1
|
Mahieu L, González-González A, Rubio-Meléndez ME, Moya-Hernández M, Francis F, Ramírez CC. An Aphid Pest Superclone Benefits From a Facultative Bacterial Endosymbiont in a Host-Dependent Manner, Leading to Reproductive and Proteomic Changes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 117:e22154. [PMID: 39397367 DOI: 10.1002/arch.22154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 10/15/2024]
Abstract
The English grain aphid, Sitobion avenae, is a significant agricultural pest affecting wheat, barley, and oats. In Chile, the most prevalent and persistent clone (superclone) of S. avenae harbors the facultative endosymbiont bacterium Regiella insecticola. To determine the role of this bacterium in the reproductive success of this superclone, the presence of R. insecticola was manipulated to assess its impact on (1) the reproductive performance of this clone on two host plant species (wheat and barley), (2) the production of winged morphs, (3) changes in the insects' proteomic profiles, and (4) the root/shoot ratio of plant. It was found that the reproductive performance of this S. avenae superclone varied across host plants, depending on the presence of the facultative bacterial endosymbiont. Aphids infected with R. insecticola showed higher reproductive success on wheat, while the opposite effect was observed on barley. Aphid biomass was greater when infected with R. insecticola, particularly on barley. Additionally, aphids harboring R. insecticola exhibited a higher proportion of winged individuals on both host plants. Protein regulation in aphids on wheat was lower compared to those on barley. A higher root/shoot biomass ratio was observed in wheat plants compared to barley when infested by R. insecticola-infected aphid. Thus, R. insecticola significantly influences the reproductive performance and proteomic profile of a S. avenae superclone, with these effects shaped by the host plant. This suggests that the interaction between the host plant and the facultative endosymbiont contributes to the ecological success of this superclone.
Collapse
Affiliation(s)
- Leandro Mahieu
- Gembloux Agro-Bio Tech-Université de Liège, Gembloux, Belgium
| | - Angélica González-González
- Centre for Molecular and Functional Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María Eugenia Rubio-Meléndez
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, Universidad de Talca, Talca, Maule, Chile
| | - Mario Moya-Hernández
- Centre for Molecular and Functional Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | - Claudio C Ramírez
- Centre for Molecular and Functional Ecology, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
2
|
Depeux C, Branger A, Paulhac H, Pigeault R, Beltran-Bech S. Deleterious effects of Wolbachia on life history and physiological traits of common pill woodlice. J Invertebr Pathol 2024; 207:108187. [PMID: 39243881 DOI: 10.1016/j.jip.2024.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Most of eukaryotic organisms live in close interaction with micro-organisms called symbionts. Symbiotic interactions underpin the evolution of biological complexity, the health of organisms and, ultimately, the proper functioning of ecosystems. While some symbionts confer adaptive benefits on their host (mutualistic symbionts) and others clearly induce costs (parasitic symbionts), a number of micro-organisms are difficult to classify because they have been described as conferring both benefits and costs on their host. This is particularly true of the most widespread animal endosymbiont, Wolbachia pipientis. In this study, we investigated the influence of Wolbachia infection on a broad spectrum of ecological and physiological parameters of one of its native hosts, Armadillidium vulgare. The aim was to gain as complete a picture as possible of the influence of this endosymbiont on its host. Our results showed that the presence of Wolbachia resulted in a decrease in individual reproductive success and survival. Host immune cells density decreased and β-galactosidase activity (ageing biomarker) increased with the presence of Wolbachia, suggesting a negative impact of this endosymbiont on woodlice health. While previous studies have shown that Wolbachia can have a positive impact on the immunocompetence of A. vulgare, here we shed more light on the costs of infection. Our results illustrate the complex dynamics that exist between Wolbachia and its arthropod host and therefore offer valuable insights into the intricate interplay of symbiotic relationships in ecological systems.
Collapse
Affiliation(s)
- Charlotte Depeux
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106 86073 POITIERS Cedex 9, France
| | - Angèle Branger
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106 86073 POITIERS Cedex 9, France
| | - Hélène Paulhac
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106 86073 POITIERS Cedex 9, France
| | - Romain Pigeault
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106 86073 POITIERS Cedex 9, France
| | - Sophie Beltran-Bech
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions EBI, UMR CNRS 7267, 3, rue Jacques Fort, TSA 51106 86073 POITIERS Cedex 9, France.
| |
Collapse
|
3
|
Łukasik P, Kolasa MR. With a little help from my friends: the roles of microbial symbionts in insect populations and communities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230122. [PMID: 38705185 PMCID: PMC11070262 DOI: 10.1098/rstb.2023.0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/14/2023] [Indexed: 05/07/2024] Open
Abstract
To understand insect abundance, distribution and dynamics, we need to understand the relevant drivers of their populations and communities. While microbial symbionts are known to strongly affect many aspects of insect biology, we lack data on their effects on populations or community processes, or on insects' evolutionary responses at different timescales. How these effects change as the anthropogenic effects on ecosystems intensify is an area of intense research. Recent developments in sequencing and bioinformatics permit cost-effective microbial diversity surveys, tracking symbiont transmission, and identification of functions across insect populations and multi-species communities. In this review, we explore how different functional categories of symbionts can influence insect life-history traits, how these effects could affect insect populations and their interactions with other species, and how they may affect processes and patterns at the level of entire communities. We argue that insect-associated microbes should be considered important drivers of insect response and adaptation to environmental challenges and opportunities. We also outline the emerging approaches for surveying and characterizing insect-associated microbiota at population and community scales. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| | - Michał R. Kolasa
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
4
|
Mowery MA, Rosenwald LC, Chapman E, Lubin Y, Segoli M, Khoza T, Lyle R, White JA. Endosymbiont diversity across native and invasive brown widow spider populations. Sci Rep 2024; 14:8556. [PMID: 38609398 PMCID: PMC11014918 DOI: 10.1038/s41598-024-58723-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The invasive brown widow spider, Latrodectus geometricus (Araneae: Theridiidae), has spread in multiple locations around the world and, along with it, brought associated organisms such as endosymbionts. We investigated endosymbiont diversity and prevalence across putative native and invasive populations of this spider, predicting lower endosymbiont diversity across the invasive range compared to the native range. First, we characterized the microbial community in the putative native (South Africa) and invasive (Israel and the United States) ranges via high throughput 16S sequencing of 103 adult females. All specimens were dominated by reads from only 1-3 amplicon sequence variants (ASV), and most individuals were infected with an apparently uniform strain of Rhabdochlamydia. We also found Rhabdochlamydia in spider eggs, indicating that it is a maternally-inherited endosymbiont. Relatively few other ASV were detected, but included two variant Rhabdochlamydia strains and several Wolbachia, Spiroplasma and Enterobacteriaceae strains. We then diagnostically screened 118 adult female spiders from native and invasive populations specifically for Rhabdochlamydia and Wolbachia. We found Rhabdochlamydia in 86% of individuals and represented in all populations, which suggests that it is a consistent and potentially important associate of L. geometricus. Wolbachia was found at lower overall prevalence (14%) and was represented in all countries, but not all populations. In addition, we found evidence for geographic variation in endosymbiont prevalence: spiders from Israel were more likely to carry Rhabdochlamydia than those from the US and South Africa, and Wolbachia was geographically clustered in both Israel and South Africa. Characterizing endosymbiont prevalence and diversity is a first step in understanding their function inside the host and may shed light on the process of spread and population variability in cosmopolitan invasive species.
Collapse
Affiliation(s)
- Monica A Mowery
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel.
- Department of Biology, York College, The City University of New York, Jamaica, NY, USA.
| | - Laura C Rosenwald
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Eric Chapman
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Yael Lubin
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Michal Segoli
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel
| | - Thembile Khoza
- South African National Biodiversity Institute, Biosystematics Division, Pretoria, South Africa
| | - Robin Lyle
- Agricultural Research Council-Plant Health and Protection, Biosystematics Division, Queenswood, South Africa
| | - Jennifer A White
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Ravigné V, Rodrigues LR, Charlery de la Masselière M, Facon B, Kuczyński L, Radwan J, Skoracka A, Magalhães S. Understanding the joint evolution of dispersal and host specialisation using phytophagous arthropods as a model group. Biol Rev Camb Philos Soc 2024; 99:219-237. [PMID: 37724465 DOI: 10.1111/brv.13018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Theory generally predicts that host specialisation and dispersal should evolve jointly. Indeed, many models predict that specialists should be poor dispersers to avoid landing on unsuitable hosts while generalists will have high dispersal abilities. Phytophagous arthropods are an excellent group to test this prediction, given extensive variation in their host range and dispersal abilities. Here, we explore the degree to which the empirical literature on this group is in accordance with theoretical predictions. We first briefly outline the theoretical reasons to expect such a correlation. We then report empirical studies that measured both dispersal and the degree of specialisation in phytophagous arthropods. We find a correlation between dispersal and levels of specialisation in some studies, but with wide variation in this result. We then review theoretical attributes of species and environment that may blur this correlation, namely environmental grain, temporal heterogeneity, habitat selection, genetic architecture, and coevolution between plants and herbivores. We argue that theoretical models fail to account for important aspects, such as phenotypic plasticity and the impact of selective forces stemming from other biotic interactions, on both dispersal and specialisation. Next, we review empirical caveats in the study of this interplay. We find that studies use different measures of both dispersal and specialisation, hampering comparisons. Moreover, several studies do not provide independent measures of these two traits. Finally, variation in these traits may occur at scales that are not being considered. We conclude that this correlation is likely not to be expected from large-scale comparative analyses as it is highly context dependent and should not be considered in isolation from the factors that modulate it, such as environmental scale and heterogeneity, intrinsic traits or biotic interactions. A stronger crosstalk between theoretical and empirical studies is needed to understand better the prevalence and basis of the correlation between dispersal and specialisation.
Collapse
Affiliation(s)
- Virginie Ravigné
- CIRAD, UMR PHIM, - PHIM, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, TA A-120/K, Campus international de Baillarguet, avenue du Campus d'Agropolis, Montpellier Cedex 5, 34398, France
| | - Leonor R Rodrigues
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| | - Maud Charlery de la Masselière
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| | - Benoît Facon
- CBGP, INRAE, IRD, CIRAD, Institut Agro, University of Montpellier, 755 avenue du Campus Agropolis, CS 34988, Montferrier sur Lez cedex, 30016, France
| | - Lechosław Kuczyński
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Jacek Radwan
- Evolutionary Biology Group, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Anna Skoracka
- Population Ecology Lab, Faculty of Biology, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, edifício C2, Lisboa, 1749-016, Portugal
| |
Collapse
|
6
|
Cheng Z, Liu Q, Huang X. Partial Correspondence between Host Plant-Related Differentiation and Symbiotic Bacterial Community in a Polyphagous Insect. Animals (Basel) 2024; 14:283. [PMID: 38254452 PMCID: PMC10812459 DOI: 10.3390/ani14020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Host plants play a vital role in insect population differentiation, while symbiotic associations between bacteria and insects are ubiquitous in nature. However, existing studies have given limited attention to the connection between host-related differentiation and symbiotic bacterial communities in phytophagous insects. In this study, we collected 58 samples of Aphis odinae from different host plants in southern China and constructed phylogenetic trees to investigate their differentiation in relation to host plants. We also selected aphid samples from the five most preferred host plants and analyzed their symbiotic bacterial composition using Illumina sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. The phylogeny and symbiotic bacterial community structure of A. odinae populations on different host plants showed that samples from Triadica sebifera (Euphorbiaceae) had a consistent presence of Wolbachia as the predominant secondary symbiont and suggested the possibility of undergoing differentiation. Conversely, although differentiation was observed in samples from Rhus chinensis (Anacardiaceae), no consistent presence of predominant secondary symbionts was found. Additionally, the samples from Heptapleurum heptaphyllum (Araliaceae) consistently carried Serratia, but no host differentiation was evident. In summary, this study reveals a partial correspondence between symbiotic bacterial communities and host-related differentiation in A. odinae. The findings contribute to our understanding of the microevolutionary influencing the macroevolutionary relationships between bacterial symbionts and phytophagous insects. The identification of specific symbionts associated with host-related differentiation provides valuable insights into the intricate dynamics of insect-bacteria interactions.
Collapse
Affiliation(s)
| | | | - Xiaolei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.C.); (Q.L.)
| |
Collapse
|
7
|
Nadolski EM, Moczek AP. Promises and limits of an agency perspective in evolutionary developmental biology. Evol Dev 2023; 25:371-392. [PMID: 37038309 DOI: 10.1111/ede.12432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 03/02/2023] [Indexed: 04/12/2023]
Abstract
An agent-based perspective in the study of complex systems is well established in diverse disciplines, yet is only beginning to be applied to evolutionary developmental biology. In this essay, we begin by defining agency and associated terminology formally. We then explore the assumptions and predictions of an agency perspective, apply these to select processes and key concept areas relevant to practitioners of evolutionary developmental biology, and consider the potential epistemic roles that an agency perspective might play in evo devo. Throughout, we discuss evidence supportive of agential dynamics in biological systems relevant to evo devo and explore where agency thinking may enrich the explanatory reach of research efforts in evolutionary developmental biology.
Collapse
Affiliation(s)
- Erica M Nadolski
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
8
|
Frago E, Zytynska S. Impact of herbivore symbionts on parasitoid foraging behaviour. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101027. [PMID: 36990151 DOI: 10.1016/j.cois.2023.101027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Parasitoids are insects that lay eggs in other insects, but before this, they have the remarkable task of locating and successfully attacking a suitable individual. Once an egg is laid, many herbivorous hosts carry defensive symbionts that prevent parasitoid development. Some symbioses can act ahead of these defences by reducing parasitoid foraging efficiency, while others may betray their hosts by producing chemical cues that attract parasitoids. In this review, we provide examples of symbionts altering the different steps that adult parasitoids need to take to achieve egg laying. We also discuss how interactions between habitat complexity, plants and herbivores modulate the way symbionts affect parasitoid foraging, and parasitoid evaluation of patch quality based on risk cues derived from parasitoid antagonists such as competing parasitoids and predators.
Collapse
Affiliation(s)
- Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, F-34398 Montpellier, France.
| | - Sharon Zytynska
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
9
|
Li J, An Z, Luo J, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Gao X, Cui J. Parasitization of Aphis gossypii Glover by Binodoxys communis Gahan Causes Shifts in the Ovarian Bacterial Microbiota. INSECTS 2023; 14:314. [PMID: 37103129 PMCID: PMC10142764 DOI: 10.3390/insects14040314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Aphis gossypii Glover is an important agricultural pest distributed worldwide. Binodoxys communis Gahan is the main parasitoid wasp of A. gossypii. Previous studies have shown that parasitization causes reduced egg production in A. gossypii, but the effects of parasitism on the symbiotic bacteria in the host ovaries are unknown. RESULTS In this study, we analyzed the microbial communities in the ovaries of A. gossypii without and after parasitization. Whether parasitized or not, Buchnera was the dominant genus of symbiotic bacteria in the ovaries, followed by facultative symbionts including Arsenophonus, Pseudomonas, and Acinetobacter. The relative abundance of Buchnera in the aphid ovary increased after parasitization for 1 d in both third-instar nymph and adult stages, but decreased after parasitization for 3 d. The shifts in the relative abundance of Arsenophonus in both stages were the same as those observed for Buchnera. In addition, the relative abundance of Serratia remarkably decreased after parasitization for 1 d and increased after parasitization for 3 d. A functional predictive analysis of the control and parasitized ovary microbiomes revealed that pathways primarily enriched in parasitization were "amino acid transport and metabolism" and "energy production and conversion." Finally, RT-qPCR analysis was performed on Buchnera, Arsenophonus, and Serratia. The results of RT-qPCR were the same as the results of 16S rDNA sequencing. CONCLUSIONS These results provide a framework for investigating shifts in the microbial communities in host ovaries, which may be responsible for reduced egg production in aphids. These findings also broaden our understanding of the interactions among aphids, parasitoid wasps, and endosymbionts.
Collapse
Affiliation(s)
- Jinming Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhe An
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
10
|
Ørsted M, Yashiro E, Hoffmann AA, Kristensen TN. Population bottlenecks constrain host microbiome diversity and genetic variation impeding fitness. PLoS Genet 2022; 18:e1010206. [PMID: 35604942 PMCID: PMC9166449 DOI: 10.1371/journal.pgen.1010206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/03/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
It is becoming increasingly clear that microbial symbionts influence key aspects of their host’s fitness, and vice versa. This may fundamentally change our thinking about how microbes and hosts interact in influencing fitness and adaptation to changing environments. Here we explore how reductions in population size commonly experienced by threatened species influence microbiome diversity. Consequences of such reductions are normally interpreted in terms of a loss of genetic variation, increased inbreeding and associated inbreeding depression. However, fitness effects of population bottlenecks might also be mediated through microbiome diversity, such as through loss of functionally important microbes. Here we utilise 50 Drosophila melanogaster lines with different histories of population bottlenecks to explore these questions. The lines were phenotyped for egg-to-adult viability and their genomes sequenced to estimate genetic variation. The bacterial 16S rRNA gene was amplified in these lines to investigate microbial diversity. We found that 1) host population bottlenecks constrained microbiome richness and diversity, 2) core microbiomes of hosts with low genetic variation were constituted from subsets of microbiomes found in flies with higher genetic variation, 3) both microbiome diversity and host genetic variation contributed to host population fitness, 4) connectivity and robustness of bacterial networks was low in the inbred lines regardless of host genetic variation, 5) reduced microbial diversity was associated with weaker evolutionary responses of hosts in stressful environments, and 6) these effects were unrelated to Wolbachia density. These findings suggest that population bottlenecks reduce hologenomic variation (combined host and microbial genetic variation). Thus, while the current biodiversity crisis focuses on population sizes and genetic variation of eukaryotes, an additional focal point should be the microbial diversity carried by the eukaryotes, which in turn may influence host fitness and adaptability with consequences for the persistence of populations. It is becoming increasingly clear that organisms and the microbes that live on or in them–their microbiome–affect each other in profound ways that we are just beginning to understand. For instance, a diverse microbiome can help maintain metabolic functions or fight pathogens causing diseases. A disrupted microbiome may be especially critical for animals and plants that occur in low numbers because of threats from e.g. human exploitation or climate change, as they may already suffer from genetic challenges such as inbreeding and reduced evolutionary potential. The importance of such a reduction in population size, called a bottleneck, on the microbial diversity and the potential interactive effects on host health remains unexplored. Here we experimentally test these associations by investigating the microbiomes of 50 inbred or non-inbred populations of vinegar flies. We found that restricting the population size constrain the host’s genetic variation and simultaneously decreases the diversity of the microbiome that they harbor, and that both effects were detrimental to host fitness. The microbial communities in inbred host populations were less robust than in their non-inbred counterparts, suggesting that we should increasingly consider the microbiome diversity, which may ultimately influence the health and persistence of threatened species.
Collapse
Affiliation(s)
- Michael Ørsted
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- * E-mail:
| | - Erika Yashiro
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Institute for Plant Sciences, Department of Biology, University of Cologne, Cologne, Germany
| | - Ary A. Hoffmann
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- School of Biosciences, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - Torsten Nygaard Kristensen
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
11
|
Sochard C, Dupont C, Simon JC, Outreman Y. Secondary Symbionts Affect Foraging Capacities of Plant-Specialized Genotypes of the Pea Aphid. MICROBIAL ECOLOGY 2021; 82:1009-1019. [PMID: 33704553 DOI: 10.1007/s00248-021-01726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Ecological specialization is widespread in animals, especially in phytophagous insects, which have often a limited range of host plant species. This host plant specialization results from divergent selection on insect populations, which differ consequently in traits like behaviors involved in plant use. Although recent studies highlighted the influence of symbionts on dietary breadth of their insect hosts, whether these microbial partners influence the foraging capacities of plant-specialized insects has received little attention. In this study, we used the pea aphid Acyrthosiphon pisum, which presents distinct plant-specialized lineages and several secondary bacterial symbionts, to examine the possible effects of symbionts on the different foraging steps from plant searching to host plant selection. In particular, we tested the effect of secondary symbionts on the aphid capacity (1) to explore habitat at long distance (estimated through the production of winged offspring), (2) to explore habitat at short distance, and (3) to select its host plant. We found that secondary symbionts had a variable influence on the production of winged offspring in some genotypes, with potential consequences on dispersal and survival. By contrast, symbionts influenced both short-distance exploration and host plant selection only marginally. The implication of symbionts' influence on insect foraging capacities is discussed.
Collapse
Affiliation(s)
- Corentin Sochard
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | - Corentin Dupont
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35653, Le Rheu, France
| | | | - Yannick Outreman
- IGEPP, INRAE, Institut Agro, Univ Rennes, 35000, Rennes, France.
| |
Collapse
|
12
|
Carpenter M, Peng L, Smith AH, Joffe J, O’Connor M, Oliver KM, Russell JA. Frequent Drivers, Occasional Passengers: Signals of Symbiont-Driven Seasonal Adaptation and Hitchhiking in the Pea Aphid, Acyrthosiphon pisum. INSECTS 2021; 12:805. [PMID: 34564245 PMCID: PMC8466206 DOI: 10.3390/insects12090805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/25/2022]
Abstract
Insects harbor a variety of maternally inherited bacterial symbionts. As such, variation in symbiont presence/absence, in the combinations of harbored symbionts, and in the genotypes of harbored symbiont species provide heritable genetic variation of potential use in the insects' adaptive repertoires. Understanding the natural importance of symbionts is challenging but studying their dynamics over time can help to elucidate the potential for such symbiont-driven insect adaptation. Toward this end, we studied the seasonal dynamics of six maternally transferred bacterial symbiont species in the multivoltine pea aphid (Acyrthosiphon pisum). Our sampling focused on six alfalfa fields in southeastern Pennsylvania, and spanned 14 timepoints within the 2012 growing season, in addition to two overwintering periods. To test and generate hypotheses on the natural relevance of these non-essential symbionts, we examined whether symbiont dynamics correlated with any of ten measured environmental variables from the 2012 growing season, including some of known importance in the lab. We found that five symbionts changed prevalence across one or both overwintering periods, and that the same five species underwent such frequency shifts across the 2012 growing season. Intriguingly, the frequencies of these dynamic symbionts showed robust correlations with a subset of our measured environmental variables. Several of these trends supported the natural relevance of lab-discovered symbiont roles, including anti-pathogen defense. For a seventh symbiont-Hamiltonella defensa-studied previously across the same study periods, we tested whether a reported correlation between prevalence and temperature stemmed not from thermally varying host-level fitness effects, but from selection on co-infecting symbionts or on aphid-encoded alleles associated with this bacterium. In general, such "hitchhiking" effects were not evident during times with strongly correlated Hamiltonella and temperature shifts. However, we did identify at least one time period in which Hamiltonella spread was likely driven by selection on a co-infecting symbiont-Rickettsiella viridis. Recognizing the broader potential for such hitchhiking, we explored selection on co-infecting symbionts as a possible driver behind the dynamics of the remaining six species. Out of twelve examined instances of symbiont dynamics unfolding across 2-week periods or overwintering spans, we found eight in which the focal symbiont underwent parallel frequency shifts under single infection and one or more co-infection contexts. This supported the idea that phenotypic variation created by the presence/absence of individual symbionts is a direct target for selection, and that symbiont effects can be robust under co-habitation with other symbionts. Contrastingly, in two cases, we found that selection may target phenotypes emerging from symbiont co-infections, with specific species combinations driving overall trends for the focal dynamic symbionts, without correlated change under single infection. Finally, in three cases-including the one described above for Hamiltonella-our data suggested that incidental co-infection with a (dis)favored symbiont could lead to large frequency shifts for "passenger" symbionts, conferring no apparent cost or benefit. Such hitchhiking has rarely been studied in heritable symbiont systems. We propose that it is more common than appreciated, given the widespread nature of maternally inherited bacteria, and the frequency of multi-species symbiotic communities across insects.
Collapse
Affiliation(s)
- Melissa Carpenter
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, 3250 Chestnut St., Philadelphia, PA 19104, USA; (M.C.); (A.H.S.); (M.O.)
| | - Linyao Peng
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA 19104, USA; (L.P.); (J.J.)
| | - Andrew H. Smith
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, 3250 Chestnut St., Philadelphia, PA 19104, USA; (M.C.); (A.H.S.); (M.O.)
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA 19104, USA; (L.P.); (J.J.)
| | - Jonah Joffe
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA 19104, USA; (L.P.); (J.J.)
| | - Michael O’Connor
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, 3250 Chestnut St., Philadelphia, PA 19104, USA; (M.C.); (A.H.S.); (M.O.)
| | - Kerry M. Oliver
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA 30602, USA;
| | - Jacob A. Russell
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, 3250 Chestnut St., Philadelphia, PA 19104, USA; (M.C.); (A.H.S.); (M.O.)
- Department of Biology, Drexel University, 3245 Chestnut St., Philadelphia, PA 19104, USA; (L.P.); (J.J.)
| |
Collapse
|
13
|
Abdel-Gaber R, Alajmi R, Haddadi R, El-Ashram S. The phylogenetic position of Arhaphe deviatica within Hemipteran insects: A potential model species for eco-devo studies of symbiosis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:73-78. [PMID: 33351288 DOI: 10.1002/jez.b.23019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/06/2022]
Abstract
Insecta is known to be the most diverse group of species, exhibiting numerous forms of endosymbiotic associations. Molecular techniques have provided significant indicators for insect-microbe interactions. The present study aimed to register one of the true bugs of pentatomomorpha and clarify its taxonomic position through phylogenetic analysis of the partial 16S rRNA gene region. A maximum likelihood analysis retrieved a generally well-supported phylogeny based on Tamura 3-parameter model. Based on the partial mitochondrial 16S rRNA gene sequences, a phylogenetic study of suborder Heteroptera relationships within Hemipteras' order was constructed. Sequences of 221 bases of the 3' end of the gene from 28 species within 16 families were analyzed. This analysis and bootstrap confidence revealed two major clades comprising four suborders within Hemiptera, with a close relationship between Heteroptera + (Sternorrhyncha + (Auchenorrhycha + Coleorrhyncha)). Infraorder Pentatomomorpha is forming a sister group with a substantial bootstrap value to Cimicomorpha. Pyrrhocoroidea forms a sister relationship with Lygaeoidea + Coreoidea. There is a close relationship between Largidae and Pyrrhocoridae within Pyrrhocoroidea. The results show that the present species is firmly embedded in the genus Arhaphe with 94.35% sequence resemblance to its congeners. Besides, the recovered hemipteran species considered a potential model group for studying different symbionts. We propose both phylogenetic and ecological evolutionary developmental biology viewpoints for a more synthetic understanding of insect populations' molecular evolution.
Collapse
Affiliation(s)
- Rewaida Abdel-Gaber
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia.,Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Reem Alajmi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rania Haddadi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong Province, China.,Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
14
|
Ye S, Bhattacharjee M, Siemann E. Stress tolerance alteration in the freshwater cnidarian green hydra (Hydra viridissima) via symbiotic algae mutagenesis. Symbiosis 2020. [DOI: 10.1007/s13199-020-00712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Parker ES, Newton ILG, Moczek AP. (My Microbiome) Would Walk 10,000 miles: Maintenance and Turnover of Microbial Communities in Introduced Dung Beetles. MICROBIAL ECOLOGY 2020; 80:435-446. [PMID: 32314003 DOI: 10.1007/s00248-020-01514-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Host-associated microbes facilitate diverse biotic and abiotic interactions between hosts and their environments. Experimental alterations of host-associated microbial communities frequently decrease host fitness, yet much less is known about if and how host-microbiome interactions are altered by natural perturbations, such as introduction events. Here, we begin to assess this question in Onthophagus dung beetles, a species-rich and geographically widely distributed genus whose members rely on vertically transmitted microbiota to support normal development. Specifically, we investigated to what extent microbiome community membership shifts during host introduction events and the relative significance of ancestral associations and novel environmental conditions in the structuring of microbial communities of introduced host species. Our results demonstrate that both evolutionary history and local environmental forces structure the microbial communities of these animals, but that their relative importance is shaped by the specific circumstances that characterize individual introduction events. Furthermore, we identify microbial taxa such as Dysgonomonas that may constitute members of the core Onthophagus microbiome regardless of host population or species, but also Wolbachia which associates with Onthophagus beetles in a species or even population-specific manner. We discuss the implications of our results for our understanding of the evolutionary ecology of symbiosis in dung beetles and beyond.
Collapse
Affiliation(s)
- Erik S Parker
- Department of Biology, Indiana University, 102 East Myers Hall, 915 East 3rd street, Bloomington, IN, 47405, USA.
| | - Irene L G Newton
- Department of Biology, Indiana University, 102 East Myers Hall, 915 East 3rd street, Bloomington, IN, 47405, USA
| | - Armin P Moczek
- Department of Biology, Indiana University, 102 East Myers Hall, 915 East 3rd street, Bloomington, IN, 47405, USA
| |
Collapse
|
16
|
Xu S, Jiang L, Qiao G, Chen J. The Bacterial Flora Associated with the Polyphagous Aphid Aphis gossypii Glover (Hemiptera: Aphididae) Is Strongly Affected by Host Plants. MICROBIAL ECOLOGY 2020; 79:971-984. [PMID: 31802184 PMCID: PMC7198476 DOI: 10.1007/s00248-019-01435-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Aphids live in symbiosis with a variety of bacteria, including the obligate symbiont Buchnera aphidicola and diverse facultative symbionts. The symbiotic associations for one aphid species, especially for polyphagous species, often differ across populations. In the present study, by using high-throughput 16S rRNA sequencing, we surveyed in detail the microbiota in natural populations of the cotton aphid Aphis gossypii in China and assessed differences in bacterial diversity with respect to host plant and geography. The microbial community of A. gossypii was dominated by a few heritable symbionts. Arsenophonus was the most dominant secondary symbiont, and Spiroplasma was detected for the first time. Statistical tests and ordination analyses showed that host plants rather than geography seemed to have shaped the associated symbiont composition. Special symbiont communities inhabited the Cucurbitaceae-feeding populations, which supported the ecological specialization of A. gossypii on cucurbits from the viewpoint of symbiotic bacteria. Correlation analysis suggested antagonistic interactions between Buchnera and coexisting secondary symbionts and more complicated interactions between different secondary symbionts. Our findings lend further support to an important role of the host plant in structuring symbiont communities of polyphagous aphids and will improve our understanding of the interactions among phytophagous insects, symbionts, and environments.
Collapse
Affiliation(s)
- Shifen Xu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyun Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gexia Qiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
17
|
More Is Not Always Better: Coinfections with Defensive Symbionts Generate Highly Variable Outcomes. Appl Environ Microbiol 2020; 86:AEM.02537-19. [PMID: 31862723 DOI: 10.1128/aem.02537-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 11/20/2022] Open
Abstract
Animal-associated microbes are highly variable, contributing to a diverse set of symbiont-mediated phenotypes. Given that host and symbiont genotypes, and their interactions, can impact symbiont-based phenotypes across environments, there is potential for extensive variation in fitness outcomes. Pea aphids, Acyrthosiphon pisum, host a diverse assemblage of heritable facultative symbionts (HFS) with characterized roles in host defense. Protective phenotypes have been largely studied as single infections, but pea aphids often carry multiple HFS species, and particular combinations may be enriched or depleted compared to expectations based on chance. Here, we examined the consequences of single infection versus coinfection with two common HFS exhibiting variable enrichment, the antiparasitoid Hamiltonella defensa and the antipathogen Regiella insecticola, across three host genotypes and environments. As expected, single infections with either H. defensa or R. insecticola raised defenses against their respective targets. Single infections with protective H. defensa lowered aphid fitness in the absence of enemy challenge, while R. insecticola was comparatively benign. However, as a coinfection, R. insecticola ameliorated H. defensa infection costs. Coinfected aphids continued to receive antiparasitoid protection from H. defensa, but protection was weakened by R. insecticola in two clones. Notably, H. defensa eliminated survival benefits conferred after pathogen exposure by coinfecting R. insecticola Since pathogen sporulation was suppressed by R. insecticola in coinfected aphids, the poor performance likely stemmed from H. defensa-imposed costs rather than weakened defenses. Our results reveal a complex set of coinfection outcomes which may partially explain natural infection patterns and suggest that symbiont-based phenotypes may not be easily predicted based solely on infection status.IMPORTANCE The hyperdiverse arthropods often harbor maternally transmitted bacteria that protect against natural enemies. In many species, low-diversity communities of heritable symbionts are common, providing opportunities for cooperation and conflict among symbionts, which can impact the defensive services rendered. Using the pea aphid, a model for defensive symbiosis, we show that coinfections with two common defensive symbionts, the antipathogen Regiella and the antiparasite Hamiltonella, produce outcomes that are highly variable compared to single infections, which consistently protect against designated enemies. Compared to single infections, coinfections often reduced defensive services during enemy challenge yet improved aphid fitness in the absence of enemies. Thus, infection with multiple symbionts does not necessarily create generalist aphids with "Swiss army knife" defenses against numerous enemies. Instead, particular combinations of symbionts may be favored for a variety of reasons, including their abilities to lessen the costs of other defensive symbionts when enemies are not present.
Collapse
|
18
|
Liu Y, Fan ZY, An X, Shi PQ, Ahmed MZ, Qiu BL. A single-pair method to screen Rickettsia-infected and uninfected whitefly Bemisia tabaci populations. J Microbiol Methods 2020; 168:105797. [DOI: 10.1016/j.mimet.2019.105797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/29/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022]
|
19
|
Reyes ML, Laughton AM, Parker BJ, Wichmann H, Fan M, Sok D, Hrček J, Acevedo T, Gerardo NM. The influence of symbiotic bacteria on reproductive strategies and wing polyphenism in pea aphids responding to stress. J Anim Ecol 2019; 88:601-611. [PMID: 30629747 PMCID: PMC6453707 DOI: 10.1111/1365-2656.12942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/23/2018] [Indexed: 11/30/2022]
Abstract
Environmental stressors can be key drivers of phenotypes, including reproductive strategies and morphological traits. The response to stress may be altered by the presence of microbial associates. For example, in aphids, facultative (secondary) bacterial symbionts can provide protection against natural enemies and stress induced by elevated temperatures. Furthermore, aphids exhibit phenotypic plasticity, producing winged (rather than wingless) progeny that may be better able to escape danger, and the combination of these factors improves the response to stress. How symbionts and phenotypic plasticity, both of which shape aphids' stress response, influence one another, and together influence host fitness, remains unclear. In this study, we investigate how environmental stressors drive shifts in fecundity and winged/wingless offspring production, and how secondary symbionts influence the process. We induced production of winged offspring through distinct environmental stressors, including exposure to aphid alarm pheromone and crowding, and, in one experiment, we assessed whether the aphid response is influenced by host plant. In the winged morph, energy needed for wing maintenance may lead to trade-offs with other traits, such as reproduction or symbiont maintenance. Potential trade-offs between symbiont maintenance and fitness have been proposed but have not been tested. Thus, beyond studying the production of offspring of alternative morphs, we also explore the influence of symbionts across wing/wingless polyphenism as well as symbiont interaction with cross-generational impacts of environmental stress on reproductive output. All environmental stressors resulted in increased production of winged offspring and shifts in fecundity rates. Additionally, in some cases, aphid host-by-symbiont interactions influenced fecundity. Stress on first-generation aphids had cross-generational impacts on second-generation adults, and the impact on fecundity was further influenced by the presence of secondary symbionts and presence/absence of wings. Our study suggests a complex interaction between beneficial symbionts and environmental stressors. Winged aphids have the advantage of being able to migrate out of danger with more ease, but energy needed for wing production and maintenance may come with reproductive costs for their mothers and for themselves, where in certain cases, these costs are altered by secondary symbionts.
Collapse
Affiliation(s)
- Miguel L. Reyes
- Clayton State University, Department of Biology, Morrow, GA, 30260
- Emory University, Department of Biology, O. Wayne Rollins Research Center, Atlanta, GA 30322
| | - Alice M. Laughton
- Emory University, Department of Biology, O. Wayne Rollins Research Center, Atlanta, GA 30322
| | - Benjamin J. Parker
- University of Oxford, Department of Zoology, The Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
- University of Rochester, Department of Biology, Rochester, NY, 14627
| | - Hannah Wichmann
- Emory University, Department of Biology, O. Wayne Rollins Research Center, Atlanta, GA 30322
| | - Maretta Fan
- Emory University, Department of Biology, O. Wayne Rollins Research Center, Atlanta, GA 30322
| | - Daniel Sok
- Emory University, Department of Biology, O. Wayne Rollins Research Center, Atlanta, GA 30322
| | - Jan Hrček
- University of Oxford, Department of Zoology, The Tinbergen Building, South Parks Road, Oxford, OX1 3PS, UK
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Branisovska 31, Ceske Budejovice 37005, Czech Republic
| | - Tarik Acevedo
- Pennsylvania State University, Department of Ecosystem Science and Management, University Park, PA, 16802
| | - Nicole M. Gerardo
- Emory University, Department of Biology, O. Wayne Rollins Research Center, Atlanta, GA 30322
| |
Collapse
|
20
|
Infection pattern and negative effects of a facultative endosymbiont on its insect host are environment-dependent. Sci Rep 2019; 9:4013. [PMID: 30850675 PMCID: PMC6408509 DOI: 10.1038/s41598-019-40607-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/20/2019] [Indexed: 02/01/2023] Open
Abstract
Regiella insecticola is a bacterial endosymbiont in insects that exhibits a negative effect on the fitness of hosts. Thus, it is not clear why this costly endosymbiont can persist in host populations. Here, we tested a hypothesis that the infection pattern and negative roles of the endosymbiont were not constant but environmentally dependent. The grain aphids Sitobion avenae, belonging to different genotypes and infected with Regiella or not, were used in this study. We found that S. avenae populations were infected with Regiella, Hamiltonella defensa, Serratia symbiotica and Rickettsia. The predominant endosymbionts in the aphid populations varied with season. Serratia and Rickettsia were predominant from December to February while Regiella predominated from March to May. The vertical transmission of Regiella was poorer at high temperature, but following conditioning for seven generations, the transmission rate improved. Regiella inhibited the production of winged aphids at 25 °C, but it did not affect winged morph production at the higher temperatures of 28 °C and 31 °C. Regiella infection decreased the intrinsic rate of increase (rm) of aphids at 25 °C and 28 °C. However, at 31 °C, the effect of Regiella on the rm varied depending on the aphid genotype and density. Thus, the negative effects of this endosymbiont on its host were environmentally dependent.
Collapse
|
21
|
Fakhour S, Ambroise J, Renoz F, Foray V, Gala JL, Hance T. A large-scale field study of bacterial communities in cereal aphid populations across Morocco. FEMS Microbiol Ecol 2019; 94:4810747. [PMID: 29346623 DOI: 10.1093/femsec/fiy003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Insects are frequently associated with bacteria that can have significant ecological and evolutionary impacts on their hosts. To date, few studies have examined the influence of environmental factors to microbiome composition of aphids. The current work assessed the diversity of bacterial communities of five cereal aphid species (Sitobion avenae, Rhopalosiphum padi, R. maidis, Sipha maydis and Diuraphis noxia) collected across Morocco, covering a wide range of environmental conditions. We aimed to test whether symbiont combinations are host or environment specific. Deep 16S rRNA sequencing enabled us to identify 17 bacterial operational taxonomic units (OTUs). The obligate symbiont Buchnera aphidicola was represented by five OTUs with multiple haplotypes in many single samples. Facultative endosymbionts were presented by a high prevalence of Regiella insecticola and Serratia symbiotica in S. avenae and Si. maydis, respectively. In addition to these symbiotic partners, Pseudomonas, Acinetobacter, Pantoea, Erwinia and Staphyloccocus were also identified in aphids, suggesting that the aphid microbiome is not limited to the presence of endosymbiotic bacteria. Beside a significant association between host species and bacterial communities, an inverse correlation was also found between altitude and α-diversity. Overall, our results support that symbiont combinations are mainly host specific.
Collapse
Affiliation(s)
- Samir Fakhour
- National Institute of Agronomic Research (INRA), Km 18, 23000 Béni-Mellal, Morocco.,Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - François Renoz
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| | - Vincent Foray
- Centre de Recherche de Biologie cellulaire de Montpellier, (CRBM), UMR 5237 CNRS, Université Montpellier, 1919 Route de Mende, Cedex 5, Montpellier 34293, France
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies (CTMA), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348 Louvain-La-Neuve, Belgium
| |
Collapse
|
22
|
Li S, Liu D, Zhang R, Zhai Y, Huang X, Wang D, Shi X. Effects of a presumably protective endosymbiont on life-history characters and their plasticity for its host aphid on three plants. Ecol Evol 2018; 8:13004-13013. [PMID: 30619600 PMCID: PMC6308870 DOI: 10.1002/ece3.4754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/30/2018] [Accepted: 11/05/2018] [Indexed: 12/23/2022] Open
Abstract
Hamiltonella defensa is well known for its protective roles against parasitoids for its aphid hosts, but its functional roles in insect-plant interactions are less understood. Thus, the impact of H. defensa infections on life-history characters and the underlying genetic variation for the grain aphid, Sitobion avenae (Fabricius), was explored on three plants (i.e., wheat, oat, and rye). Compared to cured lines, H. defensa infected lines of S. avenae had lower fecundity on wheat and oat, but not on rye, suggesting an infection cost for the aphid on susceptible host plants. However, when tested on rye, the infected lines showed a shorter developmental time for the nymphal stage than corresponding cured lines, showing some benefit for S. avenae carrying the endosymbiont on resistant host plants. The infection of H. defensa altered genetic variation underlying its host S. avenea's life-history characters, which was shown by differences in heritabilities and genetic correlations of life-history characters between S. avenae lines infected and cured of the endosymbiont. This was further substantiated by disparity in G-matrices of their life-history characters for the two types of aphid lines. The G-matrices for life-history characters of aphid lines infected with and cured of H. defensa were significantly different from each other on rye, but not on oat, suggesting strong plant-dependent effects. The developmental durations of infected S. avenae lines showed a lower plasticity compared with those of corresponding cured lines, and this could mean higher adaptability for the infected lines.Overall, our results showed novel functional roles of a common secondary endosymbiont (i.e., H. defensa) in plant-insect interactions, and its infections could have significant consequences for the evolutionary ecology of its host insect populations in nature.
Collapse
Affiliation(s)
- Shirong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Deguang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Rongfang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Yingting Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Xianliang Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Da Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| | - Xiaoqin Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas (Northwest A&F University)YanglingShaanxi ProvinceChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxi ProvinceChina
| |
Collapse
|
23
|
Tan WH, Reyes ML, Hoang KL, Acevedo T, Leon F, Barbosa JD, Gerardo NM. How symbiosis and ecological context influence the variable expression of transgenerational wing induction upon fungal infection of aphids. PLoS One 2018; 13:e0201865. [PMID: 30365488 PMCID: PMC6203258 DOI: 10.1371/journal.pone.0201865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/04/2018] [Indexed: 11/28/2022] Open
Abstract
Aphids, like most animals, mount a diverse set of defenses against pathogens. For aphids, two of the best studied defenses are symbiont-conferred protection and transgenerational wing induction. Aphids can harbor bacterial symbionts that provide protection against pathogens, parasitoids and predators, as well as against other environmental stressors. In response to signals of danger, aphids also protect not themselves but their offspring by producing more winged than unwinged offspring as a way to ensure that their progeny may be able to escape deteriorating conditions. Such transgenerational wing induction has been studied most commonly as a response to overcrowding of host plants and presence of predators, but recent evidence suggests that pea aphids (Acyrthosiphon pisum) may also begin to produce a greater proportion of winged offspring when infected with fungal pathogens. Here, we explore this phenomenon further by asking how protective symbionts, pathogen dosage and environmental conditions influence this response. Overall, while we find some evidence that protective symbionts can modulate transgenerational wing induction in response to fungal pathogens, we observe that transgenerational wing induction in response to fungal infection is highly variable. That variability cannot be explained entirely by symbiont association, by pathogen load or by environmental stress, leaving the possibility that a complex interplay of genotypic and environmental factors may together influence this trait.
Collapse
Affiliation(s)
- Wen-Hao Tan
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Miguel L. Reyes
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Kim L. Hoang
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Tarik Acevedo
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Fredrick Leon
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Joshua D. Barbosa
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Nicole M. Gerardo
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
24
|
Leftwich PT, Hutchings MI, Chapman T. Diet, Gut Microbes and Host Mate Choice: Understanding the significance of microbiome effects on host mate choice requires a case by case evaluation. Bioessays 2018; 40:e1800053. [PMID: 30311675 DOI: 10.1002/bies.201800053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/06/2018] [Indexed: 12/22/2022]
Abstract
All organisms live in close association with microbes. However, not all such associations are meaningful in an evolutionary context. Current debate concerns whether hosts and microbes are best described as communities of individuals or as holobionts (selective units of hosts plus their microbes). Recent reports that assortative mating of hosts by diet can be mediated by commensal gut microbes have attracted interest as a potential route to host reproductive isolation (RI). Here, the authors discuss logical problems with this line of argument. The authors briefly review how microbes can affect host mating preferences and evaluate recent findings from fruitflies. Endosymbionts can potentially influence host RI given stable and recurrent co-association of hosts and microbes over evolutionary time. However, observations of co-occurrence of microbes and hosts are ripe for misinterpretation and such associations will rarely represent a meaningful holobiont. A framework in which hosts and their microbes are independent evolutionary units provides the only satisfactory explanation for the observed range of effects and associations.
Collapse
Affiliation(s)
- Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF, UK
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
25
|
Mancini MV, Damiani C, Accoti A, Tallarita M, Nunzi E, Cappelli A, Bozic J, Catanzani R, Rossi P, Valzano M, Serrao A, Ricci I, Spaccapelo R, Favia G. Estimating bacteria diversity in different organs of nine species of mosquito by next generation sequencing. BMC Microbiol 2018; 18:126. [PMID: 30286722 PMCID: PMC6172810 DOI: 10.1186/s12866-018-1266-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/26/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Symbiosis in insects is accumulating significant amount of studies: the description of a wide array of mutualistic associations across the evolutionary history of insects suggests that resident microbiota acts as a driving force by affecting several aspects of hosts biology. Among arthropods, mosquito midgut microbiota has been largely investigated, providing crucial insights on the role and implications of host-symbiont relationships. However, limited amount of studies addressed their efforts on the investigation of microbiota colonizing salivary glands and reproductive tracts, crucial organs for pathogen invasion and vertical transmission of symbiotic microorganisms. Using 16S rRNA gene sequencing-based approach, we analysed the microbiota of gut, salivary glands and reproductive tracts of several mosquito species, representing some of the main vectors of diseases, aiming at describing the dynamics of bacterial communities within the individual. RESULTS We identified a shared core microbiota between different mosquito species, although interesting inter- and intra-species differences were detected. Additionally, our results showed deep divergences between genera, underlining microbiota specificity and adaptation to their host. CONCLUSIONS The comprehensive landscape of the bacterial microbiota components may ultimately provide crucial insights and novel targets for possible application of symbionts in innovative strategies for the control of vector borne diseases, globally named Symbiotic Control (SC), and suggesting that the holobiont of different mosquito species may significantly vary. Moreover, mosquito species are characterized by distinctive microbiota in different organs, likely reflecting different functions and/or adaptation processes.
Collapse
Affiliation(s)
- M V Mancini
- School of Biosciences and Medical Veterinary, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
- Present Address: Centre for Virus Research, Level 3 Henry Wellcome Building, 464 Bearsden Road, Glasgow, UK
| | - C Damiani
- School of Biosciences and Medical Veterinary, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
| | - A Accoti
- Department of Experimental Medicine, Functional Genomics Center, University of Perugia, Via Lucio Severi 1, 06132 Perugia, Italy
| | - M Tallarita
- Department of Experimental Medicine, Functional Genomics Center, University of Perugia, Via Lucio Severi 1, 06132 Perugia, Italy
| | - E Nunzi
- Department of Experimental Medicine, Functional Genomics Center, University of Perugia, Via Lucio Severi 1, 06132 Perugia, Italy
| | - A Cappelli
- School of Biosciences and Medical Veterinary, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
| | - J Bozic
- School of Biosciences and Medical Veterinary, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
| | - R Catanzani
- Department of Experimental Medicine, Functional Genomics Center, University of Perugia, Via Lucio Severi 1, 06132 Perugia, Italy
| | - P Rossi
- School of Biosciences and Medical Veterinary, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
| | - M Valzano
- School of Biosciences and Medical Veterinary, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
| | - A Serrao
- School of Biosciences and Medical Veterinary, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
| | - I Ricci
- School of Biosciences and Medical Veterinary, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
| | - R Spaccapelo
- Department of Experimental Medicine, Functional Genomics Center, University of Perugia, Via Lucio Severi 1, 06132 Perugia, Italy
| | - G Favia
- School of Biosciences and Medical Veterinary, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC Italy
| |
Collapse
|
26
|
Henry Y, Renault D, Colinet H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. ACTA ACUST UNITED AC 2018; 221:jeb.169342. [PMID: 29191860 DOI: 10.1242/jeb.169342] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
Crowding is a complex stress that can affect organisms' physiology, especially through decreased food quality and accessibility. Here, we evaluated the effect of larval density on several biological traits of Drosophila melanogaster An increasing gradient, from 1 to 1000 eggs per milliliter of food, was used to characterize life-history traits variations. Crowded conditions resulted in striking decreases of fresh mass (up to 6-fold) and viability, as well as delayed development. Next, we assessed heat and cold tolerance in L3 larvae reared at three selected larval densities: low (LD, 5 eggs ml-1), medium (MD, 60 eggs ml-1) and high (HD, 300 eggs ml-1). LT50 values of MD and, to a lesser extent, HD larvae were repeatedly higher than those from LD larvae, under both heat and cold stress. We investigated potential physiological correlates associated with this density-dependent thermotolerance shift. No marked pattern could be drawn from the expression of stress-related genes. However, a metabolomic analysis differentiated the metabotypes of the three density levels, with potential candidates associated with this clustering (e.g. glucose 6-phosphate, GABA, sugars and polyols). Under HD, signs of oxidative stress were noted but not confirmed at the transcriptional level. Finally, urea, a common metabolic waste, was found to accumulate substantially in food from MD and HD larvae. When supplemented in food, urea stimulated cold tolerance but reduced heat tolerance in LD larvae. This study highlights that larval crowding is an important environmental parameter that induces drastic consequences on flies' physiology and can affect thermotolerance in a density-specific way.
Collapse
Affiliation(s)
- Youn Henry
- UMR CNRS 6553 Ecobio, Université de Rennes 1, 263 Avenue du General Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - David Renault
- UMR CNRS 6553 Ecobio, Université de Rennes 1, 263 Avenue du General Leclerc, CS 74205, 35042 Rennes Cedex, France.,Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - Hervé Colinet
- UMR CNRS 6553 Ecobio, Université de Rennes 1, 263 Avenue du General Leclerc, CS 74205, 35042 Rennes Cedex, France
| |
Collapse
|
27
|
Abstract
Although reproductive strategies can be influenced by a variety of intrinsic and extrinsic factors, life history theory provides a rigorous framework for explaining variation in reproductive effort. The terminal investment hypothesis proposes that a decreased expectation of future reproduction (as might arise from a mortality threat) should precipitate increased investment in current reproduction. Terminal investment has been widely studied, and a variety of intrinsic and extrinsic cues that elicit such a response have been identified across an array of taxa. Although terminal investment is often treated as a static strategy, the level at which a cue of decreased future reproduction is sufficient to trigger increased current reproductive effort (i.e., the terminal investment threshold) may depend on context, including the internal state of the organism or its current external environment, independent of the cue that triggers a shift in reproductive investment. Here, we review empirical studies that address the terminal investment hypothesis, exploring both the intrinsic and extrinsic factors that mediate its expression. Based on these studies, we propose a novel framework within which to view the strategy of terminal investment, incorporating factors that influence an individual's residual reproductive value beyond a terminal investment trigger - the dynamic terminal investment threshold.
Collapse
|
28
|
Luo C, Luo K, Meng L, Wan B, Zhao H, Hu Z. Ecological impact of a secondary bacterial symbiont on the clones of Sitobion avenae (Fabricius) (Hemiptera: Aphididae). Sci Rep 2017; 7:40754. [PMID: 28094341 PMCID: PMC5240142 DOI: 10.1038/srep40754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/09/2016] [Indexed: 11/17/2022] Open
Abstract
Many insects harbor heritable endosymbionts, whether obligatory or facultative, and the role of facultative endosymbionts in shaping the phenotype of these species has become increasingly important. However, little is known about whether micro-injected endosymbionts can have any effects on aphid clones, which was measured using various ecological parameters. We examined the effects between symbiotic treatments and the vital life history traits generated by Regiella insecticola on the life table parameters of Sitobion avenae. The results showed that R. insecticola can decrease the intrinsic rate of increase (r), the finite rate of increase (λ) and birth rate and can increase the mean generation times (T) of S. avenae clones, suggesting that R. insecticola may decelerate the normal development of the hosts. No significant differences of these parameters were observed between the examined Sitobion avenae clones, and the symbiont treatment by genotype interaction affected only the net reproduction rate R0, pre-adult duration and total longevity but not the other parameters. Additionally, a population projection showed that R. insecticola decelerated the growth of the S. avenae clones. The evocable effects of R. insecticola on the S. avenae clones may have significant ramifications for the control of S. avenae populations under field/natural conditions.
Collapse
Affiliation(s)
- Chen Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China.,INRA (French National Institute for Agricultural Research), Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Kun Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Linqin Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Bin Wan
- INRA (French National Institute for Agricultural Research), Univ. Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06903, Sophia Antipolis, France
| | - Huiyan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Zuqing Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
29
|
Guidolin AS, Cônsoli FL. Symbiont Diversity of Aphis (Toxoptera) citricidus (Hemiptera: Aphididae) as Influenced by Host Plants. MICROBIAL ECOLOGY 2017; 73:201-210. [PMID: 27872949 DOI: 10.1007/s00248-016-0892-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Aphids are well known for their association with endosymbiont bacteria. Almost all aphids harbor Buchnera aphidicola as an obligate symbiont and several other bacteria as facultative symbionts. Associations of facultative symbionts and aphids are quite variable in terms of diversity and prevalence across aphid species. Facultative symbionts can have a major impact on aphid bioecological traits. A number of factors shape the outcome of the facultative symbiont-aphid association, including aphid clone, bacterial genotype, geography, and host plant association. The effects of host plant on aphid-facultative symbiont associations are the least understood. We performed deep sequencing of the bacterial community associated with field populations of the oligophagous aphid Aphis (Toxoptera) citricidus collected from different host plants. We demonstrate that (i) A. citricidus has low symbiont diversity, (ii) symbiont diversity is affected by host plant, and (iii) host plants affect the relative abundance of the obligate symbiont Buchnera and an unknown genus of Enterobacteriaceae.
Collapse
Affiliation(s)
- Aline Sartori Guidolin
- Insect Interactions Lab., Department of Entomology and Acarology/ESALQ, University of São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil
| | - Fernando Luis Cônsoli
- Insect Interactions Lab., Department of Entomology and Acarology/ESALQ, University of São Paulo, Av. Pádua Dias 11, 13418-900, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
30
|
Grantham ME, Antonio CJ, O'Neil BR, Zhan YX, Brisson JA. A case for a joint strategy of diversified bet hedging and plasticity in the pea aphid wing polyphenism. Biol Lett 2016; 12:20160654. [PMID: 28120801 PMCID: PMC5095200 DOI: 10.1098/rsbl.2016.0654] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/27/2016] [Indexed: 01/09/2023] Open
Abstract
Phenotypic plasticity and diversified bet hedging are strategies for coping with variable environments. Plasticity is favoured when an organism can predict future conditions using environmental cues, while bet hedging is favoured when predictive cues are not available. Theoretical analyses suggest that many organisms should use a mixture of both strategies, because environments often present both scenarios. Here, we examine if the pea aphid wing polyphenism, a well-known case of plasticity, is potentially a mixture of plasticity and bet hedging. In this polyphenism, asexual females produce more winged offspring in crowded conditions, and wingless offspring in uncrowded conditions. We find that pea aphids use plasticity to respond to crowding and we find considerable genetic variation for this response. We further show that individual aphids produce both winged and wingless offspring, consistent with the variability expected in a bet hedging trait. We conclude that the pea aphid wing polyphenism system is probably a mixture of plasticity and bet hedging. Our study adds to a limited list of empirical studies examining mixed strategy usage, and suggests that mixed strategies may be common in dispersal traits.
Collapse
Affiliation(s)
- Mary E Grantham
- Department of Biology, University of Rochester, Rochester, NY 14627-0211, USA
| | - Chris J Antonio
- Department of Biology, University of Rochester, Rochester, NY 14627-0211, USA
| | - Brian R O'Neil
- Department of Biology, University of Rochester, Rochester, NY 14627-0211, USA
| | - Yi Xiang Zhan
- Department of Biology, University of Rochester, Rochester, NY 14627-0211, USA
| | - Jennifer A Brisson
- Department of Biology, University of Rochester, Rochester, NY 14627-0211, USA
| |
Collapse
|
31
|
McLean AHC, Godfray HCJ. Evidence for specificity in symbiont-conferred protection against parasitoids. Proc Biol Sci 2016; 282:rspb.2015.0977. [PMID: 26136451 DOI: 10.1098/rspb.2015.0977] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Many insects harbour facultative symbiotic bacteria, some of which have been shown to provide resistance against natural enemies. One of the best-known protective symbionts is Hamiltonella defensa, which in pea aphid (Acyrthosiphon pisum) confers resistance against attack by parasitoid wasps in the genus Aphidius (Braconidae).We asked (i) whether this symbiont also confers protection against a phylogenetically distant group of parasitoids (Aphelinidae) and (ii) whether there are consistent differences in the effects of bacteria found in pea aphid biotypes adapted to different host plants. We found that some H. defensa strains do provide protection against an aphelinid parasitoid Aphelinus abdominalis. Hamiltonella defensa from the Lotus biotype provided high resistance to A. abdominalis and moderate to low resistance to Aphidius ervi, while the reverse was seen from Medicago biotype isolates. Aphids from Ononis showed no evidence of symbiont-mediated protection against either wasp species and were relatively vulnerable to both. Our results may reflect the different selection pressures exerted by the parasitoid community on aphids feeding on different host plants, and could help explain the maintenance of genetic diversity in bacterial symbionts.
Collapse
|
32
|
Shapira M. Gut Microbiotas and Host Evolution: Scaling Up Symbiosis. Trends Ecol Evol 2016; 31:539-549. [PMID: 27039196 DOI: 10.1016/j.tree.2016.03.006] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/18/2016] [Accepted: 03/05/2016] [Indexed: 02/07/2023]
Abstract
Our understanding of species evolution is undergoing restructuring. It is well accepted that host-symbiont coevolution is responsible for fundamental aspects of biology. However, the emerging importance of plant- and animal-associated microbiotas to their hosts suggests a scale of coevolutionary interactions many-fold greater than previously considered. This review builds on current understanding of symbionts and their contributions to host evolution to evaluate recent data demonstrating similar contributions of gut microbiotas. It further considers a multilayered model for microbiota to account for emerging themes in host-microbiota interactions. Drawing on the structure of bacterial genomes, this model distinguishes between a host-adapted core microbiota, and a flexible, environmentally modulated microbial pool, differing in constraints on their maintenance and in their contributions to host adaptation.
Collapse
Affiliation(s)
- Michael Shapira
- University of California, Berkeley, department of Integrative Biology and Graduate Group in Microbiology. Valley Life Sciences Building, room 5155, Berkeley, CA 94720, USA.
| |
Collapse
|
33
|
Comparison of fitness traits and their plasticity on multiple plants for Sitobion avenae infected and cured of a secondary endosymbiont. Sci Rep 2016; 6:23177. [PMID: 26979151 PMCID: PMC4793262 DOI: 10.1038/srep23177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/01/2016] [Indexed: 12/13/2022] Open
Abstract
Regiella insecticola has been found to enhance the performance of host aphids on certain plants, but its functional role in adaptation of host aphids to plants is still controversial. Here we evaluate the impacts of R. insecticola infections on vital life-history traits of Sitobion avenae (Fabricius), and their underlying genetic variation and phenotypic plasticity on three plants. It was shown that effects of R. insecticola on S. avenae’s fitness (i.e., developmental time and fecundity) were neutral on oat or wheat, but negative on rye. Infections of R. insecticola modified genetic variation that underlies S. avenae’s life-history traits. This was demonstrated by comparing life-history trait heritabilities between aphid lines with and without R. insecticola. Moreover, there were enhanced negative genetic correlations between developmental time and fecundity for R. insecticola infected lines, and structural differences in G-matrices of life-history traits for the two types of aphid lines. In R. insecticola-infected aphid lines, there were increases in plasticities for developmental times of first and second instar nymphs and for fecundity, showing novel functional roles of bacterial symbionts in plant-insect interactions. The identified effects of R. insecticola infections could have significant implications for the ecology and evolution of its host populations in natural conditions.
Collapse
|
34
|
Łukasik P, Guo H, van Asch M, Henry LM, Godfray HCJ, Ferrari J. Horizontal transfer of facultative endosymbionts is limited by host relatedness. Evolution 2015; 69:2757-66. [DOI: 10.1111/evo.12767] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Piotr Łukasik
- Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS United Kingdom
| | - Huifang Guo
- Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS United Kingdom
- Institute of Plant Protection; Jiangsu Academy of Agricultural Sciences; Zhongling Street Nanjing 210014 China
| | - Margriet van Asch
- Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS United Kingdom
| | - Lee M. Henry
- Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS United Kingdom
| | - H. Charles J. Godfray
- Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS United Kingdom
| | - Julia Ferrari
- Department of Zoology; University of Oxford; South Parks Road Oxford OX1 3PS United Kingdom
- Department of Biology; University of York; York YO10 5DD United Kingdom
| |
Collapse
|
35
|
Hong-Xing X, Xu-Song Z, Ya-Jun Y, Jun-Ce T, Qiang F, Gong-Yin Y, Zhong-Xian L. Changes in Endosymbiotic Bacteria of Brown Planthoppers During the Process of Adaptation to Different Resistant Rice Varieties. ENVIRONMENTAL ENTOMOLOGY 2015; 44:582-587. [PMID: 26313963 DOI: 10.1093/ee/nvv054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
The specific primers of five species of endosymbiotic bacteria were designed to determine their numbers in three virulent populations of brown planthopper, Nilapavata lugens Stål, and to assess changes during adaptation to different resistant varieties using fluorescent quantitative PCR. The results showed that Chryseobacterium was the dominant bacteria in all three populations of brown planthopper, followed by Acinetobacter in TN1 population, Arsenophonus and Serratia in Mudgo population, and Arthrobacter and Acinetobacter in ASD7 population. When the TN1 population of brown planthopper was transferred to ASD7 (with resistant gene bph2) rice plants, Chryseobacterium was still the dominant bacteria, but the originally subdominant Acinetobacter declined to a level that was not significantly different from that of other endosymbiotic bacteria. After they were transferred to Mudgo (with resistant gene Bph1), Serratia and Arsenophonus increased significantly and became the dominant bacteria. However, they declined to a level that was not significantly different from that of the three other species after two generations. When ASD7 and Mudgo populations of brown planthopper were transferred to the susceptible variety TN1, the community of endosymbiotic bacteria in the ASD7 population of brown planthopper showed no significant changes. However, the numbers of Acinetobacter and Arthrobacter in the Mudgo population of brown planthopper exhibited a transient increase and returned to their original levels after two generations. After the Mudgo population of brown planthopper was transferred to ASD7 rice plants, the quantity of endosymbiotic bacteria fluctuated, but the bacterial structure did not change significantly. However, after the ASD7 population of brown planthopper was transferred to the Mudgo rice plants, the bacterial structure changed significantly. Serratia and Arsenophonus increased significantly and became dominant. Although Serratia and Arsenophonus decreased significantly after a generation, they were still greater than Chryseobacterium. It was presumed that Chryseobacterium was dominant in all three populations of virulent brown planthoppers, but had no significant effect on virulence variation of brown planthopper. However, Serratia and Arsenophonus might be correlated with virulence variation of brown planthopper.
Collapse
Affiliation(s)
- Xu Hong-Xing
- Institute of Insect Science, Zhejiang University, Hangzhou 310029, China. State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheng Xu-Song
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yang Ya-Jun
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tian Jun-Ce
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fu Qiang
- China National Rice Research Institute, Hangzhou 310006, China
| | - Ye Gong-Yin
- Institute of Insect Science, Zhejiang University, Hangzhou 310029, China.
| | - Lu Zhong-Xian
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
36
|
Zhang F, Li X, Zhang Y, Coates B, Zhou XJ, Cheng D. Bacterial symbionts, Buchnera, and starvation on wing dimorphism in English grain aphid, Sitobion avenae (F.) (Homoptera: Aphididae). Front Physiol 2015; 6:155. [PMID: 26042046 PMCID: PMC4438234 DOI: 10.3389/fphys.2015.00155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/29/2015] [Indexed: 02/03/2023] Open
Abstract
Wing dimorphism in aphids can be affected by multiple cues, including both biotic (nutrition, crowding, interspecific interactions, the presence of natural enemies, maternal and transgenerational effects, and alarm pheromone) and abiotic factors (temperature, humidity, and photoperiod). The majority of the phloem-feeding aphids carry Buchnera, an obligate symbiotic proteobacteria. Buchnera has a highly reduced genome size, but encode key enzymes in the tryptophan biosynthetic pathway and is crucial for nutritional balance, development and reproduction in aphids. In this study, we investigated the impact of two nutritional-based biotic factors, symbionts and starvation, on the wing dimorphism in the English grain aphid, Sitobion avenae, a devastating insect pest of cereal crops (e.g., wheat) worldwide. Elimination of Buchnera using the antibiotic rifampicin significantly reduced the formation of winged morphs, body mass, and fecundity in S. avenae. Furthermore, the absence of this primary endosymbiont may disrupt the nutrient acquisition in aphids and alter transgenerational phenotypic expression. Similarly, both survival rate and the formation of winged morphs were substantially reduced after neonatal (<24 h old) offspring were starved for a period of time. The combined results shed light on the impact of two nutritional-based biotic factors on the phenotypic plasticity in aphids. A better understanding of the wing dimorphism in aphids will provide the theoretical basis for the prediction and integrated management of these phloem-feeding insect pests.
Collapse
Affiliation(s)
- Fangmei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| | - Brad Coates
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture - Agricultural Research Service Ames, IA, USA
| | - Xuguo Joe Zhou
- Department of Entomology, University of Kentucky Lexington, KY, USA
| | - Dengfa Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
37
|
Novel Endosymbioses as a Catalyst of Fast Speciation. INTERDISCIPLINARY EVOLUTION RESEARCH 2015. [DOI: 10.1007/978-3-319-16345-1_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
38
|
Reingold V, Luria N, Robichon A, Dombrovsky A. Adenine methylation may contribute to endosymbiont selection in a clonal aphid population. BMC Genomics 2014; 15:999. [PMID: 25406741 PMCID: PMC4246565 DOI: 10.1186/1471-2164-15-999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 11/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pea aphid Acyrthosiphon pisum has two modes of reproduction: parthenogenetic during the spring and summer and sexual in autumn. This ability to alternate between reproductive modes and the emergence of clonal populations under favorable conditions make this organism an interesting model for genetic and epigenetic studies. The pea aphid hosts different types of endosymbiotic bacteria within bacteriocytes which help the aphids survive and adapt to new environmental conditions and habitats. The obligate endosymbiont Buchnera aphidicola has a drastically reduced and stable genome, whereas facultative endosymbionts such as Regiella insecticola have large and dynamic genomes due to phages, mobile elements and high levels of genetic recombination. In previous work, selection toward cold adaptation resulted in the appearance of parthenogenetic A. pisum individuals characterized by heavier weights and remarkable green pigmentation. RESULTS Six adenine-methylated DNA fragments were isolated from genomic DNA (gDNA) extracted from the cold-induced green variant of A. pisum using deoxyadenosine methylase (Dam) by digesting the gDNA with the restriction enzymes DpnI and DpnII, which recognize the methylated and unmethylated GATC sites, respectively. The six resultant fragments did not match any sequence in the A. pisum or Buchnera genomes, implying that they came from facultative endosymbionts. The A1 fragment encoding a putative transposase and the A6 fragment encoding a putative helicase were selected for further comparison between the two A. pisum variants (green and orange) based on Dam analysis followed by PCR amplification. An association between adenine methylation and the two A. pisum variants was demonstrated by higher adenine methylation levels on both genes in the green variant as compared to the orange one. CONCLUSION Temperature selection may affect the secondary endosymbiont and the sensitive Dam involved in the survival and adaptation of aphids to cold temperatures. There is a high degree of adenine methylation at the GATC sites of the endosymbiont genes at 8°C, an effect that disappears at 22°C. We suggest that endosymbionts can be modified or selected to increase host fitness under unfavorable climatic conditions, and that the phenotype of the newly adapted aphids can be inherited.
Collapse
Affiliation(s)
| | | | | | - Aviv Dombrovsky
- INRA/CNRS/UNSA University Nice Sophia Antipolis, 400 routes de Chappes, BP 167, Sophia Antipolis 06903, France.
| |
Collapse
|
39
|
Peccoud J, Bonhomme J, Mahéo F, de la Huerta M, Cosson O, Simon JC. Inheritance patterns of secondary symbionts during sexual reproduction of pea aphid biotypes. INSECT SCIENCE 2014; 21:291-300. [PMID: 24382700 DOI: 10.1111/1744-7917.12083] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2013] [Indexed: 06/03/2023]
Abstract
Herbivorous insects frequently harbor bacterial symbionts that affect their ecology and evolution. Aphids host the obligatory endosymbiont Buchnera, which is required for reproduction, together with facultative symbionts whose frequencies vary across aphid populations. These maternally transmitted secondary symbionts have been particularly studied in the pea aphid, Acyrthosiphon pisum, which harbors at least 8 distinct bacterial species (not counting Buchnera) having environmentally dependent effects on host fitness. In particular, these symbiont species are associated with pea aphid populations feeding on specific plants. Although they are maternally inherited, these bacteria are occasionally transferred across insect lineages. One mechanism of such nonmaternal transfer is paternal transmission to the progeny during sexual reproduction. To date, transmission of secondary symbionts during sexual reproduction of aphids has been investigated in only a handful of aphid lineages and 3 symbiont species. To better characterize this process, we investigated inheritance patterns of 7 symbiont species during sexual reproduction of pea aphids through a crossing experiment involving 49 clones belonging to 9 host-specialized biotypes, and 117 crosses. Symbiont species in the progeny were detected with diagnostic qualitative PCR at the fundatrix stage hatching from eggs and in later parthenogenetic generations. We found no confirmed case of paternal transmission of symbionts to the progeny, and we observed that maternal transmission of a particular symbiont species (Serratia symbiotica) was quite inefficient. We discuss these observations in respect to the ecology of the pea aphid.
Collapse
Affiliation(s)
- Jean Peccoud
- INRA, Institut de Génétique, Environnement et Protection des Plantes (UMR IGEPP), Domaine de La Motte, 35653 le Rheu cedex, France
| | | | | | | | | | | |
Collapse
|
40
|
The molecular basis of bacterial-insect symbiosis. J Mol Biol 2014; 426:3830-7. [PMID: 24735869 DOI: 10.1016/j.jmb.2014.04.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/12/2022]
Abstract
Insects provide experimentally tractable and cost-effective model systems to investigate the molecular basis of animal-bacterial interactions. Recent research is revealing the central role of the insect innate immune system, especially anti-microbial peptides and reactive oxygen species, in regulating the abundance and composition of the microbiota in various insects, including Drosophila and the mosquitoes Aedes and Anopheles. Interactions between the immune system and microbiota are, however, bidirectional with evidence that members of the resident microbiota can promote immune function, conferring resistance to pathogens and parasites by both activation of immune effectors and production of toxins. Antagonistic and mutualistic interactions among bacteria have also been implicated as determinants of the microbiota composition, including exclusion of pathogens, but the molecular mechanisms are largely unknown. Some bacteria are crucial for insect nutrition, through provisioning of specific nutrients (e.g., B vitamins, essential amino acids) and modulation of the insect nutritional sensing and signaling pathways (e.g., insulin signaling) that regulate nutrient allocation, especially to lipid and other energy reserves. A key challenge for future research is to identify the molecular interaction between specific bacterial effectors and animal receptors, as well as to determine how these interactions translate into microbiota-dependent signaling, metabolism, and immune function in the host.
Collapse
|
41
|
Ogawa K, Miura T. Aphid polyphenisms: trans-generational developmental regulation through viviparity. Front Physiol 2014; 5:1. [PMID: 24478714 PMCID: PMC3900772 DOI: 10.3389/fphys.2014.00001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/01/2014] [Indexed: 12/15/2022] Open
Abstract
Polyphenism, in which multiple discrete phenotypes develop from a single genotype, is considered to have contributed to the evolutionary success of aphids. Of the various polyphenisms observed in the complex life cycle of aphids, the reproductive and wing polyphenisms seen in most aphid species are conspicuous. In reproductive polyphenism, the reproductive modes can change between viviparous parthenogenesis and sexual reproduction in response to the photoperiod. Under short-day conditions in autumn, sexual morphs (males and oviparous females) are produced parthenogenetically. Winged polyphenism is observed in viviparous generations during summer, when winged or wingless (flightless) aphids are produced depending on a variety of environmental conditions (e.g., density, predators). Here, we review the physiological mechanisms underlying reproductive and wing polyphenism in aphids. In reproductive polyphenism, morph determination (male, oviparous or viviparous female) within mother aphids is regulated by juvenile hormone (JH) titers in the mothers. In wing polyphenism, although JH is considered to play an important role in phenotype determination (winged or wingless), the role is still controversial. In both cases, the acquisition of viviparity in Aphididae is considered to be the basis for maternal regulation of these polyphenisms, and through which environmental cues can be transferred to developing embryos through the physiological state of the mother. Although the mechanisms by which mothers alter the developmental programs of their progeny have not yet been clarified, continued developments in molecular biology will likely unravel these questions.
Collapse
Affiliation(s)
- Kota Ogawa
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University Sapporo, Japan
| | - Toru Miura
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University Sapporo, Japan
| |
Collapse
|
42
|
Laughton AM, Fan MH, Gerardo NM. The combined effects of bacterial symbionts and aging on life history traits in the pea aphid, Acyrthosiphon pisum. Appl Environ Microbiol 2014; 80:470-7. [PMID: 24185857 PMCID: PMC3911086 DOI: 10.1128/aem.02657-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/30/2013] [Indexed: 12/16/2022] Open
Abstract
While many endosymbionts have beneficial effects on hosts under specific ecological conditions, there can also be associated costs. In order to maximize their own fitness, hosts must facilitate symbiont persistence while preventing symbiont exploitation of resources, which may require tight regulation of symbiont populations. As a host ages, the ability to invest in such mechanisms may lessen or be traded off with demands of other life history traits, such as survival and reproduction. Using the pea aphid, Acyrthosiphon pisum, we measured survival, lifetime fecundity, and immune cell counts (hemocytes, a measure of immune capacity) in the presence of facultative secondary symbionts. Additionally, we quantified the densities of the obligate primary bacterial symbiont, Buchnera aphidicola, and secondary symbionts across the host's lifetime. We found life history costs to harboring some secondary symbiont species. Secondary symbiont populations were found to increase with host age, while Buchnera populations exhibited a more complicated pattern. Immune cell counts peaked at the midreproductive stage before declining in the oldest aphids. The combined effects of immunosenescence and symbiont population growth may have important consequences for symbiont transmission and maintenance within a host population.
Collapse
Affiliation(s)
- Alice M. Laughton
- Biology Department, Emory University, Atlanta, Georgia, USA
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Maretta H. Fan
- Biology Department, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
43
|
Kubisch A, Holt RD, Poethke HJ, Fronhofer EA. Where am I and why? Synthesizing range biology and the eco-evolutionary dynamics of dispersal. OIKOS 2013. [DOI: 10.1111/j.1600-0706.2013.00706.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Oliver KM, Smith AH, Russell JA. Defensive symbiosis in the real world - advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12133] [Citation(s) in RCA: 255] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kerry M. Oliver
- Department of Entomology; University of Georgia; Athens GA 30602 USA
| | - Andrew H. Smith
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| | - Jacob A. Russell
- Department of Biology; Drexel University; Philadelphia PA 19104 USA
| |
Collapse
|
45
|
The diversity and fitness effects of infection with facultative endosymbionts in the grain aphid, Sitobion avenae. Oecologia 2013; 173:985-96. [DOI: 10.1007/s00442-013-2660-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 04/11/2013] [Indexed: 12/31/2022]
|
46
|
Su Q, Zhou X, Zhang Y. Symbiont-mediated functions in insect hosts. Commun Integr Biol 2013; 6:e23804. [PMID: 23710278 PMCID: PMC3656014 DOI: 10.4161/cib.23804] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 11/19/2022] Open
Abstract
The bacterial endosymbionts occur in a diverse array of insect species and are usually rely within the vertical transmission from mothers to offspring. In addition to primary symbionts, plant sap-sucking insects may also harbor several diverse secondary symbionts. Bacterial symbionts play a prominent role in insect nutritional ecology by aiding in digestion of food or supplementing nutrients that insect hosts can't obtain sufficient amounts from a restricted diet of plant phloem. Currently, several other ecologically relevant traits mediated by endosymbionts are being investigated, including defense toward pathogens and parasites, adaption to environment, influences on insect-plant interactions, and impact of population dynamics. Here, we review recent theoretical predictions and experimental observations of these traits mediated by endosymbionts and suggest that clarifying the roles of symbiotic microbes may be important to offer insights for ameliorating pest invasiveness or impact.
Collapse
Affiliation(s)
- Qi Su
- Institute of Pesticide Science; Hunan Agricultural University; Changsha, PR China
| | | | | |
Collapse
|
47
|
Merville A, Venner S, Henri H, Vallier A, Menu F, Vavre F, Heddi A, Bel-Venner MC. Endosymbiont diversity among sibling weevil species competing for the same resource. BMC Evol Biol 2013; 13:28. [PMID: 23379718 PMCID: PMC3623666 DOI: 10.1186/1471-2148-13-28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whereas the impact of endosymbionts on the ecology of their hosts is well known in some insect species, the question of whether host communities are influenced by endosymbionts remains largely unanswered. Notably, the coexistence of host species competing with each other, which is expected to be stabilized by their ecological differences, could be facilitated by differences in their endosymbionts. Yet, the composition of endosymbiotic communities housed by natural communities of competing host species is still almost unknown. In this study, we started filling this gap by describing and comparing the bacterial endosymbiotic communities of four sibling weevil species (Curculio spp.) that compete with each other to lay eggs into oak acorns (Quercus spp.) and exhibit marked ecological differences. RESULTS All four species housed the primary endosymbiont Candidatus Curculioniphilus buchneri, yet each of these had a clearly distinct community of secondary endosymbionts, including Rickettsia, Spiroplasma, and two Wolbachia strains. Notably, three weevil species harbored their own predominant facultative endosymbiont and possessed the remaining symbionts at a residual infection level. CONCLUSIONS The four competing species clearly harbor distinct endosymbiotic communities. We discuss how such endosymbiotic communities could spread and keep distinct in the four insect species, and how these symbionts might affect the organization and species richness of host communities.
Collapse
Affiliation(s)
- Adrien Merville
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Łukasik P, van Asch M, Guo H, Ferrari J, Godfray HCJ. Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 2012; 16:214-8. [PMID: 23137173 DOI: 10.1111/ele.12031] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/26/2012] [Accepted: 10/15/2012] [Indexed: 11/30/2022]
Abstract
The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations.
Collapse
Affiliation(s)
- Piotr Łukasik
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| | | | | | | | | |
Collapse
|
49
|
Chaianunporn T, Hovestadt T. Evolution of dispersal in metacommunities of interacting species. J Evol Biol 2012; 25:2511-25. [PMID: 23020160 DOI: 10.1111/j.1420-9101.2012.02620.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/29/2012] [Accepted: 08/09/2012] [Indexed: 11/29/2022]
Abstract
Theoretical studies on the evolution of dispersal in metacommunities are rare despite empirical evidence suggesting that interspecific interactions can modify dispersal behaviour of organisms. To understand the role of species interactions for dispersal evolution, we utilize an individual-based model of a metacommunity where local population dynamics follows a stochastic version of the Nicholson-Bailey model and dispersal probability is an evolving trait. Our results show that in comparison with a neutral system (commensalism), parasitism promotes dispersal of hosts and parasites, while mutualism tends to reduce dispersal in both partners. Search efficiency of guests (only in the case of parasitism), dispersal mortality and external extinction risk can influence the evolution of dispersal of all partners. In systems composed of two host and two guest species, lower dispersal probabilities evolve under parasitism as well as mutualism than in one host and one guest species systems. This is because of frequency-dependent modulations of dispersal benefits emerging in such systems for all partners.
Collapse
Affiliation(s)
- T Chaianunporn
- Field Station Fabrikschleichach, Biozentrum, University of Würzburg, Rauhenebrach, Germany.
| | | |
Collapse
|
50
|
Balakirev ES, Krupnova TN, Ayala FJ. Symbiotic associations in the phenotypically-diverse brown alga Saccharina japonica. PLoS One 2012; 7:e39587. [PMID: 22745792 PMCID: PMC3379999 DOI: 10.1371/journal.pone.0039587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/23/2012] [Indexed: 02/08/2023] Open
Abstract
The brown alga Saccharina japonica (Areschoug) Lane, Mayes, Druehl et Saunders is a highly polymorphic representative of the family Laminariaceae, inhabiting the northwest Pacific region. We have obtained 16S rRNA sequence data in symbiont microorganisms of the typical form (TYP) of S. japonica and its common morphological varieties, known as "longipes" (LON) and "shallow-water" (SHA), which show contrasting bathymetric distribution and sharp morphological, life history traits, and ecological differences. Phylogenetic analysis of the 16S rRNA sequences shows that the microbial communities are significantly different in the three forms studied and consist of mosaic sets of common and form-specific bacterial lineages. The divergence in bacterial composition is substantial between the TYP and LON forms in spite of their high genetic similarity. The symbiont distribution in the S. japonica forms and in three other laminarialean species is not related to the depth or locality of the algae settlements. Combined with our previous results on symbiont associations in sea urchins and taking into account the highly specific character of bacteria-algae associations, we propose that the TYP and LON forms may represent incipient species passing through initial steps of reproductive isolation. We suggest that phenotype differences between genetically similar forms may be caused by host-symbiont interactions that may be a general feature of evolution in algae and other eukaryote organisms. Bacterial symbionts could serve as sensitive markers to distinguish genetically similar algae forms and also as possible growth-promoting inductors to increase algae productivity.
Collapse
Affiliation(s)
- Evgeniy S Balakirev
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America.
| | | | | |
Collapse
|