete in the same host. This situation is facilitated by the increasing tendency to accept already parasitized hosts that viral infection induces in L. boulardi females. Estimation of the adaptive significance of this behavioural modification requires measuring the effect of viral presence on other parasitoid physiological features. Here, we show that viral infection in females imposes no cost on adult survival, a low cost on developmental rate and tibia length, and leads to a strong reduction of locomotor activity. Surprisingly, infected females show higher egg load which could be accounted for by a redirection of energy allocation to egg production. The high intensity of superparasitism in infected females induced a dramatic decrease in pre-imaginal survival of the parasitoid's offspring, representing a potential indirect cost of infection. Low overall pathogeny induced by viral particles appears to be well suited to both transmission modes, both of them requiring females ability to locate and (super)parasitize hosts.
Collapse
Affiliation(s)
- J Varaldi
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Claude Bernard LYON 1, Villeurbanne Cedex, France.
| | | | | |
Collapse
|
48
|
Telfer S, Bennett M, Bown K, Carslake D, Cavanagh R, Hazel S, Jones T, Begon M. Infection with cowpox virus decreases female maturation rates in wild populations of woodland rodents. OIKOS 2005. [DOI: 10.1111/j.0030-1299.2005.13734.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Hurd H. Parasite manipulation: stretching the concepts. Behav Processes 2005; 68:235-6. [PMID: 15792696 PMCID: PMC2474665 DOI: 10.1016/j.beproc.2004.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Affiliation(s)
- Hilary Hurd
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Huxley Building, Keele University, Keele, Staffordshire ST5 5BG, UK.
| |
Collapse
|
50
|
Warr E, Eggleston P, Hurd H. Apoptosis in the fat body tissue of the beetle Tenebrio molitor parasitised by Hymenolepis diminuta. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:1037-1043. [PMID: 15607506 DOI: 10.1016/j.jinsphys.2004.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Revised: 09/07/2004] [Accepted: 09/09/2004] [Indexed: 05/24/2023]
Abstract
Many insects experience a decrease in reproductive output when parasitised. We are investigating mechanisms underlying this fecundity reduction using the rat tapeworm, Hymenolepis diminuta infection of Tenebrio molitor beetles. These include an increase in the resorption of developing ovarian follicles and a decrease in fat body synthesis of vitellogenin. The latter is the direct effect of a molecule produced by the parasite. Here we report a study to determine whether vitellogenin synthesis and follicle resorption are the result of parasite-induced apoptosis in the respective tissues and whether the parasite molecule acts directly on the fat body by inducing apoptosis. In vivo, the number of fat body cell nuclei with chromatin condensation are significantly elevated in parasitised females at all days examined and peaked at day 7 post-infection. A TUNEL assay to detect DNA fragmentation confirmed these observations of apoptosis. However, when fat body from uninfected females was co-cultured with live metacestodes they did not cause cells to die by apoptosis, showing that the induction signal does not come directly from the parasite. The follicle resorption observed in the ovaries of infected beetles was not associated with apoptosis of the epithelial cells. The possibility of several mechanisms underlying fecundity reduction is discussed.
Collapse
Affiliation(s)
- Emma Warr
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Huxley Building, Keele University, Staffordshire ST5 5BG, UK
| | | | | |
Collapse
|