1
|
Stelbrink B, von Rintelen T, Marwoto RM, Salzburger W. Mitogenomes do not substantially improve phylogenetic resolution in a young non-model adaptive radiation of freshwater gastropods. BMC Ecol Evol 2024; 24:42. [PMID: 38589809 PMCID: PMC11000327 DOI: 10.1186/s12862-024-02235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Species flocks in ancient lakes, and particularly those arising from adaptive radiation, make up the bulk of overall taxonomic and morphological diversity in these insular ecosystems. For these mostly young species assemblages, classical mitochondrial barcoding markers have so far been key to disentangle interspecific relationships. However, with the rise and further development of next-generation sequencing (NGS) methods and mapping tools, genome-wide data have become an increasingly important source of information even for non-model groups. RESULTS Here, we provide, for the first time, a comprehensive mitogenome dataset of freshwater gastropods endemic to Sulawesi and thus of an ancient lake invertebrate species flock in general. We applied low-coverage whole-genome sequencing for a total of 78 individuals including 27 out of the 28 Tylomelania morphospecies from the Malili lake system as well as selected representatives from Lake Poso and adjacent catchments. Our aim was to assess whether mitogenomes considerably contribute to the phylogenetic resolution within this young species flock. Interestingly, we identified a high number of variable and parsimony-informative sites across the other 'non-traditional' mitochondrial loci. However, although the overall support was very high, the topology obtained was largely congruent with previously published single-locus phylogenies. Several clades remained unresolved and a large number of species was recovered polyphyletic, indicative of both rapid diversification and mitochondrial introgression. CONCLUSIONS This once again illustrates that, despite the higher number of characters available, mitogenomes behave like a single locus and thus can only make a limited contribution to resolving species boundaries, particularly when introgression events are involved.
Collapse
Affiliation(s)
- Björn Stelbrink
- Justus Liebig University Giessen, Giessen, Germany.
- University of Basel, Basel, Switzerland.
| | - Thomas von Rintelen
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Ristiyanti M Marwoto
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, BRIN Gedung Widyasatwaloka, Cibinong, Indonesia
| | | |
Collapse
|
2
|
Morita K, Saito T, Uechi T, Sawada N, Miura O. Out of the ancient lake: Multiple riverine colonizations and diversification of the freshwater snails in the genus Semisulcospira around Lake Biwa. Mol Phylogenet Evol 2024; 191:107987. [PMID: 38081401 DOI: 10.1016/j.ympev.2023.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
Ancient lakes are a hotspot of biodiversity. Freshwater species often experience spectacular species radiation after colonizing lakes from riverine habitats. Therefore, the relationship between the fauna of the ancient lakes and the surrounding riverine system has a special significance in understanding their origin and evolutionary history. The study of ancient lake species often focused on the lake colonization of riverine species. In contrast, far less attention has been placed on the reverse direction: the riverine colonization of the lake species, despite its importance in disentangling their complex evolutionary history. The freshwater snails in the genus Semisulcospira involve endemic groups that radiated in the ancient Lake Biwa. Using genetics and fossil records, we inferred that the ancestors of these lake-endemic Semisulcospira snails historically colonized the riverine habitats at least three times during the Middle Pleistocene. Each colonization resulted in the formation of a new lineage that was genetically and morphologically distinct from other lineages. Further, one of these colonizations was followed by hybridization with a cosmopolitan riverine species, which potentially facilitated the population persistence of the colonizers in the new environment. Despite their complex histories, all these colonizers were currently grouped within a single species, Semisulcospira kurodai, suggesting cryptic diversity in this species. This study highlights the significance of the riverine colonizations of the lake species to fully understand the diversification history of freshwater fauna in and around the ancient lakes.
Collapse
Affiliation(s)
- Kohei Morita
- Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe, Nankoku, Kochi 783-8502 Japan
| | - Takumi Saito
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Takeru Uechi
- Major in Environmental Management, Graduate School of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Naoto Sawada
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo, Kyoto, Kyoto 606-8502 Japan
| | - Osamu Miura
- Faculty of Agriculture and Marine Science, Kochi University, 200 Monobe, Nankoku, Kochi 783-8502 Japan.
| |
Collapse
|
3
|
Neubauer TA. The fossil record of freshwater Gastropoda - a global review. Biol Rev Camb Philos Soc 2024; 99:177-199. [PMID: 37698140 DOI: 10.1111/brv.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Gastropoda are an exceptionally successful group with a rich and diverse fossil record. They have conquered land and freshwater habitats multiple times independently and have dispersed across the entire globe. Since they are important constituents of fossil assemblages, they are often used for palaeoecological reconstruction, biostratigraphic correlations, and as model groups to study morphological and taxonomic evolution. While marine faunas and their evolution have been a common subject of study, the freshwater component of the fossil record has attracted much less attention, and a global overview is lacking. Here, I review the fossil record of freshwater gastropods on a global scale, ranging from their origins in the late Palaeozoic to the Pleistocene. As compiled here, the global fossil record of freshwater Gastropoda includes 5182 species in 490 genera, 44 families, and 12 superfamilies over a total of ~340 million years. Following a slow and poorly known start in the late Palaeozoic, diversity slowly increased during the Mesozoic. Diversity culminated in an all-time high in the Neogene, relating to diversification in numerous long-lived (ancient) lakes in Europe. I summarise well-documented and hypothesised freshwater colonisation events and compare the patterns found in freshwater gastropods to those in land snails. Furthermore, I discuss potential preservation and sampling biases, as well as the main drivers underlying species diversification in fresh water on a larger scale. In that context, I particularly highlight the importance of long-lived lakes as islands and archives of evolution and expand a well-known concept in ecology and evolution to a broader spectrum: scale-independent ecological opportunity.
Collapse
Affiliation(s)
- Thomas A Neubauer
- Department of Animal Ecology and Systematics, Justus Liebig University, Heinrich-Buff-Ring 26 (iFZ), Giessen, 35392, Germany
- SNSB - Bavarian State Collection for Palaeontology and Geology, Richard-Wagner-Straße 10, Munich, 80333, Germany
- Naturalis Biodiversity Center, Darwinweg 2, Leiden, 2333 CR, The Netherlands
| |
Collapse
|
4
|
Cao X, Deng S, Liu Q, Wu L, Zhuang X, Ding S. Important Role of the Ihh Signaling Pathway in Initiating Early Cranial Remodeling and Morphological Specialization in Cromileptes altivelis. Animals (Basel) 2023; 13:3840. [PMID: 38136878 PMCID: PMC10740873 DOI: 10.3390/ani13243840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, we identified the important contribution of frontal bone remodeling in shaping the 'sunken head and humpback' appearance in C. altivelis. Our investigation identified a developmental milestone at a total length of 5-6 cm, making the onset of its morphologic specialization in this species. A comparative analysis with closely related species reveals heightened activity in the frontal osteoblasts of the humpback grouper, potentially providing a physiological basis for its remodeling. Furthermore, our findings highlight that a significant upregulation in the expression levels of Ihhb, Ptch1, and Gli2a genes was seen in C. altivelis within the specified developmental stage, indicating an important involvement of the Ihhb-Ptch1-Gli2a signaling pathway in initiating the morphological specialization. We hypothesized that Ihh signaling could be attributed to shifts in mechanical stress, resulting from muscle traction on the frontal bone due to changes in swimming patterns during development. This study not only offers significant insights into unraveling the molecular mechanisms that govern phenotypic specialization and ecological adaptations in the humpback grouper but also serves as a valuable reference for studies on fishes with a controversial morphology and molecular phylogeny.
Collapse
Affiliation(s)
- Xiaoying Cao
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Shunyun Deng
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Quanyin Liu
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Lisheng Wu
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Xuan Zhuang
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Shaoxiong Ding
- State Key Laboratory of Marine Environment Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
- Xiamen Key Laboratory of Urban Sea Ecological Conservation and Restoration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Yamahira K, Kobayashi H, Kakioka R, Montenegro J, Masengi KWA, Okuda N, Nagano AJ, Tanaka R, Naruse K, Tatsumoto S, Go Y, Ansai S, Kusumi J. Ghost introgression in ricefishes of the genus Adrianichthys in an ancient Wallacean lake. J Evol Biol 2023; 36:1484-1493. [PMID: 37737547 DOI: 10.1111/jeb.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 08/01/2023] [Indexed: 09/23/2023]
Abstract
Because speciation might have been promoted by ancient introgression from an extinct lineage, it is important to detect the existence of 'ghost introgression' in focal taxa and examine its contribution to their diversification. In this study, we examined possible ghost introgression and its contributions to the diversification of ricefishes of the genus Adrianichthys in Lake Poso, an ancient lake on Sulawesi Island, in which some extinctions are known to have occurred. Population-genomic analysis revealed that two extant Adrianichthys species, A. oophorus and A. poptae are reproductively isolated from each other. Comparisons of demographic models demonstrated that introgression from a ghost population, which diverged from the common ancestor of A. oophorus and A. poptae, is essential for reconstructing the demographic history of Adrianichthys. The best model estimated that the divergence of the ghost population greatly predated the divergence between A. oophorus and A. poptae, and that the ghost population secondarily contacted the two extant species within Lake Poso more recently. Genome scans and simulations detected a greatly divergent locus, which cannot be explained without ghost introgression. This locus was also completely segregated between A. oophorus and A. poptae. These findings suggest that variants that came from a ghost population have contributed to the divergence between A. oophorus and A. poptae, but the large time-lag between their divergence and ghost introgression indicates that the contribution of introgression may be restricted.
Collapse
Affiliation(s)
- Kazunori Yamahira
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Hirozumi Kobayashi
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Ryo Kakioka
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Javier Montenegro
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | | | - Noboru Okuda
- Research Center for Inland Seas, Kobe University, Kobe, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Rieko Tanaka
- World Medaka Aquarium, Nagoya Higashiyama Zoo and Botanical Gardens, Nagoya, Japan
| | - Kiyoshi Naruse
- Laboratory of Bioresources, National Institute for Basic Biology, Okazaki, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Department of System Neuroscience, Division of Behavioral Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Satoshi Ansai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Junko Kusumi
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| |
Collapse
|
6
|
Flury JM, Meusemann K, Martin S, Hilgers L, Spanke T, Böhne A, Herder F, Mokodongan DF, Altmüller J, Wowor D, Misof B, Nolte AW, Schwarzer J. Potential Contribution of Ancient Introgression to the Evolution of a Derived Reproductive Strategy in Ricefishes. Genome Biol Evol 2023; 15:evad138. [PMID: 37493080 PMCID: PMC10465105 DOI: 10.1093/gbe/evad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023] Open
Abstract
Transitions from no parental care to extensive care are costly and involve major changes in life history, behavior, and morphology. Nevertheless, in Sulawesi ricefishes, pelvic brooding evolved from transfer brooding in two distantly related lineages within the genera Adrianichthys and Oryzias, respectively. Females of pelvic brooding species carry their eggs attached to their belly until the fry hatches. Despite their phylogenetic distance, both pelvic brooding lineages share a set of external morphological traits. A recent study found no direct gene flow between pelvic brooding lineages, suggesting independent evolution of the derived reproductive strategy. Convergent evolution can, however, also rely on repeated sorting of preexisting variation of an admixed ancestral population, especially when subjected to similar external selection pressures. We thus used a multispecies coalescent model and D-statistics to identify gene-tree-species-tree incongruencies, to evaluate the evolution of pelvic brooding with respect to interspecific gene flow not only between pelvic brooding lineages but also between pelvic brooding lineages and other Sulawesi ricefish lineages. We found a general network-like evolution in Sulawesi ricefishes, and as previously reported, we detected no gene flow between the pelvic brooding lineages. Instead, we found hybridization between the ancestor of pelvic brooding Oryzias and the common ancestor of the Oryzias species from the Lake Poso area. We further detected signs of introgression within the confidence interval of a quantitative trait locus associated with pelvic brooding in O. eversi. Our results hint toward a contribution of ancient standing genetic variation to the evolution of pelvic brooding in Oryzias.
Collapse
Affiliation(s)
- Jana M Flury
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Karen Meusemann
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Sebastian Martin
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Leon Hilgers
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Tobias Spanke
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Astrid Böhne
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Fabian Herder
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Daniel F Mokodongan
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Cologne University, Cologne, Germany
| | - Daisy Wowor
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
| | - Bernhard Misof
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| | - Arne W Nolte
- Department of Ecological Genomics, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Julia Schwarzer
- Leibniz-Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig Bonn, Bonn, Germany
| |
Collapse
|
7
|
Krings W, Wägele H, Neumann C, Gorb SN. Coping with abrasive food: diverging composition of radular teeth in two Porifera-consuming nudibranch species (Mollusca, Gastropoda). J R Soc Interface 2023; 20:20220927. [PMID: 37221862 PMCID: PMC10206459 DOI: 10.1098/rsif.2022.0927] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023] Open
Abstract
Molluscs forage with their radula, a chitinous membrane with teeth. Adaptations to hard or abrasive ingesta were well studied in Polyplacophora and Patellogastropoda, but for other taxa there are large gaps in knowledge. Here, we investigated the nudibranch gastropods Felimare picta and Doris pseudoargus, both of which feed on Porifera. Tooth morphologies were documented by scanning electron microscopy, and mechanical properties were tested by nanoindentation. We found that these parameters are rather similar in both species, indicating that teeth are similar in their function. To study the composition, teeth were visualized using confocal laser scanning microscopy (CLSM), to determine the degree of tanning, and analysed with energy-dispersive X-ray spectroscopy, to test the elemental composition. The emitted autofluorescence signal and the inorganic content differed between the species. This was especially prominent when studying the inner and outer tooth surfaces (leading and trailing edges). In F. picta, we detected high proportions of Si, whereas teeth of D. pseudoargus contained high amounts of Ca, which influenced the autofluorescence signal in CLSM. Employing nanoindentation, we determined high Young's modulus and hardness values for the leading edges of teeth, which relate to the Si and Ca content. This highlights that teeth with a similar morphology and mechanical properties can be mechanically enhanced via different chemical pathways in Nudibranchia.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstraße 12, 04103 Leipzig, Germany
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Heike Wägele
- Department of Phylogenetics and Evolutionary Biology, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 160, 53113 Bonn, Germany
| | - Charlotte Neumann
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
8
|
Sawada N, Fuke Y. Systematic revision of the Japanese freshwater snail. INVERTEBR SYST 2022. [DOI: 10.1071/is22042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Semisulcospira is a freshwater snail genus highly divergent in the ancient Lake Biwa, Japan, with a history of ~4 million years. Although the shell morphology, karyotype and molecular phylogeny of the genus have been well studied, the systematic status of several non-monophyletic species remains uncertain. In this study, we have evaluated the taxonomic accounts of the species previously identified as Semisulcospira decipiens, S. habei and relatives. We examined the genetic relationships using genome-wide SNP data and elucidated morphological variation among these using Random Forest classification. Morphological relationships between the name-bearing type of S. decipiens and the newly collected specimens were also evaluated. Morphological characteristics effectively discriminated between the nine genetic clusters, and the correlation among morphology and substrates was elucidated. We revised taxonomic accounts of S. decipiens, S. habei, S. arenicola, S. nakasekoae and S. ourensis and synonymised S. multigranosa, S. habei yamaguchi, S. dilatata under S. decipiens and S. fluvialis under S. nakasekoae. We also described two new species, Semisulcospira elongata sp. nov. and Semisulcospira cryptica sp. nov., and redefined two phylogroups of the lacustrine species as the Semisulcospira niponica-group and the Semisulcospira nakasekoae-group. Traits of the species examined exhibiting intraspecific variation in the different substrates and flow velocity may indicate the morphological and trophic adaptations. The habitat-related variation has certainly caused the taxonomic confusion of the lacustrine species. Lake drainage contributes to increasing the species diversity of the genus, generating ecological isolation between the riverine and lacustrine habitats. ZooBank: urn:lsid:zoobank.org:pub:A83B99F4-8709-4295-86B3-A6C595D65DA0
Collapse
|
9
|
The ontogeny of elements: distinct ontogenetic patterns in the radular tooth mineralization of gastropods. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2022; 109:58. [DOI: 10.1007/s00114-022-01829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/18/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
Abstract The molluscan phylum is characterized by the radula, used for the gathering and processing of food. This structure can consist of a chitinous membrane with embedded rows of teeth, which show structural, chemical, and biomechanical adaptations to the preferred ingesta. With regard to the chemical composition of teeth, some taxa (Polyplacophora and Patellogastropoda) were extensively studied, and high proportions of incorporated iron, calcium, and silicon were previously reported. However, outside these two groups, there is an immense lack of knowledge about the elemental composition of radular teeth. The here presented work aims at shedding some light on the radular composition by performing energy-dispersive X-ray spectroscopy (EDX) on six non-patelliform gastropod species (Anentome helena, Cornu aspersum, Lavigeria nassa, Littorina littorea, Reymondia horei, and Vittina turrita), with the focus on the ontogeny of the elemental composition. Proportions of elements, which are not part of chitin and other purely organic molecules, were documented for overall 1027 individual teeth of all ontogenetic radular stages, i.e., for the building zone, the maturation zone, and the working zone. We detected that the proportions of these elements increased from the building to the maturation zone. However, from the maturation to the working zone, two general trends are visible: either the proportions of the elements increased or decreased. The latter trend could potentially be explained by the acidic pH of the gastropod saliva, which awaits further investigations.
Collapse
|
10
|
Sawada N, Fuke Y. Diversification in ancient Lake Biwa: integrative taxonomy reveals overlooked species diversity of the Japanese freshwater snail genus Semisulcospira (Mollusca: Semisulcospiridae). CONTRIBUTIONS TO ZOOLOGY 2022. [DOI: 10.1163/18759866-bja10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The freshwater snail genus Semisulcospira has adaptively radiated in the ancient Lake Biwa, Japan. Although significant geographical variations have been known in the shell morphology of Semisulcospira niponica, their systematics remain uncertain. We evaluated the systematic status of the geographical variations in S. niponica and its congenerics S. biwae and S. fuscata through morphological and genetic investigations. Genome-wide snp s were used to estimate their genetic relationships. Random Forest algorithms explored the morphological variation of the shells of the name-bearing types and newly collected specimens. Our results detected five genetic clusters and revealed the consistency of adult shell morphology with genetic relationships, reinforcing the robustness of shell morphology-based species delimitation of the genus. The present systematics synonymized S. biwae under S. niponica. The five genetic clusters corresponded to the two described species, S. niponica and S. fuscata, and three new species, Semisulcospira watanabei sp. nov., Semisulcospira nakanoi sp. nov., and Semisulcospira salebrosa sp. nov. discovered among the geographical variations of S. niponica. The observed similarities in substrate preference and differences in distribution patterns among species suggest that the diversification of the genus was accelerated by geographical isolation after the initial ecological niche differentiation. We suggest that the distributions of Semisulcospira species may have been influenced by competitive exclusion among them, and that multiple speciation events have occurred in similar patterns.
Collapse
Affiliation(s)
- Naoto Sawada
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan,
| | - Yusuke Fuke
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606–8502, Japan
| |
Collapse
|
11
|
Evolutionary Divergence and Radula Diversification in Two Ecomorphs from an Adaptive Radiation of Freshwater Snails. Genes (Basel) 2022; 13:genes13061029. [PMID: 35741791 PMCID: PMC9222583 DOI: 10.3390/genes13061029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
(1) Background: Adaptive diversification of complex traits plays a pivotal role in the evolution of organismal diversity. In the freshwater snail genus Tylomelania, adaptive radiations were likely promoted by trophic specialization via diversification of their key foraging organ, the radula. (2) Methods: To investigate the molecular basis of radula diversification and its contribution to lineage divergence, we used tissue-specific transcriptomes of two sympatric Tylomelania sarasinorum ecomorphs. (3) Results: We show that ecomorphs are genetically divergent lineages with habitat-correlated abundances. Sequence divergence and the proportion of highly differentially expressed genes are significantly higher between radula transcriptomes compared to the mantle and foot. However, the same is not true when all differentially expressed genes or only non-synonymous SNPs are considered. Finally, putative homologs of some candidate genes for radula diversification (hh, arx, gbb) were also found to contribute to trophic specialization in cichlids and Darwin’s finches. (4) Conclusions: Our results are in line with diversifying selection on the radula driving Tylomelania ecomorph divergence and indicate that some molecular pathways may be especially prone to adaptive diversification, even across phylogenetically distant animal groups.
Collapse
|
12
|
Krings W, Brütt JO, Gorb SN. Elemental analyses reveal distinct mineralization patterns in radular teeth of various molluscan taxa. Sci Rep 2022; 12:7499. [PMID: 35525838 PMCID: PMC9079087 DOI: 10.1038/s41598-022-11026-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
The molluscan phylum is the second specious animal group with its taxa feeding on a variety of food sources. This is enabled by the radula, a chitinous membrane with embedded teeth, one important autapomorphy. Between species, radulae can vary in their morphology, mechanical, and chemical properties. With regard to chemical composition, some taxa (Polyplacophora and Patellogastropoda) were studied extensively in the past decades, due to their specificity to incorporate high proportions of iron, calcium, and silicon. There is, however, a huge lack of knowledge about radular composition in other taxa. The work presented aims at shedding light on the chemistry by performing energy-dispersive X-ray spectroscopy analyses on 24 molluscan species, thereof two Polyplacophora, two Cephalopoda, and 20 Gastropoda, which was never done before in such a comprehensiveness. The elements and their proportions were documented for 1448 individual, mature teeth and hypotheses about potential biomineralization types were proposed. The presented work additionally comprises a detailed record on past studies about the chemical composition of molluscan teeth, which is an important basis for further investigation of the radular chemistry. The found disparity in elements detected, in their distribution and proportions highlights the diversity of evolutionary solutions, as it depicts multiple biomineralization types present within Mollusca.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany.
| | - Jan-Ole Brütt
- Department of Behavioral Biology, Institute of Cell and Systems Biology of Animals, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
- Department of Mammalogy and Palaeoanthropology, Leibniz Institute for the Analysis of Biodiversity Change, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität Zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| |
Collapse
|
13
|
Delicado D, Hauffe T. Shell features and anatomy of the springsnail genus Radomaniola (Caenogastropoda: Hydrobiidae) show a different pace and mode of evolution over five million years. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlab121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Shell features are key factors for systematics and evolutionary biology studies of freshwater gastropods. Based mostly on shell morphology, 19 species of the springsnail genus Radomaniola (family Hydrobiidae) have been described. Although the scarce differentiation of various shell dimensions suggests morphological stasis, the evolutionary dynamics of shell and other anatomical structures have not yet been explored fully. By inferring a phylogeny and a time-calibrated species tree from mitochondrial (COI and 16S) and nuclear (28S) sequences of 15 recognized species, we initially examine the species diversity of the Radomaniola dataset and then, through phylogenetic comparative methods, assess the evolutionary correlation, pace and mode of 40 continuous shell and anatomical characters. By synthesizing the results of four species delimitation methods and through morphological examinations, we recognize 21 groups, for which taxonomy is discussed here. Seven new species are described. We reveal a high degree of correlated evolution between characters of the shell, which are constrained by a single morphological optimum, consistent with the morphological stasis model. Anatomical traits diverged rapidly in an unconstrained manner or toward multiple optima. These findings indicate that in order to understand the morphological evolution of springsnails, it is essential to examine different organs in detail.
Collapse
Affiliation(s)
- Diana Delicado
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 IFZ, D-35392, Giessen, Germany
| | - Torsten Hauffe
- Department of Biology, University of Fribourg and Swiss Institute of Bioinformatics, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| |
Collapse
|
14
|
Wiese R, Harrington K, Hartmann K, Hethke M, von Rintelen T, Zhang H, Zhang L, Riedel F. Can fractal dimensions objectivize gastropod shell morphometrics? A case study from Lake Lugu (SW China). Ecol Evol 2022; 12:e8622. [PMID: 35261738 PMCID: PMC8888252 DOI: 10.1002/ece3.8622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Morphometrics are fundamental for the analysis of size and shape in fossils, particularly because soft parts or DNA are rarely preserved and hard parts such as shells are commonly the only source of information. Geometric morphometrics, that is, landmark analysis, is well established for the description of shape but it exhibits a couple of shortcomings resulting from subjective choices during landmarking (number and position of landmarks) and from difficulties in resolving shape at the level of micro-sculpture.With the aid of high-resolution 3D scanning technology and analyses of fractal dimensions, we test whether such shortcomings of linear and landmark morphometrics can be overcome. As a model group, we selected a clade of modern viviparid gastropods from Lake Lugu, with shells that show a high degree of sculptural variation. Linear and landmark analyses were applied to the same shells in order to establish the fractal dimensions. The genetic diversity of the gastropod clade was assessed.The genetic results suggest that the gastropod clade represents a single species. The results of all morphometric methods applied are in line with the genetic results, which is that no specific morphotype could be delimited. Apart from this overall agreement, landmark and fractal dimension analyses do not correspond to each other but represent data sets with different information. Generally, the fractal dimension values quantify the roughness of the shell surface, the resolution of the 3D scans determining the level. In our approach, we captured the micro-sculpture but not the first-order sculptural elements, which explains that fractal dimension and landmark data are not in phase.We can show that analyzing fractal dimensions of gastropod shells opens a window to more detailed information that can be considered in evolutionary and ecological contexts. We propose that using low-resolution 3D scans may successfully substitute landmark analyses because it overcomes the subjective landmarking. Analyses of 3D scans with higher resolution than used in this study will provide surface roughness information at the mineralogical level. We suggest that fractal dimension analyses of a combination of differently resolved 3D models will significantly improve the quality of shell morphometrics.
Collapse
Affiliation(s)
- Robert Wiese
- Institute of Geological SciencesFreie Universität BerlinBerlinGermany
| | - Kyle Harrington
- Virtual Technology & DesignUniversity of IdahoMoscowIdahoUSA
- Image Data AnalysisMax Delbrück Center for Molecular MedicineBerlinGermany
- Computational Sciences and EngineeringOak Ridge National LaboratoryOak RidgeTennesseeUSA
| | - Kai Hartmann
- Institute of Geological SciencesFreie Universität BerlinBerlinGermany
- Institute of Geographical SciencesFreie Universität BerlinBerlinGermany
| | - Manja Hethke
- Institute of Geological SciencesFreie Universität BerlinBerlinGermany
| | - Thomas von Rintelen
- Museum für NaturkundeLeibniz‐Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau LakesSchool of Ecology and Environmental ScienceYunnan UniversityKunmingChina
| | - Le‐Jia Zhang
- Museum für NaturkundeLeibniz‐Institut für Evolutions‐ und BiodiversitätsforschungBerlinGermany
| | - Frank Riedel
- Institute of Geological SciencesFreie Universität BerlinBerlinGermany
| |
Collapse
|
15
|
Blázquez M, Hernández-Moreno LS, Gasulla F, Pérez-Vargas I, Pérez-Ortega S. The Role of Photobionts as Drivers of Diversification in an Island Radiation of Lichen-Forming Fungi. Front Microbiol 2022; 12:784182. [PMID: 35046912 PMCID: PMC8763358 DOI: 10.3389/fmicb.2021.784182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023] Open
Abstract
Speciation in oceanic islands has attracted the interest of scientists since the 19th century. One of the most striking evolutionary phenomena that can be studied in islands is adaptive radiation, that is, when a lineage gives rise to different species by means of ecological speciation. Some of the best-known examples of adaptive radiation are charismatic organisms like the Darwin finches of the Galapagos and the cichlid fishes of the great African lakes. In these and many other examples, a segregation of the trophic niche has been shown to be an important diversification driver. Radiations are known in other groups of organisms, such as lichen-forming fungi. However, very few studies have investigated their adaptive nature, and none have focused on the trophic niche. In this study, we explore the role of the trophic niche in a putative radiation of endemic species from the Macaronesian Region, the Ramalina decipiens group. The photobiont diversity was studied by Illumina MiSeq sequencing of the ITS2 region of 197 specimens spanning the phylogenetic breadth and geographic range of the group. A total of 66 amplicon sequence variants belonging to the four main clades of the algal genus Trebouxia were found. Approximately half of the examined thalli showed algal coexistence, but in most of them, a single main photobiont amounted to more than 90% of the reads. However, there were no significant differences in photobiont identity and in the abundance of ITS2 reads across the species of the group. We conclude that a segregation of the trophic niche has not occurred in the R. decipiens radiation.
Collapse
Affiliation(s)
- Miguel Blázquez
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain.,Open Access Publication Support Program, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Escuela Internacional de Doctorado, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Lucía S Hernández-Moreno
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain.,Open Access Publication Support Program, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco Gasulla
- Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Israel Pérez-Vargas
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Sergio Pérez-Ortega
- Department of Mycology, Real Jardín Botánico (CSIC), Madrid, Spain.,Open Access Publication Support Program, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
16
|
Finite element analysis relating shape, material properties, and dimensions of taenioglossan radular teeth with trophic specialisations in Paludomidae (Gastropoda). Sci Rep 2021; 11:22775. [PMID: 34815469 PMCID: PMC8611077 DOI: 10.1038/s41598-021-02102-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/10/2021] [Indexed: 01/18/2023] Open
Abstract
The radula, a chitinous membrane with embedded tooth rows, is the molluscan autapomorphy for feeding. The morphologies, arrangements and mechanical properties of teeth can vary between taxa, which is usually interpreted as adaptation to food. In previous studies, we proposed about trophic and other functional specialisations in taenioglossan radulae from species of African paludomid gastropods. These were based on the analysis of shape, material properties, force-resistance, and the mechanical behaviour of teeth, when interacting with an obstacle. The latter was previously simulated for one species (Spekia zonata) by the finite-element-analysis (FEA) and, for more species, observed in experiments. In the here presented work we test the previous hypotheses by applying the FEA on 3D modelled radulae, with incorporated material properties, from three additional paludomid species. These species forage either on algae attached to rocks (Lavigeria grandis), covering sand (Cleopatra johnstoni), or attached to plant surface and covering sand (Bridouxia grandidieriana). Since the analysed radulae vary greatly in their general size (e.g. width) and size of teeth between species, we additionally aimed at relating the simulated stress and strain distributions with the tooth sizes by altering the force/volume. For this purpose, we also included S. zonata again in the present study. Our FEA results show that smaller radulae are more affected by stress and strain than larger ones, when each tooth is loaded with the same force. However, the results are not fully in congruence with results from the previous breaking stress experiments, indicating that besides the parameter size, more mechanisms leading to reduced stress/strain must be present in radulae.
Collapse
|
17
|
Krings W, Kovalev A, Gorb SN. Collective effect of damage prevention in taenioglossan radular teeth is related to the ecological niche in Paludomidae (Gastropoda: Cerithioidea). Acta Biomater 2021; 135:458-472. [PMID: 34358696 DOI: 10.1016/j.actbio.2021.07.073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022]
Abstract
The molluscan radula, a thin membrane with embedded rows of teeth, is the structure for food processing and gathering. For proper functioning, radular failures must be either avoided or reduced when interacting with the preferred food, as this might be of high significance for the individual fitness. Thus, the analysis of structural failure in radular teeth could be included in studies on trophic specializations. Here, we tested the failure of non-mineralized, chitinous radular teeth from taxa, belonging to an African paludomid species flock from Lake Tanganyika and surrounding river systems. These species are of high interest for evolutionary biologists since they represent a potential result of an adaptive radiation including trophic specialisations to distinct substrates, the food is attached to. In a biomechanical experiment a shear load was applied to tooth cusps with a force transducer connected to a motorized stage until structural failure occurred. Subsequently broken areas were measured and breaking stress was calculated. As the experiments were carried out under dry and wet conditions, the high influence of the water content on the forces, teeth were capable to resist, could be documented. Wet teeth were able to resist higher forces, because of their increased flexibility and the flexibility of the embedding membrane, which enabled them either to slip away or to gain support from adjacent teeth. This mechanism can be understood as collective effect reducing structural failure without the mineralisation with wear-minimizing elements, as described for Polyplacophora and Patellogastropoda. Since the documented mechanical behaviour of radular teeth and the maximal forces, teeth resist, can directly be related to the gastropod ecological niche, both are here identified as an adaptation to preferred feeding substrates. STATEMENT OF SIGNIFICANCE: The radula, a chitinous membrane with teeth, is the molluscan feeding structure. Here we add onto existing knowledge about the relationship between tooth's mechanical properties and species' ecology by determining the tooth failure resistance. Six paludomid species (Gastropoda) of a prominent species flock from Lake Tanganyika, foraging on distinct feeding substrates, were tested. With a force transducer wet and dry teeth were broken, revealing the high influence of water content on mechanical behaviour and force resistance of teeth. Higher forces were needed to break wet radulae due to an increased flexibility of teeth and membrane, which resulted in an interlocking or twisting of teeth. Mechanical behaviour and force resistance were both identified as trophic adaptations to feeding substrate.
Collapse
|
18
|
Krings W, Karabacak H, Gorb SN. From the knitting shop: the first physical and dynamic model of the taenioglossan radula (Mollusca: Gastropoda) aids in unravelling functional principles of the radular morphology. J R Soc Interface 2021; 18:20210377. [PMID: 34520692 PMCID: PMC8440039 DOI: 10.1098/rsif.2021.0377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
The radula is the structure used for food processing in Mollusca. It can consist of a membrane with stiffer teeth, which is, together with alary processus, muscles and odontophoral cartilages, part of the buccal mass. In malacology, it is common practice to infer potential tooth functions from morphology. Thus, past approaches to explain functional principles are mainly hypothesis driven. Therefore, there is an urgent need for a workflow testing hypotheses on the function of teeth and buccal mass components and interaction of structures, which can contribute to understanding the structure as a whole. Here, in a non-conventional approach, we introduce a physical and dynamic radular model, based on morphological data of Spekia zonata (Gastropoda, Paludomidae). Structures were documented, computer-modelled, three-dimensional-printed and assembled to gather a simplistic but realistic physical and dynamic radular model. Such a bioinspired design enabled studying of radular kinematics and interaction of parts when underlain supporting structures were manipulated in a similar manner as could result from muscle contractions. The presented work is a first step to provide a constructional manual, paving the way for even more realistic physical radular models, which could be used for understanding radular functional morphology and for the development of novel gripping devices.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Mammalogy and Paleoanthropology, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
- Functional Morphology and Biomechanics, Zoological Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Hasan Karabacak
- Department of Mammalogy and Paleoanthropology, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146 Hamburg, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
19
|
Krings W, Neumann C, Neiber MT, Kovalev A, Gorb SN. Radular force performance of stylommatophoran gastropods (Mollusca) with distinct body masses. Sci Rep 2021; 11:10560. [PMID: 34006949 PMCID: PMC8131350 DOI: 10.1038/s41598-021-89892-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 01/06/2023] Open
Abstract
The forces exerted by the animal's food processing structures can be important parameters when studying trophic specializations to specific food spectra. Even though molluscs represent the second largest animal phylum, exhibiting an incredible biodiversity accompanied by the establishment of distinct ecological niches including the foraging on a variety of ingesta types, only few studies focused on the biomechanical performance of their feeding organs. To lay a keystone for future research in this direction, we investigated the in vivo forces exerted by the molluscan food gathering and processing structure, the radula, for five stylommatophoran species (Gastropoda). The chosen species and individuals have a similar radular morphology and motion, but as they represent different body mass classes, we were enabled to relate the forces to body mass. Radular forces were measured along two axes using force transducers which allowed us to correlate forces with the distinct phases of radular motion. A radular force quotient, AFQ = mean Absolute Force/bodymass0.67, of 4.3 could be determined which can be used further for the prediction of forces generated in Gastropoda. Additionally, some specimens were dissected and the radular musculature mass as well as the radular mass and dimensions were documented. Our results depict the positive correlation between body mass, radular musculature mass, and exerted force. Additionally, it was clearly observed that the radular motion phases, exerting the highest forces during feeding, changed with regard to the ingesta size: all smaller gastropods rather approached the food by a horizontal, sawing-like radular motion leading to the consumption of rather small food particles, whereas larger gastropods rather pulled the ingesta in vertical direction by radula and jaw resulting in the tearing of larger pieces.
Collapse
Affiliation(s)
- Wencke Krings
- Department of Mammalogy and Palaeoanthropology, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany.
| | - Charlotte Neumann
- Department of Mammalogy and Palaeoanthropology, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Marco T Neiber
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| |
Collapse
|
20
|
Krings W, Neiber MT, Kovalev A, Gorb SN, Glaubrecht M. Trophic specialisation reflected by radular tooth material properties in an "ancient" Lake Tanganyikan gastropod species flock. BMC Ecol Evol 2021; 21:35. [PMID: 33658005 PMCID: PMC7931582 DOI: 10.1186/s12862-021-01754-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 01/28/2021] [Indexed: 01/08/2023] Open
Abstract
Background Lake Tanganyika belongs to the East African Great Lakes and is well known for harbouring a high proportion of endemic and morphologically distinct genera, in cichlids but also in paludomid gastropods. With about 50 species these snails form a flock of high interest because of its diversity, the question of its origin and the evolutionary processes that might have resulted in its elevated amount of taxa. While earlier debates centred on these paludomids to be a result of an intralacustrine adaptive radiation, there are strong indications for the existence of several lineages before the lake formation. To evaluate hypotheses on the evolution and radiation the detection of actual adaptations is however crucial. Since the Tanganyikan gastropods show distinct radular tooth morphologies hypotheses about potential trophic specializations are at hand. Results Here, based on a phylogenetic tree of the paludomid species from Lake Tanganyika and adjacent river systems, the mechanical properties of their teeth were evaluated by nanoindentation, a method measuring the hardness and elasticity of a structure, and related with the gastropods’ specific feeding substrate (soft, solid, mixed). Results identify mechanical adaptations in the tooth cusps to the substrate and, with reference to the tooth morphology, assign distinct functions (scratching or gathering) to tooth types. Analysing pure tooth morphology does not consistently reflect ecological specializations, but the mechanical properties allow the determination of eco-morphotypes. Conclusion In almost every lineage we discovered adaptations to different substrates, leading to the hypothesis that one main engine of the flock’s evolution is trophic specialization, establishing distinct ecological niches and allowing the coexistence of taxa.
Collapse
Affiliation(s)
- Wencke Krings
- Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Zoological Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany.
| | - Marco T Neiber
- Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Alexander Kovalev
- Zoological Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Stanislav N Gorb
- Zoological Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 9, 24118, Kiel, Germany
| | - Matthias Glaubrecht
- Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
21
|
Lentge-Maaß N, Neiber MT, Gimnich F, Glaubrecht M. Evolutionary systematics of the viviparous gastropod Sermyla (Gastropoda: Cerithioidea: Thiaridae), with the description of a new species. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
While most Cerithioidea are marine, some occur in brackish and freshwater habitats. Many members are systematically problematic due to variability or homoplasy in conchological characters, which has led to taxonomic redundancy, but also because of discrepancies between phylogenetic trees and morphologically distinguishable units as revealed in recent molecular genetic studies. We have chosen an evolutionary systematic approach and combine analyses of shell biometry and geometric morphometrics with the analyses of reproductive traits and molecular genetics based on mtDNA and AFLP markers in order to resolve the relationships among species of the genus Sermyla. We describe a new species from Sulawesi, Sermyla kupaensis sp. nov., which is characterized by a distinct reproductive strategy. This unique reproductive strategy corresponds with its distinct molecular genetic signal. However, it is not possible to distinguish S. kupaensis from S. riquetii based on shell morphology alone. We also provide data on the population structure of the endemic Australian species Sermyla carbonata, for which we found a drainage-based population structure. Overall, we present a new concept of the relationships among the species within the genus Sermyla based on morphological and genetic data.
Collapse
Affiliation(s)
- Nora Lentge-Maaß
- Center of Natural History (CeNak), Zoological Museum, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, Germany
- Museum für Naturkunde Berlin (MfN), Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, Berlin, Germany
| | - Marco T Neiber
- Center of Natural History (CeNak), Zoological Museum, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, Germany
| | - France Gimnich
- Zoologisches Forschungsmuseum Alexander König, Adenauerallee 160, Bonn, Germany
| | - Matthias Glaubrecht
- Center of Natural History (CeNak), Zoological Museum, Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, Germany
| |
Collapse
|
22
|
Wiggering B, Neiber MT, Gebauer K, Glaubrecht M. One species, two developmental modes: a case of geographic poecilogony in marine gastropods. BMC Evol Biol 2020; 20:76. [PMID: 32591013 PMCID: PMC7318368 DOI: 10.1186/s12862-020-01644-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022] Open
Abstract
Background Poecilogony, the presence of two developmental modes in the same animal species, is a rare phenomenon. Few cases of poecilogony have been suggested for marine invertebrates including molluscs and even less stood extensive testing, mostly revealing a species pair with differing developmental modes. We studied a textbook example of poecilogony in the viviparous snail Planaxis sulcatus (Gastropoda: Planaxidae), for the first time throughout its entire distribution range. Results In the Western Indian Ocean and Red Sea this intertidal species is observed to have large, shelled juveniles, whereas in the Indo-West Pacific planktotrophic veliger larvae are released from a subhaemocoelic brood pouch. We uncovered a shift in developmental modes across its range: from west to east successively earlier developmental stages are released. Furthermore, genetic data based on mitochondrial DNA suggests to recognize P. sulcatus as a single species rather than a group of cryptic species. A reconstruction of the ancestral area of P. sulcatus based on molecular data outlines the Western Indian Ocean and the Indo-West Pacific as area of origin. Conclusion The findings supporting Planaxis sulcatus as a single widespread species and the geographical shift from one reproductive mode to another suggest for this species to truly represent a case of geographic poecilogony, i.e. differing developmental modes between populations of the same species. Furthermore, the results of our ancestral range estimation imply the release of planktotrophic larvae as the ancestral developmental mode.
Collapse
Affiliation(s)
- Benedikt Wiggering
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
| | - Marco T Neiber
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Katharina Gebauer
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Matthias Glaubrecht
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| |
Collapse
|
23
|
Vermeij GJ. The ecology of marine colonization by terrestrial arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 56:100930. [PMID: 32200289 DOI: 10.1016/j.asd.2020.100930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Terrestrial arthropods often colonized and became important in freshwater ecosystems, but did so less often and with little consequence in marine habitats. This pattern cannot be explained by the physical properties of water alone or by limitations of the terrestrial arthropod body plan alone. One hypothesis is that transitions among terrestrial, aquatic and marine ecosystems are unlikely when well-adapted incumbent species in the recipient realm collectively resist entry by initially less well adapted newcomers. I evaluated and modified this hypothesis by examining the properties of donor and recipient ecosystems and the roles that insects play or do not play in each. I argue that the insularity and diminished competitiveness of most freshwater ecosystems makes them vulnerable to invasion from land and sea, and largely prevent transitions from freshwater to terrestrial and marine habitats by arthropods. Small terrestrial arthropods emphasize high locomotor performance and long-distance communication, traits that work less well in the denser, more viscous medium of water. These limitations pose particular challenges for insects colonizing highly escalated marine ecosystems, where small incumbent species rely more on passive than on active defences. Predatory insects are less constrained than herbivores, wood-borers, filter-feeders, sediment burrowers and social species.
Collapse
Affiliation(s)
- Geerat J Vermeij
- Dept. Earth and Planetary Sciences, University of California, 1 Shields Ave., Davis, CA, 95616, USA.
| |
Collapse
|
24
|
Wilson AB, Wegmann A, Ahnesjö I, Gonçalves JMS. The evolution of ecological specialization across the range of a broadly distributed marine species. Evolution 2020; 74:629-643. [PMID: 31976557 DOI: 10.1111/evo.13930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 01/01/2023]
Abstract
Ecological specialization is an important engine of evolutionary change and adaptive radiation, but empirical evidence of local adaptation in marine environments is rare, a pattern that has been attributed to the high dispersal ability of marine taxa and limited geographic barriers to gene flow. The broad-nosed pipefish, Syngnathus typhle, is one of the most broadly distributed syngnathid species and shows pronounced variation in cranial morphology across its range, a factor that may contribute to its success in colonizing new environments. We quantified variation in cranial morphology across the species range using geometric morphometrics, and tested for evidence of trophic specialization by comparing individual-level dietary composition with the community of prey available at each site. Although the diets of juvenile pipefish from each site were qualitatively similar, ontogenetic shifts in dietary composition resulted in adult populations with distinctive diets consistent with their divergent cranial morphology. Morphological differences found in nature are maintained under common garden conditions, indicating that trophic specialization in S. typhle is a heritable trait subject to selection. Our data highlight the potential for ecological specialization in response to spatially variable selection pressures in broadly distributed marine species.
Collapse
Affiliation(s)
- Anthony B Wilson
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.,Department of Biology, Brooklyn College, City University of New York, Brooklyn, New York, 11210.,The Graduate Center, City University of New York, New York, New York, 10016
| | - Alexandra Wegmann
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
| | - Ingrid Ahnesjö
- Department of Ecology and Genetics/Animal Ecology, Uppsala University, SE-75236, Uppsala, Sweden
| | - Jorge M S Gonçalves
- Centro de Ciencias do Mar (CCMAR), Coastal Fisheries Research Group, Universidade do Algarve, 8005-139, Faro, Portugal
| |
Collapse
|
25
|
Van Bocxlaer B, Ortiz-Sepulveda CM, Gurdebeke PR, Vekemans X. Adaptive divergence in shell morphology in an ongoing gastropod radiation from Lake Malawi. BMC Evol Biol 2020; 20:5. [PMID: 31918659 PMCID: PMC6953155 DOI: 10.1186/s12862-019-1570-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/19/2019] [Indexed: 11/21/2022] Open
Abstract
Background Ecological speciation is a prominent mechanism of diversification but in many evolutionary radiations, particularly in invertebrates, it remains unclear whether supposedly critical ecological traits drove or facilitated diversification. As a result, we lack accurate knowledge on the drivers of diversification for most evolutionary radiations along the tree of life. Freshwater mollusks present an enigmatic example: Putatively adaptive radiations are being described in various families, typically from long-lived lakes, whereas other taxa represent celebrated model systems in the study of ecophenotypic plasticity. Here we examine determinants of shell-shape variation in three nominal species of an ongoing ampullariid radiation in the Malawi Basin (Lanistes nyassanus, L. solidus and Lanistes sp. (ovum-like)) with a common garden experiment and semi-landmark morphometrics. Results We found significant differences in survival and fecundity among these species in contrasting habitats. Morphological differences observed in the wild persisted in our experiments for L. nyassanus versus L. solidus and L. sp. (ovum-like), but differences between L. solidus and L. sp. (ovum-like) disappeared and re-emerged in the F1 and F2 generations, respectively. These results indicate that plasticity occurred, but that it is not solely responsible for the observed differences. Our experiments provide the first unambiguous evidence for genetic divergence in shell morphology in an ongoing freshwater gastropod radiation in association with marked fitness differences among species under controlled habitat conditions. Conclusions Our results indicate that differences in shell morphology among Lanistes species occupying different habitats have an adaptive value. These results also facilitate an accurate reinterpretation of morphological variation in fossil Lanistes radiations, and thus macroevolutionary dynamics. Finally, our work testifies that the shells of freshwater gastropods may retain signatures of adaptation at low taxonomic levels, beyond representing an evolutionary novelty responsible for much of the diversity and disparity in mollusks altogether.
Collapse
Affiliation(s)
- Bert Van Bocxlaer
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France. .,Limnology Unit, Department of Biology, Ghent University, 9000, Ghent, Belgium. .,Department of Geology, Ghent University, 9000, Ghent, Belgium.
| | | | | | - Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| |
Collapse
|
26
|
Hirano T, Saito T, Tsunamoto Y, Koseki J, Prozorova L, Do VT, Matsuoka K, Nakai K, Suyama Y, Chiba S. Role of ancient lakes in genetic and phenotypic diversification of freshwater snails. Mol Ecol 2019; 28:5032-5051. [DOI: 10.1111/mec.15272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Takahiro Hirano
- Department of Biological Sciences University of Idaho Moscow ID USA
| | - Takumi Saito
- Department of Biology Faculty of Science Toho University Funabashi Japan
| | - Yoshihiro Tsunamoto
- Tohoku Research Center Forestry and Forest Products Research Institute Morioka Japan
| | - Joichiro Koseki
- Graduate School of Life Sciences Tohoku University Sendai Japan
| | - Larisa Prozorova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch Russian Academy of Sciences Vladivostok Russia
| | - Van Tu Do
- Institute of Ecology and Biological Resources Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology Hanoi Vietnam
| | | | | | - Yoshihisa Suyama
- Kawatabi Field Science Center Graduate School of Agricultural Science Tohoku University Osaki Japan
| | - Satoshi Chiba
- Graduate School of Life Sciences Tohoku University Sendai Japan
- Center for Northeast Asian Studies Tohoku University Sendai Japan
| |
Collapse
|
27
|
Sutra N, Kusumi J, Montenegro J, Kobayashi H, Fujimoto S, Masengi KWA, Nagano AJ, Toyoda A, Matsunami M, Kimura R, Yamahira K. Evidence for sympatric speciation in a Wallacean ancient lake. Evolution 2019; 73:1898-1915. [DOI: 10.1111/evo.13821] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Nobu Sutra
- Tropical Biosphere Research CenterUniversity of the Ryukyus Okinawa 903‐0213 Japan
| | - Junko Kusumi
- Faculty of Social and Cultural StudiesKyushu University Fukuoka 819‐0395 Japan
| | - Javier Montenegro
- Tropical Biosphere Research CenterUniversity of the Ryukyus Okinawa 903‐0213 Japan
| | - Hirozumi Kobayashi
- Tropical Biosphere Research CenterUniversity of the Ryukyus Okinawa 903‐0213 Japan
| | - Shingo Fujimoto
- Graduate School of MedicineUniversity of the Ryukyus Okinawa 903‐0125 Japan
| | | | | | - Atsushi Toyoda
- Comparative Genomics LaboratoryNational Institute of Genetics Mishima 411‐8540 Japan
| | | | - Ryosuke Kimura
- Graduate School of MedicineUniversity of the Ryukyus Okinawa 903‐0125 Japan
| | - Kazunori Yamahira
- Tropical Biosphere Research CenterUniversity of the Ryukyus Okinawa 903‐0213 Japan
| |
Collapse
|
28
|
Boonmekam D, Krailas D, Gimnich F, Neiber MT, Glaubrecht M. A glimpse in the dark? A first phylogenetic approach in a widespread freshwater snail from tropical Asia and northern Australia (Cerithioidea, Thiaridae). ZOOSYST EVOL 2019. [DOI: 10.3897/zse.95.34486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Thiaridae are a speciose group of freshwater snails in tropical areas including a high number of described nominal taxa for which modern revisions are mostly lacking. Using an integrative approach, the systematic status of a group of thiarids from the Oriental region, including the nominal speciesMelaniaasperaandM.rudis, is reassessed on the basis of shell morphology and biometry, radula dentition patterns, and reproductive biology along with molecular genetic methods. Our results suggest that populations from the Oriental region cannot be distinguished on the basis of shell morphology, radula characters and their reproductive mode and are monophyletic based on mitochondrial sequences. Hence,M.rudiswithM.asperaare regarded as belonging to the same species along with several other nominal taxa that were previously included inM.rudis. Moreover, populations from Thailand and Australia, from where the species was not previously recorded, could be shown to form a monophyletic group together with samples from Indonesia. However, a generic affiliation withThiara, in which the investigated taxa were often included in the past, was not supported in our phylogenetic analyses, highlighting the need for a comprehensive revision of the genus-group systematics of Thiaridae as a whole.
Collapse
|
29
|
Wiggering B, Neiber MT, Krailas D, Glaubrecht M. Biological diversity or nomenclatural multiplicity: the Thai freshwater snail Neoradina prasongi Brandt, 1974 (Gastropoda: Thiaridae). SYST BIODIVERS 2019. [DOI: 10.1080/14772000.2019.1606862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Benedikt Wiggering
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Marco T. Neiber
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| | - Duangduen Krailas
- Parasitology and Medical Malacology Research Unit, Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Matthias Glaubrecht
- Department of Animal Diversity, Center of Natural History (CeNak), Universität Hamburg, Martin-Luther-King-Platz 3, Hamburg, 20146, Germany
| |
Collapse
|
30
|
Hilgers L, Hartmann S, Hofreiter M, von Rintelen T. Novel Genes, Ancient Genes, and Gene Co-Option Contributed to the Genetic Basis of the Radula, a Molluscan Innovation. Mol Biol Evol 2019; 35:1638-1652. [PMID: 29672732 PMCID: PMC5995198 DOI: 10.1093/molbev/msy052] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The radula is the central foraging organ and apomorphy of the Mollusca. However, in contrast to other innovations, including the mollusk shell, genetic underpinnings of radula formation remain virtually unknown. Here, we present the first radula formative tissue transcriptome using the viviparous freshwater snail Tylomelania sarasinorum and compare it to foot tissue and the shell-building mantle of the same species. We combine differential expression, functional enrichment, and phylostratigraphic analyses to identify both specific and shared genetic underpinnings of the three tissues as well as their dominant functions and evolutionary origins. Gene expression of radula formative tissue is very distinct, but nevertheless more similar to mantle than to foot. Generally, the genetic bases of both radula and shell formation were shaped by novel orchestration of preexisting genes and continuous evolution of novel genes. A significantly increased proportion of radula-specific genes originated since the origin of stem-mollusks, indicating that novel genes were especially important for radula evolution. Genes with radula-specific expression in our study are frequently also expressed during the formation of other lophotrochozoan hard structures, like chaetae (hes1, arx), spicules (gbx), and shells of mollusks (gbx, heph) and brachiopods (heph), suggesting gene co-option for hard structure formation. Finally, a Lophotrochozoa-specific chitin synthase with a myosin motor domain (CS-MD), which is expressed during mollusk and brachiopod shell formation, had radula-specific expression in our study. CS-MD potentially facilitated the construction of complex chitinous structures and points at the potential of molecular novelties to promote the evolution of different morphological innovations.
Collapse
Affiliation(s)
- Leon Hilgers
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Corresponding author: E-mail:
| | - Stefanie Hartmann
- Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Michael Hofreiter
- Adaptive Evolutionary Genomics Department, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Thomas von Rintelen
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
31
|
Kennedy S, Lim JY, Clavel J, Krehenwinkel H, Gillespie RG. Spider webs, stable isotopes and molecular gut content analysis: Multiple lines of evidence support trophic niche differentiation in a community of Hawaiian spiders. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13361] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Susan Kennedy
- Department of Environmental Science, Policy and Management University of California Berkeley California
- Biodiversity and Biocomplexity Unit Okinawa Institute of Science and Technology Onna Japan
| | - Jun Ying Lim
- Department of Integrative Biology University of California Berkeley California
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Joanne Clavel
- Department of Environmental Science, Policy and Management University of California Berkeley California
- Centre National de la Recherche Scientifique, UMR 7533, LADYSS, University of Paris Paris France
| | - Henrik Krehenwinkel
- Department of Environmental Science, Policy and Management University of California Berkeley California
- Department of Biogeography Trier University Trier Germany
| | - Rosemary G. Gillespie
- Department of Environmental Science, Policy and Management University of California Berkeley California
| |
Collapse
|
32
|
Du LN, Yang JX. A review of Sulcospira (Gastropoda: Pachychilidae) from China, with description of two new species. MOLLUSCAN RESEARCH 2019. [DOI: 10.1080/13235818.2019.1572848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Li-Na Du
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - Jun-Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China
| |
Collapse
|
33
|
Miura O, Urabe M, Nishimura T, Nakai K, Chiba S. Recent lake expansion triggered the adaptive radiation of freshwater snails in the ancient Lake Biwa. Evol Lett 2018; 3:43-54. [PMID: 30788141 PMCID: PMC6369999 DOI: 10.1002/evl3.92] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023] Open
Abstract
Lake expansion that leads to the formation of new habitats has potential to drive intralacustrine diversification. The ancient Lake Biwa in central Japan has historically experienced substantial changes in the lake size, and it provides a useful system for evaluating the role of lake-size fluctuations in the diversification of endemic fauna. Here, we used genome-wide DNA analyses and reconstructed the diversification history of the endemic freshwater snails belonging to the subgenus Biwamelania with respect to the geological history of Lake Biwa. We found that two genetically distinct snail lineages independently colonized Lake Biwa and they concurrently and rapidly radiated into 15 extant Biwamelania species. A combination of paleontological evidence and molecular dating technique demonstrated that the radiation of Biwamelania was tightly linked to the latest enlargement of the lake about 0.4 million years ago and suggested that increased ecological opportunity associated with the lake expansion drove the rapid adaptive radiation. We propose that the Biwamelania snails in Lake Biwa offer a promising new system for understanding the association between the geological history of the lake and rapid intralacustrine diversification.
Collapse
Affiliation(s)
- Osamu Miura
- Faculty of Agriculture and Marine Science Kochi University 200 Monobe Nankoku Kochi 783-8502 Japan
| | - Misako Urabe
- Department of Ecosystem Studies, School of Environmental Science The University of Shiga Prefecture 2500 Hassaka-cho Hikone, Shiga 522-8533 Japan
| | - Tomohiro Nishimura
- Faculty of Agriculture and Marine Science Kochi University 200 Monobe Nankoku Kochi 783-8502 Japan.,Current address: Cawthron Institute 98 Halifax Street East Nelson 7010 New Zealand
| | - Katsuki Nakai
- Lake Biwa Museum 1091 Oroshimo Kusatsu Shiga 525-0001 Japan
| | - Satoshi Chiba
- Department of Environmental Life Sciences, Graduate School of Life Sciences Tohoku University Kawauchi 41 Aoba-ku Sendai 980-0862 Japan
| |
Collapse
|
34
|
Veeravechsukij N, Krailas D, Namchote S, Wiggering B, Neiber MT, Glaubrecht M. Molecular phylogeography and reproductive biology of the freshwater snail Tarebia granifera in Thailand and Timor (Cerithioidea, Thiaridae): morphological disparity versus genetic diversity. ZOOSYST EVOL 2018. [DOI: 10.3897/zse.94.28981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The freshwater thiarid gastropod Tarebiagranifera (Lamarck, 1816), including taxa considered either congeneric or conspecific by earlier authors, is widespread and abundant in various lentic and lotic water bodies in mainland and insular Southeast Asia, with its range extending onto islands in the Indo-West-Pacific. This snail is, as one of the most frequent and major first intermediate host, an important vector for digenic trematodes causing several human diseases. As a typical thiarid T.granifera is viviparous and parthenogenetic, with various embryonic stages up to larger shelled juveniles developing within the female’s subhemocoelic (i.e non-uterine) brood pouch. Despite the known conchological disparity in other thiarids as well as this taxon, in Thailand Tarebia has been reported with the occurrence of one species only. In light of the polytypic variations found in shell morphology of freshwater snails in general and this taxon in particular, the lack of a modern taxonomic-systematic revision, using molecular genetics, has hampered more detailed insights to date, for example, into the locally varying trematode infection rates found in populations of Tarebia from across its range in Thailand as well as neighboring countries and areas. Here, we integrate evidence from phylogeographical analyses based on phenotypic variation (shell morphology, using biometry and geometric morphometrics) with highly informative and heterogeneous mtDNA sequence data (from the gene fragments cytochrome c oxidase subunit 1 and 16 S rRNA). We evaluate both the morphological and molecular genetic variation (using several phylogenetic analyses, including haplotype networks and a dated molecular tree), in correlation with differences in the reproductive biology among populations of Tarebia from various water bodies in the north, northwest, central, and south of Thailand, supplementing our respective analyses of parasite infections of this thiarid by cercaria of 15 trematode species, reported in a parallel study. Based on the comparison of topotypical material from the island of Timor, with specimens from 12 locations as reference, we found significant, albeit not congruent variation of both phenotype and genotype in Tarebiagranifera, based on 1,154 specimens from 95 Thai samples, representing a geographically wide-ranging, river-based cross-section of this country. Our analyses indicate the existence of two genetically distinct clades and hint at possible species differentiation within what has been traditionally considered as T.granifera. These two lineages started to split about 5 mya, possibly related to marine transgressions forming what became known as biogeographical barrier north of the Isthmus of Kra. Grounded on the site-by-site analysis of individual Tarebia populations, our country-wide chorological approach focussing on the conchologically distinct and genetically diverse lineages of Tarebia allows to discuss questions of this either reflecting subspecific forms versus being distinct species within a narrowly delimited species complex. Our results, therefore, provide the ground for new perspectives on the phylogeography, evolution and parasitology of Thai freshwater gastropods, exemplified here by these highly important thiarids.
Collapse
|
35
|
Ecological opportunity may facilitate diversification in Palearctic freshwater organisms: a case study on hydrobiid gastropods. BMC Evol Biol 2018; 18:55. [PMID: 29673313 PMCID: PMC5907725 DOI: 10.1186/s12862-018-1169-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/27/2018] [Indexed: 11/23/2022] Open
Abstract
Background Differences in species richness among phylogenetic clades are attributed to clade age and/or variation in diversification rates. Access to ecological opportunity may trigger a temporary increase in diversification rates and ecomorphological variation. In addition, lower body temperatures in poikilothermic animals may result in decreasing speciation rates as proposed by the metabolic theory of ecology. For strictly freshwater organisms, environmental gradients within a river continuum, linked to elevation and temperature, might promote access to ecological opportunity and alter metabolic rates, eventually influencing speciation and extinction processes. To test these hypotheses, we investigated the influence of environmental temperature and elevation, as proxies for body temperature and ecological opportunity, respectively, on speciation rates and ecomorphological divergence. As model systems served two closely related gastropod genera with unequal species richness and habitat preferences – Pseudamnicola and Corrosella. Results Lineage-through-time plots and Bayesian macroevolutionary modeling evidenced that Pseudamnicola species, which typically live in lower reaches of rivers, displayed significantly elevated speciation rates in comparison to the ‘headwater genus’ Corrosella. Moreover, state-dependent speciation models suggested that the speciation rate increased with decreasing elevation, supporting the ecological opportunity hypothesis. In contrast, a significant effect of environmental temperature, as proposed by the metabolic theory of ecology, could not be observed. Disparity-through-time plots, models of ecomorphological evolution, and ancestral habitat estimation showed for Pseudamnicola species rapid morphological divergence shortly after periods of elevational and habitat divergence. In contrast, Corrosella species did not deviate from null models of drift-like evolution. Conclusion Our finding that speciation rates are correlated with elevation and ecomorphological disparity but not with environmental temperatures suggests that differences in ecological opportunity may have played a key role in Corrosella and Pseudamnicola diversifications. We propose that Pseudamnicola lineages experienced higher ecological opportunity through dispersal to new locations or habitats in lowlands, which may explain the increase in speciation rates and morphological change. In contrast, the evolution of Corrosella in headwaters is likely less facilitated by the environment and more by non-ecological processes. Electronic supplementary material The online version of this article (10.1186/s12862-018-1169-2) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Bramburger AJ, Hamilton PB, Haffner GD. Effects of Long-Term Anthropogenic Disturbance on the Benthic Episammic Diatom Community of an Ancient, Tropical Lake. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:542-547. [PMID: 28936616 DOI: 10.1007/s00128-017-2181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
Habitat homogenization, nutrient enrichment and loss of biodiversity are broadly recognized as the consequences of human activity in aquatic systems. Diatoms (Bacillariophyceae) are frequently used in aquatic environmental assessment and impact monitoring, but in unique habitats dominated by endemic taxa, traditional approaches may not be appropriate. We examined the impacts of long term anthropogenic impacts upon the littoral episammic diatom community around the town of Soroako, located on Lake Matano, an ancient tropical lake. Lake Matano is located on central Sulawesi Island, Indonesia, and socio-economic conditions are typical of developing nations. Although differences in nutrient concentrations were undetectable with field-based spectroscopy approaches, mean Shannon diversity was decreased in association with proximity the town-site. However, mean ß-diversity was maintained despite several decades of shoreline modification at Soroako. Elevated abundances of early-successional diatom taxa in the disturbed area drove differences between areas immediately offshore of Soroako and those farther away. These findings suggest that increased physical disturbance and TSS loads around Soroako, rather than increased nutrient loading, influenced shifts in the diatom community. These results suggest that microscopy-based biomonitoring approaches are sensitive indicators of environmental modification that could be useful in areas where access to cutting-edge analytical equipment is limited.
Collapse
Affiliation(s)
- Andrew J Bramburger
- Natural Resources Research Institute, University of Minnesota Duluth, Duluth, MN, 55812, USA.
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B3P4, Canada.
| | - Paul B Hamilton
- Research Division, Canadian Museum of Nature, Ottawa, ON, K0C1P0, Canada
| | - G Douglas Haffner
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B3P4, Canada
| |
Collapse
|
37
|
Brodersen J, Post DM, Seehausen O. Upward Adaptive Radiation Cascades: Predator Diversification Induced by Prey Diversification. Trends Ecol Evol 2017; 33:59-70. [PMID: 29096889 DOI: 10.1016/j.tree.2017.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 12/29/2022]
Abstract
The value of biodiversity is widely appreciated, but we are only beginning to understand the interplay of processes that generate biodiversity and their consequences for coevolutionary interactions. Whereas predator-prey coevolution is most often analyzed in the context of evolutionary arms races, much less has been written about how predators are affected by, and respond to, evolutionary diversification in their prey. We hypothesize here that adaptive radiation of prey may lead to diversification and potentially speciation in predators, a process that we call an upwards adaptive radiation cascade. In this paper we lay out the conceptual basis for upwards adaptive radiation cascades, explore evidence for such cascades, and finally advocate for intensified research.
Collapse
Affiliation(s)
- Jakob Brodersen
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Center for Ecology, Evolution and Biogeochemistry, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland.
| | - David M Post
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8105, USA
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Center for Ecology, Evolution and Biogeochemistry, Seestrasse 79, CH-6047 Kastanienbaum, Switzerland; Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland
| |
Collapse
|
38
|
Van Bocxlaer B, Strong EE, Richter R, Stelbrink B, Von Rintelen T. Anatomical and genetic data reveal that Rivularia Heude, 1890 belongs to Viviparinae (Gastropoda: Viviparidae). Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
39
|
Bolotov IN, Kondakov AV, Vikhrev IV, Aksenova OV, Bespalaya YV, Gofarov MY, Kolosova YS, Konopleva ES, Spitsyn VM, Tanmuangpak K, Tumpeesuwan S. Ancient River Inference Explains Exceptional Oriental Freshwater Mussel Radiations. Sci Rep 2017; 7:2135. [PMID: 28522869 PMCID: PMC5437074 DOI: 10.1038/s41598-017-02312-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 11/18/2022] Open
Abstract
The concept of long-lived (ancient) lakes has had a great influence on the development of evolutionary biogeography. According to this insight, a number of lakes on Earth have existed for several million years (e.g., Baikal and Tanganyika) and represent unique evolutionary hotspots with multiple intra-basin radiations. In contrast, rivers are usually considered to be variable systems, and the possibility of their long-term existence during geological epochs has never been tested. In this study, we reconstruct the history of freshwater basin interactions across continents based on the multi-locus fossil-calibrated phylogeny of freshwater mussels (Unionidae). These mussels most likely originated in Southeast and East Asia in the Jurassic, with the earliest expansions into North America and Africa (since the mid-Cretaceous) following the colonization of Europe and India (since the Paleocene). We discovered two ancient monophyletic mussel radiations (mean age ~51–55 Ma) within the paleo-Mekong catchment (i.e., the Mekong, Siam, and Malacca Straits paleo-river drainage basins). Our findings reveal that the Mekong may be considered a long-lived river that has existed throughout the entire Cenozoic epoch.
Collapse
Affiliation(s)
- Ivan N Bolotov
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation.
| | - Alexander V Kondakov
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Ilya V Vikhrev
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Olga V Aksenova
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Yulia V Bespalaya
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Mikhail Yu Gofarov
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Yulia S Kolosova
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Ekaterina S Konopleva
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Vitaly M Spitsyn
- Department of Science, Northern Arctic Federal University, Arkhangelsk, Russian Federation
| | - Kitti Tanmuangpak
- Department of Science, Faculty of Science and Technology, Loei Rajabhat University, Loei, Thailand
| | - Sakboworn Tumpeesuwan
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham, Thailand
| |
Collapse
|
40
|
Morii Y, Prozorova L, Chiba S. Parallel evolution of passive and active defence in land snails. Sci Rep 2016; 6:35600. [PMID: 27833102 PMCID: PMC5105203 DOI: 10.1038/srep35600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/04/2016] [Indexed: 12/02/2022] Open
Abstract
Predator-prey interactions are major processes promoting phenotypic evolution. However, it remains unclear how predation causes morphological and behavioural diversity in prey species and how it might lead to speciation. Here, we show that substantial divergence in the phenotypic traits of prey species has occurred among closely related land snails as a result of adaptation to predator attacks. This caused the divergence of defensive strategies into two alternatives: passive defence and active defence. Phenotypic traits of the subarctic Karaftohelix land snail have undergone radiation in northeast Asia, and distinctive morphotypes generally coexist in the same regions. In these land snails, we documented two alternative defence behaviours against predation by malacophagous beetles. Furthermore, the behaviours are potentially associated with differences in shell morphology. In addition, molecular phylogenetic analyses indicated that these alternative strategies against predation arose independently on the islands and on the continent suggesting that anti-predator adaptation is a major cause of phenotypic diversity in these snails. Finally, we suggest the potential speciation of Karaftohelix snails as a result of the divergence of defensive strategies into passive and active behaviours and the possibility of species radiation due to anti-predatory adaptations.
Collapse
Affiliation(s)
- Yuta Morii
- Forest Ecosystem Management Group, Department of forest Science, Graduate School of Agriculture, Hokkaido University, Sapporo 0608589, Japan.,Graduate School of Life Sciences &Center for Northeast Asian Studies, Tohoku University, Sendai 9808576, Japan
| | - Larisa Prozorova
- Institute of Biology and Soil Science, Far East Branch, Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Satoshi Chiba
- Graduate School of Life Sciences &Center for Northeast Asian Studies, Tohoku University, Sendai 9808576, Japan
| |
Collapse
|
41
|
Ji Y, Sun Y, Gao W, Chu K, Wang R, Zhao Q, Sun H. Out of the Sichuan Basin: Rapid species diversification of the freshwater crabs in Sinopotamon (Decapoda: Brachyura: Potamidae) endemic to China. Mol Phylogenet Evol 2016; 100:80-94. [DOI: 10.1016/j.ympev.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 03/16/2016] [Accepted: 04/03/2016] [Indexed: 10/22/2022]
|
42
|
Hilgers L, Grau JH, Pfaender J, von Rintelen T. The complete mitochondrial genome of the viviparous freshwater snail Tylomelania sarasinorum (Caenogastropoda: Cerithioidea). MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:330-331. [PMID: 33644373 PMCID: PMC7871847 DOI: 10.1080/23802359.2016.1172046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we present the first complete mitochondrial genome within the gastropod family Pachychilidae, using the viviparous freshwater snail Tylomelania sarasinorum. This species is a representative member of the lacustrine Tylomelania radiations of the Malili-Lakes-System (Sulawesi, Indonesia). The mitochondrial genome was 16,632 bp long and contained 13 protein-coding genes, 2 rRNA genes and 22 tRNA genes. A pronounced A + T bias was observed with an overall base composition of 29.5% A, 35.7% T, 18.3% G and 16.6% C. Tylomelania sarasinorum exhibited a novel mitochondrial gene arrangement, differing from all Caenogastropoda mitochondrial genomes published to date.
Collapse
Affiliation(s)
- Leon Hilgers
- Museum Fur Naturkunde, Leibniz-Institut Fur Evolutions, Und Biodiversitatsforschung, Berlin, Germany
| | - Jose Horacio Grau
- Museum Fur Naturkunde, Leibniz-Institut Fur Evolutions, Und Biodiversitatsforschung, Berlin, Germany.,Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
| | - Jobst Pfaender
- Museum Fur Naturkunde, Leibniz-Institut Fur Evolutions, Und Biodiversitatsforschung, Berlin, Germany.,Naturkundemuseum Potsdam, Potsdam, Germany
| | - Thomas von Rintelen
- Museum Fur Naturkunde, Leibniz-Institut Fur Evolutions, Und Biodiversitatsforschung, Berlin, Germany
| |
Collapse
|
43
|
Mokodongan DF, Yamahira K. Origin and intra-island diversification of Sulawesi endemic Adrianichthyidae. Mol Phylogenet Evol 2015; 93:150-60. [DOI: 10.1016/j.ympev.2015.07.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/17/2022]
|
44
|
Soulebeau A, Aubriot X, Gaudeul M, Rouhan G, Hennequin S, Haevermans T, Dubuisson JY, Jabbour F. The hypothesis of adaptive radiation in evolutionary biology: hard facts about a hazy concept. ORG DIVERS EVOL 2015. [DOI: 10.1007/s13127-015-0220-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
45
|
von Rintelen T, Stelbrink B, Marwoto RM, Glaubrecht M. A snail perspective on the biogeography of Sulawesi, Indonesia: origin and intra-island dispersal of the viviparous freshwater gastropod Tylomelania. PLoS One 2014; 9:e98917. [PMID: 24971564 PMCID: PMC4090239 DOI: 10.1371/journal.pone.0098917] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/09/2014] [Indexed: 11/25/2022] Open
Abstract
The complex geological history of the Indonesian island Sulawesi has shaped the origin and subsequent diversification of its taxa. For the endemic freshwater snail Tylomelania a vicariant origin from the Australian margin has been hypothesized. Divergence time estimates from a mtDNA phylogeny based on a comprehensive island-wide sampling of Tylomelania fit regional tectonic constraints and support the ‘out-of-Australia’ vicariance hypothesis. The Banggai-Sula region of the Sula Spur, the Australian promontory colliding with West Sulawesi during the Miocene, is identified as a possible source area for the colonization of Sulawesi by the ancestor of Tylomelania. The molecular phylogeny also shows a rapid diversification of Tylomelania into eight major lineages with very little overlap in their distribution on the island. Haplotype networks provide further evidence for a strong spatial structure of genetic diversity in Tylomelania. Distribution boundaries of the major lineages do at best partially coincide with previously identified contact zones for other endemic species groups on Sulawesi. This pattern has likely been influenced by the poor dispersal capabilities and altitudinal distribution limits of this strict freshwater inhabitant. We suggest that late Miocene and Pliocene orogeny in large parts of Sulawesi has been the vicariant event driving primary diversification in Tylomelania.
Collapse
Affiliation(s)
- Thomas von Rintelen
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
- * E-mail:
| | - Björn Stelbrink
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Ristiyanti M. Marwoto
- Zoology Division (Museum Zoologicum Bogoriense), Research Center for Biology, LIPI, Cibinong, Bogor, Indonesia
| | - Matthias Glaubrecht
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
46
|
Stelbrink B, Stöger I, Hadiaty RK, Schliewen UK, Herder F. Age estimates for an adaptive lake fish radiation, its mitochondrial introgression, and an unexpected sister group: Sailfin silversides of the Malili Lakes system in Sulawesi. BMC Evol Biol 2014; 14:94. [PMID: 24886257 PMCID: PMC4029975 DOI: 10.1186/1471-2148-14-94] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Malili Lakes system in central Sulawesi (Indonesia) is a hotspot of freshwater biodiversity in the Wallacea, characterized by endemic species flocks like the sailfin silversides (Teleostei: Atherinomorpha: Telmatherinidae) radiation. Phylogenetic reconstructions of these freshwater fishes have previously revealed two Lake Matano Telmatherina lineages (sharpfins and roundfins) forming an ancient monophyletic group, which is however masked by introgressive hybridization of sharpfins with riverine populations. The present study uses mitochondrial data, newly included taxa, and different external calibration points, to estimate the age of speciation and hybridization processes, and to test for phylogeographic relationships between Kalyptatherina from ancient islands off New Guinea, Marosatherina from SW Sulawesi, and the Malili Lakes flock. RESULTS Contrary to previous expectations, Kalyptatherina is the closest relative to the Malili Lakes Telmatherinidae, and Marosatherina is the sister to this clade. Palaeogeographic reconstructions of Sulawesi suggest that the closer relationship of the Malili Lakes radiation to Kalyptatherina might be explained by a 'terrane-rafting' scenario, while proto-Marosatherina might have colonized Sulawesi by marine dispersal. The most plausible analysis conducted here implies an age of c. 1.9 My for the onset of divergence between the two major clades endemic to Lake Matano. Diversification within both lineages is apparently considerably more recent (c. 1.0 My); stream haplotypes present in the sharpfins are of even more recent origin (c. 0.4 My). CONCLUSIONS Sulawesi's Telmatherinidae have most likely originated in the Sahul Shelf area, have possibly reached the island by both, marine dispersal and island/terrane-rafting, and have colonized the Malili Lakes system from rivers. Estimates for the split between the epibenthic sharpfins and the predominantly pelagic to benthopelagic roundfins in Lake Matano widely coincide with geological age estimates of this rift lake. Diversification within both clades clearly predates hybridization events with stream populations. For Lake Matano, these results support a scenario of initial benthic-pelagic divergence after colonization of the lake by riverine populations, followed by rapid radiation within both clades within the last 1 My. Secondary hybridization of stream populations with the sharpfins occurred more recently, and has thus most likely not contributed to the initial divergence of this benthic species flock.
Collapse
Affiliation(s)
- Björn Stelbrink
- Museum für Naturkunde Leibniz-Institute für Evolutions- und Biodiversitätsforschung an der Humboldt, Universität zu Berlin, Invalidenstr. 43, D-10115 Berlin, Germany
| | - Isabella Stöger
- Department of Ichthyology, Bavarian State Collection of Zoology (ZSM), Münchhausenstr. 21, D-81247 München, Germany
| | - Renny K Hadiaty
- Museum Zoologicum Bogoriense, Ichthyology Laboratory, Division of Zoology, Research Center for Biology, Indonesian Institute of Sciences (LIPI), Jl, Raya Bogor Km 46, 16911 Cibinong, Indonesia
| | - Ulrich K Schliewen
- Department of Ichthyology, Bavarian State Collection of Zoology (ZSM), Münchhausenstr. 21, D-81247 München, Germany
| | - Fabian Herder
- Zoologisches Forschungsmuseum Alexander Koenig, Sektion Ichthyologie, Adenauerallee 160, D-53113 Bonn, Germany
| |
Collapse
|
47
|
Vaillant JJ, Bock DG, Haffner GD, Cristescu ME. Speciation patterns and processes in the zooplankton of the ancient lakes of Sulawesi Island, Indonesia. Ecol Evol 2013; 3:3083-94. [PMID: 24101996 PMCID: PMC3790553 DOI: 10.1002/ece3.697] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 11/09/2022] Open
Abstract
Although studies of ancient lake fauna have provided important insights about speciation patterns and processes of organisms in heterogeneous benthic environments, evolutionary forces responsible for speciation in the relatively homogenous planktonic environment remain largely unexplored. In this study, we investigate possible mechanisms of speciation in zooplankton using the freshwater diaptomids of the ancient lakes of Sulawesi, Indonesia, as a model system. We integrate phylogenetic and population genetic analyses of mitochondrial and nuclear genes with morphological and genome size data. Overall, our results support the conclusion that colonization order and local adaptation are dominant at the large, island scale, whereas at local and intralacustrine scales, speciation processes are regulated by gene flow among genetically differentiated and locally adapted populations. In the Malili lakes, the diaptomid populations are homogenous at nuclear loci, but show two highly divergent mitochondrial clades that are geographically restricted to single lakes despite the interconnectivity of the lake systems. Our study, based on coalescent simulations and population genetic analyses, indicates that unidirectional hybridization allows gene flow across the nuclear genome, but prevents the introgression of mitochondria into downstream populations. We suggest that hybridization and introgression between young lineages is a significant evolutionary force in freshwater plankton.
Collapse
Affiliation(s)
- James J Vaillant
- Great Lakes Institute for Environmental Research, University of Windsor Windsor, Ontario, N9B 3P4, Canada
| | | | | | | |
Collapse
|
48
|
Tweedley JR, Bird DJ, Potter IC, Gill HS, Miller PJ, O'Donovan G, Tjakrawidjaja AH. Species compositions and ecology of the riverine ichthyofaunas in two Sulawesian islands in the biodiversity hotspot of Wallacea. JOURNAL OF FISH BIOLOGY 2013; 82:1916-1950. [PMID: 23731145 DOI: 10.1111/jfb.12121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
This account of the riverine ichthyofaunas from the islands of Buton and Kabaena, off south-eastern mainland Sulawesi, represents the first detailed quantitative checklist and ecological study of the riverine fish faunas in the biological hotspot of Wallacea. The results are based on analysis of samples collected by electrofishing at a wide range of sites from July to September in both 2001 and 2002. While the fauna was diverse, with the 2179 fishes caught comprising 64 species representing 43 genera and 22 families, the catches were dominated by the Gobiidae (26 species and 25% by numbers), Eleotridae (seven species and 27% by numbers), Zenarchopteridae (three species and 22% by numbers) and Anguillidae (two species and 12% by numbers). The most abundant species were the eleotrids Eleotris aff. fusca-melanosoma and Ophieleotris aff. aporos, the anguillid Anguilla celebesensis, the zenarchopterids Nomorhamphus sp. and Nomorhamphus ebrardtii and the gobiids Sicyopterus sp. and Glossogobius aff. celebius-kokius. The introduced catfish Clarias batrachus was moderately abundant at a few sites. Cluster analysis, allied with the similarity profiles routine SIMPROF, identified seven discrete groups, which represented samples from sites entirely or predominantly in either Buton (five clusters) or Kabaena (two clusters). Species composition was related to geographical location, distance from river mouth, per cent contribution of sand and silt, altitude and water temperature. The samples from the two islands contained only one species definitively endemic to Sulawesi, i.e. N. ebrardtii and another presumably so, i.e. Nomorhamphus sp., contrasting starkly with the 57 species that are endemic to Sulawesi and, most notably, its large central and deep lake systems on the mainland. This accounts for the ichthyofaunas of these two islands, as well as those of rivers in northern mainland Sulawesi and Flores, being more similar to each other than to those of the central mainland lake systems. This implies that the major adaptive radiation of freshwater fishes in Sulawesi occurred in those lacustrine environments rather than in rivers.
Collapse
Affiliation(s)
- J R Tweedley
- Centre for Fish and Fisheries Research, School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA 6150, Australia.
| | | | | | | | | | | | | |
Collapse
|
49
|
Toussaint EFA, Sagata K, Surbakti S, Hendrich L, Balke M. Australasian sky islands act as a diversity pump facilitating peripheral speciation and complex reversal from narrow endemic to widespread ecological supertramp. Ecol Evol 2013; 3:1031-49. [PMID: 23610642 PMCID: PMC3631412 DOI: 10.1002/ece3.517] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/29/2013] [Accepted: 02/01/2013] [Indexed: 11/10/2022] Open
Abstract
The Australasian archipelago is biologically extremely diverse as a result of a highly puzzling geological and biological evolution. Unveiling the underlying mechanisms has never been more attainable as molecular phylogenetic and geological methods improve, and has become a research priority considering increasing human-mediated loss of biodiversity. However, studies of finer scaled evolutionary patterns remain rare particularly for megadiverse Melanesian biota. While oceanic islands have received some attention in the region, likewise insular mountain blocks that serve as species pumps remain understudied, even though Australasia, for example, features some of the most spectacular tropical alpine habitats in the World. Here, we sequenced almost 2 kb of mitochondrial DNA from the widespread diving beetle Rhantus suturalis from across Australasia and the Indomalayan Archipelago, including remote New Guinean highlands. Based on expert taxonomy with a multigene phylogenetic backbone study, and combining molecular phylogenetics, phylogeography, divergence time estimation, and historical demography, we recover comparably low geographic signal, but complex phylogenetic relationships and population structure within R. suturalis. Four narrowly endemic New Guinea highland species are subordinated and two populations (New Guinea, New Zealand) seem to constitute cases of ongoing speciation. We reveal repeated colonization of remote mountain chains where haplotypes out of a core clade of very widespread haplotypes syntopically might occur with well-isolated ones. These results are corroborated by a Pleistocene origin approximately 2.4 Ma ago, followed by a sudden demographic expansion 600,000 years ago that may have been initiated through climatic adaptations. This study is a snapshot of the early stages of lineage diversification by peripatric speciation in Australasia, and supports New Guinea sky islands as cradles of evolution, in line with geological evidence suggesting very recent origin of high altitudes in the region.
Collapse
|
50
|
Baeza JA, Ritson‐Williams R, Fuentes MS. Sexual and mating system in a caridean shrimp symbiotic with the winged pearl oyster in the
C
oral
T
riangle. J Zool (1987) 2012. [DOI: 10.1111/j.1469-7998.2012.00974.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J. A. Baeza
- Smithsonian Marine Station at Fort Pierce Fort Pierce FL USA
- Departamento de Biología Marina Facultad de Ciencias del Mar Universidad Católica del Norte Coquimbo Chile
| | | | | |
Collapse
|