1
|
Madison FN, Bingman VP, Smulders TV, Lattin CR. A bird's eye view of the hippocampus beyond space: Behavioral, neuroanatomical, and neuroendocrine perspectives. Horm Behav 2024; 157:105451. [PMID: 37977022 DOI: 10.1016/j.yhbeh.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Although the hippocampus is one of the most-studied brain regions in mammals, research on the avian hippocampus has been more limited in scope. It is generally agreed that the hippocampus is an ancient feature of the amniote brain, and therefore homologous between the two lineages. Because birds and mammals are evolutionarily not very closely related, any shared anatomy is likely to be crucial for shared functions of their hippocampi. These functions, in turn, are likely to be essential if they have been conserved for over 300 million years. Therefore, research on the avian hippocampus can help us understand how this brain region evolved and how it has changed over evolutionary time. Further, there is a strong research foundation in birds on hippocampal-supported behaviors such as spatial navigation, food caching, and brood parasitism that scientists can build upon to better understand how hippocampal anatomy, network circuitry, endocrinology, and physiology can help control these behaviors. In this review, we summarize our current understanding of the avian hippocampus in spatial cognition as well as in regulating anxiety, approach-avoidance behavior, and stress responses. Although there are still some questions about the exact number of subdivisions in the avian hippocampus and how that might vary in different avian families, there is intriguing evidence that the avian hippocampus might have complementary functional profiles along the rostral-caudal axis similar to the dorsal-ventral axis of the rodent hippocampus, where the rostral/dorsal hippocampus is more involved in cognitive processes like spatial learning and the caudal/ventral hippocampus regulates emotional states, anxiety, and the stress response. Future research should focus on elucidating the cellular and molecular mechanisms - including endocrinological - in the avian hippocampus that underlie behaviors such as spatial navigation, spatial memory, and anxiety-related behaviors, and in so doing, resolve outstanding questions about avian hippocampal function and organization.
Collapse
Affiliation(s)
- Farrah N Madison
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Verner P Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Tom V Smulders
- Centre for Behaviour and Evolution, School of Psychology, Newcastle University, Newcastle upon Tyne NE2 4DR, UK
| | - Christine R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70808, USA.
| |
Collapse
|
2
|
LaDage LD, McCormick GL, Robbins TR, Longwell AS, Langkilde T. The effects of early-life and intergenerational stress on the brain. Proc Biol Sci 2023; 290:20231356. [PMID: 38018110 PMCID: PMC10685117 DOI: 10.1098/rspb.2023.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023] Open
Abstract
Stress experienced during ontogeny can have profound effects on the adult phenotype. However, stress can also be experienced intergenerationally, where an offspring's phenotype can be moulded by stress experienced by the parents. Although early-life and intergenerational stress can alter anatomy, physiology, and behaviour, nothing is known about how these stress contexts interact to affect the neural phenotype. Here, we examined how early-life and intergenerational stress affect the brain in eastern fence lizards (Sceloporus undulatus). Some lizard populations co-occur with predatory fire ants, and stress from fire ant attacks exerts intergenerational physiological and behavioural changes in lizards. However, it is unclear if intergenerational stress, or the interaction between intergenerational and early-life stress, modulates the brain. To test this, we captured gravid females from fire ant invaded and uninvaded populations, and subjected offspring to three early-life stress treatments: (1) fire ant attack, (2) corticosterone, or (3) a control. Corticosterone and fire ant attack decreased some aspects of the neural phenotype while population of origin and the interaction of early-life stress and population had no effects on the brain. These results suggest that early-life stressors may better predict adult brain variation than intergenerational stress in this species.
Collapse
Affiliation(s)
- Lara D. LaDage
- Division of Mathematics & Natural Sciences, Penn State Altoona, 3000 Ivyside Dr., Altoona, PA 16601, USA
| | - Gail L. McCormick
- Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Travis R. Robbins
- Department of Biology, University of Nebraska Omaha, 6001 Dodge St., Omaha, NE 68182, USA
| | - Anna S. Longwell
- Division of Mathematics & Natural Sciences, Penn State Altoona, 3000 Ivyside Dr., Altoona, PA 16601, USA
| | - Tracy Langkilde
- Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Poor body condition is associated with lower hippocampal plasticity and higher gut methanogen abundance in adult laying hens from two housing systems. Sci Rep 2022; 12:15505. [PMID: 36109559 PMCID: PMC9477867 DOI: 10.1038/s41598-022-18504-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/13/2022] [Indexed: 12/03/2022] Open
Abstract
It is still unclear which commercial housing system provides the best quality of life for laying hens. In addition, there are large individual differences in stress levels within a system. Hippocampal neurogenesis or plasticity may provide an integrated biomarker of the stressors experienced by an individual. We selected 12 adult hens each with good and poor body condition (based on body size, degree of feather cover and redness of the comb) from a multi-tier free range system containing H&N strain hens, and from an enriched cage system containing Hy-Line hens (n = 48 total). Immature neurons expressing doublecortin (DCX) were quantified in the hippocampus, contents of the caecal microbiome were sequenced, and expression of inflammatory cytokines was measured in the spleen. DCX+ cell densities did not differ between the housing systems. In both systems, poor condition hens had lower DCX+ cell densities, exhibited elevated splenic expression of interleukin-6 (IL6) mRNA, and had a higher relative caecal abundance of methanogenic archea Methanomethylophilaceae. The findings suggest poor body condition is an indicator that individual hens have experienced a comparatively greater degree of cumulative chronic stress, and that a survey of the proportion of hens with poor body conditions might be one way to evaluate the impact of housing systems on hen welfare.
Collapse
|
4
|
Pravosudov VV. Do food-caching chickadees grow their hippocampus every autumn when they need to cache food and then shrink it for the rest of the year? Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Understanding hippocampal neural plasticity in captivity: Unique contributions of spatial specialists. Learn Behav 2022; 50:55-70. [PMID: 35237946 DOI: 10.3758/s13420-021-00504-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/01/2023]
Abstract
Neural plasticity in the hippocampus has been studied in a wide variety of model systems, including in avian species where the hippocampus underlies specialized spatial behaviours. Examples of such behaviours include navigating to a home roost over long distances by homing pigeons or returning to a potential nest site for egg deposit by brood parasites. The best studied example, however, is food storing in parids and the interaction between this behaviour and changes in hippocampus volume and neurogenesis. However, understanding the interaction between brain and behaviour necessitates research that includes studies with at least some form of captivity, which may itself affect hippocampal plasticity. Captivity might particularly affect spatial specialists where free-ranging movement on a large scale is especially important in daily, and seasonal, behaviours. This review examines how captivity might affect hippocampal plasticity in avian spatial specialists and specifically food-storing parids, and also considers how the effects of captivity may be mitigated by researchers studying hippocampal plasticity when the goal is understanding the relationship between behaviour and hippocampal change.
Collapse
|
6
|
Abstract
The hippocampal formation (HF) processes spatial memories for cache locations in food-hoarding birds. Hoarding is a seasonal behavior, and seasonal changes in the HF have been described in some studies, but not in others. One potential reason is that birds may have been sampled during the seasonal hoarding peak in some studies, but not in others. In this study, we investigate the seasonal changes in hoarding and HF in willow tits (Poecile montanus). We compare this to seasonal changes in HF in a closely related non-hoarding bird, the great tit (Parus major). Willow tits near Oulu, Finland, show a seasonal hoarding peak in September and both HF volume and neuron number show a similar peak. HF neuronal density also increases in September, but then remains the same throughout winter. Unexpectedly, the great tit HF also changes seasonally, although in a different pattern: the great tit telencephalon increases in volume from July to August and decreases again in November. Great tit HF volume follows suit, but with a delay. Great tit HF neuron number and density also increase from August to September and stay high throughout winter. We hypothesize that seasonal changes in hoarding birds’ HF are driven by food-hoarding experience (e.g., the formation of thousands of memories). The seasonal changes in great tit brains may also be due to experience-dependent plasticity, responding to changes in the social and spatial environment. Large-scale experience-dependent neural plasticity is therefore probably not an adaptation of food-hoarding birds, but a general property of the avian HF and telencephalon.
Collapse
|
7
|
Armstrong EA, Voelkl B, Voegeli S, Gebhardt-Henrich SG, Guy JH, Sandilands V, Boswell T, Toscano MJ, Smulders TV. Cell Proliferation in the Adult Chicken Hippocampus Correlates With Individual Differences in Time Spent in Outdoor Areas and Tonic Immobility. Front Vet Sci 2020; 7:587. [PMID: 33005647 PMCID: PMC7479223 DOI: 10.3389/fvets.2020.00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
Access to outdoor areas is provided as a means of enhancing welfare in commercial systems for laying hens (Gallus gallus domesticus), but substantial individual differences exist in their proportional use. Baseline cell proliferation levels of Adult Hippocampal Neurogenesis (AHN) have been associated with individual differences in reactive vs. proactive coping style, and in both mammals and birds, AHN is upregulated by positive experiences including environmental enrichment and exercise. We thus sought to explore whether individual differences in use of outdoor areas and in tonic immobility responses (indicative of fearfulness) were associated with hippocampal cell proliferation and neuronal differentiation. Radio frequency identification technology was used to track the ranging behavior of 440 individual focal hens within a commercially-relevant system over a 72-days period, after which tonic immobility durations were measured. Following hippocampal tissue collection from 58 focal hens, proliferation and neuronal differentiation were measured through quantitative PCR for proliferating cell nuclear antigen (PCNA) and doublecortin mRNA, respectively. Individual differences in tonic immobility duration positively correlated with PCNA expression over the whole hippocampal formation, while greater time spent in outdoor areas (the grassy range and stone yard) was associated with higher proliferation in the rostral subregion. Basal proliferation in the chicken hippocampal formation may thus relate to reactivity, while levels in the rostral region may be stimulated by ranging experience. Doublecortin expression in the caudal hippocampus negatively co-varied with time on the grassy range, but was not associated with tonic immobility duration. This suggests that ranging outside may be associated with stress. Within laying hen flocks, individual differences in hippocampal plasticity thus relate to coping style and use of external areas.
Collapse
Affiliation(s)
- Elena A Armstrong
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernhard Voelkl
- Centre for Proper Housing: Poultry and Rabbits (ZTHZ), University of Bern, Bern, Switzerland
| | - Sabine Voegeli
- Centre for Proper Housing: Poultry and Rabbits (ZTHZ), University of Bern, Bern, Switzerland
| | | | - Jonathan H Guy
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Victoria Sandilands
- Department of Agriculture, Horticulture, and Engineering Science, SRUC, Edinburgh, United Kingdom
| | - Tim Boswell
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael J Toscano
- Centre for Proper Housing: Poultry and Rabbits (ZTHZ), University of Bern, Bern, Switzerland
| | - Tom V Smulders
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, United Kingdom.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
8
|
Mazengenya P, Bhagwandin A, Ihunwo AO. Putative adult neurogenesis in palaeognathous birds: The common ostrich (Struthio camelus) and emu (Dromaius novaehollandiae). Int J Dev Neurosci 2020; 80:613-635. [PMID: 32767787 DOI: 10.1002/jdn.10057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/01/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
In the current study, we examined adult neurogenesis throughout the brain of the common ostrich (Struthio camelus) and emu (Dromaius novaehollandiae) using immunohistochemistry for the endogenous markers PCNA which labels proliferating cells, and DCX, which stains immature and migrating neurons. The distribution of PCNA and DCX labelled cells was widespread throughout the brain of both species. The highest density of cells immunoreactive to both markers was observed in the olfactory bulbs and the telencephalon, especially the subventricular zone of the lateral ventricle. Proliferative hot spots, identified with strong PCNA and DCX immunolabelling, were identified in the dorsal and ventral poles of the rostral aspects of the lateral ventricles. The density of PCNA immunoreactive cells was less in the telencephalon of the emu compared to the common ostrich. Substantial numbers of PCNA immunoreactive cells were observed in the diencephalon and brainstem, but DCX immunoreactivity was weaker in these regions, preferentially staining axons and dendrites over cell bodies, except in the medial regions of the hypothalamus where distinct DCX immunoreactive cells and fibres were observed. PCNA and DCX immunoreactive cells were readily observed in moderate density in the cortical layers of the cerebellum of both species. The distribution of putative proliferating cells and immature neurons in the brain of the common ostrich and the emu is widespread, far more so than in mammals, and compares with the neognathous birds, and suggests that brain plasticity and neuronal turnover is an important aspect of cognitive brain functions in these birds.
Collapse
Affiliation(s)
- Pedzisai Mazengenya
- College of Medicine, Ajman University, Ajman, United Arab Emirates.,School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Rondebosch, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Armstrong EA, Rufener C, Toscano MJ, Eastham JE, Guy JH, Sandilands V, Boswell T, Smulders TV. Keel bone fractures induce a depressive-like state in laying hens. Sci Rep 2020; 10:3007. [PMID: 32080271 PMCID: PMC7033198 DOI: 10.1038/s41598-020-59940-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
In commercial flocks of laying hens, keel bone fractures (KBFs) are prevalent and associated with behavioural indicators of pain. However, whether their impact is severe enough to induce a depressive-like state of chronic stress is unknown. As chronic stress downregulates adult hippocampal neurogenesis (AHN) in mammals and birds, we employ this measure as a neural biomarker of subjective welfare state. Radiographs obtained longitudinally from Lohmann Brown laying hens housed in a commercial multi-tier aviary were used to score the severity of naturally-occurring KBFs between the ages of 21-62 weeks. Individual birds' transitions between aviary zones were also recorded. Focal hens with severe KBFs at 3-4 weeks prior to sampling (n = 15) had lower densities of immature doublecortin-positive (DCX+) multipolar and bipolar neurons in the hippocampal formation than focal hens with minimal fractures (n = 9). KBF severity scores at this time also negatively predicted DCX+ cell numbers on an individual level, while hens that acquired fractures earlier in their lives had fewer DCX+ neurons in the caudal hippocampal formation. Activity levels 3-4 weeks prior to sampling were not associated with AHN. KBFs thus lead to a negative affective state lasting at least 3-4 weeks, and management steps to reduce their occurrence are likely to have significant welfare benefits.
Collapse
Affiliation(s)
- E A Armstrong
- Centre for Behaviour & Evolution, Newcastle University, Newcastle upon Tyne, UK.
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - C Rufener
- Department of Animal Science, University of California, Davis, USA
- Centre for Proper Housing: Poultry and Rabbits (ZTHZ), University of Bern, Zollikofen, Switzerland
| | - M J Toscano
- Centre for Proper Housing: Poultry and Rabbits (ZTHZ), University of Bern, Zollikofen, Switzerland
| | - J E Eastham
- Centre for Behaviour & Evolution, Newcastle University, Newcastle upon Tyne, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - J H Guy
- Centre for Behaviour & Evolution, Newcastle University, Newcastle upon Tyne, UK
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - V Sandilands
- Department of Agriculture, Horticulture and Engineering Sciences, SRUC, Edinburgh, UK
| | - T Boswell
- Centre for Behaviour & Evolution, Newcastle University, Newcastle upon Tyne, UK
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - T V Smulders
- Centre for Behaviour & Evolution, Newcastle University, Newcastle upon Tyne, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Mendes de Lima C, Douglas Corrêa Pereira P, Pereira Henrique E, Augusto de Oliveira M, Carvalho Paulo D, Silva de Siqueira L, Guerreiro Diniz D, Almeida Miranda D, André Damasceno de Melo M, Gyzely de Morais Magalhães N, Francis Sherry D, Wanderley Picanço Diniz C, Guerreiro Diniz C. Differential Change in Hippocampal Radial Astrocytes and Neurogenesis in Shorebirds With Contrasting Migratory Routes. Front Neuroanat 2019; 13:82. [PMID: 31680881 PMCID: PMC6798042 DOI: 10.3389/fnana.2019.00082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/28/2019] [Indexed: 12/30/2022] Open
Abstract
Little is known about environmental influences on radial glia-like (RGL) α cells (radial astrocytes) and their relation to neurogenesis. Because radial glia is involved in adult neurogenesis and astrogenesis, we investigated this association in two migratory shorebird species that complete their autumnal migration using contrasting strategies. Before their flights to South America, the birds stop over at the Bay of Fundy in Canada. From there, the semipalmated sandpiper (Calidris pusilla) crosses the Atlantic Ocean in a non-stop 5-day flight, whereas the semipalmated plover (Charadrius semipalmatus) flies primarily overland with stopovers for rest and feeding. From the hierarchical cluster analysis of multimodal morphometric features, followed by the discriminant analysis, the radial astrocytes were classified into two main morphotypes, Type I and Type II. After migration, we detected differential changes in the morphology of these cells that were more intense in Type I than in Type II in both species. We also compared the number of doublecortin (DCX)-immunolabeled neurons with morphometric features of radial glial-like α cells in the hippocampal V region between C. pusilla and C. semipalmatus before and after autumn migration. Compared to migrating birds, the convex hull surface area of radial astrocytes increased significantly in wintering individuals in both C. semipalmatus and C. pusilla. Although to a different extent we found a strong correlation between the increase in the convex hull surface area and the increase in the total number of DCX immunostained neurons in both species. Despite phylogenetic differences, it is of interest to note that the increased morphological complexity of radial astrocytes in C. semipalmatus coincides with the fact that during the migratory process over the continent, the visuospatial environment changes more intensely than that associated with migration over Atlantic. The migratory flight of the semipalmated plover, with stopovers for feeding and rest, vs. the non-stop flight of the semipalmated sandpiper may differentially affect radial astrocyte morphology and neurogenesis.
Collapse
Affiliation(s)
- Camila Mendes de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Patrick Douglas Corrêa Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Dario Carvalho Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Lucas Silva de Siqueira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Diego Almeida Miranda
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Mauro André Damasceno de Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| | - Nara Gyzely de Morais Magalhães
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - David Francis Sherry
- Advanced Facility for Avian Research, Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Cristovam Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil.,Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Bragança, Brazil
| |
Collapse
|
11
|
Yao W, Liu W, Deng K, Wang Z, Wang DH, Zhang XY. GnRH expression and cell proliferation are associated with seasonal breeding and food hoarding in Mongolian gerbils (Meriones unguiculatus). Horm Behav 2019; 112:42-53. [PMID: 30922890 DOI: 10.1016/j.yhbeh.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/14/2022]
Abstract
Seasonal brain plasticity contributes to a variety of physiological and behavioral processes. We hypothesized that variations in GnRH expression and cell proliferation facilitated seasonal breeding and food hoarding. Here, we reported seasonal changes in sexual and social behavior, GnRH expression and brain cell proliferation, and the role of photoperiod in inducing seasonal breeding and brain plasticity in Mongolian gerbils (Meriones unguiculatus). The gerbils captured in April and July had more mature sexual development, higher exploratory behavior, and preferred novelty much more than those captured in September. Male gerbils captured in April and July had consistently higher GnRH expression than those captured in September. GnRH expression was also found to be suppressed by food-induced hoarding behavior in the breeding season. Both subadult and adult gerbils from April and July had higher cell proliferation in SVZ, hypothalamus and amygdala compared to those in September. However, adult gerbils captured in September preferred familiar objects, and no seasonal differences were found in cell proliferation in hippocampal dentate gyrus among the three seasons. The laboratory study showed that photoperiod alone did not alter reproductive traits, behavior, cell proliferation or cell survival in the detected brain regions. These findings suggest that the structural variations in GnRH expression in hypothalamus and cell proliferation in hypothalamus, amygdala and hippocampus are associated with seasonal breeding and food hoarding in gerbils. It gives a new insight into the proximate physiological and neural basis for these seasonal life-history traits of breeding and food hoarding in small mammals.
Collapse
Affiliation(s)
- Wei Yao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Health Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Wei Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Deng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Gualtieri F, Armstrong EA, Longmoor GK, D'Eath RB, Sandilands V, Boswell T, Smulders TV. Unpredictable Chronic Mild Stress Suppresses the Incorporation of New Neurons at the Caudal Pole of the Chicken Hippocampal Formation. Sci Rep 2019; 9:7129. [PMID: 31073135 PMCID: PMC6509118 DOI: 10.1038/s41598-019-43584-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/25/2019] [Indexed: 02/08/2023] Open
Abstract
In the mammalian brain, adult hippocampal neurogenesis (AHN) is suppressed by chronic stress, primarily at the ventral pole of the hippocampus. Based upon anatomy, we hypothesise that the caudal pole of the avian Hippocampal Formation (HF) presents a homologous subregion. We thus investigated whether AHN is preferentially suppressed in the caudal chicken HF by unpredictable chronic mild stress (UCMS). Adult hens were kept in control conditions or exposed to UCMS for 8 weeks. Hens experiencing UCMS had significantly fewer doublecortin-positive multipolar neurons (p < 0.001) and beaded axons (p = 0.021) at the caudal pole of the HF than controls. UCMS birds also had smaller spleens and lower baseline plasma corticosterone levels compared to controls. There were no differences in AHN at the rostral pole, nor were there differences in expression of genetic mediators of the HPA stress response in the pituitary or adrenal glands. Duration of tonic immobility and heterophil/lymphocyte (H/L) ratios were also not responsive to our UCMS treatment. These results support the hypothesised homology of the caudal pole of the avian HF to the ventral pole of the rodent hippocampus. Furthermore, quantifying neurogenesis in the caudal HF post-mortem may provide an objective, integrative measure of welfare in poultry, which may be more sensitive than current welfare measures.
Collapse
Affiliation(s)
- F Gualtieri
- Centre for Behaviour & Evolution, Newcastle University, Newcastle upon Tyne, UK.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - E A Armstrong
- Centre for Behaviour & Evolution, Newcastle University, Newcastle upon Tyne, UK.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - G K Longmoor
- Centre for Behaviour & Evolution, Newcastle University, Newcastle upon Tyne, UK.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - R B D'Eath
- Animal and Veterinary Science Research Group, SRUC, Edinburgh, UK
| | - V Sandilands
- Animal and Veterinary Science Research Group, SRUC, Edinburgh, UK
| | - T Boswell
- Centre for Behaviour & Evolution, Newcastle University, Newcastle upon Tyne, UK.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - T V Smulders
- Centre for Behaviour & Evolution, Newcastle University, Newcastle upon Tyne, UK. .,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Validation of hippocampal biomarkers of cumulative affective experience. Neurosci Biobehav Rev 2019; 101:113-121. [PMID: 30951763 PMCID: PMC6525303 DOI: 10.1016/j.neubiorev.2019.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 12/29/2022]
Abstract
Recent knowledge on hippocampal structural plasticity is reviewed. This knowledge is harnessed to develop biomarkers of cumulative experience. Hippocampal plasticity is shown to have construct, content and criterion validity in mammals. The biomarkers require further validation to be used in birds and fish. We discuss some practical considerations to implement the biomarkers.
Progress in improving the welfare of captive animals has been hindered by a lack of objective indicators to assess the quality of lifetime experience, often called cumulative affective experience. Recent developments in stress biology and psychiatry have shed new light on the role of the mammalian hippocampus in affective processes. Here we review these findings and argue that structural hippocampal biomarkers demonstrate criterion, construct and content validity as indicators of cumulative affective experience in mammals. We also briefly review emerging findings in birds and fish, which have promising implications for applying the hippocampal approach to these taxa, but require further validation. We hope that this review will motivate welfare researchers and neuroscientists to explore the potential of hippocampal biomarkers of cumulative affective experience.
Collapse
|
14
|
Augusto-Oliveira M, Arrifano GPF, Malva JO, Crespo-Lopez ME. Adult Hippocampal Neurogenesis in Different Taxonomic Groups: Possible Functional Similarities and Striking Controversies. Cells 2019; 8:cells8020125. [PMID: 30764477 PMCID: PMC6406791 DOI: 10.3390/cells8020125] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis occurs in many species, from fish to mammals, with an apparent reduction in the number of both neurogenic zones and new neurons inserted into established circuits with increasing brain complexity. Although the absolute number of new neurons is high in some species, the ratio of these cells to those already existing in the circuit is low. Continuous replacement/addition plays a role in spatial navigation (migration) and other cognitive processes in birds and rodents, but none of the literature relates adult neurogenesis to spatial navigation and memory in primates and humans. Some models developed by computational neuroscience attribute a high weight to hippocampal adult neurogenesis in learning and memory processes, with greater relevance to pattern separation. In contrast to theories involving neurogenesis in cognitive processes, absence/rarity of neurogenesis in the hippocampus of primates and adult humans was recently suggested and is under intense debate. Although the learning process is supported by plasticity, the retention of memories requires a certain degree of consolidated circuitry structures, otherwise the consolidation process would be hampered. Here, we compare and discuss hippocampal adult neurogenesis in different species and the inherent paradoxical aspects.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
- Laboratory of Research on Neurodegeneration and Infection, University Hospital João de Barros Barreto, Federal University of Pará, Belém 66073-005, Brazil.
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - Gabriela P F Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - João O Malva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), and Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
| |
Collapse
|
15
|
Spatial memory and cognitive flexibility trade-offs: to be or not to be flexible, that is the question. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.02.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
de Almeida AC, Palme R, Moreira N. How environmental enrichment affects behavioral and glucocorticoid responses in captive blue-and-yellow macaws ( Ara ararauna ). Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2017.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Dunlap KD, Keane G, Ragazzi M, Lasky E, Salazar VL. Simulated predator stimuli reduce brain cell proliferation in two electric fish species, Brachyhypopomus gauderio and Apteronotus leptorhynchus. ACTA ACUST UNITED AC 2018; 220:2328-2334. [PMID: 28679791 DOI: 10.1242/jeb.158246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
The brain structure of many animals is influenced by their predators, but the cellular processes underlying this brain plasticity are not well understood. Previous studies showed that electric fish (Brachyhypopomus occidentalis) naturally exposed to high predator (Rhamdia quelen) density and tail injury had reduced brain cell proliferation compared with individuals facing few predators and those with intact tails. However, these field studies described only correlations between predator exposure and cell proliferation. Here, we used a congener Brachyhypopomus gauderio and another electric fish Apteronotus leptorhynchus to experimentally test the hypothesis that exposure to a predator stimulus and tail injury causes alterations in brain cell proliferation. To simulate predator exposure, we either amputated the tail followed by short-term (1 day) or long-term (17-18 days) recovery or repeatedly chased intact fish with a plastic rod over a 7 day period. We measured cell proliferation (PCNA+ cell density) in the telencephalon and diencephalon, and plasma cortisol, which commonly mediates stress-induced changes in brain cell proliferation. In both species, either tail amputation or simulated predator chase decreased cell proliferation in the telencephalon in a manner resembling the effect of predators in the field. In A. leptorhynchus, cell proliferation decreased drastically in the short term after tail amputation and partially rebounded after long-term recovery. In B. gauderio, tail amputation elevated cortisol levels, but repeated chasing had no effect. In A. leptorhynchus, tail amputation elevated cortisol levels in the short term but not in the long term. Thus, predator stimuli can cause reductions in brain cell proliferation, but the role of cortisol is not clear.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | - Geoffrey Keane
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | - Michael Ragazzi
- Department of Biology, Trinity College, Hartford, CT 06106, USA.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Elise Lasky
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | - Vielka L Salazar
- Department of Biology, Cape Breton University, Sydney, NS, Canada B1P 6L2
| |
Collapse
|
18
|
Mazengenya P, Bhagwandin A, Manger PR, Ihunwo AO. Putative Adult Neurogenesis in Old World Parrots: The Congo African Grey Parrot ( Psittacus erithacus) and Timneh Grey Parrot ( Psittacus timneh). Front Neuroanat 2018; 12:7. [PMID: 29487507 PMCID: PMC5816827 DOI: 10.3389/fnana.2018.00007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/15/2018] [Indexed: 11/21/2022] Open
Abstract
In the current study, we examined for the first time, the potential for adult neurogenesis throughout the brain of the Congo African grey parrot (Psittacus erithacus) and Timneh grey parrot (Psittacus timneh) using immunohistochemistry for the endogenous markers proliferating cell nuclear antigen (PCNA), which labels proliferating cells, and doublecortin (DCX), which stains immature and migrating neurons. A similar distribution of PCNA and DCX immunoreactivity was found throughout the brain of the Congo African grey and Timneh grey parrots, but minor differences were also observed. In both species of parrots, PCNA and DCX immunoreactivity was observed in the olfactory bulbs, subventricular zone of the lateral wall of the lateral ventricle, telencephalic subdivisions of the pallium and subpallium, diencephalon, mesencephalon and the rhombencephalon. The olfactory bulb and telencephalic subdivisions exhibited a higher density of both PCNA and DCX immunoreactive cells than any other brain region. DCX immunoreactive staining was stronger in the telencephalon than in the subtelencephalic structures. There was evidence of proliferative hot spots in the dorsal and ventral poles of the lateral ventricle in the Congo African grey parrots at rostral levels, whereas only the dorsal accumulation of proliferating cells was observed in the Timneh grey parrot. In most pallial regions the density of PCNA and DCX stained cells increased from rostral to caudal levels with the densest staining in the nidopallium caudolaterale (NCL). The widespread distribution of PCNA and DCX in the brains of both parrot species suggest the importance of adult neurogenesis and neuronal plasticity during learning and adaptation to external environmental variations.
Collapse
Affiliation(s)
- Pedzisai Mazengenya
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amadi O Ihunwo
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
19
|
Wang X, Amei A, de Belle JS, Roberts SP. Environmental effects on Drosophila brain development and learning. J Exp Biol 2018; 221:jeb169375. [PMID: 29061687 PMCID: PMC5818026 DOI: 10.1242/jeb.169375] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/18/2017] [Indexed: 01/18/2023]
Abstract
Brain development and behavior are sensitive to a variety of environmental influences including social interactions and physicochemical stressors. Sensory input in situ is a mosaic of both enrichment and stress, yet little is known about how multiple environmental factors interact to affect brain anatomical structures, circuits and cognitive function. In this study, we addressed these issues by testing the individual and combined effects of sub-adult thermal stress, larval density and early-adult living spatial enrichment on brain anatomy and olfactory associative learning in adult Drosophila melanogaster In response to heat stress, the mushroom bodies (MBs) were the most volumetrically impaired among all of the brain structures, an effect highly correlated with reduced odor learning performance. However, MBs were not sensitive to either larval culture density or early-adult living conditions. Extreme larval crowding reduced the volume of the antennal lobes, optic lobes and central complex. Neither larval crowding nor early-adult spatial enrichment affected olfactory learning. These results illustrate that various brain structures react differently to environmental inputs, and that MB development and learning are highly sensitive to certain stressors (pre-adult hyperthermia) and resistant to others (larval crowding).
Collapse
Affiliation(s)
- Xia Wang
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Amei Amei
- Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - J Steven de Belle
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Stephen P Roberts
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
20
|
Carvalho-Paulo D, de Morais Magalhães NG, de Almeida Miranda D, Diniz DG, Henrique EP, Moraes IAM, Pereira PDC, de Melo MAD, de Lima CM, de Oliveira MA, Guerreiro-Diniz C, Sherry DF, Diniz CWP. Hippocampal Astrocytes in Migrating and Wintering Semipalmated Sandpiper Calidris pusilla. Front Neuroanat 2018; 11:126. [PMID: 29354035 PMCID: PMC5758497 DOI: 10.3389/fnana.2017.00126] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Seasonal migratory birds return to the same breeding and wintering grounds year after year, and migratory long-distance shorebirds are good examples of this. These tasks require learning and long-term spatial memory abilities that are integrated into a navigational system for repeatedly locating breeding, wintering, and stopover sites. Previous investigations focused on the neurobiological basis of hippocampal plasticity and numerical estimates of hippocampal neurogenesis in birds but only a few studies investigated potential contributions of glial cells to hippocampal-dependent tasks related to migration. Here we hypothesized that the astrocytes of migrating and wintering birds may exhibit significant morphological and numerical differences connected to the long-distance flight. We used as a model the semipalmated sandpiper Calidris pusilla, that migrates from northern Canada and Alaska to South America. Before the transatlantic non-stop long-distance component of their flight, the birds make a stopover at the Bay of Fundy in Canada. To test our hypothesis, we estimated total numbers and compared the three-dimensional (3-D) morphological features of adult C. pusilla astrocytes captured in the Bay of Fundy (n = 249 cells) with those from birds captured in the coastal region of Bragança, Brazil, during the wintering period (n = 250 cells). Optical fractionator was used to estimate the number of astrocytes and for 3-D reconstructions we used hierarchical cluster analysis. Both morphological phenotypes showed reduced morphological complexity after the long-distance non-stop flight, but the reduction in complexity was much greater in Type I than in Type II astrocytes. Coherently, we also found a significant reduction in the total number of astrocytes after the transatlantic flight. Taken together these findings suggest that the long-distance non-stop flight altered significantly the astrocytes population and that morphologically distinct astrocytes may play different physiological roles during migration.
Collapse
Affiliation(s)
- Dario Carvalho-Paulo
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nara G de Morais Magalhães
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Diego de Almeida Miranda
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Daniel G Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Ediely P Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Isis A M Moraes
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Patrick D C Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Mauro A D de Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Camila M de Lima
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Marcus A de Oliveira
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Cristovam Guerreiro-Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, Brazil
| | - David F Sherry
- Department of Psychology, University of Western Ontario, London, ON, Canada.,Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Cristovam W P Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção no Hospital Universitário João de Barros Barreto, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
21
|
Lynch KS. Region-specific neuron recruitment in the hippocampus of brown-headed cowbirds Molothrus ater (Passeriformes: Icteridae). THE EUROPEAN ZOOLOGICAL JOURNAL 2018. [DOI: 10.1080/24750263.2018.1435743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Kathleen S. Lynch
- Department of Biological Sciences, Hofstra University, Hempstead, NY, USA
| |
Collapse
|
22
|
Food restriction reduces neurogenesis in the avian hippocampal formation. PLoS One 2017; 12:e0189158. [PMID: 29211774 PMCID: PMC5718509 DOI: 10.1371/journal.pone.0189158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/20/2017] [Indexed: 02/08/2023] Open
Abstract
The mammalian hippocampus is particularly vulnerable to chronic stress. Adult neurogenesis in the dentate gyrus is suppressed by chronic stress and by administration of glucocorticoid hormones. Post-natal and adult neurogenesis are present in the avian hippocampal formation as well, but much less is known about its sensitivity to chronic stressors. In this study, we investigate this question in a commercial bird model: the broiler breeder chicken. Commercial broiler breeders are food restricted during development to manipulate their growth curve and to avoid negative health outcomes, including obesity and poor reproductive performance. Beyond knowing that these chickens are healthier than fully-fed birds and that they have a high motivation to eat, little is known about how food restriction impacts the animals' physiology. Chickens were kept on a commercial food-restricted diet during the first 12 weeks of life, or released from this restriction by feeding them ad libitum from weeks 7–12 of life. To test the hypothesis that chronic food restriction decreases the production of new neurons (neurogenesis) in the hippocampal formation, the cell proliferation marker bromodeoxyuridine was injected one week prior to tissue collection. Corticosterone levels in blood plasma were elevated during food restriction, even though molecular markers of hypothalamic-pituitary-adrenal axis activation did not differ between the treatments. The density of new hippocampal neurons was significantly reduced in the food-restricted condition, as compared to chickens fed ad libitum, similar to findings in rats at a similar developmental stage. Food restriction did not affect hippocampal volume or the total number of neurons. These findings indicate that in birds, like in mammals, reduction in hippocampal neurogenesis is associated with chronically elevated corticosterone levels, and therefore potentially with chronic stress in general. This finding is consistent with the hypothesis that the response to stressors in the avian hippocampal formation is homologous to that of the mammalian hippocampus.
Collapse
|
23
|
Ayanlaja AA, Xiong Y, Gao Y, Ji G, Tang C, Abdikani Abdullah Z, Gao D. Distinct Features of Doublecortin as a Marker of Neuronal Migration and Its Implications in Cancer Cell Mobility. Front Mol Neurosci 2017; 10:199. [PMID: 28701917 PMCID: PMC5487455 DOI: 10.3389/fnmol.2017.00199] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/06/2017] [Indexed: 12/16/2022] Open
Abstract
Neuronal migration is a critical process in the development of the nervous system. Defects in the migration of the neurons are associated with diseases like lissencephaly, subcortical band heterotopia (SBH), and pachygyria. Doublecortin (DCX) is an essential factor in neurogenesis and mutations in this protein impairs neuronal migration leading to several pathological conditions. Although, DCX is capable of modulating and stabilizing microtubules (MTs) to ensure effective migration, the mechanisms involved in executing these functions remain poorly understood. Meanwhile, there are existing gaps regarding the processes that underlie tumor initiation and progression into cancer as well as the ability to migrate and invade normal cells. Several studies suggest that DCX is involved in cancer metastasis. Unstable interactions between DCX and MTs destabilizes cytoskeletal organization leading to disorganized movements of cells, a process which may be implicated in the uncontrolled migration of cancer cells. However, the underlying mechanism is complex and require further clarification. Therefore, exploring the importance and features known up to date about this molecule will broaden our understanding and shed light on potential therapeutic approaches for the associated neurological diseases. This review summarizes current knowledge about DCX, its features, functions, and relationships with other proteins. We also present an overview of its role in cancer cells and highlight the importance of studying its gene mutations.
Collapse
Affiliation(s)
- Abiola A Ayanlaja
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Ye Xiong
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Yue Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - GuangQuan Ji
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Chuanxi Tang
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - Zamzam Abdikani Abdullah
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| | - DianShuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical UniversityXuzhou, China
| |
Collapse
|
24
|
Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla). PLoS One 2017; 12:e0179134. [PMID: 28591201 PMCID: PMC5462419 DOI: 10.1371/journal.pone.0179134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 05/24/2017] [Indexed: 12/13/2022] Open
Abstract
Long distance migratory birds find their way by sensing and integrating information from a large number of cues in their environment. These cues are essential to navigate over thousands of kilometers and reach the same breeding, stopover, and wintering sites every year. The semipalmated sandpiper (Calidris pusilla) is a long-distance migrant that breeds in the arctic tundra of Canada and Alaska and winters on the northeast coast of South America. Its fall migration includes a 5,300-kilometer nonstop flight over the Atlantic Ocean. The avian hippocampus has been proposed to play a central role in the integration of multisensory spatial information for navigation. Hippocampal neurogenesis may contribute to hippocampal function and a variety of factors including cognitive activity, exercise, enrichment, diet and stress influence neurogenesis in the hippocampus. We quantified hippocampal neurogenesis and volume in adult migrating and wintering semipalmated sandpipers using stereological counts of doublecortin (DCX) immunolabeled immature neurons. We found that birds captured in the coastal region of Bragança, Brazil during the wintering period had more DCX positive neurons and larger volume in the hippocampus than individuals captured in the Bay of Fundy, Canada during fall migration. We also estimate the number of NeuN immunolabeled cells in migrating and wintering birds and found no significant differences between them. These findings suggest that, at this time window, neurogenesis just replaced neurons that might be lost during the transatlantic flight. Our findings also show that in active fall migrating birds, a lower level of adult hippocampal neurogenesis is associated with a smaller hippocampal formation. High levels of adult hippocampal neurogenesis and a larger hippocampal formation found in wintering birds may be late occurring effects of long distance migratory flight or the result of conditions the birds experienced while wintering.
Collapse
|
25
|
LaDage LD. Factors That Modulate Neurogenesis: A Top-Down Approach. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:184-190. [PMID: 27560485 DOI: 10.1159/000446906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although hippocampal neurogenesis in the adult brain has been conserved across the vertebrate lineage, laboratory studies have primarily examined this phenomenon in rodent models. This approach has been successful in elucidating important factors and mechanisms that can modulate rates of hippocampal neurogenesis, including hormones, environmental complexity, learning and memory, motor stimulation, and stress. However, recent studies have found that neurobiological research on neurogenesis in rodents may not easily translate to, or explain, neurogenesis patterns in nonrodent systems, particularly in species examined in the field. This review examines some of the evolutionary and ecological variables that may also modulate neurogenesis patterns. This 'top-down' and more naturalistic approach, which incorporates ecology and natural history, particularly of nonmodel species, may allow for a more comprehensive understanding of the functional significance of neurogenesis.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State University Altoona, Altoona, Pa., USA
| |
Collapse
|
26
|
Lieberwirth C, Pan Y, Liu Y, Zhang Z, Wang Z. Hippocampal adult neurogenesis: Its regulation and potential role in spatial learning and memory. Brain Res 2016; 1644:127-40. [PMID: 27174001 PMCID: PMC5064285 DOI: 10.1016/j.brainres.2016.05.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 12/24/2022]
Abstract
Adult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning behavior is discussed by summarizing the literature focusing on traditional animal models (e.g., rats and mice), non-traditional animal models (e.g., tree shrews), as well as natural populations (e.g., chickadees and Siberian chipmunk).
Collapse
Affiliation(s)
| | - Yongliang Pan
- Program in Molecular and Translational Medicine, School of Medicine, Huzhou University, Huzhou 313000, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China.
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| |
Collapse
|
27
|
Roth TC, Stocker K, Mauck R. Morphological changes in hippocampal cytoarchitecture as a function of spatial treatment in birds. Dev Neurobiol 2016; 77:93-101. [PMID: 27326700 DOI: 10.1002/dneu.22413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/26/2016] [Accepted: 06/17/2016] [Indexed: 12/23/2022]
Abstract
Maintaining cognitive processes comes with neurological costs. Thus, enhanced cognition and its underlying neural mechanisms should change in response to environmental pressures. Indeed, recent evidence suggests that variation in spatially based cognitive abilities is reflected in the morphology of the hippocampus (Hp), the region of the brain involved in spatial memory. Moreover, recent work on this region establishes a dynamic link between brain plasticity and cognitive experiences both across populations and within individuals. However, the mechanisms involved in neurological changes as a result of differential space use and the reversibility of such effects are unknown. Using a house sparrow (Passer domesticus) model, we experimentally manipulated the space available to birds, testing the hypothesis that reductions in dendritic branching is associated with reduced Hp volume and that such reductions in volume are reversible. We found that reduced spatial availability associated with captivity had a profound and significant reduction in sparrow hippocampal volumes, which was highly correlated with the total length of dendrites in the region. This result suggests that changes to the dendritic structure of neurons may, in part, explain volumetric reductions in region size associated with captivity. In addition, small changes in available space even within captivity produced significant changes in the spine structure on Hp dendrites. These reductions were reversible following increased spatial opportunities. Overall, these results are consistent with the hypothesis that reductions to the Hp in captivity, often assumed to reflect a deleterious process, may be adaptive and a consequence of the trade-off between cognitive and energetic demands. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 93-101, 2017.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Psychology, Franklin and Marshall College, Lancaster, Pennsylvania.,Biological Foundations of Behavior, Franklin and Marshall College, Lancaster, Pennsylvania
| | - Kurtis Stocker
- Biological Foundations of Behavior, Franklin and Marshall College, Lancaster, Pennsylvania
| | - Robert Mauck
- Department of Biology, Kenyon College, Gambier, Ohio
| |
Collapse
|
28
|
Balthazart J, Ball GF. Endocrine and social regulation of adult neurogenesis in songbirds. Front Neuroendocrinol 2016; 41:3-22. [PMID: 26996818 DOI: 10.1016/j.yfrne.2016.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/07/2023]
Abstract
The identification of pronounced seasonal changes in the volume of avian song control nuclei stimulated the discovery of adult neurogenesis in songbirds as well as renewed studies in mammals including humans. Neurogenesis in songbirds is modulated by testosterone and other factors such as photoperiod, singing activity and social environment. Adult neurogenesis has been widely studied by labeling, with tritiated thymidine or its analog BrdU, cells duplicating their DNA in anticipation of their last mitotic division and following their fate as new neurons. New methods based on endogenous markers of cell cycling or of various stages of neuronal life have allowed for additional progress. In particular immunocytochemical visualization of the microtubule-associated protein doublecortin has provided an integrated view of neuronal replacement in the song control nucleus HVC. Multiple questions remain however concerning the specific steps in the neuronal life cycle that are modulated by various factors and the underlying cellular mechanisms.
Collapse
Affiliation(s)
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, College Park, MD, USA.
| |
Collapse
|
29
|
Dunlap KD, Tran A, Ragazzi MA, Krahe R, Salazar VL. Predators inhibit brain cell proliferation in natural populations of electric fish, Brachyhypopomus occidentalis. Proc Biol Sci 2016; 283:20152113. [PMID: 26842566 PMCID: PMC4760157 DOI: 10.1098/rspb.2015.2113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/08/2016] [Indexed: 11/12/2022] Open
Abstract
Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | - Alex Tran
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | | | - Rüdiger Krahe
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Vielka L Salazar
- Department of Biology, Cape Breton University, Sydney, Nova Scotia, Canada B1P 6L2
| |
Collapse
|
30
|
Branch CL, Kozlovsky DY, Croston R, Pitera A, Pravosudov VV. Mountain chickadees return to their post-natal dispersal settlements following long-term captivity. BEHAVIOUR 2016. [DOI: 10.1163/1568539x-00003363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is little work investigating the relationship between environmental changes and associated hippocampal effects on animal homing. We took advantage of previous studies in which wild, non-migratory mountain chickadees spent six months in captivity prior to being released. Over the following three years, 45.8% of the birds were resighted, and in all cases birds were identified less than 300 m from their initial capture locations at their respective elevation, despite previous studies documentingca30% captivity-related reduction of the hippocampus. Reproductive success of birds that spent six months in captivity did not differ from control birds that did not experience captivity. Our findings suggest that chickadees are highly site faithful and can return to their original capture location after spending time in captivity. Our results also have important implications for animal welfare practices as birds held in captivity bred successfully and may not need to be sacrificed following captivity.
Collapse
Affiliation(s)
- Carrie L. Branch
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89554, USA
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, 1664 N. Virginia Street, Reno NV 89554, USA
| | - Dovid Y. Kozlovsky
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89554, USA
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, 1664 N. Virginia Street, Reno NV 89554, USA
| | - Rebecca Croston
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89554, USA
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, 1664 N. Virginia Street, Reno NV 89554, USA
| | - Angela Pitera
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89554, USA
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, 1664 N. Virginia Street, Reno NV 89554, USA
| | - Vladimir V. Pravosudov
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89554, USA
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, 1664 N. Virginia Street, Reno NV 89554, USA
| |
Collapse
|
31
|
Abstract
New neurons are added throughout the forebrain of adult birds. The song-control system is a model to investigate the addition of new long-projection neurons to a cortical circuit that regulates song, a learned sensorimotor behavior. Neuroblasts destined for the song nucleus HVC arise in the walls of the lateral ventricle, and wander through the pallium to reach HVC. The survival of new HVC neurons is supported by gonadally secreted testosterone and its downstream effectors including neurotrophins, vascularization, and electrical activity of postsynaptic neurons in nucleus RA (robust nucleus of the arcopallium). In seasonal species, the HVC→RA circuit degenerates in nonbreeding birds, and is reconstructed by the incorporation of new projection neurons in breeding birds. There is a functional linkage between the death of mature HVC neurons and the birth of new neurons. Various hypotheses for the function of adult neurogenesis in the song system can be proposed, but this remains an open question.
Collapse
Affiliation(s)
- Eliot A Brenowitz
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195
| | - Tracy A Larson
- Departments of Biology and Psychology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
32
|
LaDage LD. Environmental Change, the Stress Response, and Neurogenesis: Fig. 1. Integr Comp Biol 2015; 55:372-83. [DOI: 10.1093/icb/icv040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
33
|
Croston R, Branch CL, Kozlovsky DY, Roth TC, LaDage LD, Freas CA, Pravosudov VV. Potential Mechanisms Driving Population Variation in Spatial Memory and the Hippocampus in Food-caching Chickadees. Integr Comp Biol 2015; 55:354-71. [DOI: 10.1093/icb/icv029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
34
|
Balthazart J, Ball GF. Endogenous versus exogenous markers of adult neurogenesis in canaries and other birds: advantages and disadvantages. J Comp Neurol 2014; 522:4100-20. [PMID: 25131458 DOI: 10.1002/cne.23661] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/17/2014] [Accepted: 08/04/2014] [Indexed: 02/03/2023]
Abstract
Although the existence of newborn neurons had originally been suggested, but not broadly accepted, based on studies in adult rodent brains, the presence of an active neurogenesis process in adult homoeothermic vertebrates was first firmly established in songbirds. Adult neurogenesis was initially studied with the tritiated thymidine technique, later replaced by the injection and detection of the marker of DNA replication 5-bromo-2'-deoxyuridine (BrdU). More recently, various endogenous markers were used to identify young neurons or cycling neuronal progenitors. We review here the respective advantages and pitfalls of these different approaches in birds, with specific reference to the microtubule-associated protein, doublecortin (DCX), that has been extensively used to identify young newly born neurons in adult brains. All these techniques of course have limitations. Exogenous markers label cells replicating their DNA only during a brief period and it is difficult to select injection doses that would exhaustively label all these cells without inducing DNA damage that will also result in some form of labeling during repair. On the other hand, specificity of endogenous markers is difficult to establish due to problems related to the specificity of antibodies (these problems can be, but are not always, addressed) and more importantly because it is difficult, if not impossible, to prove that a given marker exhaustively and specifically labels a given cell population. Despite these potential limitations, these endogenous markers and DCX staining in particular clearly represent a useful approach to the detailed study of neurogenesis especially when combined with other techniques such as BrdU.
Collapse
|
35
|
Hall ZJ, Delaney S, Sherry DF. Inhibition of cell proliferation in black-capped chickadees suggests a role for neurogenesis in spatial learning. Dev Neurobiol 2014; 74:1002-10. [DOI: 10.1002/dneu.22180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Zachary J. Hall
- Department of Biology; University of Western Ontario; London Ontario Canada N6A 5B7
- Advanced Facility for Avian Research; University of Western Ontario; London Ontario Canada N6G 1G9
| | - Shauna Delaney
- Advanced Facility for Avian Research; University of Western Ontario; London Ontario Canada N6G 1G9
- Department of Psychology; University of Western Ontario; London Ontario Canada N6A 5C2
| | - David F. Sherry
- Department of Biology; University of Western Ontario; London Ontario Canada N6A 5B7
- Advanced Facility for Avian Research; University of Western Ontario; London Ontario Canada N6G 1G9
- Department of Psychology; University of Western Ontario; London Ontario Canada N6A 5C2
| |
Collapse
|
36
|
Vellema M, Hertel M, Urbanus SL, Van der Linden A, Gahr M. Evaluating the predictive value of doublecortin as a marker for adult neurogenesis in canaries (Serinus canaria). J Comp Neurol 2014; 522:1299-315. [DOI: 10.1002/cne.23476] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Michiel Vellema
- Department of Behavioural Neurobiology; Max Planck Institute for Ornithology; D-82319 Seewiesen Germany
- Bio-Imaging Lab; University of Antwerp; B-2020 Antwerp Belgium
| | - Moritz Hertel
- Department of Behavioural Neurobiology; Max Planck Institute for Ornithology; D-82319 Seewiesen Germany
| | - Susan L. Urbanus
- Institute of Genetics; University of Munich; D-82152 Martinsried Germany
| | | | - Manfred Gahr
- Department of Behavioural Neurobiology; Max Planck Institute for Ornithology; D-82319 Seewiesen Germany
| |
Collapse
|
37
|
Hall ZJ, Bauchinger U, Gerson AR, Price ER, Langlois LA, Boyles M, Pierce B, McWilliams SR, Sherry DF, Macdougall-Shackleton SA. Site-specific regulation of adult neurogenesis by dietary fatty acid content, vitamin E and flight exercise in European starlings. Eur J Neurosci 2013; 39:875-882. [PMID: 24372878 DOI: 10.1111/ejn.12456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/16/2013] [Indexed: 12/19/2022]
Abstract
Exercise is known to have a strong effect on neuroproliferation in mammals ranging from rodents to humans. Recent studies have also shown that fatty acids and other dietary supplements can cause an upregulation of neurogenesis. It is not known, however, how exercise and diet interact in their effects on adult neurogenesis. We examined neuronal recruitment in multiple telencephalic sites in adult male European starlings (Sturnus vulgaris) exposed to a factorial combination of flight exercise, dietary fatty acids and antioxidants. Experimental birds were flown in a wind tunnel following a training regime that mimicked the bird's natural flight behaviour. In addition to flight exercise, we manipulated the composition of dietary fatty acids and the level of enrichment with vitamin E, an antioxidant reported to enhance neuronal recruitment. We found that all three factors - flight exercise, fatty acid composition and vitamin E enrichment - regulate neuronal recruitment in a site-specific manner. We also found a robust interaction between flight training and vitamin E enrichment at multiple sites of neuronal recruitment. Specifically, flight training was found to enhance neuronal recruitment across the telencephalon, but only in birds fed a diet with a low level of vitamin E. Conversely, dietary enrichment with vitamin E upregulated neuronal recruitment, but only in birds not flown in the wind tunnel. These findings indicate conserved modulation of adult neurogenesis by exercise and diet across vertebrate taxa and indicate possible therapeutic interventions in disorders characterized by reduced adult neurogenesis.
Collapse
Affiliation(s)
- Zachary J Hall
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pan Y, Li M, Yi X, Zhao Q, Lieberwirth C, Wang Z, Zhang Z. Scatter hoarding and hippocampal cell proliferation in Siberian chipmunks. Neuroscience 2013; 255:76-85. [PMID: 24121131 DOI: 10.1016/j.neuroscience.2013.09.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/10/2013] [Accepted: 09/26/2013] [Indexed: 01/02/2023]
Abstract
Food hoarding, especially scatter hoarding and retrieving food caches, requires spatial learning and memory and is an adaptive behavior important for an animal's survival and reproductive success. In the present study, we examined the effects of hoarding behavior on cell proliferation and survival in the hippocampus of male and female Siberian chipmunks (Tamias sibiricus). We found that chipmunks in a semi-natural enclosure displayed hoarding behavior with large individual variations. Males ate more scatter-hoarded seeds than females. In addition, the display of hoarding behavior was associated with increased cell proliferation in the hippocampus and this increase occurred in a brain region-specific manner. These data provide further evidence to support the notion that new cells in the adult hippocampus are affected by learning and memory tasks and may play an important role in adaptive behavior.
Collapse
Affiliation(s)
- Y Pan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China
| | | | | | | | | | | | | |
Collapse
|
39
|
Powers AS. Adult Neurogenesis in Mammals and Nonmammals. BRAIN, BEHAVIOR AND EVOLUTION 2013; 81:206-8. [DOI: 10.1159/000350932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Freas C, Bingman K, LaDage L, Pravosudov V. Untangling Elevation-Related Differences in the Hippocampus in Food-Caching Mountain Chickadees: The Effect of a Uniform Captive Environment. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:199-209. [DOI: 10.1159/000355503] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022]
|
41
|
Distribution and characterization of doublecortin-expressing cells and fibers in the brain of the adult pigeon (Columba livia). J Chem Neuroanat 2013; 47:57-70. [DOI: 10.1016/j.jchemneu.2012.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 01/03/2023]
|
42
|
Pravosudov VV, Roth TC, Forister ML, Ladage LD, Kramer R, Schilkey F, van der Linden AM. Differential hippocampal gene expression is associated with climate-related natural variation in memory and the hippocampus in food-caching chickadees. Mol Ecol 2012. [PMID: 23205699 DOI: 10.1111/mec.12146] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is significant and often heritable variation in cognition and its underlying neural mechanisms, yet specific genetic contributions to such variation are not well characterized. Black-capped chickadees present a good model to investigate the genetic basis of cognition because they exhibit tremendous climate-related variation in memory, hippocampal morphology and neurogenesis rates throughout the North American continent, and these cognitive traits appear to have a heritable basis. We examined the hippocampal transcriptome profiles of laboratory-reared chickadees from the two most divergent populations to test whether differential gene expression in the hippocampus is associated with population differences in spatial memory, hippocampal morphology and adult hippocampal neurogenesis rates. Using high-resolution mRNA sequencing coupled to a de novo transcriptome assembly, we generated 23 295 consensus sequences, which predicted 16 206 protein sequences with 13 982 showing high similarity to known protein sequences or conserved hypothetical proteins in other species. Of these, we identified differential expression in nearly 380 genes, with 47 genes specifically linked to neurogenesis, apoptosis, synaptic function, and learning and memory processes. Many of the other differentially expressed genes, however, may be associated with other functions. Our study presents the first avian hippocampal transcriptome, and it is the first study identifying differential gene expression associated with natural variation in cognition and the hippocampus. Our results provide additional support to the hypothesis that population differences in memory, hippocampal morphology and neurogenesis in chickadees have likely resulted from natural selection that appears to act on memory and its underlying neural mechanisms.
Collapse
Affiliation(s)
- V V Pravosudov
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Roth TC, Gallagher CM, LaDage LD, Pravosudov VV. Variation in brain regions associated with fear and learning in contrasting climates. BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:181-90. [PMID: 22286546 DOI: 10.1159/000335421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/25/2011] [Indexed: 12/25/2022]
Abstract
In environments where resources are difficult to obtain and enhanced cognitive capabilities might be adaptive, brain structures associated with cognitive traits may also be enhanced. In our previous studies, we documented a clear and significant relationship among environmental conditions, memory and hippocampal structure using ten populations of black-capped chickadees (Poecile atricapillus) over a large geographic range. In addition, focusing on just the two populations from the geographical extremes of our large-scale comparison, Alaska and Kansas, we found enhanced problem-solving capabilities and reduced neophobia in a captive-raised population of black-capped chickadees originating from the energetically demanding environment (Alaska) relative to conspecifics from the milder environment (Kansas). Here, we focused on three brain regions, the arcopallium (AP), the nucleus taeniae of the amygdala and the lateral striatum (LSt), that have been implicated to some extent in aspects of these behaviors in order to investigate whether potential differences in these brain areas may be associated with our previously detected differences in cognition. We compared the variation in neuron number and volumes of these regions between these populations, in both wild-caught birds and captive-raised individuals. Consistent with our behavioral observations, wild-caught birds from Kansas had a larger AP volume than their wild-caught conspecifics from Alaska, which possessed a higher density of neurons in the LSt. However, there were no other significant differences between populations in the wild-caught and captive-raised groups. Interestingly, individuals from the wild had larger LSt and AP volumes with more neurons than those raised in captivity. Overall, we provide some evidence that population-related differences in problem solving and neophobia may be associated with differences in volume and neuron numbers of our target brain regions. However, the relationship is not completely clear, and our study raises numerous questions about the relationship between the brain and behavior, especially in captive animals.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Biology, University of Nevada, Reno, Nev., USA.
| | | | | | | |
Collapse
|
44
|
Chancellor LV, Roth TC, LaDage LD, Pravosudov VV. The effect of environmental harshness on neurogenesis: a large-scale comparison. Dev Neurobiol 2011; 71:246-52. [PMID: 20949526 DOI: 10.1002/dneu.20847] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Harsh environmental conditions may produce strong selection pressure on traits, such as memory, that may enhance fitness. Enhanced memory may be crucial for survival in animals that use memory to find food and, thus, particularly important in environments where food sources may be unpredictable. For example, animals that cache and later retrieve their food may exhibit enhanced spatial memory in harsh environments compared with those in mild environments. One way that selection may enhance memory is via the hippocampus, a brain region involved in spatial memory. In a previous study, we established a positive relationship between environmental severity and hippocampal morphology in food-caching black-capped chickadees (Poecile atricapillus). Here, we expanded upon this previous work to investigate the relationship between environmental harshness and neurogenesis, a process that may support hippocampal cytoarchitecture. We report a significant and positive relationship between the degree of environmental harshness across several populations over a large geographic area and (1) the total number of immature hippocampal neurons, (2) the number of immature neurons relative to the hippocampal volume, and (3) the number of immature neurons relative to the total number of hippocampal neurons. Our results suggest that hippocampal neurogenesis may play an important role in environments where increased reliance on memory for cache recovery is critical.
Collapse
Affiliation(s)
- Leia V Chancellor
- Department of Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | | | | |
Collapse
|
45
|
Androgens and estrogens synergistically regulate the expression of doublecortin and enhance neuronal recruitment in the song system of adult female canaries. J Neurosci 2011; 31:9649-57. [PMID: 21715630 DOI: 10.1523/jneurosci.0088-11.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vocal control nuclei in songbirds display seasonal changes in volume that are regulated by testosterone (T) and its androgenic (5α-dihydrotestosterone; DHT) or estrogenic (17β-estradiol; E(2)) metabolites. In male canaries, T regulates expression of the microtubule-associated protein doublecortin (DCX), a marker of neurogenesis. We examined the effect of T and its two metabolites alone or in combination on DCX expression in adult female canaries. Treatment with T or with DHT+E(2) increased HVC volume and neuron numbers as well as the total numbers of fusiform (migrating) and round (differentiating) DCX neurons in the nucleus but generally not in adjacent areas. DHT or E(2) alone did not increase these measures but increased the density of fusiform DCX cells per section. Similar results were observed in area X, although some effects did not reach significance, presumably because plasticity in X is mediated transsynaptically and follows HVC changes with some delay. There was no effect of any treatment on the total number of neurons in area X, and no change in DCX cell densities was detected in the lateral magnocellular nucleus of the anterior nidopallium, nor in other parts of the nidopallium. DHT and E(2) by themselves thus increase density of DCX cells migrating through HVC but are not sufficient in isolation to induce the recruitment of these newborn neurons in the nucleus. These effects are generally not observed in the rest of the nidopallium, implying that steroids only act on the attraction and recruitment of new neurons in HVC without having any major effects on their production at the ventricle wall.
Collapse
|
46
|
Barnea A, Pravosudov V. Birds as a model to study adult neurogenesis: bridging evolutionary, comparative and neuroethological approaches. Eur J Neurosci 2011; 34:884-907. [PMID: 21929623 PMCID: PMC3177424 DOI: 10.1111/j.1460-9568.2011.07851.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the last few decades, evidence has demonstrated that adult neurogenesis is a well-preserved feature throughout the animal kingdom. In birds, ongoing neuronal addition occurs rather broadly, to a number of brain regions. This review describes adult avian neurogenesis and neuronal recruitment, discusses factors that regulate these processes, and touches upon the question of their genetic control. Several attributes make birds an extremely advantageous model to study neurogenesis. First, song learning exhibits seasonal variation that is associated with seasonal variation in neuronal turnover in some song control brain nuclei, which seems to be regulated via adult neurogenesis. Second, food-caching birds naturally use memory-dependent behavior in learning the locations of thousands of food caches scattered over their home ranges. In comparison with other birds, food-caching species have relatively enlarged hippocampi with more neurons and intense neurogenesis, which appears to be related to spatial learning. Finally, migratory behavior and naturally occurring social systems in birds also provide opportunities to investigate neurogenesis. This diversity of naturally occurring memory-based behaviors, combined with the fact that birds can be studied both in the wild and in the laboratory, make them ideal for investigation of neural processes underlying learning. This can be done by using various approaches, from evolutionary and comparative to neuroethological and molecular. Finally, we connect the avian arena to a broader view by providing a brief comparative and evolutionary overview of adult neurogenesis and by discussing the possible functional role of the new neurons. We conclude by indicating future directions and possible medical applications.
Collapse
Affiliation(s)
- Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, PO Box 808, Ra'anana 43107, Israel.
| | | |
Collapse
|
47
|
Roth TC, LaDage LD, Freas CA, Pravosudov VV. Variation in memory and the hippocampus across populations from different climates: a common garden approach. Proc Biol Sci 2011; 279:402-10. [PMID: 21715407 DOI: 10.1098/rspb.2011.1020] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Selection for enhanced cognitive traits is hypothesized to produce enhancements to brain structures that support those traits. Although numerous studies suggest that this pattern is robust, there are several mechanisms that may produce this association. First, cognitive traits and their neural underpinnings may be fixed as a result of differential selection on cognitive function within specific environments. Second, these relationships may be the product of the selection for plasticity, where differences are produced owing to an individual's experiences in the environment. Alternatively, the relationship may be a complex function of experience, genetics and/or epigenetic effects. Using a well-studied model species (black-capped chickadee, Poecile atricapillus), we have for the first time, to our knowledge, addressed these hypotheses. We found that differences in hippocampal (Hp) neuron number, neurogenesis and spatial memory previously observed in wild chickadees persisted in hand-raised birds from the same populations, even when birds were raised in an identical environment. These findings reject the hypothesis that variation in these traits is owing solely to differences in memory-based experiences in different environments. Moreover, neuron number and neurogenesis were strikingly similar between captive-raised and wild birds from the same populations, further supporting the genetic hypothesis. Hp volume, however, did not differ between the captive-raised populations, yet was very different in their wild counterparts, supporting the experience hypothesis. Our results indicate that the production of some Hp factors may be inherited and largely independent of environmental experiences in adult life, regardless of their magnitude, in animals under high selection pressure for memory, while traits such as volume may be more plastic and modified by the environment.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | | | | | | |
Collapse
|
48
|
Dunlap KD, Silva AC, Chung M. Environmental complexity, seasonality and brain cell proliferation in a weakly electric fish, Brachyhypopomus gauderio. ACTA ACUST UNITED AC 2011; 214:794-805. [PMID: 21307066 DOI: 10.1242/jeb.051037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Environmental complexity and season both influence brain cell proliferation in adult vertebrates, but their relative importance and interaction have not been directly assessed. We examined brain cell proliferation during both the breeding and non-breeding seasons in adult male electric fish, Brachyhypopomus gauderio, exposed to three environments that differed in complexity: (1) a complex natural habitat in northern Uruguay, (2) an enriched captive environment where fish were housed socially and (3) a simple laboratory setting where fish were isolated. We injected fish with BrdU 2.5 h before sacrifice to label newborn cells. We examined the hindbrain and midbrain and quantified the density of BrdU+ cells in whole transverse sections, proliferative zones and two brain nuclei in the electrocommunication circuitry (the pacemaker nucleus and the electrosensory lateral line lobe). Season had the largest effect on cell proliferation, with fish during the breeding season having three to seven times more BrdU+ cells than those during the non-breeding season. Although the effect was smaller, fish from a natural environment had greater rates of cell proliferation than fish in social or isolated captive environments. For most brain regions, fish in social and isolated captive environments had equivalent levels of cell proliferation. However, for brain regions in the electrocommunication circuitry, group-housed fish had more cell proliferation than isolated fish, but only during the breeding season (season × environment interaction). The regionally and seasonally specific effect of social environment on cell proliferation suggests that addition of new cells to these nuclei may contribute to seasonal changes in electrocommunication behavior.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA.
| | | | | |
Collapse
|
49
|
Varela-Nallar L, Aranguiz FC, Abbott AC, Slater PG, Inestrosa NC. Adult hippocampal neurogenesis in aging and Alzheimer's disease. ACTA ACUST UNITED AC 2010; 90:284-96. [DOI: 10.1002/bdrc.20193] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Fox RA, Roth TC, LaDage LD, Pravosudov VV. No effect of social group composition or size on hippocampal formation morphology and neurogenesis in mountain chickadees (Poecile gambeli). Dev Neurobiol 2010; 70:538-47. [PMID: 20336697 DOI: 10.1002/dneu.20795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Brain plasticity and adult neurogenesis may play a role in many ecologically important processes including mate recognition, song learning and production, and spatial memory processing. In a number of species, both physical and social environments appear to influence attributes (e.g., volume, neuron number, and neurogenesis) of particular brain regions. The hippocampus in particular is well known to be especially sensitive to such changes. Although social grouping in many taxa includes the formation of male and female pairs, most studies of the relationship between social environment and the hippocampus have typically considered only solitary animals and those living in same-sex groups. Thus, the aim of this study was to compare the volume of the hippocampal formation, the total number of hippocampal neurons, and the number of immature neurons in the hippocampus (as determined by doublecortin expression) in mountain chickadees (Poecile gambeli) housed in groups of males and females, male-female pairs, same sex pairs of either males or females, and as solitary individuals. The different groups were visually and physically, but not acoustically, isolated from each other. We found no significant differences between any of our groups in hippocampal volume, the total number of hippocampal neurons, or the number of immature neurons. Our results thus provided no support to the hypothesis that social group composition and/or size have an effect on hippocampal morphology and neurogenesis.
Collapse
Affiliation(s)
- Rebecca A Fox
- Department of Biology, University of Nevada, Reno, Nevada, USA.
| | | | | | | |
Collapse
|