1
|
Hermanson G, Arnal FAM, Szczygielski T, Evers SW. A systematic comparative description of extant turtle humeri, with comments on humerus disparity and evolution based on fossil comparisons. Anat Rec (Hoboken) 2024; 307:3437-3505. [PMID: 38716962 DOI: 10.1002/ar.25450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 10/09/2024]
Abstract
The humerus is central for locomotion in turtles as quadrupedal animals. Osteological variation across testudine clades remains poorly documented. Here, we systematically describe the humerus anatomy for all major extant turtle clades based on 38 species representing the phylogenetic and ecological diversity of crown turtles. Three Late Triassic species of shelled stem turtles (Testudindata) are included to establish the plesiomorphic humerus morphology. Our work is based on 3D models, establishing a publicly available digital database. Previously defined terms for anatomical sides of the humerus (e.g., dorsal, ventral) are often not aligned with the respective body sides in turtles and other quadrupedal animals with sprawling gait. We propose alternative anatomical directional terms to simplify communication: radial and ulnar (the sides articulating with the radius/ulna), capitular (the side bearing the humeral head), and intertubercular (opposite to capitular surface). Turtle humeri show low morphological variation with exceptions concentrated in locomotory specialists. We propose 15 discrete characters to summarize osteological variation for future phylogenetic studies. Disparity analyses comparing non-shelled and shelled turtles indicate that the presence of the shell constrains humerus variation. Flippered aquatic turtles are released from this constraint and significantly increase overall disparity. Ontogenetic changes of turtle humeri are related to increased ossification and pronunciation of the proximal processes, the distal articulation areas, and the closure of the ectepicondylar groove to a foramen. Some turtle species retain juvenile features into adulthood and provide evidence for paedomorphic evolution. We review major changes of turtle humerus morphology throughout the evolution of its stem group.
Collapse
Affiliation(s)
| | - Fernando A M Arnal
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | | | - Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Ferreira GS, Hermanson G, Kyriakouli C, Dróżdż D, Szczygielski T. Shell biomechanics suggests an aquatic palaeoecology at the dawn of turtle evolution. Sci Rep 2024; 14:21822. [PMID: 39294199 PMCID: PMC11411134 DOI: 10.1038/s41598-024-72540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
The turtle shell is a remarkable structure that has intrigued not only evolutionary biologists but also engineering and material scientists because of its multi-scale complexity and various functions. Although protection is its most apparent role, the carapace and plastron are also related to many physiological functions and their shape influences hydrodynamics and self-righting ability. As such, analysing the functional morphology of the shell could help understanding the ecology of Triassic stem-turtles, which will contribute to the century-long debate on the evolutionary origins of turtles. Here, we used 3D imaging techniques to digitize the shells of two of the earliest stem-turtle taxa, Proganochelys and Proterochersis, and submitted their models to biomechanical and shape analyses. We analysed the strength performance under five predation scenarios and tested the function of two morphological traits found in stem-turtles, the epiplastral processes and an attached pelvic girdle. The latter, also present in the crown-lineage of side-necked turtles, has been suggested to increase load-bearing capacity of the shell or to improve swimming in pleurodires. Our results do not confirm the shell-strengthening hypothesis and, together with the results of our shape analyses, suggest that at least one of the first stem-turtles (Proterochersis) was an aquatic animal.
Collapse
Affiliation(s)
- Gabriel S Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.
- Fachbereich Geowissenschaften, Eberhard Karls Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany.
| | - Guilherme Hermanson
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700, Fribourg, Switzerland
| | - Christina Kyriakouli
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
- Fachbereich Geowissenschaften, Eberhard Karls Universität Tübingen, Hölderlinstraße 12, 72074, Tübingen, Germany
| | - Dawid Dróżdż
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences PL, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Tomasz Szczygielski
- Institute of Paleobiology, Polish Academy of Sciences PL, Twarda 51/55, 00-818, Warsaw, Poland
| |
Collapse
|
3
|
Bhat MS, Cullen TM. Growth and life history of freshwater chelydrid turtles (Testudines: Cryptodira): A bone histological approach. J Anat 2024. [PMID: 39169639 DOI: 10.1111/joa.14130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
The current study examines the growth pattern and lifestyle habits of the freshwater snapping turtles Chelydra and Macrochelys based on limb bone histology. Femora, humeri, and tibiae of 25 individuals selected from a range of ontogenetic stages were assessed to determine inter-element and intraskeletal histological variation. Osteohistological assessment of multiple elements is consistent with overall moderate growth rates as revealed by the dominance of parallel-fibered bone. However, the growth was cyclical as shown by deposition of multiple lines of arrested growths in the compacta. It appears that the bone tissue of C. serpentina is more variable through ontogeny with intermittent higher growth rates. M. temminckii appears to grow more slowly than C. serpentina possessing compact and thick cortices in accordance with their larger size. Overall, vascularization decreases through ontogeny with humeri and femora being well-vascularized in both species. Contrarily, epipodials are poorly vascularized, though simple longitudinal and radial canals are present, suggesting differences in growth patterns when compared with associated diaphyseal sections. The tibiae were found to be the least remodeled of the limb bones and therefore better suited for skeletochronology for snapping turtles. Intra-elementally, femora and humeri preserved higher cortical vascularity ventrally, suggestive of faster relative growth. We hypothesize that the differential growth pattern in limb bones of snapping turtles may relate to differential functional constraints, where forelimbs are operational in swimming while the hindlimbs provide stability.
Collapse
Affiliation(s)
- Mohd Shafi Bhat
- Department of Geosciences, Auburn University, Auburn, Alabama, USA
| | - Thomas M Cullen
- Department of Geosciences, Auburn University, Auburn, Alabama, USA
- Auburn University Museum of Natural History, Auburn, Alabama, USA
- Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Mauel C, Leicht L, Broshko Y, Yaryhin O, Werneburg I. Chondrocranial anatomy of Testudo hermanni (Testudinidae, Testudines) with a comparison to other turtles. J Morphol 2024; 285:e21747. [PMID: 38956884 DOI: 10.1002/jmor.21747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/04/2024]
Abstract
Using histological cross-sections, the chondrocranium anatomy was reconstructed for two developmental stages of Hermann's tortoise (Testudo hermanni). The morphology differs from the chondrocrania of most other turtles by a process above the ectochoanal cartilage with Pelodiscus sinensis being the only other known species with such a structure. The anterior and posterior processes of the tectum synoticum are better developed than in most other turtles and an ascending process of the palatoquadrate is missing, which is otherwise only the case in pleurodiran turtles. The nasal region gets proportionally larger during development. We interpret the enlargement of the nasal capsules as an adaption to increase the surface area of the olfactory epithelium for better perception of volant odors. Elongation of the nasal capsules in trionychids, in contrast, is unlikely to be related to olfaction, while it is ambiguous in the case of Sternotherus odoratus. However, we have to conclude that research on chondrocranium anatomy is still at its beginning and more comprehensive detailed descriptions in relation to other parts of the anatomy are needed before providing broad-scale ecological and phylogenetic interpretations.
Collapse
Affiliation(s)
- Carola Mauel
- Fachbereich Biologie, Universität Tübingen, Tübingen, Germany
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, Bonn, Germany
| | - Luca Leicht
- Fachbereich Biologie, Universität Tübingen, Tübingen, Germany
- Senckenberg Center for Human Evolution and Palaeoenvironment (SHEP), Universität Tübingen, Tübingen, Germany
| | - Yevhenii Broshko
- Faculty of Natural Sciences, Faculty of Natural Sciences, Kryvyi Rih State Pedagogical University, Kryvyi Rih, Ukraine
| | - Oleksandr Yaryhin
- Schmalhausen Institute of Zoology NAS of Ukraine, Department of Evolutionary Morphology, Kyiv, Ukraine
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Palaeoenvironment (SHEP), Universität Tübingen, Tübingen, Germany
- Fachbereich Geowissenschaften, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Farina BM, Godoy PL, Benson RBJ, Langer MC, Ferreira GS. Turtle body size evolution is determined by lineage-specific specializations rather than global trends. Ecol Evol 2023; 13:e10201. [PMID: 37384241 PMCID: PMC10293707 DOI: 10.1002/ece3.10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/30/2023] Open
Abstract
Organisms display a considerable variety of body sizes and shapes, and macroevolutionary investigations help to understand the evolutionary dynamics behind such variations. Turtles (Testudinata) show great body size disparity, especially when their rich fossil record is accounted for. We explored body size evolution in turtles, testing which factors might influence the observed patterns and evaluating the existence of long-term directional trends. We constructed the most comprehensive body size dataset for the group to date, tested for correlation with paleotemperature, estimated ancestral body sizes, and performed macroevolutionary model-fitting analyses. We found no evidence for directional body size evolution, even when using very flexible models, thereby rejecting the occurrence of Cope's rule. We also found no significant effect of paleotemperature on overall through-time body size patterns. In contrast, we found a significant influence of habitat preference on turtle body size. Freshwater turtles display a rather homogeneous body size distribution through time. In contrast, terrestrial and marine turtles show more pronounced variation, with terrestrial forms being restricted to larger body sizes, up to the origin of testudinids in the Cenozoic, and marine turtles undergoing a reduction in body size disparity after the extinctions of many groups in the mid-Cenozoic. Our results, therefore, suggest that long-term, generalized patterns are probably explained by factors specific to certain groups and related at least partly to habitat use.
Collapse
Affiliation(s)
- Bruna M. Farina
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Swiss Institute of BioinformaticsFribourgSwitzerland
- Laboratório de Paleontologia de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
| | - Pedro L. Godoy
- Laboratório de Paleontologia de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
- Department of Anatomical SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Roger B. J. Benson
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| | - Max C. Langer
- Laboratório de Paleontologia de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
| | - Gabriel S. Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP)Eberhard Karls Universität TübingenTübingenGermany
- Fachbereich GeowissenschaftenEberhard Karls Universität TübingenTübingenGermany
| |
Collapse
|
6
|
Evers SW, Chapelle KEJ, Joyce WG. Cranial and mandibular anatomy of Plastomenus thomasii and a new time-tree of trionychid evolution. SWISS JOURNAL OF PALAEONTOLOGY 2023; 142:1. [PMID: 36941994 PMCID: PMC10020266 DOI: 10.1186/s13358-023-00267-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Trionychid (softshell) turtles have a peculiar bauplan, which includes shell reductions and cranial elongation. Despite a rich fossil record dating back to the Early Cretaceous, the evolutionary origin of the trionychid bauplan is poorly understood, as even old fossils show great anatomical similarities to extant species. Documenting structural detail of fossil trionychids may help resolve the evolutionary history of the group. Here, we study the cranial and mandibular anatomy of Plastomenus thomasii using µCT scanning. Plastomenus thomasii belongs to the Plastomenidae, a long-lived (Santonian-Eocene) clade with uncertain affinities among trionychid subclades. The skulls of known plastomenids are characterized by unusual features otherwise not known among trionychids, such as extremely elongated, spatulate mandibular symphyses. We use anatomical observations for updated phylogenetic analyses using both parsimony and Bayesian methods. There is strong support across methods for stem-cyclanorbine affinities for plastomenids. The inclusion of stratigraphic data in our Bayesian analysis indicates that a range of Cretaceous Asian fossils including Perochelys lamadongensis may be stem-trionychids, suggesting that many features of trionychid anatomy evolved prior to the appearance of the crown group. Divergence time estimates from Bayesian tip-dating for the origin of crown Trionychia (134.0 Ma) and Pan-Trionychidae (123.8 Ma) constrain the evolutionary time span during which the trionychid bauplan has evolved to a range of < 11 million years. Bayesian rate estimation implies high morphological rates during early softshell turtle evolution. If correct, plastomenids partially fill the stratigraphic gap which results from shallow divergence times of crown cyclanorbines during the late Eocene. Supplementary Information The online version contains supplementary material available at 10.1186/s13358-023-00267-5.
Collapse
Affiliation(s)
- Serjoscha W. Evers
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
| | - Kimberley E. J. Chapelle
- Division of Paleontology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 USA
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland
| |
Collapse
|
7
|
Hermanson G, Benson RBJ, Farina BM, Ferreira GS, Langer MC, Evers SW. Cranial ecomorphology of turtles and neck retraction as a possible trigger of ecological diversification. Evolution 2022; 76:2566-2586. [PMID: 36117268 PMCID: PMC9828723 DOI: 10.1111/evo.14629] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 01/22/2023]
Abstract
Turtles have a highly modified body plan, including a rigid shell that constrains postcranial anatomy. Skull morphology and neck mobility may therefore be key to ecological specialization in turtles. However, the ecological signal of turtle skull morphologies has not been rigorously evaluated, leaving uncertainties about the roles of ecological adaptation and convergence. We evaluate turtle cranial ecomorphology using three-dimensional geometric morphometrics and phylogenetic comparative methods. Skull shape correlates with allometry, neck retraction capability, and different aquatic feeding ecologies. We find that ecological variables influence skull shape only, whereas a key functional variable (the capacity for neck retraction) influences both shape and size. Ecology and functional predictions from three-dimensional shape are validated by high success rates for extant species, outperforming previous two-dimensional approaches. We use this to infer ecological and functional traits of extinct species. Neck retraction evolved among crownward stem-turtles by the Late Jurassic, signaling functional decoupling of the skull and neck from the shell, possibly linked to a major episode of ecomorphological diversification. We also find strong evidence for convergent ecological adaptations among marine groups. This includes parallel loss of neck retraction, evidence for active hunting, possible grazing, and suction feeding in extinct marine groups. Our large-scale assessment of dietary and functional adaptation throughout turtle evolution reveals the timing and origin of their distinct ecomorphologies, and highlights the potential for ecology and function to have distinct effects on skull form.
Collapse
Affiliation(s)
- Guilherme Hermanson
- Department of GeosciencesUniversity of FribourgFribourgCH‐1700Switzerland
- Department of Earth SciencesUniversity of OxfordOxfordOX1 3ANUnited Kingdom
- Laboratório de Paleontologia de Ribeirão PretoUniversidade de São PauloRibeirão Preto14040‐091Brazil
| | - Roger B. J. Benson
- Department of Earth SciencesUniversity of OxfordOxfordOX1 3ANUnited Kingdom
| | - Bruna M. Farina
- Laboratório de Paleontologia de Ribeirão PretoUniversidade de São PauloRibeirão Preto14040‐091Brazil
- Department of BiologyUniversity of FribourgFribourgCH‐1700Switzerland
| | - Gabriel S. Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP)Eberhard Karls Universität Tübingen72076TübingenGermany
- Fachbereich GeowissenschaftenUniversität Tübingen72074TübingenGermany
| | - Max C. Langer
- Laboratório de Paleontologia de Ribeirão PretoUniversidade de São PauloRibeirão Preto14040‐091Brazil
| | - Serjoscha W. Evers
- Department of GeosciencesUniversity of FribourgFribourgCH‐1700Switzerland
| |
Collapse
|
8
|
Scheyer TM, Klein N, Evers SW, Mautner AK, Pabst B. First evidence of Proganochelys quenstedtii (Testudinata) from the Plateosaurus bonebeds (Norian, Late Triassic) of Frick, Canton Aargau, Switzerland. SWISS JOURNAL OF PALAEONTOLOGY 2022; 141:17. [PMID: 36317153 PMCID: PMC9613585 DOI: 10.1186/s13358-022-00260-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Proganochelys quenstedtii represents the best-known stem turtle from the Late Triassic, with gross anatomical and internal descriptions of the shell, postcranial bones and skull based on several well-preserved specimens from Central European fossil locations. We here report on the first specimen of P. quenstedtii from the Late Triassic (Klettgau Formation) Frickberg near the town of Frick, Canton Aargau, Switzerland. Similar to other Late Triassic 'Plateosaurus-bearing bonebeds', Proganochelys is considered to be a rare faunal element in the Swiss locality of Frick as well. The specimen, which is largely complete but was found only partially articulated and mixed with large Plateosaurus bones, overall resembles the morphology of the classical specimens from Germany. Despite being disarticulated, most skull bones could be identified and micro-computed tomography (CT) scanning of the posterior skull region reveals new insights into the braincase and neurovascular anatomy, as well as the inner ear region. These include the presence of a fenestra perilymphatica, potentially elongated cochlear ducts, and intense vascularization of small tubercles on the posterior end of the skull roof, which we interpret as horn cores. Other aspects of the skull in the braincase region, such as the presence or absence of a supratemporal remain ambiguous due to the fusion of individual bones and thus lack of visible sutures (externally and internally). Based on the size of the shell and fusion of individual elements, the specimen is interpreted as a skeletally mature animal. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s13358-022-00260-4.
Collapse
Affiliation(s)
- Torsten M. Scheyer
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Nicole Klein
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
- Institute of Geosciences, Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany
| | - Serjoscha W. Evers
- Department of Geosciences, University of Fribourg, Ch. du Musée 6, 1700 Fribourg, Switzerland
| | - Anna-Katharina Mautner
- Palaeontological Institute and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006 Zurich, Switzerland
| | - Ben Pabst
- Sauriermuseum Aathal, Zürichstrasse 69, 8607 Aathal-Seegräben, Switzerland
| |
Collapse
|
9
|
Ewart H, Tickle P, Nudds R, Sellers W, Crossley D, Codd J. Mediterranean Spur-Thighed Tortoises ( Testudo graeca) Have Optimal Speeds at Which They Can Minimise the Metabolic Cost of Transport, on a Treadmill. BIOLOGY 2022; 11:1052. [PMID: 36101430 PMCID: PMC9312080 DOI: 10.3390/biology11071052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/25/2022]
Abstract
Tortoises are famed for their slow locomotion, which is in part related to their herbivorous diet and the constraints imposed by their protective shells. For most animals, the metabolic cost of transport (CoT) is close to the value predicted for their body mass. Testudines appear to be an exception to this rule, as previous studies indicate that, for their body mass, they are economical walkers. The metabolic efficiency of their terrestrial locomotion is explainable by their walking gait biomechanics and the specialisation of their limb muscle physiology, which embodies a predominance of energy-efficient slow-twitch type I muscle fibres. However, there are only two published experimental reports of the energetics of locomotion in tortoises, and these data show high variability. Here, Mediterranean spur-thighed tortoises (Testudo graeca) were trained to walk on a treadmill. Open-flow respirometry and high-speed filming were simultaneously used to measure the metabolic cost of transport and to quantify limb kinematics, respectively. Our data support the low cost of transport previously reported and demonstrate a novel curvilinear relationship to speed in Testudines, suggesting tortoises have an energetically optimal speed range over which they can move in order to minimise the metabolic cost of transport.
Collapse
Affiliation(s)
- Heather Ewart
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK; (H.E.); (R.N.)
| | - Peter Tickle
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Robert Nudds
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK; (H.E.); (R.N.)
| | - William Sellers
- School of Natural Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Dane Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203-5017, USA;
| | - Jonathan Codd
- School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK; (H.E.); (R.N.)
| |
Collapse
|
10
|
Dudgeon TW, Livius MCH, Alfonso N, Tessier S, Mallon JC. A new model of forelimb ecomorphology for predicting the ancient habitats of fossil turtles. Ecol Evol 2021; 11:17071-17079. [PMID: 34938493 PMCID: PMC8668755 DOI: 10.1002/ece3.8345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
Various morphological proxies have been used to infer habitat preferences among fossil turtles and their early ancestors, but most are tightly linked to phylogeny, thereby minimizing their predictive power. One particularly widely used model incorporates linear measurements of the forelimb (humerus + ulna + manus), but in addition to the issue of phylogenetic correlation, it does not estimate the likelihood of habitat assignment. Here, we introduce a new model that uses intramanual measurements (digit III metacarpal + non-ungual phalanges + ungual) to statistically estimate habitat likelihood and that has greater predictive strength than prior estimators. Application of the model supports the hypothesis that stem-turtles were primarily terrestrial in nature and recovers the nanhsiungchelyid Basilemys (a fossil crown-group turtle) as having lived primarily on land, despite some prior claims to the contrary.
Collapse
Affiliation(s)
- Thomas W. Dudgeon
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Natural HistoryRoyal Ontario MuseumTorontoOntarioCanada
| | - Marissa C. H. Livius
- Ottawa‐Carleton Geoscience Centre and Department of Earth SciencesCarleton UniversityOttawaOntarioCanada
| | - Noel Alfonso
- Beaty Centre for Species Discovery and Zoology SectionCanadian Museum of NatureOttawaOntarioCanada
| | - Stéphanie Tessier
- Beaty Centre for Species Discovery and Zoology SectionCanadian Museum of NatureOttawaOntarioCanada
| | - Jordan C. Mallon
- Ottawa‐Carleton Geoscience Centre and Department of Earth SciencesCarleton UniversityOttawaOntarioCanada
- Beaty Centre for Species Discovery and Palaeobiology SectionCanadian Museum of NatureOttawaOntarioCanada
| |
Collapse
|
11
|
Butterfield TG, Herrel A, Olson ME, Contreras-Garduño J, Macip-Ríos R. Morphology of the limb, shell and head explain the variation in performance and ecology across 14 turtle taxa (12 species). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Given that morphology directly influences the ability of an organism to utilize its habitat and dietary resources, it also influences fitness. Comparing the relationship between morphology, performance and ecology is fundamental to understand how organisms evolve to occupy a wide range of habitats and diets. In turtles, studies have documented important relationships between morphology, performance and ecology, but none was field based or considered limb, shell and head morphology simultaneously. We compared the morphology, performance and ecology of 14 turtle taxa (12 species) in Mexico that range in their affinity to water and in their diet. We took linear measurements of limb, shell and head variables. We measured maximum swimming speed, maximum bite force and how often turtles were encountered on land, and we used stable isotopes to assess trophic position. We used these data to test the following three hypotheses: (1) morphology, performance and ecology covary; (2) limb and shell variables, like hand length, are correlated with swimming speed and the percentage of time spent on land; and (3) head variables, such as head width, are correlated with bite force and stable isotopes. We find support for these hypotheses and provide the first evidence that morphology influences performance and ecology in turtles in the field.
Collapse
Affiliation(s)
- Taggert G Butterfield
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, edificio D, Ciudad Universitaria, CDMX, México, Mexico
| | - Anthony Herrel
- UMR 7179 CNRS/MNHN, Département Adaptations du Vivant, 55 rue Buffon, 75005, Paris Cedex 5, France
| | - Mark E Olson
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, edificio D, Ciudad Universitaria, CDMX, México, Mexico
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México (CDMX), Mexico, Mexico
| | - Jorge Contreras-Garduño
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, edificio D, Ciudad Universitaria, CDMX, México, Mexico
| | - Rodrigo Macip-Ríos
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Morelia, Michoacán, México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, edificio D, Ciudad Universitaria, CDMX, México, Mexico
| |
Collapse
|
12
|
Joyce WG, Mäuser M, Evers SW. Two turtles with soft tissue preservation from the platy limestones of Germany provide evidence for marine flipper adaptations in Late Jurassic thalassochelydians. PLoS One 2021; 16:e0252355. [PMID: 34081728 PMCID: PMC8174742 DOI: 10.1371/journal.pone.0252355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/12/2021] [Indexed: 01/07/2023] Open
Abstract
Late Jurassic deposits across Europe have yielded a rich fauna of extinct turtles. Although many of these turtles are recovered from marine deposits, it is unclear which of these taxa are habitually marine and which may be riverine species washed into nearby basins, as adaptations to open marine conditions are yet to be found. Two new fossils from the Late Jurassic of Germany provide unusually strong evidence for open marine adaptations. The first specimen is a partial shell and articulated hind limb from the Late Jurassic (early Tithonian) platy limestones of Schernfeld near Eichstätt, which preserves the integument of the hind limb as an imprint. The skin is fully covered by flat, polygonal scales, which stiffen the pes into a paddle. Although taxonomic attribution is not possible, similarities are apparent with Thalassemys. The second specimen is a large, articulated skeleton with hypertrophied limbs referable to Thalassemys bruntrutana from the Late Jurassic (early Late Kimmeridgian) platy limestone of Wattendorf, near Bamberg. Even though the skin is preserved as a phosphatic film, the scales are not preserved. This specimen can nevertheless be inferred to have had paddles stiffened by scales based on the pose in which they are preserved, the presence of epibionts between the digits, and by full morphological correspondence to the specimen from Schernfeld. An analysis of scalation in extant turtles demonstrated that elongate flippers stiffed by scales are a marine adaptation, in contrast to the elongate but flexible flippers of riverine turtles. Phylogenetic analysis suggests that Thalassemys bruntrutana is referable to the mostly Late Jurassic turtle clade Thalassochelydia. The marine adapted flippers of this taxon therefore evolved convergently with those of later clades of marine turtles. Although thalassochelydian fossils are restricted to Europe, with one notable exception from Argentina, their open marine adaptations combined with the interconnectivity of Jurassic oceans predict that the clade must have been even more wide-spread during that time.
Collapse
Affiliation(s)
- Walter G. Joyce
- Departement für Geowissenschaften, Universität Freiburg, Freiburg, Switzerland
| | - Matthias Mäuser
- Staatliche Naturwissenschaftliche Sammlungen Bayerns, Naturkunde-Museum Bamberg, Bamberg, Germany
| | - Serjoscha W. Evers
- Departement für Geowissenschaften, Universität Freiburg, Freiburg, Switzerland
| |
Collapse
|
13
|
Adrian B, Smith HF, Noto CR, Grossman A. An early bothremydid from the Arlington Archosaur Site of Texas. Sci Rep 2021; 11:9555. [PMID: 34017016 PMCID: PMC8137945 DOI: 10.1038/s41598-021-88905-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/14/2021] [Indexed: 12/03/2022] Open
Abstract
Four turtle taxa are previously documented from the Cenomanian Arlington Archosaur Site (AAS) of the Lewisville Formation (Woodbine Group) in Texas. Herein, we describe a new side-necked turtle (Pleurodira), Pleurochayah appalachius gen. et sp. nov., which is a basal member of the Bothremydidae. Pleurochayah appalachius gen. et sp. nov. shares synapomorphic characters with other bothremydids, including shared traits with Kurmademydini and Cearachelyini, but has a unique combination of skull and shell traits. The new taxon is significant because it is the oldest crown pleurodiran turtle from North America and Laurasia, predating bothremynines Algorachelus peregrinus and Paiutemys tibert from Europe and North America respectively. This discovery also documents the oldest evidence of dispersal of crown Pleurodira from Gondwana to Laurasia. Pleurochayah appalachius gen. et sp. nov. is compared to previously described fossil pleurodires, placed in a modified phylogenetic analysis of pelomedusoid turtles, and discussed in the context of pleurodiran distribution in the mid-Cretaceous. Its unique combination of characters demonstrates marine adaptation and dispersal capability among basal bothremydids.
Collapse
Affiliation(s)
- Brent Adrian
- Department of Anatomy, Midwestern University, Glendale, AZ, USA.
| | - Heather F Smith
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| | - Christopher R Noto
- Department of Biological Sciences, University of Wisconsin-Parkside, Kenosha, WI, USA
| | - Aryeh Grossman
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
14
|
Ibáñez A, Fritz U, Auer M, Martínez-Silvestre A, Praschag P, Załugowicz E, Podkowa D, Pabijan M. Evolutionary history of mental glands in turtles reveals a single origin in an aquatic ancestor and recurrent losses independent of macrohabitat. Sci Rep 2021; 11:10396. [PMID: 34001926 PMCID: PMC8129087 DOI: 10.1038/s41598-021-89520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/21/2021] [Indexed: 02/03/2023] Open
Abstract
Despite the relevance of chemical communication in vertebrates, comparative examinations of macroevolutionary trends in chemical signaling systems are scarce. Many turtle and tortoise species are reliant on chemical signals to communicate in aquatic and terrestrial macrohabitats, and many of these species possess specialized integumentary organs, termed mental glands (MGs), involved in the production of chemosignals. We inferred the evolutionary history of MGs and tested the impact of macrohabitat on their evolution. Inference of ancestral states along a time-calibrated phylogeny revealed a single origin in the ancestor of the subclade Testudinoidea. Thus, MGs represent homologous structures in all descending lineages. We also inferred multiple independent losses of MGs in both terrestrial and aquatic clades. Although MGs first appeared in an aquatic turtle (the testudinoid ancestor), macrohabitat seems to have had little effect on MG presence or absence in descendants. Instead, we find clade-specific evolutionary trends, with some clades showing increased gland size and morphological complexity, whereas others exhibiting reduction or MG loss. In sister clades inhabiting similar ecological niches, contrasting patterns (loss vs. maintenance) may occur. We conclude that the multiple losses of MGs in turtle clades have not been influenced by macrohabitat and that other factors have affected MG evolution.
Collapse
Affiliation(s)
- Alejandro Ibáñez
- grid.5522.00000 0001 2162 9631Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland ,grid.10789.370000 0000 9730 2769Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Uwe Fritz
- grid.438154.f0000 0001 0944 0975Museum of Zoology, Senckenberg Dresden, 01109 Dresden, Germany
| | - Markus Auer
- grid.438154.f0000 0001 0944 0975Museum of Zoology, Senckenberg Dresden, 01109 Dresden, Germany
| | | | | | - Emilia Załugowicz
- grid.5522.00000 0001 2162 9631Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland
| | - Dagmara Podkowa
- grid.5522.00000 0001 2162 9631Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland
| | - Maciej Pabijan
- grid.5522.00000 0001 2162 9631Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
15
|
Ding L, Li W, Liang L, Huang Z, Li N, Zhang J, Shi H, Storey KB, Hong M. Modulation of the intestinal barrier adaptive functions in red-eared slider (Trachemys scripta elegans) invading brackish waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141744. [PMID: 32890802 DOI: 10.1016/j.scitotenv.2020.141744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/28/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Globally, the increase in sea levels is leading to salinization of freshwater, which might influence the freshwater organisms such as red-eared slider, Trachemys scripta elegans. The turtle can invade brackish water environments, in which it must deal with elevated salinity in the gastrointestinal tract that could impact the intestinal function. The intestinal barrier provides a front-line of organismal defense against the chemical and biological environmental insults. In this study, the adaptive functions of the intestinal barrier including intestinal histomorphology, genes involved in intestinal barrier functions, and the intestinal micro-ecosystem were analyzed in the turtles exposed to freshwater (S0), 5‰ salinity (S5) and 15‰ salinity (S15) water for 30 days. The results showed that the intestine of T. s. elegans maintained normal histomorphological structure in the S5 group, whereas the villus height, crypt depth and the number of goblet cells in the S15 group were lower than that in the S5 and S0 groups. In addition, the relative expression levels of epithelial tight junction-related genes and intestinal immune-related genes in the gut were significantly upregulated in the S15 group, compared to the freshwater group. Mucin-2 gene expression was downregulated, but mucin-1 transcript levels were upregulated in salinity-treated groups. Furthermore, the abundances of phylum Proteobacteria, and genera Morganella and Aeromonas in the intestine were particularly enhanced in the S15 group than the S0 and S5 groups. Taken together, these results indicate that the intestinal barrier plays a protective role in T. s. elegans adaptation to brackish water environments. Our results provide a perspective on the evolution of salinity tolerance and help to evaluate the potential danger of the turtle to other species, and understand the challenges that other species must meet with rising sea levels.
Collapse
Affiliation(s)
- Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Weihao Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Lingyue Liang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zubin Huang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Na Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
16
|
Butterfield T, Olson M, Beck D, Macip-Ríos R. Morphology, Performance, and Ecology of Three Sympatric Turtles in a Tropical Dry Forest. COPEIA 2020. [DOI: 10.1643/ce-18-165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Taggert Butterfield
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX, 04510, Mexico; (TB) . Send reprint requests to TB
| | - Mark Olson
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX, 04510, Mexico; (TB) . Send reprint requests to TB
| | - Daniel Beck
- Department of Biological Sciences, Central Washington University, 400 E University Way, Ellensburg, Washington 98926
| | - Rodrigo Macip-Ríos
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX, 04510, Mexico; (TB) . Send reprint requests to TB
| |
Collapse
|
17
|
Dziomber L, Joyce WG, Foth C. The ecomorphology of the shell of extant turtles and its applications for fossil turtles. PeerJ 2020; 8:e10490. [PMID: 33391873 PMCID: PMC7761203 DOI: 10.7717/peerj.10490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/13/2020] [Indexed: 11/20/2022] Open
Abstract
Turtles are a successful clade of reptiles that originated in the Late Triassic. The group adapted during its evolution to different types of environments, ranging from dry land to ponds, rivers, and the open ocean, and survived all Mesozoic and Cenozoic extinction events. The body of turtles is characterized by a shell, which has been hypothesized to have several biological roles, like protection, thermal and pH regulation, but also to be adapted in its shape to the ecology of the animal. However, only few studies have investigated the relationships between shell shape and ecology in a global context or clarified if shape can be used to diagnose habitat preferences in fossil representatives. Here, we assembled a three-dimensional dataset of 69 extant turtles and three fossils, in particular, the Late Triassic Proganochelys quenstedtii and Proterochersis robusta and the Late Jurassic Plesiochelys bigleri to test explicitly for a relationship between shell shape and ecology. 3D models were obtained using surface scanning and photogrammetry. The general shape of the shells was captured using geometric morphometrics. The habitat ecology of extant turtles was classified using the webbing of their forelimbs as a proxy. Principal component analysis (PCA) highlights much overlap between habitat groups. Discriminant analyses suggests significant differences between extant terrestrial turtles, extant fully aquatic (i.e., marine and riverine) turtles, and an unspecialized assemblage that includes extant turtles from all habitats, mostly freshwater aquatic forms. The paleoecology of the three fossil species cannot be determined with confidence, as all three fall within the unspecialized category, even if Plesiochelys bigleri plots closer to fully aquatic turtles, while the two Triassic species group closer to extant terrestrial forms. Although the shape of the shell of turtles indeed contains an ecological signal, it is overall too weak to uncover using shell shape in paleoecological studies, at least with the methods we selected.
Collapse
Affiliation(s)
- Laura Dziomber
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
- Institute of Plant Sciences & Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Christian Foth
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
18
|
Lyson TR, Bever GS. Origin and Evolution of the Turtle Body Plan. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-110218-024746] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The origin of turtles and their uniquely shelled body plan is one of the longest standing problems in vertebrate biology. The unfulfilled need for a hypothesis that both explains the derived nature of turtle anatomy and resolves their unclear phylogenetic position among reptiles largely reflects the absence of a transitional fossil record. Recent discoveries have dramatically improved this situation, providing an integrated, time-calibrated model of the morphological, developmental, and ecological transformations responsible for the modern turtle body plan. This evolutionary trajectory was initiated in the Permian (>260 million years ago) when a turtle ancestor with a diapsid skull evolved a novel mechanism for lung ventilation. This key innovation permitted the torso to become apomorphically stiff, most likely as an adaption for digging and a fossorial ecology. The construction of the modern turtle body plan then proceeded over the next 100 million years following a largely stepwise model of osteological innovation.
Collapse
Affiliation(s)
- Tyler R. Lyson
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
| | - Gabriel S. Bever
- Department of Earth Sciences, Denver Museum of Nature & Science, Denver, Colorado 80205, USA
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
19
|
Parsi-Pour P, Kilbourne BM. Functional Morphology and Morphological Diversification of Hind Limb Cross-Sectional Traits in Mustelid Mammals. Integr Org Biol 2020; 2:obz032. [PMID: 33791583 PMCID: PMC7671153 DOI: 10.1093/iob/obz032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Locomotor habits in mammals are strongly tied to limb bones’ lengths, diameters, and proportions. By comparison, fewer studies have examined how limb bone cross-sectional traits relate to locomotor habit. Here, we tested whether climbing, digging, and swimming locomotor habits reflect biomechanically meaningful differences in three cross-sectional traits rendered dimensionless— cross-sectional area (CSA), second moments of area (SMA), and section modulus (MOD)—using femora, tibiae, and fibulae of 28 species of mustelid. CSA and SMA represent resistance to axial compression and bending, respectively, whereas MOD represents structural strength. Given the need to counteract buoyancy in aquatic environments and soil’s high density, we predicted that natatorial and fossorial mustelids have higher values of cross-sectional traits. For all three traits, we found that natatorial mustelids have the highest values, followed by fossorial mustelids, with both of these groups significantly differing from scansorial mustelids. However, phylogenetic relatedness strongly influences diversity in cross-sectional morphology, as locomotor habit strongly correlates with phylogeny. Testing whether hind limb bone cross-sectional traits have evolved adaptively, we fit Ornstein–Uhlenbeck (OU) and Brownian motion (BM) models of trait diversification to cross-sectional traits. The cross-sectional traits of the femur, tibia, and fibula appear to have, respectively, diversified under a multi-rate BM model, a single rate BM model, and a multi-optima OU model. In light of recent studies on mustelid body size and elongation, our findings suggest that the mustelid body plan—and perhaps that of other mammals—is likely the sum of a suite of traits evolving under different models of trait diversification.
Collapse
Affiliation(s)
- P Parsi-Pour
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| | - B M Kilbourne
- Museum für Naturkunde Berlin, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany
| |
Collapse
|
20
|
Liu X, Li W, Ye Z, Zhu Y, Hong X, Zhu X. Morphological characterization and phylogenetic relationships of Indochinese box turtles-The Cuora galbinifrons complex. Ecol Evol 2019; 9:13030-13042. [PMID: 31871627 PMCID: PMC6912918 DOI: 10.1002/ece3.5680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/10/2019] [Accepted: 09/05/2019] [Indexed: 11/29/2022] Open
Abstract
The members of the Indochinese box turtle complex, namely Cuora galbinifrons, Cuora bourreti, and Cuora picturata, rank the most critically endangered turtle species on earth after more than three decades of over-harvesting for food, traditional Chinese medicine, and pet markets. Despite advances in molecular biology, species boundaries and phylogenetic relationships, the status of the C. galbinifrons complex remains unresolved due to the small number of specimens observed and collected in the field. In this study, we present analyses of morphologic characters as well as mitochondrial and nuclear DNA data to reconstruct the species boundaries and systematic relationships within the C. galbinifrons complex. Based on principal component analysis (PCA) and statistical analysis, we found that phenotypic traits partially overlapped among galbinifrons, bourreti, and picturata, and that galbinifrons and bourreti might be only subspecifically distinct. Moreover, we used the mitochondrial genome, COI, and nuclear gene Rag1 under the maximum likelihood criteria and Bayesian inference criteria to elucidate whether C. galbinifrons could be divided into three separate species or subspecies. We found strong support for a sister relationship between picturata and the other two species, and consequently, we recommend maintaining picturata as a full species, and classifying bourreti and galbinifrons as subspecies of C. galbinifrons. These findings provide evidence for a better understanding of the evolutionary histories of these critically endangered turtles.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Aquatic GenomicsMinistry of AgricultureKey Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of AgriculturePearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
| | - Wei Li
- Key Laboratory of Aquatic GenomicsMinistry of AgricultureKey Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of AgriculturePearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
| | - Zhaoyang Ye
- Key Laboratory of Aquatic GenomicsMinistry of AgricultureKey Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of AgriculturePearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- College of Life Science and FisheriesShanghai Ocean UniversityShanghaiChina
| | - Yanyu Zhu
- Key Laboratory of Aquatic GenomicsMinistry of AgricultureKey Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of AgriculturePearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
- College of Life Science and FisheriesShanghai Ocean UniversityShanghaiChina
| | - Xiaoyou Hong
- Key Laboratory of Aquatic GenomicsMinistry of AgricultureKey Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of AgriculturePearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
| | - Xinping Zhu
- Key Laboratory of Aquatic GenomicsMinistry of AgricultureKey Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of AgriculturePearl River Fisheries Research InstituteChinese Academy of Fishery SciencesGuangzhouChina
| |
Collapse
|
21
|
Foth C, Evers SW, Joyce WG, Volpato VS, Benson RBJ. Comparative analysis of the shape and size of the middle ear cavity of turtles reveals no correlation with habitat ecology. J Anat 2019; 235:1078-1097. [PMID: 31373396 DOI: 10.1111/joa.13071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2019] [Indexed: 02/06/2023] Open
Abstract
The middle ear of turtles differs from other reptiles in being separated into two distinct compartments. Several ideas have been proposed as to why the middle ear is compartmentalized in turtles, most suggesting a relationship with underwater hearing. Extant turtle species span fully marine to strictly terrestrial habitats, and ecomorphological hypotheses of turtle hearing predict that this should correlate with variation in the structure of the middle ear due to differences in the fluid properties of water and air. We investigate the shape and size of the air-filled middle ear cavity of 56 extant turtles using 3D data and phylogenetic comparative analysis to test for correlations between habitat preferences and the shape and size of the middle ear cavity. Only weak correlations are found between middle ear cavity size and ecology, with aquatic taxa having proportionally smaller cavity volumes. The middle ear cavity of turtles exhibits high shape diversity among species, but we found no relationship between this shape variation and ecology. Surprisingly, the estimated acoustic transformer ratio, a key functional parameter of impedance-matching ears in vertebrates, also shows no relation to habitat preferences (aquatic/terrestrial) in turtles. We suggest that middle ear cavity shape may be controlled by factors unrelated to hearing, such as the spatial demands of surrounding cranial structures. A review of the fossil record suggests that the modern turtle ear evolved during the Early to Middle Jurassic in stem turtles broadly adapted to freshwater and terrestrial settings. This, combined with our finding that evolutionary transitions between habitats caused only weak evolutionary changes in middle ear structure, suggests that tympanic hearing in turtles evolved as a compromise between subaerial and underwater hearing.
Collapse
Affiliation(s)
- Christian Foth
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland.,Department of Earth Sciences, University of Oxford, Oxford, UK
| | - Walter G Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Virginie S Volpato
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
22
|
Dickson BV, Pierce SE. Functional performance of turtle humerus shape across an ecological adaptive landscape. Evolution 2019; 73:1265-1277. [PMID: 31008517 DOI: 10.1111/evo.13747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/11/2019] [Accepted: 04/08/2019] [Indexed: 01/24/2023]
Abstract
The concept of the adaptive landscape has been invaluable to evolutionary biologists for visualizing the dynamics of selection and adaptation, and is increasingly being used to study morpho-functional data. Here, we construct adaptive landscapes to explore functional trade-offs associated with variation in humerus morphology among turtles adapted to three different locomotor environments: marine, semiaquatic, and terrestrial. Humerus shape from 40 species of cryptodire turtles was quantified using a pseudolandmark approach. Hypothetical shapes were extracted in a grid across morphospace and four functional traits (strength, stride length, mechanical advantage, and hydrodynamics) measured on those shapes. Quantitative trait modeling was used to construct adaptive landscapes that optimize the functional traits for each of the three locomotor ecologies. Our data show that turtles living in different environments have statistically different humeral shapes. The optimum adaptive landscape for each ecology is defined by a different combination of performance trade-offs, with turtle species clustering around their respective adaptive peak. Further, species adhere to pareto fronts between marine-semiaquatic and semiaquatic-terrestrial optima, but not between marine-terrestrial. Our study demonstrates the utility of adaptive landscapes in informing the link between form, function, and ecological adaptation, and establishes a framework for reconstructing turtle ecological evolution using isolated humeri from the fossil record.
Collapse
Affiliation(s)
- Blake V Dickson
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| | - Stephanie E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, 02138
| |
Collapse
|
23
|
Evers SW, Barrett PM, Benson RBJ. Anatomy of Rhinochelys pulchriceps (Protostegidae) and marine adaptation during the early evolution of chelonioids. PeerJ 2019; 7:e6811. [PMID: 31106054 PMCID: PMC6500378 DOI: 10.7717/peerj.6811] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/19/2019] [Indexed: 11/22/2022] Open
Abstract
Knowledge of the early evolution of sea turtles (Chelonioidea) has been limited by conflicting phylogenetic hypotheses resulting from sparse taxon sampling and a superficial understanding of the morphology of key taxa. This limits our understanding of evolutionary adaptation to marine life in turtles, and in amniotes more broadly. One problematic group are the protostegids, Early-Late Cretaceous marine turtles that have been hypothesised to be either stem-cryptodires, stem-chelonioids, or crown-chelonioids. Different phylogenetic hypotheses for protostegids suggest different answers to key questions, including (1) the number of transitions to marine life in turtles, (2) the age of the chelonioid crown-group, and (3) patterns of skeletal evolution during marine adaptation. We present a detailed anatomical study of one of the earliest protostegids, Rhinochelys pulchriceps from the early Late Cretaceous of Europe, using high-resolution μCT. We synonymise all previously named European species and document the variation seen among them. A phylogeny of turtles with increased chelonioid taxon sampling and revised postcranial characters is provided, recovering protostegids as stem-chelonioids. Our results imply a mid Early Cretaceous origin of total-group chelonioids and an early Late Cretaceous age for crown-chelonioids, which may inform molecular clock analyses in future. Specialisations of the chelonioid flipper evolved in a stepwise-fashion, with innovations clustered into pulses at the origin of total-group chelonioids, and subsequently among dermochelyids, crown-cheloniids, and gigantic protostegids from the Late Cretaceous.
Collapse
Affiliation(s)
- Serjoscha W. Evers
- Department of Earth Sciences, University of Oxford, Oxford, UK
- Department of Earth Sciences, Natural History Museum, London, UK
| | - Paul M. Barrett
- Department of Earth Sciences, Natural History Museum, London, UK
| | | |
Collapse
|
24
|
Affiliation(s)
- J. Whitfield Gibbons
- University of Georgia, Savannah River Ecology Laboratory, Drawer E, Aiken, SC 29802, USA
| | - Jeffrey E. Lovich
- US Geological Survey, Southwest Biological Science Center, 2255 North Gemini Drive MS-9394, Flagstaff, AZ 86001-1600, USA
| |
Collapse
|
25
|
Garbin RC, Böhme M, Joyce WG. A new testudinoid turtle from the middle to late Eocene of Vietnam. PeerJ 2019; 7:e6280. [PMID: 30805245 PMCID: PMC6383559 DOI: 10.7717/peerj.6280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/12/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Testudinoidea is a major clade of turtles that has colonized different ecological environments across the globe throughout the Tertiary. Aquatic testudinoids have a particularly rich fossil record in the Tertiary of the northern hemisphere, but little is known about the evolutionary history of the group, as the phylogenetic relationships of most fossils have not been established with confidence, in part due to high levels of homoplasy and polymorphism. METHODS We here focus on describing a sample of 30 testudinoid shells, belonging to a single population that was collected from lake sediments from the middle to late Eocene (35-39 Ma) Na Duong Formation in Vietnam. The phylogenetic placement of this new material is investigated by integrating it and 11 other species of putative geoemydids from the Eocene and Oligocene to a recently published matrix of geoemydid turtles, that embraces the use of polymorphic characters, and then running a total-evidence analysis. RESULTS The new material is highly polymorphic, but can be inferred with confidence to be a new taxon, Banhxeochelys trani gen. et sp. nov. It shares morphological similarities with other southeastern Asian testudinoids, Isometremys lacuna and Guangdongemys pingi, but is placed phylogenetically at the base of Pan-Testuguria when fossils are included in the analysis, or as a stem geoemydid when other fossils are deactivated from the matrix. The vast majority of other putative fossil geoemydids are placed at the base of Pan-Testuguria as well. DISCUSSION The phylogenetic placement of fossil testudinoids used in the analysis is discussed individually and each species compared to Banhxeochelys trani gen. et sp. nov. The high levels of polymorphism observed in the new taxon is discussed in terms of ontogenetic and random variability. This is the first time that a large sample of fossil testudinoids has its morphological variation described in detail.
Collapse
Affiliation(s)
- Rafaella C. Garbin
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Madelaine Böhme
- Department of Geosciences, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
- Senckenberg Center for Human Evolution and Palaeoecology, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
26
|
Li DQ, Zhou CF, Li L, Yang JT, Li L, Rabi M. The sinemydid turtle Ordosemys from the Lower Cretaceous Mengyin Formation of Shandong, China and its implication for the age of the Luohandong Formation of the Ordos Basin. PeerJ 2019; 7:e6229. [PMID: 30671300 PMCID: PMC6338100 DOI: 10.7717/peerj.6229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/07/2018] [Indexed: 11/30/2022] Open
Abstract
Chronostratigraphic correlation of terrestrial Early Cretaceous biotas in China is highly problematic due to the lack of marine deposits, few absolute dates, and limited number of index fossils. This often leaves vertebrate faunas as one of the few potential tools for a preliminary biostratigraphy. Taxonomic identity of fragmentary fossils is, however, often uncertain and many faunas are insufficiently sampled. Turtles are one of the most common elements of Early Cretaceous biotas of Asia and their skeleton is frequently preserved more completely than that of other vertebrates- they yet receive little attention from vertebrate paleontologists. We here record the presence of the sinemydid turtle Ordosemys leios from the Lower Cretaceous Mengyin Formation of Shandong Province, China, best known for the first dinosaurs and Mesozoic turtles described from the country. Ordosemys is the third turtle reported from the Mengyin Formation along with Sinemys lens and Sinochelys applanata and the only other formation where Ordosemys is known to co-occur with Sinemys is the Luohandong Formation of the Ordos Basin (Inner Mongolia), the type and so far only horizon of Ordosemys leios. The presence of the crocodyliform Shantungosuchus may further define a fauna that is so far only known from these two formations. The stratigraphic position of the Luohandong Formation is poorly controlled and it has been placed anywhere between the Valanginian and Aptian. Published absolute dates from the Mengyin Formation and the numerous shared vertebrate and invertebrate taxa (now also including turtles) implies a Valanginian—early Hauterivian age for the Luohandong Formation—in contrast to late Hauterivian-Albian as previously proposed using the temporal distribution of Psittacosaurus. The new specimen of Ordosemys leios preserves the only known manus of this species and ecomorphological analysis of limb proportions implies that it was a less capable swimmer compared to Ordosemys liaoxiensis coming from the younger Jehol Biota.
Collapse
Affiliation(s)
- Da-Qing Li
- Institute of Vertebrate Paleontology and College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China.,School of Earth Sciences and Resources, China University of Geoscience (Beijing), Beijing, China
| | - Chang-Fu Zhou
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
| | - Lan Li
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Jing-Tao Yang
- Institute of Vertebrate Paleontology and College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Longfeng Li
- Institute of Vertebrate Paleontology and College of Life Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Márton Rabi
- Central Natural Science Collections, Martin-Luther Universität Halle-Wittenberg, Domplatz, Germany.,Department of Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Iwasaki SI, Erdoğan S, Asami T. Evolutionary Specialization of the Tongue in Vertebrates: Structure and Function. FEEDING IN VERTEBRATES 2019. [DOI: 10.1007/978-3-030-13739-7_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Mayerl CJ, Youngblood JP, Rivera G, Vance JT, Blob RW. Variation in Morphology and Kinematics Underlies Variation in Swimming Stability and Turning Performance in Freshwater Turtles. Integr Org Biol 2018. [DOI: 10.1093/iob/oby001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Among swimming animals, stable body designs often sacrifice performance in turning, and high turning performance may entail costs in stability. However, some rigid-bodied animals appear capable of both high stability and turning performance during swimming by propelling themselves with independently controlled structures that generate mutually opposing forces. Because such species have traditionally been studied in isolation, little is known about how variation within rigid-bodied designs might influence swimming performance. Turtles are a lineage of rigid-bodied animals, in which most species use contralateral limbs and mutually opposing forces to swim. We tested the stability and turning performance of two species of turtles, the pleurodire Emydura subglobosa and the cryptodire Chrysemys picta. Emydura subglobosa exhibited both greater stability and turning performance than C. picta, potentially through the use of subequally-sized (and larger) propulsive structures, faster limb movements, and decreased limb excursions. These data show how, within a given body design, combinations of different traits can serve as mechanisms to improve aspects of performance with competing functional demands.
Collapse
Affiliation(s)
- C J Mayerl
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - J P Youngblood
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - G Rivera
- Department of Biology, Creighton University, Omaha, NE 68178, USA
| | - J T Vance
- Department of Biology, College of Charleston, Charleston, SC 29424, USA
| | - R W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
29
|
Rodrigues JFM, Villalobos F, Iverson JB, Diniz-Filho JAF. Climatic niche evolution in turtles is characterized by phylogenetic conservatism for both aquatic and terrestrial species. J Evol Biol 2018; 32:66-75. [PMID: 30387214 DOI: 10.1111/jeb.13395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/29/2018] [Indexed: 01/29/2023]
Abstract
Understanding how the climatic niche of species evolved has been a topic of high interest in current theoretical and applied macroecological studies. However, little is known regarding how species traits might influence climatic niche evolution. Here, we evaluated patterns of climatic niche evolution in turtles (tortoises and freshwater turtles) and whether species habitat (terrestrial or aquatic) influences these patterns. We used phylogenetic, climatic and distribution data for 261 species to estimate their climatic niches. Then, we compared whether niche overlap between sister species was higher than between random species pairs and evaluated whether niche optima and rates varied between aquatic and terrestrial species. Sister species had higher values of niche overlap than random species pairs, suggesting phylogenetic climatic niche conservatism in turtles. The climatic niche evolution of the group followed an Ornstein-Uhlenbeck model with different optimum values for aquatic and terrestrial species, but we did not find consistent evidence of differences in their rates of climatic niche evolution. We conclude that phylogenetic climatic niche conservatism occurs among turtle species. Furthermore, terrestrial and aquatic species occupy different climatic niches but these seem to have evolved at similar evolutionary rates, reinforcing the importance of habitat in understanding species climatic niches and their evolution.
Collapse
Affiliation(s)
- João Fabrício M Rodrigues
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Fabricio Villalobos
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil.,Red de Biología Evolutiva, Instituto de Ecología, Xalapa, Mexico
| | - John B Iverson
- Department of Biology, Earlham College, Richmond, Indiana
| | | |
Collapse
|
30
|
Liu XL, Wang YK, Ouyang S, Zhu YY, Li W, Hong XY, Xu HY, Zhu XP. Evolutionary conservation of transferrin genomic organization and expression characterization in seven freshwater turtles. Biochem Biophys Res Commun 2018; 506:874-882. [PMID: 30392910 DOI: 10.1016/j.bbrc.2018.10.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 10/27/2018] [Indexed: 01/28/2023]
Abstract
Serum transferrin (tf), encoding an iron-binding glycoprotein, has been revealed to play important roles in iron transportation and immune response, and it also has been demonstrated to be valuable for phylogenetic analysis in vertebrates. However, the evolutionary conservation, expression profiles and positive selection of transferrin genes among freshwater turtle species remain largely unclear. Here, the genomic DNA and coding sequences of transferrin genes were cloned and characterized in seven freshwater turtles including Mauremys mutica, Mauremys sinensis, Cyclemys dentate, Mauremyssi reevesi, Heosemys grandis, Trachemys scripta and Chrysemys picta. The isolated coding sequences of turtles' tf genes were 2118 bp or 2121 bp, encoding 706 or 707 amino acids. The predicted Tf proteins of turtles share high identities with M. mutica Tf, up to 91%-98% and the M. mutica Tf has the highest identity (91%) in amino acid with the Chelomia mydas Tf, the moderate with other reptiles' Tfs (65%-59%), chicken (58%), and Human Tf (∼55%), and the lowest with zebrafish Tf (41%). Additionally, tf genes were consistently composed of 17 exons and 16 introns with the same splicing sites in introns in all the turtles examined. Moreover, 12 positive selected sites were detected in these turtles' Tf and mainly distributed on the surface of transferrin protein. Importantly, it was found that transferrin genes in all turtles examined were predominantly expressed in adult liver via real-time quantitative PCR. The molecular characterizations and expression profiles of transferrin would shed new insights into understanding the conversations and divergences of transferrin genes in turtles, even in vertebrates.
Collapse
Affiliation(s)
- Xiao-Li Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Ya-Kun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Life Science, Nanchang University, Nanchang 330031, China
| | - Shu Ouyang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Yan-Yu Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xiao-You Hong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Hong-Yan Xu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Xin-Ping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
31
|
Li C, Fraser NC, Rieppel O, Wu XC. A Triassic stem turtle with an edentulous beak. Nature 2018; 560:476-479. [DOI: 10.1038/s41586-018-0419-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/15/2018] [Indexed: 11/09/2022]
|
32
|
Stayton CT, O'Connor LF, Nisivoccia NM. The influence of multiple functional demands on morphological diversification: A test on turtle shells. Evolution 2018; 72:1933-1949. [DOI: 10.1111/evo.13561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 11/29/2022]
|
33
|
Shao S, Li L, Yang Y, Zhou CF. Hyperphalangy in a new sinemydid turtle from the Early Cretaceous Jehol Biota. PeerJ 2018; 6:e5371. [PMID: 30065899 PMCID: PMC6065475 DOI: 10.7717/peerj.5371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022] Open
Abstract
Hyperphalangy is a rare condition in extant aquatic turtles, and mainly limited to soft-shelled turtles. Here we report a new freshwater turtle, Jeholochelys lingyuanensis gen. et sp. nov. from the Early Cretaceous Jehol Biota of western Liaoning, China. This new turtle is characterized by a hyperphalangy condition with one additional phalanx in pedal digit V, rather than the primitive condition (phalangeal formula: 2-3-3-3-3) of crown turtles. J. lingyuanensis is recovered with other coexisting turtles in the family Sinemydidae in the phylogenetic analysis. This discovery further confirms that hyperphalangy occurred multiple times in the early evolutionary history of the crown turtles. Hyperphalangy is possibly a homoplasy in Jeholochelys and the soft-shelled turtles to adapt to the aquatic environments.
Collapse
Affiliation(s)
- Shuai Shao
- Research Center of Palaeontology and Stratigraphy, Jilin University, Changchun, Jilin, China
- Paleontological Institute, Shenyang Normal University, Shenyang, Liaoning, China
| | - Lan Li
- School of Earth and Space Sciences, Peking University, Beijing, China
| | - Yang Yang
- Anhui Geological Museum, Hefei, Anhui, China
| | - Chang-Fu Zhou
- College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
34
|
Nuñez Demarco P, Meneghel M, Laurin M, Piñeiro G. Was Mesosaurus a Fully Aquatic Reptile? Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00109] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Fujii JA, McLeish D, Brooks AJ, Gaskell J, Van Houtan KS. Limb-use by foraging marine turtles, an evolutionary perspective. PeerJ 2018; 6:e4565. [PMID: 29610708 PMCID: PMC5878658 DOI: 10.7717/peerj.4565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/13/2018] [Indexed: 11/20/2022] Open
Abstract
The use of limbs for foraging is documented in both marine and terrestrial tetrapods. These behaviors were once believed to be less likely in marine tetrapods due to the physical constraints of body plans adapted to locomotion in a fluid environment. Despite these obstacles, ten distinct types of limb-use while foraging have been previously reported in nine marine tetrapod families. Here, we expand the types of limb-use documented in marine turtles and put it in context with the diversity of marine tetrapods currently known to use limbs for foraging. Additionally, we suggest that such behaviors could have occurred in ancestral turtles, and thus, possibly extend the evolutionary timeline of limb-use behavior in marine tetrapods back approximately 70 million years. Through direct observation in situ and crowd-sourcing, we document the range of behaviors across habitats and prey types, suggesting its widespread occurrence. We argue the presence of these behaviors among marine tetrapods may be limited by limb mobility and evolutionary history, rather than foraging ecology or social learning. These behaviors may also be remnant of ancestral forelimb-use that have been maintained due to a semi-aquatic life history.
Collapse
Affiliation(s)
- Jessica A Fujii
- Monterey Bay Aquarium, Monterey, CA, United States of America
| | - Don McLeish
- Hawaiian Hawksbill Conservation, Lahaina, HI, United States of America
| | - Andrew J Brooks
- Marine Science Institute, University of California, Santa Barbara, CA, United States of America
| | - John Gaskell
- Living Reef - Daydream Island, Whitsundays, Queensland, Australia
| | - Kyle S Van Houtan
- Monterey Bay Aquarium, Monterey, CA, United States of America.,Nicholas School of the Environment, Duke University, Durham, NC, United States of America
| |
Collapse
|
36
|
Agha M, Ennen JR, Bower DS, Nowakowski AJ, Sweat SC, Todd BD. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise. Biol Rev Camb Philos Soc 2018; 93:1634-1648. [DOI: 10.1111/brv.12410] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Mickey Agha
- Department of Wildlife, Fish, and Conservation Biology; University of California; Davis, One Shields Avenue, Davis CA 95616 USA
| | - Joshua R. Ennen
- Tennessee Aquarium Conservation Institute; 175 Baylor School Road, Chattanooga TN 37405 USA
| | - Deborah S. Bower
- College of Science and Engineering; James Cook University; Townsville Queensland 4811 Australia
| | - A. Justin Nowakowski
- Department of Wildlife, Fish, and Conservation Biology; University of California; Davis, One Shields Avenue, Davis CA 95616 USA
| | - Sarah C. Sweat
- Tennessee Aquarium Conservation Institute; 175 Baylor School Road, Chattanooga TN 37405 USA
| | - Brian D. Todd
- Department of Wildlife, Fish, and Conservation Biology; University of California; Davis, One Shields Avenue, Davis CA 95616 USA
| |
Collapse
|
37
|
Lautenschlager S, Ferreira GS, Werneburg I. Sensory Evolution and Ecology of Early Turtles Revealed by Digital Endocranial Reconstructions. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
38
|
Agha M, Ennen JR, Nowakowski AJ, Lovich JE, Sweat SC, Todd BD. Macroecological patterns of sexual size dimorphism in turtles of the world. J Evol Biol 2018; 31:336-345. [DOI: 10.1111/jeb.13223] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Affiliation(s)
- M. Agha
- Department of Wildlife, Fish, and Conservation Biology; University of California, Davis; Davis CA USA
| | - J. R. Ennen
- Tennessee Aquarium Conservation Institute; Chattanooga TN USA
| | - A. J. Nowakowski
- Department of Wildlife, Fish, and Conservation Biology; University of California, Davis; Davis CA USA
| | - J. E. Lovich
- Southwest Biological Science Center; U.S. Geological Survey; Flagstaff AZ USA
| | - S. C. Sweat
- Tennessee Aquarium Conservation Institute; Chattanooga TN USA
| | - B. D. Todd
- Department of Wildlife, Fish, and Conservation Biology; University of California, Davis; Davis CA USA
| |
Collapse
|
39
|
Young VKH, Vest KG, Rivera ARV, Espinoza NR, Blob RW. One foot out the door: limb function during swimming in terrestrial versus aquatic turtles. Biol Lett 2017; 13:rsbl.2016.0732. [PMID: 28123109 DOI: 10.1098/rsbl.2016.0732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/21/2016] [Indexed: 11/12/2022] Open
Abstract
Specialization for a new habitat often entails a cost to performance in the ancestral habitat. Although aquatic lifestyles are ancestral among extant cryptodiran turtles, multiple lineages, including tortoises (Testudinidae) and emydid box turtles (genus Terrapene), independently specialized for terrestrial habitats. To what extent is swimming function retained in such lineages despite terrestrial specialization? Because tortoises diverged from other turtles over 50 Ma, but box turtles did so only 5 Ma, we hypothesized that swimming kinematics for box turtles would more closely resemble those of aquatic relatives than those of tortoises. To test this prediction, we compared high-speed video of swimming Russian tortoises (Testudo horsfieldii), box turtles (Terrapene carolina) and two semi-aquatic emydid species: sliders (Trachemys scripta) and painted turtles (Chrysemys picta). We identified different kinematic patterns between limbs. In the forelimb, box turtle strokes most resemble those of tortoises; for the hindlimb, box turtles are more similar to semi-aquatic species. Such patterns indicate functional convergence of the forelimb of terrestrial species, whereas the box turtle hindlimb exhibits greater retention of ancestral swimming motions.
Collapse
Affiliation(s)
| | - Kaitlyn G Vest
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - Nora R Espinoza
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
40
|
Xiao F, Wang J, Shi H, Long Z, Lin L, Wang W. Ecomorphological correlates of microhabitat selection in two sympatric Asian Box Turtle species (Geoemydidae: Cuora). CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Closely related species that co-occur in homogeneous environments often possess differing morphologies, which can result in niche divergence that minimizes interspecific competition. In the present study, we examined the relationship between ecomorphological characteristics and microhabitat selection of two Asian box turtle species, the Keeled Box Turtle (Cuora mouhotii (Gray, 1862)) and the Indochinese Box Turtle (Cuora galbinifrons Bourret, 1940), that have sympatric distributions in the rainforest of Hainan, People’s Republic of China. We found that C. mouhotii had a relatively flat shell and preferred microhabitats with rock crevices and steep slopes in the field, whereas C. galbinifrons had a domed shell and was restricted to microhabitats of deciduous leaves under bamboo growing on gentle slopes. We conclude that morphological divergence allows the two Cuora spp. to use different microhabitats and, thereby, to successfully co-occur.
Collapse
Affiliation(s)
- Fanrong Xiao
- College of Life Sciences, Hainan Normal University, Haikou 571158, People’s Republic of China
| | - Jichao Wang
- College of Life Sciences, Hainan Normal University, Haikou 571158, People’s Republic of China
| | - Haitao Shi
- College of Life Sciences, Hainan Normal University, Haikou 571158, People’s Republic of China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People’s Republic of China
| | - Zaizhong Long
- College of Life Sciences, Hainan Normal University, Haikou 571158, People’s Republic of China
| | - Liu Lin
- College of Life Sciences, Hainan Normal University, Haikou 571158, People’s Republic of China
| | - Wei Wang
- College of Life Sciences, Hainan Normal University, Haikou 571158, People’s Republic of China
| |
Collapse
|
41
|
Anquetin J, Püntener C, Joyce WG. A Review of the Fossil Record of Turtles of the Clade Thalassochelydia. BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2017. [DOI: 10.3374/014.058.0205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jérémy Anquetin
- JURASSICA Museum, 2900 Porrentruy, Switzerland, and Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland
| | - Christian Püntener
- Section d'archéologie et paléontologie, Office de la culture, République et Canton du Jura, 2900 Porrentruy, Switzerland —
| | - Walter G. Joyce
- Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland —
| |
Collapse
|
42
|
Mayerl CJ, Pruett JE, Summerlin MN, Rivera ARV, Blob RW. Hindlimb muscle function in turtles: is novel skeletal design correlated with novel muscle function? ACTA ACUST UNITED AC 2017; 220:2554-2562. [PMID: 28476892 DOI: 10.1242/jeb.157792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/02/2017] [Indexed: 11/20/2022]
Abstract
Variations in musculoskeletal lever systems have formed an important foundation for predictions about the diversity of muscle function and organismal performance. Changes in the structure of lever systems may be coupled with changes in muscle use and give rise to novel muscle functions. The two extant turtle lineages, cryptodires and pleurodires, exhibit differences in hindlimb structure. Cryptodires possess the ancestral musculoskeletal morphology, with most hip muscles originating on the pelvic girdle, which is not fused to the shell. In contrast, pleurodires exhibit a derived morphology, in which fusion of the pelvic girdle to the shell has resulted in shifts in the origin of most hip muscles onto the interior of the shell. To test how variation in muscle arrangement might influence muscle function during different locomotor behaviors, we combined measurements of muscle leverage in five major hindlimb muscles with data on muscle use and hindlimb kinematics during swimming and walking in representative semiaquatic cryptodire (Trachemys scripta) and pleurodire (Emydura subglobosa) species. We found substantial differences in muscle leverage between the two species. Additionally, we found that there were extensive differences in muscle use in both species, especially while walking, with some pleurodire muscles exhibiting novel functions associated with their derived musculoskeletal lever system. However, the two species shared similar overall kinematic profiles within each environment. Our results suggest that changes in limb lever systems may relate to changes in limb muscle motor patterns and kinematics, but that other factors must also contribute to differences in muscle activity and limb kinematics between these taxa.
Collapse
Affiliation(s)
| | - Jenna E Pruett
- Department of Biological Sciences, Auburn University, Auburn, AL 36849 USA
| | - Morgan N Summerlin
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - Richard W Blob
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
43
|
Joyce WG. A Review of the Fossil Record of Basal Mesozoic Turtles. BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2017. [DOI: 10.3374/014.058.0105] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Walter G. Joyce
- Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland—
| |
Collapse
|
44
|
Anquetin J, Tong H, Claude J. A Jurassic stem pleurodire sheds light on the functional origin of neck retraction in turtles. Sci Rep 2017; 7:42376. [PMID: 28206991 PMCID: PMC5312562 DOI: 10.1038/srep42376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/09/2017] [Indexed: 11/17/2022] Open
Abstract
Modern turtles are composed of two monophyletic groups, notably diagnosed by divergent neck retraction mechanisms. Pleurodires (side-necked turtles) bend their neck sideways and protect their head under the anterior margin of the carapace. Cryptodires (hidden-necked turtles) withdraw their neck and head in the vertical plane between the shoulder girdles. These two mechanisms of neck retraction appeared independently in the two lineages and are usually assumed to have evolved for protective reasons. Here we describe the neck of Platychelys oberndorferi, a Late Jurassic early stem pleurodire, and find remarkable convergent morphological and functional similarities with modern cryptodires. Partial vertical neck retraction in this taxon is interpreted to have enabled fast forward projection of the head during underwater prey capture and offers a likely explanation to the functional origin of neck retraction in modern cryptodires. Complete head withdrawal for protection may therefore have resulted from an exaptation in that group.
Collapse
Affiliation(s)
- Jérémy Anquetin
- JURASSICA Museum, Porrentruy, Switzerland.,Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| | - Haiyan Tong
- Palaeontological Research and Education Centre, Mahasarakham University, Mahasarakham, Thailand
| | - Julien Claude
- Institut des Sciences de l'Evolution de Montpellier, UMR 5554 CNRS/UM/IRD/EPHE, Montpellier, France
| |
Collapse
|
45
|
Foth C, Rabi M, Joyce WG. Skull shape variation in extant and extinct Testudinata and its relation to habitat and feeding ecology. ACTA ZOOL-STOCKHOLM 2016. [DOI: 10.1111/azo.12181] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Christian Foth
- Departement für Geowissenschaften; Universität Freiburg; 1700 Freiburg Switzerland
| | - Márton Rabi
- Department of Earth Sciences; University of Turin; 10125 Turin Italy
- Institut für Geowissenschaften; Universität Tübingen; 72074 Tübingen Germany
| | - Walter G. Joyce
- Departement für Geowissenschaften; Universität Freiburg; 1700 Freiburg Switzerland
| |
Collapse
|
46
|
Joyce WG, Rabi M, Clark JM, Xu X. A toothed turtle from the Late Jurassic of China and the global biogeographic history of turtles. BMC Evol Biol 2016; 16:236. [PMID: 27793089 PMCID: PMC5084352 DOI: 10.1186/s12862-016-0762-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/06/2016] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Turtles (Testudinata) are a successful lineage of vertebrates with about 350 extant species that inhabit all major oceans and landmasses with tropical to temperate climates. The rich fossil record of turtles documents the adaptation of various sub-lineages to a broad range of habitat preferences, but a synthetic biogeographic model is still lacking for the group. RESULTS We herein describe a new species of fossil turtle from the Late Jurassic of Xinjiang, China, Sichuanchelys palatodentata sp. nov., that is highly unusual by plesiomorphically exhibiting palatal teeth. Phylogenetic analysis places the Late Jurassic Sichuanchelys palatodentata in a clade with the Late Cretaceous Mongolochelys efremovi outside crown group Testudines thereby establishing the prolonged presence of a previously unrecognized clade of turtles in Asia, herein named Sichuanchelyidae. In contrast to previous hypotheses, M. efremovi and Kallokibotion bajazidi are not found within Meiolaniformes, a clade that is here reinterpreted as being restricted to Gondwana. CONCLUSIONS A revision of the global distribution of fossil and recent turtle reveals that the three primary lineages of derived, aquatic turtles, including the crown, Paracryptodira, Pan-Pleurodira, and Pan-Cryptodira can be traced back to the Middle Jurassic of Euramerica, Gondwana, and Asia, respectively, which resulted from the primary break up of Pangaea at that time. The two primary lineages of Pleurodira, Pan-Pelomedusoides and Pan-Chelidae, can similarly be traced back to the Cretaceous of northern and southern Gondwana, respectively, which were separated from one another by a large desert zone during that time. The primary divergence of crown turtles was therefore driven by vicariance to the primary freshwater aquatic habitat of these lineages. The temporally persistent lineages of basal turtles, Helochelydridae, Meiolaniformes, Sichuanchelyidae, can similarly be traced back to the Late Mesozoic of Euramerica, southern Gondwana, and Asia. Given the ambiguous phylogenetic relationships of these three lineages, it is unclear if their diversification was driven by vicariance as well, or if they display a vicariance-like pattern. The clean, primary signal apparent among early turtles is secondarily obliterated throughout the Late Cretaceous to Recent by extensive dispersal of continental turtles and by multiple invasions of marine habitats.
Collapse
Affiliation(s)
- Walter G. Joyce
- Department of Geosciences, University of Fribourg, Chemin de Musée 6, 1700 Fribourg, Switzerland
| | - Márton Rabi
- Department of Geosciences, University of Tübingen, Hölderlinstrasse 12, 72074 Tübingen, Germany
- Department of Geosciences, University of Turin, Via Valperga Caluso 35, 10125 Torino, Italy
| | - James M. Clark
- Department of Biological Sciences, George Washington University, 800 22nd Street, NW, Suite 6000, Washington, DC 20052 USA
| | - Xing Xu
- Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences, Institute of Vertebrate Paleontology & Paleoanthropology, Chinese Academy of Sciences, 142 Xizhimenwai Street, Beijing, 100044 China
| |
Collapse
|
47
|
Blob RW, Mayerl CJ, Rivera ARV, Rivera G, Young VKH. "On the Fence" versus "All in": Insights from Turtles for the Evolution of Aquatic Locomotor Specializations and Habitat Transitions in Tetrapod Vertebrates. Integr Comp Biol 2016; 56:1310-1322. [PMID: 27940619 DOI: 10.1093/icb/icw121] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Though ultimately descended from terrestrial amniotes, turtles have deep roots as an aquatic lineage and are quite diverse in the extent of their aquatic specializations. Many taxa can be viewed as "on the fence" between aquatic and terrestrial realms, whereas others have independently hyperspecialized and moved "all in" to aquatic habitats. Such differences in specialization are reflected strongly in the locomotor system. We have conducted several studies to evaluate the performance consequences of such variation in design, as well as the mechanisms through which specialization for aquatic locomotion is facilitated in turtles. One path to aquatic hyperspecialization has involved the evolutionary transformation of the forelimbs from rowing, tubular limbs with distal paddles into flapping, flattened flippers, as in sea turtles. Prior to the advent of any hydrodynamic advantages, the evolution of such flippers may have been enabled by a reduction in twisting loads on proximal limb bones that accompanied swimming in rowing ancestors, facilitating a shift from tubular to flattened limbs. Moreover, the control of flapping movements appears related primarily to shifts in the activity of a single forelimb muscle, the deltoid. Despite some performance advantages, flapping may entail a locomotor cost in terms of decreased locomotor stability. However, other morphological specializations among rowing species may enhance swimming stability. For example, among highly aquatic pleurodiran turtles, fusion of the pelvis to the shell appears to dramatically reduce motions of the pelvis compared to freshwater cryptodiran species. This could contribute to advantageous increases in aquatic stability among predominantly aquatic pleurodires. Thus, even within the potential constraints of a body plan in which the body is encased by a shell, turtles exhibit diverse locomotor capacities that have enabled diversification into a wide range of aquatic habitats.
Collapse
Affiliation(s)
- Richard W Blob
- *Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | | | | | - Gabriel Rivera
- Department of Biology, Creighton University, Omaha, NE, 68178, USA
| | - Vanessa K H Young
- *Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
48
|
Maniel IJ, Fuente MSDL. A Review of the Fossil Record of Turtles of the CladePan-Chelidae. BULLETIN OF THE PEABODY MUSEUM OF NATURAL HISTORY 2016. [DOI: 10.3374/014.057.0206] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Ecological opportunities, habitat, and past climatic fluctuations influenced the diversification of modern turtles. Mol Phylogenet Evol 2016; 101:352-358. [DOI: 10.1016/j.ympev.2016.05.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 01/12/2023]
|
50
|
Lyson T, Rubidge B, Scheyer T, de Queiroz K, Schachner E, Smith R, Botha-Brink J, Bever G. Fossorial Origin of the Turtle Shell. Curr Biol 2016; 26:1887-94. [DOI: 10.1016/j.cub.2016.05.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
|