1
|
Mukhopadhyay S, Halder S, Halder E, Annagiri S. Restricted antennal movement impacts the tandem running dynamics in a ponerine ant. BMC Ecol Evol 2024; 24:82. [PMID: 38872087 DOI: 10.1186/s12862-024-02267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Tandem running is a recruitment method found in some species of ants where one ant follows another ant to reach a destination having maintained a physical contact with its antennae, throughout the journey. It is considered that the exchange of information regarding the destination among the nestmates happened during the process of tandem running. We examined the impact of restricting antennal movement on tandem running by using Diacamma indicum, a tandem-running ponerine ant by following 480 tandem runs across 9 treatment colonies and comparing it with 10 control relocating colonies. RESULT Though all the 19 colonies relocated successfully, treatment colonies took significantly longer time to do so. Restricted antennal movement did not influence the ability to become tandem leaders, initiate tandem runs or the work organization significantly. However, antennae-restricted ants performed fewer tandem runs and took significantly longer time. Followers with single or both antennae-restriction performed significantly higher number of interruptions and the alignment between the leader and follower was impacted as antenna-restricted followers subtended a greater angle and walked more to the side of the leader as compared to the control followers. CONCLUSION This study showed unhindered movement of the followers' antennae is important for tandem-running ants. In the next step, to gain a comprehensive understanding of this recruitment method, it is essential to individually delineate different sensory modalities.
Collapse
Affiliation(s)
- Snigdha Mukhopadhyay
- Behaviour and Ecology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- Laboratoire d'Ethologie Expérimentale et Comparée, Université Sorbonne Paris Nord, Villetaneuse, 93430, France
| | - Subhashis Halder
- Behaviour and Ecology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Eshika Halder
- Behaviour and Ecology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Sumana Annagiri
- Behaviour and Ecology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
2
|
Ogawa Y, Jones L, Ryan LA, Robson SKA, Hart NS, Narendra A. Physiological properties of the visual system in the Green Weaver ant, Oecophylla smaragdina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023:10.1007/s00359-023-01629-7. [PMID: 37055584 DOI: 10.1007/s00359-023-01629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
The Green Weaver ants, Oecophylla smaragdina are iconic animals known for their extreme cooperative behaviour where they bridge gaps by linking to each other to build living chains. They are visually oriented animals, build chains towards closer targets, use celestial compass cues for navigation and are visual predators. Here, we describe their visual sensory capacity. The major workers of O. smaragdina have more ommatidia (804) in each eye compared to minor workers (508), but the facet diameters are comparable between both castes. We measured the impulse responses of the compound eye and found their response duration (42 ms) was similar to that seen in other slow-moving ants. We determined the flicker fusion frequency of the compound eye at the brightest light intensity to be 132 Hz, which is relatively fast for a walking insect suggesting the visual system is well suited for a diurnal lifestyle. Using pattern-electroretinography we identified the compound eye has a spatial resolving power of 0.5 cycles deg-1 and reached peak contrast sensitivity of 2.9 (35% Michelson contrast threshold) at 0.05 cycles deg-1. We discuss the relationship of spatial resolution and contrast sensitivity, with number of ommatidia and size of the lens.
Collapse
Affiliation(s)
- Yuri Ogawa
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, 5001, Australia
| | - Lochlan Jones
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, 4814, Australia
| | - Laura A Ryan
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Simon K A Robson
- College of Science and Sustainability, CQ University Australia, Townsville, QLD, 4812, Australia
| | - Nathan S Hart
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ajay Narendra
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
3
|
Jean‐Guillaume CB, Kumar JP. Development of the ocellar visual system in Drosophila melanogaster. FEBS J 2022; 289:7411-7427. [PMID: 35490409 PMCID: PMC9805374 DOI: 10.1111/febs.16468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 01/14/2023]
Abstract
The adult visual system of the fruit fly, Drosophila melanogaster, contains seven eyes-two compound eyes, a pair of Hofbauer-Buchner eyelets, and three ocelli. Each of these eye types has a specialized and essential role to play in visual and/or circadian behavior. As such, understanding how each is specified, patterned, and wired is of primary importance to vision biologists. Since the fruit fly is amenable to manipulation by an enormous array of genetic and molecular tools, its development is one of the best and most studied model systems. After more than a century of experimental investigations, our understanding of how each eye type is specified and patterned is grossly uneven. The compound eye has been the subject of several thousand studies; thus, our knowledge of its development is the deepest. By comparison, very little is known about the specification and patterning of the other two visual systems. In this Viewpoint article, we will describe what is known about the function and development of the Drosophila ocelli.
Collapse
|
4
|
Abstract
Ants are ecologically one of the most important groups of insects and exhibit impressive capabilities for visual learning and orientation. Studies on numerous ant species demonstrate that ants can learn to discriminate between different colours irrespective of light intensity and modify their behaviour accordingly. However, the findings across species are variable and inconsistent, suggesting that our understanding of colour vision in ants and what roles ecological and phylogenetic factors play is at an early stage. This review provides a brief synopsis of the critical findings of the past century of research by compiling studies that address molecular, physiological and behavioural aspects of ant colour vision. With this, we aim to improve our understanding of colour vision and to gain deeper insights into the mysterious and colourful world of ants. This article is part of the theme issue ‘Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods’.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Biology, Lund Vision Group, University of Lund, 223 62 Lund, Sweden
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Sanderring 2, 97070 Würzburg, Germany
| |
Collapse
|
5
|
Stöckl AL, Foster JJ. Night skies through animals' eyes-Quantifying night-time visual scenes and light pollution as viewed by animals. Front Cell Neurosci 2022; 16:984282. [PMID: 36274987 PMCID: PMC9582234 DOI: 10.3389/fncel.2022.984282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
A large proportion of animal species enjoy the benefits of being active at night, and have evolved the corresponding optical and neural adaptations to cope with the challenges of low light intensities. However, over the past century electric lighting has introduced direct and indirect light pollution into the full range of terrestrial habitats, changing nocturnal animals' visual worlds dramatically. To understand how these changes affect nocturnal behavior, we here propose an animal-centered analysis method based on environmental imaging. This approach incorporates the sensitivity and acuity limits of individual species, arriving at predictions of photon catch relative to noise thresholds, contrast distributions, and the orientation cues nocturnal species can extract from visual scenes. This analysis relies on just a limited number of visual system parameters known for each species. By accounting for light-adaptation in our analysis, we are able to make more realistic predictions of the information animals can extract from nocturnal visual scenes under different levels of light pollution. With this analysis method, we aim to provide context for the interpretation of behavioral findings, and to allow researchers to generate specific hypotheses for the behavior of nocturnal animals in observed light-polluted scenes.
Collapse
Affiliation(s)
- Anna Lisa Stöckl
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Zukunftskolleg, Universität Konstanz, Konstanz, Germany
| | - James Jonathan Foster
- Department of Biology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Nocturnal Myrmecia ants have faster temporal resolution at low light levels but lower adaptability compared to diurnal relatives. iScience 2022; 25:104134. [PMID: 35402879 PMCID: PMC8991095 DOI: 10.1016/j.isci.2022.104134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Nocturnal insects likely have evolved distinct physiological adaptations to enhance sensitivity for tasks, such as catching moving prey, where the signal-noise ratio of visual information is typically low. Using electroretinogram recordings, we measured the impulse response and the flicker fusion frequency (FFF) in six congeneric species of Myrmecia ants with different diurnal rhythms. The FFF, which measures the ability of an eye to respond to a flickering light, is significantly lower in nocturnal ants (∼125 Hz) compared to diurnal ants (∼189 Hz). However, the nocturnal ants have faster eyes at very low light intensities than the diurnal species. During the day, nocturnal ants had slower impulse responses than their diurnal counterparts. However, at night, both latency and duration significantly shortened in nocturnal species. The characteristics of the impulse responses varied substantially across all six species and did not correlate well with the measured flicker fusion frequency. Flicker fusion frequency is lower in nocturnal ants compared to diurnal ants Latency and duration of the impulse response shorten at night in nocturnal ants In ants, the FFF is not predicted by the measured impulse response characteristics
Collapse
|
7
|
Polidori C, Piwczynski M, Ronchetti F, Johnston NP, Szpila K. Host-trailing satellite flight behaviour is associated with greater investment in peripheral visual sensory system in miltogrammine flies. Sci Rep 2022; 12:2773. [PMID: 35177753 PMCID: PMC8854417 DOI: 10.1038/s41598-022-06704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Insect sensory systems are the subjects of different selective pressures that shape their morphology. In many species of the flesh fly subfamily Miltogramminae (Diptera: Sarcophagidae) that are kleptoparasitic on bees and wasps, females perch on objects close to the host nests and, once a returning host is detected, they follow it in flight at a fixed distance behind until reaching the nest. We hypothesized that such satellite (SAT) flight behaviour, which implies a finely coordinated trailing flight, is associated with an improved visual system, compared to species adopting other, non-satellite (NON-SAT) strategies. After looking at body size and common ancestry, we found that SAT species have a greater number of ommatidia and a greater eye surface area when compared to NON-SAT species. Ommatidium area is only affected by body size, suggesting that selection changes disproportionately (relative to body size variation) the number of ommatidia and as a consequence the eye area, instead of ommatidium size. SAT species also tend to have larger ocelli, but their role in host-finding was less clear. This suggests that SAT species may have a higher visual acuity by increasing ommatidia number, as well as better stability during flight and motion perception through larger ocelli. Interestingly, antennal length was significantly reduced in SAT species, and ommatidia number negatively correlated with antennal length. While this finding does not imply a selection pressure of improved antennal sensory system in species adopting NON-SAT strategies, it suggests an inverse resource (i.e. a single imaginal disc) allocation between eyes and antennae in this fly subfamily.
Collapse
Affiliation(s)
- Carlo Polidori
- Dipartimento di Scienze e Politiche Ambientali, Università Degli Studi di Milano, via Celoria 26, 20133, Milan, Italy.
| | - Marcin Piwczynski
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| | - Federico Ronchetti
- Department of Animal Ecology and Tropical Biology, University of Wuerzburg, Hubland Nord, 97074, Würzburg, Germany
| | - Nikolas P Johnston
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Krzysztof Szpila
- Department of Ecology and Biogeography, Nicolaus Copernicus University, Lwowska 1, 87-100, Toruń, Poland
| |
Collapse
|
8
|
Islam M, Deeti S, Murray T, Cheng K. What view information is most important in the homeward navigation of an Australian bull ant, Myrmecia midas? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:545-559. [PMID: 36048246 PMCID: PMC9734209 DOI: 10.1007/s00359-022-01565-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Many insects orient by comparing current panoramic views of their environment to memorised views. We tested the navigational abilities of night-active Myrmecia midas foragers while we blocked segments of their visual panorama. Foragers failed to orient homewards when the front view, lower elevations, entire terrestrial surround, or the full panorama was blocked. Initial scanning increased whenever the visual panorama was blocked but scanning only increased along the rest of the route when the front, back, higher, or lower elevations were blocked. Ants meandered more when the front, the back, or the higher elevations were obscured. When everything except the canopy was blocked, the ants were quick and direct, but moved in random directions, as if to escape. We conclude that a clear front view, or a clear lower panorama is necessary for initial homeward headings. Furthermore, the canopy is neither necessary nor sufficient for homeward initial heading, and the back and upper segments of views, while not necessary, do make finding home easier. Discrepancies between image analysis and ant behaviour when the upper and lower views were blocked suggests that ants are selective in what portions of the scene they attend to or learn.
Collapse
Affiliation(s)
- Muzahid Islam
- grid.1004.50000 0001 2158 5405School of Natural Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Sudhakar Deeti
- grid.1004.50000 0001 2158 5405School of Natural Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Trevor Murray
- grid.1004.50000 0001 2158 5405School of Natural Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Ken Cheng
- grid.1004.50000 0001 2158 5405School of Natural Sciences, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|
9
|
Perl CD, Johansen ZB, Jie VW, Moradinour Z, Guiraud M, Restrepo CE, Miettinen A, Baird E. Substantial variability in morphological scaling among bumblebee colonies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211436. [PMID: 35242346 PMCID: PMC8753140 DOI: 10.1098/rsos.211436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Differences in organ scaling among individuals may play an important role in determining behavioural variation. In social insects, there are well-documented intraspecific differences in colony behaviour, but the extent that organ scaling differs within and between colonies remains unclear. Using 12 different colonies of the bumblebee Bombus terrestris, we aim to address this knowledge gap by measuring the scaling relationships between three different organs (compound eyes, wings and antennae) and body size in workers. Though colonies were exposed to different rearing temperatures, this environmental variability did not explain the differences of the scaling relationships. Two colonies had differences in wing versus antenna slopes, three colonies showed differences in wing versus eye slopes and a single colony has differences between eye versus antenna slopes. There are also differences in antennae scaling slopes between three different colonies, and we present evidence for putative trade-offs in morphological investment. We discuss the utility of having variable scaling among colonies and the implication for understanding variability in colony fitness and behaviour.
Collapse
Affiliation(s)
- C. D. Perl
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
- Department of Biology, Lund University, Lund 223 62, Sweden
| | - Z. B. Johansen
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - V. W. Jie
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - Z. Moradinour
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - M. Guiraud
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - C. E. Restrepo
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
| | - A. Miettinen
- Swiss Light Source, Paul Scherrer Institute, 5234 Villigen, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, 8092 Zurich, Switzerland
| | - E. Baird
- Department of Zoology, Stockholm University, Stockholm 106 91, Sweden
- Department of Biology, Lund University, Lund 223 62, Sweden
| |
Collapse
|
10
|
Godfrey RK, Oberski JT, Allmark T, Givens C, Hernandez-Rivera J, Gronenberg W. Olfactory System Morphology Suggests Colony Size Drives Trait Evolution in Odorous Ants (Formicidae: Dolichoderinae). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.733023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In social insects colony fitness is determined in part by individual worker phenotypes. Across ant species, colony size varies greatly and is thought to affect worker trait variation in both proximate and ultimate ways. Little is known about the relationship between colony size and worker trait evolution, but hypotheses addressing the role of social structure in brain evolution suggest workers of small-colony species may have larger brains or larger brain regions necessary for complex behaviors. In previous work on odorous ants (Formicidae: Dolichoderinae) we found no correlation between colony size and these brain properties, but found that relative antennal lobe size scaled negatively with colony size. Therefore, we now test whether sensory systems scale with colony size, with particular attention to olfactory components thought to be involved in nestmate recognition. Across three species of odorous ants, Forelius mccooki, Dorymyrmex insanus, and D. bicolor, which overlap in habitat and foraging ecology but vary in colony size, we compare olfactory sensory structures, comparing those thought to be involved in nestmate recognition. We use the visual system, a sensory modality not as important in social communication in ants, as a control comparison. We find that body size scaling largely explains differences in eye size, antennal length, antennal sensilla density, and total number of olfactory glomeruli across these species. However, sensilla basiconica and olfactory glomeruli in the T6 cluster of the antennal lobe, structures known to be involved in nestmate recognition, do not follow body size scaling observed for other structures. Instead, we find evidence from the closely related Dorymyrmex species that the larger colony species, D. bicolor, invests more in structures implicated in nestmate recognition. To test for functional consequences, we compare nestmate and non-nestmate interactions between these two species and find D. bicolor pairs of either type engage in more interactions than D. insaus pairs. Thus, we do not find evidence supporting a universal pattern of sensory system scaling associated with changes in colony size, but hypothesize that observed differences in the olfactory components in two closely related Dorymyrmex species are evidence of a link between colony size and sensory trait evolution.
Collapse
|
11
|
Penmetcha B, Ogawa Y, Ryan LA, Hart NS, Narendra A. Ocellar spatial vision in Myrmecia ants. J Exp Biol 2021; 224:272224. [PMID: 34542631 DOI: 10.1242/jeb.242948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
In addition to compound eyes, insects possess simple eyes known as ocelli. Input from the ocelli modulates optomotor responses, flight-time initiation, and phototactic responses - behaviours that are mediated predominantly by the compound eyes. In this study, using pattern electroretinography (pERG), we investigated the contribution of the compound eyes to ocellar spatial vision in the diurnal Australian bull ant Myrmecia tarsata by measuring the contrast sensitivity and spatial resolving power of the ocellar second-order neurons under various occlusion conditions. Furthermore, in four species of Myrmecia ants active at different times of the day, and in European honeybee Apis mellifera, we characterized the ocellar visual properties when both visual systems were available. Among the ants, we found that the time of activity had no significant effect on ocellar spatial vision. Comparing day-active ants and the honeybee, we did not find any significant effect of locomotion on ocellar spatial vision. In M. tarsata, when the compound eyes were occluded, the amplitude of the pERG signal from the ocelli was reduced 3 times compared with conditions when the compound eyes were available. The signal from the compound eyes maintained the maximum contrast sensitivity of the ocelli as 13 (7.7%), and the spatial resolving power as 0.29 cycles deg-1. We conclude that ocellar spatial vison improves significantly with input from the compound eyes, with a noticeably larger improvement in contrast sensitivity than in spatial resolving power.
Collapse
Affiliation(s)
- Bhavana Penmetcha
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yuri Ogawa
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Laura A Ryan
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
12
|
Boudinot BE, Moosdorf OTD, Beutel RG, Richter A. Anatomy and evolution of the head of Dorylus helvolus (Formicidae: Dorylinae): Patterns of sex- and caste-limited traits in the sausagefly and the driver ant. J Morphol 2021; 282:1616-1658. [PMID: 34427942 DOI: 10.1002/jmor.21410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/21/2022]
Abstract
Ants are highly polyphenic Hymenoptera, with at least three distinct adult forms in the vast majority of species. Their sexual dimorphism, however, is overlooked to the point of being a nearly forgotten phenomenon. Using a multimodal approach, we interrogate the near total head microanatomy of the male of Dorylus helvolus, the "sausagefly," and compare it with the conspecific or near-conspecific female castes, the "driver ants." We found that no specific features were shared uniquely between the workers and males to the exclusion of the queens, indicating independence of male and worker development; males and queens, however, uniquely shared several features. Certain previous generalizations about ant sexual dimorphism are confirmed, while we also discover discrete muscular presences and absences, for which reason we provide a coarse characterization of functional morphology. Based on the unexpected retention of a medial carinate line on the structurally simplified mandible of the male, we postulate a series of developmental processes to explain the patterning of ant mandibles. We invoke functional and anatomical principles to classify sensilla. Critically, we observe an inversion of the expected pattern of male-queen mandible development: male Dorylus mandibles are extremely large while queen mandibles are poorly developed. To explain this, we posit that the reproductive-limited mandible phenotype is canalized in Dorylus, thus partially decoupling the queen and worker castes. We discuss alternative hypotheses and provide further comparisons to understand mandibular evolution in army ants. Furthermore, we hypothesize that the expression of the falcate phenotype in the queen is coincidental, that is, a "spandrel," and that the form of male mandibles is also generally coincidental across the ants. We conclude that the theory of ant development and evolution is incomplete without consideration of the male system, and we call for focused study of male anatomy and morphogenesis, and of trait limitation across all castes.
Collapse
Affiliation(s)
- Brendon Elias Boudinot
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| | - Olivia Tikuma Diana Moosdorf
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| | - Rolf Georg Beutel
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| | - Adrian Richter
- Friedrich-Schiller-Universität Jena, Institut für Spezielle Zoologie und Evolutionsforschung, Entomology Group, Erbertstraße, Jena, Germany
| |
Collapse
|
13
|
Mukhopadhyay S, Annagiri S. Importance of vision in tandem running during colony relocation in an Indian ant. Ethology 2021. [DOI: 10.1111/eth.13213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Snigdha Mukhopadhyay
- Behaviour and Ecology Lab Department of Biological Sciences Indian Institute of Science Education and Research Mohanpur India
| | - Sumana Annagiri
- Behaviour and Ecology Lab Department of Biological Sciences Indian Institute of Science Education and Research Mohanpur India
| |
Collapse
|
14
|
Freelance CB, Tierney SM, Rodriguez J, Stuart-Fox DM, Wong BBM, Elgar MA. The eyes have it: dim-light activity is associated with the morphology of eyes but not antennae across insect orders. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The perception of cues and signals in visual, olfactory and auditory modalities underpins all animal interactions and provides crucial fitness-related information. Sensory organ morphology is under strong selection to optimize detection of salient cues and signals in a given signalling environment, the most well-studied example being selection on eye design in different photic environments. Many dim-light active species have larger compound eyes relative to body size, but little is known about differences in non-visual sensory organ morphology between diurnal and dim-light active insects. Here, we compare the micromorphology of the compound eyes (visual receptors) and antennae (olfactory and mechanical receptors) in representative pairs of day active and dim-light active species spanning multiple taxonomic orders of insects. We find that dim-light activity is associated with larger compound eye ommatidia and larger overall eye surface area across taxonomic orders but find no evidence that morphological adaptations that enhance the sensitivity of the eye in dim-light active insects are accompanied by morphological traits of the antennae that may increase sensitivity to olfactory, chemical or physical stimuli. This suggests that the ecology and natural history of species is a stronger driver of sensory organ morphology than is selection for complementary investment between sensory modalities.
Collapse
Affiliation(s)
| | - Simon M Tierney
- School of BioSciences, The University of Melbourne, Victoria, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia
| | - Juanita Rodriguez
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Devi M Stuart-Fox
- School of BioSciences, The University of Melbourne, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Mark A Elgar
- School of BioSciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Global View on Ant Venom Allergy: from Allergenic Components to Clinical Management. Clin Rev Allergy Immunol 2021; 62:123-144. [PMID: 34075569 DOI: 10.1007/s12016-021-08858-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/21/2022]
Abstract
Hymenoptera venom allergy is characterised by systemic anaphylactic reactions that occur in response to stings from members of the Hymenoptera order. Stinging by social Hymenoptera such as ants, honeybees, and vespids is one of the 3 major causes of anaphylaxis; along with food and drug exposure, it accounts for up to 43% of anaphylaxis cases and 20% of anaphylaxis-related fatalities. Despite their recognition as being of considerable public health significance, stinging ant venoms are relatively unexplored in comparison to other animal venoms and may be overlooked as a cause of venom allergy. Indeed, the venoms of stinging ants may be the most common cause of anaphylaxis in ant endemic areas. A better understanding of the natural history of venom allergy caused by stinging ants, their venom components, and the management of ant venom allergy is therefore required. This article provides a global view on allergic reactions to the venoms of stinging ants and the contemporary approach to diagnose and manage ant venom allergy.
Collapse
|
16
|
Constantino PB, Valentinuzzi VS, Helene AF. Division of labor in work shifts by leaf-cutting ants. Sci Rep 2021; 11:8737. [PMID: 33888758 PMCID: PMC8062660 DOI: 10.1038/s41598-021-88005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 08/31/2020] [Indexed: 11/09/2022] Open
Abstract
Foraging rhythms in eusocial insects are determined by the colony´s overall pattern. However, in leaf-cutting ant workers, individual rhythms are not fully synchronized with the colonies' rhythm. The colony as a whole is nocturnal, since most worker activity takes place at night; however some workers forage during the day. Previous studies in individualized ants suggest nocturnal and diurnal workers coexistence. Here observations within the colony, in leaf-cutting ants, showed that workers have differential foraging time preference, which interestingly is associated to body size and differential leaf transportation engagement. Nocturnal ants are smaller and less engaged in leaf transportation whereas diurnal ants are bigger and more engaged in leaf carriage. Mechanisms underlying division of labor in work shifts in ants are still unknown but much can be extrapolated from honeybees; another social system bearing a similar pattern. A collective organization like this favors constant exploitation of food sources while preserving natural individual rhythm patterns, which arise from individual differences, and thermal tolerance, given by the size polymorphism presented by this species.
Collapse
Affiliation(s)
- Pedro B Constantino
- Department of Physiology, Instituto de Biociências da Universidade de São Paulo (IB-USP), São Paulo, SP, 05508-090, Brazil.
| | - Veronica S Valentinuzzi
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina
| | - André F Helene
- Department of Physiology, Instituto de Biociências da Universidade de São Paulo (IB-USP), São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
17
|
Kócsi Z, Murray T, Dahmen H, Narendra A, Zeil J. The Antarium: A Reconstructed Visual Reality Device for Ant Navigation Research. Front Behav Neurosci 2020; 14:599374. [PMID: 33240057 PMCID: PMC7683616 DOI: 10.3389/fnbeh.2020.599374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
We constructed a large projection device (the Antarium) with 20,000 UV-Blue-Green LEDs that allows us to present tethered ants with views of their natural foraging environment. The ants walk on an air-cushioned trackball, their movements are registered and can be fed back to the visual panorama. Views are generated in a 3D model of the ants’ environment so that they experience the changing visual world in the same way as they do when foraging naturally. The Antarium is a biscribed pentakis dodecahedron with 55 facets of identical isosceles triangles. The length of the base of the triangles is 368 mm resulting in a device that is roughly 1 m in diameter. Each triangle contains 361 blue/green LEDs and nine UV LEDs. The 55 triangles of the Antarium have 19,855 Green and Blue pixels and 495 UV pixels, covering 360° azimuth and elevation from −50° below the horizon to +90° above the horizon. The angular resolution is 1.5° for Green and Blue LEDs and 6.7° for UV LEDs, offering 65,536 intensity levels at a flicker frequency of more than 9,000 Hz and a framerate of 190 fps. Also, the direction and degree of polarisation of the UV LEDs can be adjusted through polarisers mounted on the axles of rotary actuators. We build 3D models of the natural foraging environment of ants using purely camera-based methods. We reconstruct panoramic scenes at any point within these models, by projecting panoramic images onto six virtual cameras which capture a cube-map of images to be projected by the LEDs of the Antarium. The Antarium is a unique instrument to investigate visual navigation in ants. In an open loop, it allows us to provide ants with familiar and unfamiliar views, with completely featureless visual scenes, or with scenes that are altered in spatial or spectral composition. In closed-loop, we can study the behavior of ants that are virtually displaced within their natural foraging environment. In the future, the Antarium can also be used to investigate the dynamics of navigational guidance and the neurophysiological basis of ant navigation in natural visual environments.
Collapse
Affiliation(s)
- Zoltán Kócsi
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Trevor Murray
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Hansjürgen Dahmen
- Department of Cognitive Neuroscience, University of Tübingen, Tübingen, Germany
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Jochen Zeil
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
18
|
Brassard F, Francoeur A, Lessard JP. Temperature drives caste-specific morphological clines in ants. J Anim Ecol 2020; 89:2517-2530. [PMID: 32858759 DOI: 10.1111/1365-2656.13330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/31/2020] [Indexed: 11/29/2022]
Abstract
The morphology of organisms relates to most aspects of their life history and autecology. As such, elucidating the drivers of morphological variation along environmental gradients might give insight into processes limiting species distributions. In eusocial organisms, the concept of morphology is more complex than in solitary organisms. Eusocial insects such as ants exhibit drastic morphological differences between reproductive and worker castes. How environmental selection operates on the morphology of each caste, and whether caste-specific selection has fitness consequences is largely unknown, but is potentially crucial to understand what limits ant species' distributions. Here we aimed to examine whether ant shape and body size covaries with climate at the scale of an entire continent, and whether such relationship might be caste specific. We used 26,472 georeferenced morphometric measurements from 2,206 individual ants belonging to 32 closely related North American species in the genus Formica to assess how ant morphology relates to geographic variation in the abiotic environment. Although precipitation and seasonality explained some of the geographic variation in morphology, temperature was the best predictor. Specifically, geographic variation in body size was positively related to temperature, meaning that ants are smaller in cold than in warm environments. Moreover, the strength of the relationship between size and temperature was stronger for the reproductive castes (i.e. queens and males) than for the worker caste. The shape of workers and males also varied along these large-scale abiotic gradients. Specifically, the relative length of workers' legs, thoraxes and antennae positively related to temperature, meaning that they had shorter appendages in cold environments. In contrast, males had smaller heads, but larger thoraxes in more seasonal environments. Overall, our results suggest that geographic variation in ambient temperature influences the morphology of ants, but that the strength of this effect is caste specific. In conclusion, whereas ant ecology has traditionally focused on workers, our study shows that considering the ecology of the reproductive castes is imperative to move forward in this field.
Collapse
Affiliation(s)
| | - André Francoeur
- Department of Biology, University of Quebec at Chicoutimi, Chicoutimi, QC, Canada
| | | |
Collapse
|
19
|
Arganda S, Hoadley AP, Razdan ES, Muratore IB, Traniello JFA. The neuroplasticity of division of labor: worker polymorphism, compound eye structure and brain organization in the leafcutter ant Atta cephalotes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:651-662. [PMID: 32506318 DOI: 10.1007/s00359-020-01423-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/23/2020] [Accepted: 05/14/2020] [Indexed: 12/24/2022]
Abstract
Our understanding of how sensory structure design is coupled with neural processing capacity to adaptively support division of labor is limited. Workers of the remarkably polymorphic fungus-growing ant Atta cephalotes are behaviorally specialized by size: the smallest workers (minims) tend fungi in dark subterranean chambers while larger workers perform tasks outside the nest. Strong differences in worksite light conditions are predicted to influence sensory and processing requirements for vision. Analyzing confocal scans of worker eyes and brains, we found that eye structure and visual neuropils appear to have been selected to maximize task performance according to light availability. Minim eyes had few ommatidia, large interommatidial angles and eye parameter values, suggesting selection for visual sensitivity over acuity. Large workers had larger eyes with disproportionally more and larger ommatidia, and smaller interommatidial angles and eye parameter values, indicating peripheral sensory adaptation to ambient rainforest light. Optic lobes and mushroom body collars were disproportionately small in minims. Within the optic lobe, lamina and lobula relative volumes increased with worker size whereas medulla volume decreased. Visual system phenotypes thus correspond to task specializations in dark or light environments and illustrate a functional neuroplasticity underpinning division of labor in this socially complex agricultural ant.
Collapse
Affiliation(s)
- Sara Arganda
- Department of Biology, Boston University, Boston, USA.
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, 31062, Toulouse, France.
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain.
| | | | - Evan S Razdan
- Department of Biology, Boston University, Boston, USA
| | | | - James F A Traniello
- Department of Biology, Boston University, Boston, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
20
|
Ryan LA, Cunningham R, Hart NS, Ogawa Y. The buzz around spatial resolving power and contrast sensitivity in the honeybee, Apis mellifera. Vision Res 2020; 169:25-32. [PMID: 32145455 DOI: 10.1016/j.visres.2020.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 10/24/2022]
Abstract
Most animals rely on vision to perform a range of behavioural tasks and variations in the anatomy and physiology of the eye likely reflect differences in habitat and life history. Moreover, eye design represents a balance between often conflicting requirements for gathering different forms of visual information. The trade-off between spatial resolving power and contrast sensitivity is common to all visual systems, and European honeybees (Apis mellifera) present an important opportunity to better understand this trade-off. Vision has been studied extensively in A. mellifera as it is vital for foraging, navigation and communication. Consequently, spatial resolving power and contrast sensitivity in A. mellifera have been measured using several methodologies; however, there is considerable variation in estimates between methodologies. We assess pattern electroretinography (pERG) as a new method for assessing the trade-off between visual spatial and contrast information in A.mellifera. pERG has the benefit of measuring spatial contrast sensitivity from higher order visual processing neurons in the eye. Spatial resolving power of A.mellifera estimated from pERG was 0.54 cycles per degree (cpd), and contrast sensitivity was 16.9. pERG estimates of contrast sensitivity were comparable to previous behavioural studies. Estimates of spatial resolving power reflected anatomical estimates in the frontal region of the eye, which corresponds to the region stimulated by pERG. Apis mellifera has similar spatial contrast sensitivity to other hymenopteran insects with similar facet diameter (Myrmecia ant species). Our results support the idea that eye anatomy has a substantial effect on spatial contrast sensitivity in compound eyes.
Collapse
Affiliation(s)
- Laura A Ryan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.
| | - Rhianon Cunningham
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Nathan S Hart
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yuri Ogawa
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
21
|
Ocellar structure of African and Australian desert ants. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:699-706. [PMID: 31273454 DOI: 10.1007/s00359-019-01357-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
Abstract
Few walking insects possess simple eyes known as the ocelli. The role of the ocelli in walking insects such as ants has been less explored. Physiological and behavioural evidence in the desert ant, Cataglyphis bicolor, indicates that ocellar receptors are polarisation sensitive and are used to derive compass information from the pattern of polarised skylight. The ability to detect polarised skylight can also be inferred from the structure and the organisation of the ocellar retina. However, the functional anatomy of the desert ant ocelli has not been investigated. Here we characterised the anatomical organisation of the ocelli in three species of desert ants. The two congeneric species of Cataglyphis we studied had a fused rhabdom, but differed in their organisation of the retina. In Cataglyphis bicolor, each retinula cell contributed microvilli in one orientation enabling them to compare e-vector intensities. In Cataglyphis fortis, some retinula cells contributed microvilli in more than one orientation, indicating that not all cells are polarisation sensitive. The desert ant Melophorus bagoti had an unusual ocellar retina with a hexagonal or pentagonal rhabdomere arrangement forming an open rhabdom. Each retinula cell contributed microvilli in more than one orientation, making them unlikely to be polarisation detectors.
Collapse
|
22
|
Ogawa Y, Ryan LA, Palavalli-Nettimi R, Seeger O, Hart NS, Narendra A. Spatial Resolving Power and Contrast Sensitivity Are Adapted for Ambient Light Conditions in Australian Myrmecia Ants. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
23
|
Sheehan ZBV, Kamhi JF, Seid MA, Narendra A. Differential investment in brain regions for a diurnal and nocturnal lifestyle in Australian Myrmecia ants. J Comp Neurol 2019; 527:1261-1277. [PMID: 30592041 DOI: 10.1002/cne.24617] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/07/2018] [Accepted: 12/22/2018] [Indexed: 12/29/2022]
Abstract
Animals are active at different times of the day. Each temporal niche offers a unique light environment, which affects the quality of the available visual information. To access reliable visual signals in dim-light environments, insects have evolved several visual adaptations to enhance their optical sensitivity. The extent to which these adaptations reflect on the sensory processing and integration capabilities within the brain of a nocturnal insect is unknown. To address this, we analyzed brain organization in congeneric species of the Australian bull ant, Myrmecia, that rely predominantly on visual information and range from being strictly diurnal to strictly nocturnal. Weighing brains and optic lobes of seven Myrmecia species, showed that after controlling for body mass, the brain mass was not significantly different between diurnal and nocturnal ants. However, the optic lobe mass, after controlling for central brain mass, differed between day- and night-active ants. Detailed volumetric analyses showed that the nocturnal ants invested relatively less in the primary visual processing regions but relatively more in both the primary olfactory processing regions and in the integration centers of visual and olfactory sensory information. We discuss how the temporal niche occupied by each species may affect cognitive demands, thus shaping brain organization among insects active in dim-light conditions.
Collapse
Affiliation(s)
- Zachary B V Sheehan
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - J Frances Kamhi
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Marc A Seid
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.,Biology Department, Neuroscience Program, The University of Scranton, Scranton, Pennsylvania
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Brand P, Larcher V, Couto A, Sandoz JC, Ramírez SR. Sexual dimorphism in visual and olfactory brain centers in the perfume-collecting orchid bee Euglossa dilemma (Hymenoptera, Apidae). J Comp Neurol 2018; 526:2068-2077. [PMID: 30088672 PMCID: PMC6174972 DOI: 10.1002/cne.24483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 11/07/2022]
Abstract
Insect mating behavior is controlled by a diverse array of sex‐specific traits and strategies that evolved to maximize mating success. Orchid bees exhibit a unique suite of perfume‐mediated mating behaviors. Male bees collect volatile compounds from their environment to concoct species‐specific perfume mixtures that are presumably used to attract conspecific females. Despite a growing understanding of the ecology and evolution of chemical signaling in orchid bees, many aspects of the functional adaptations involved, in particular regarding sensory systems, remain unknown. Here we investigated male and female brain morphology in the common orchid bee Euglossa dilemma Bembé & Eltz. Males exhibited increased relative volumes of the Medulla, a visual brain region, which correlated with larger compound eye size (area). While the overall volume of olfactory brain regions was similar between sexes, the antennal lobes exhibited several sex‐specific structures including one male‐specific macroglomerulus. These findings reveal sexual dimorphism in both the visual and the olfactory system of orchid bees. It highlights the tendency of an increased investment in the male visual system similar to that observed in other bee lineages, and suggests that visual input may play a more important role in orchid bee male mating behavior than previously thought. Furthermore, our results suggest that the evolution of perfume communication in orchid bees did not involve drastic changes in olfactory brain morphology compared to other bee lineages.
Collapse
Affiliation(s)
- Philipp Brand
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California
| | - Virginie Larcher
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Université Paris-Sud, IRD, Université Paris Saclay, Gif-sur-Yvette, France
| | - Antoine Couto
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Université Paris-Sud, IRD, Université Paris Saclay, Gif-sur-Yvette, France
| | - Jean-Christophe Sandoz
- Evolution Genomes Behavior and Ecology, Centre National de la Recherche Scientifique, Université Paris-Sud, IRD, Université Paris Saclay, Gif-sur-Yvette, France
| | - Santiago R Ramírez
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California
| |
Collapse
|
25
|
Narendra A, Ribi WA. Ocellar structure is driven by the mode of locomotion and activity time in Myrmecia ants. ACTA ACUST UNITED AC 2018; 220:4383-4390. [PMID: 29187620 DOI: 10.1242/jeb.159392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
Insects have exquisitely adapted their compound eyes to suit the ambient light intensity in the different temporal niches they occupy. In addition to the compound eye, most flying insects have simple eyes known as ocelli, which assist in flight stabilisation, horizon detection and orientation. Among ants, typically the flying alates have ocelli while the pedestrian workers lack this structure. The Australian ant genus Myrmecia is one of the few ant genera in which both workers and alates have three ocellar lenses. Here, we studied the variation in the ocellar structure in four sympatric species of Myrmecia that are active at different times of the day. In addition, we took advantage of the walking and flying modes of locomotion in workers and males, respectively, to ask whether the type of movement influences the ocellar structure. We found that ants active in dim light had larger ocellar lenses and wider rhabdoms compared with those in bright-light conditions. In the ocellar rhabdoms of workers active in dim-light habitats, typically each retinula cell contributed microvilli in more than one direction, probably destroying polarisation sensitivity. The organisation of the ocellar retina in the day-active workers and the males suggests that in these animals some cells are sensitive to the pattern of polarised skylight. We found that the night-flying males had a tapetum that reflects light back to the rhabdom, increasing their optical sensitivity. We discuss the possible functions of ocelli to suit the different modes of locomotion and the discrete temporal niches that animals occupy.
Collapse
Affiliation(s)
- Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Willi A Ribi
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
26
|
Hunt ER, Dornan C, Sendova-Franks AB, Franks NR. Asymmetric ommatidia count and behavioural lateralization in the ant Temnothorax albipennis. Sci Rep 2018; 8:5825. [PMID: 29643429 PMCID: PMC5895843 DOI: 10.1038/s41598-018-23652-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/15/2018] [Indexed: 11/14/2022] Open
Abstract
Workers of the house-hunting ant Temnothorax albipennis rely on visual edge following and landmark recognition to navigate their rocky environment, and they also exhibit a leftward turning bias when exploring unknown nest sites. We used electron microscopy to count the number of ommatidia composing the compound eyes of workers, males and queens, to make an approximate assessment of their relative sampling resolution; and to establish whether there is an asymmetry in the number of ommatidia composing the workers' eyes, which might provide an observable, mechanistic explanation for the turning bias. We hypothesise that even small asymmetries in relative visual acuity between left and right eyes could be magnified by developmental experience into a symmetry-breaking turning preference that results in the inferior eye pointing toward the wall. Fifty-six workers were examined: 45% had more ommatidia in the right eye, 36% more in the left, and 20% an equal number. A tentative connection between relative ommatidia count for each eye and turning behaviour was identified, with a stronger assessment of behavioural lateralization before imaging and a larger sample suggested for further work. There was a clear sexual dimorphism in ommatidia counts between queens and males.
Collapse
Affiliation(s)
- Edmund R Hunt
- School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK.
| | - Ciara Dornan
- School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| | - Ana B Sendova-Franks
- Department of Engineering Design and Mathematics, University of the West of England, BS16 1QY, Bristol, UK
| | - Nigel R Franks
- School of Biological Sciences, University of Bristol, BS8 1TQ, Bristol, UK
| |
Collapse
|
27
|
Stöckl AL, O'Carroll D, Warrant EJ. Higher-order neural processing tunes motion neurons to visual ecology in three species of hawkmoths. Proc Biol Sci 2018. [PMID: 28637860 DOI: 10.1098/rspb.2017.0880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To sample information optimally, sensory systems must adapt to the ecological demands of each animal species. These adaptations can occur peripherally, in the anatomical structures of sensory organs and their receptors; and centrally, as higher-order neural processing in the brain. While a rich body of investigations has focused on peripheral adaptations, our understanding is sparse when it comes to central mechanisms. We quantified how peripheral adaptations in the eyes, and central adaptations in the wide-field motion vision system, set the trade-off between resolution and sensitivity in three species of hawkmoths active at very different light levels: nocturnal Deilephila elpenor, crepuscular Manduca sexta, and diurnal Macroglossum stellatarum. Using optical measurements and physiological recordings from the photoreceptors and wide-field motion neurons in the lobula complex, we demonstrate that all three species use spatial and temporal summation to improve visual performance in dim light. The diurnal Macroglossum relies least on summation, but can only see at brighter intensities. Manduca, with large sensitive eyes, relies less on neural summation than the smaller eyed Deilephila, but both species attain similar visual performance at nocturnal light levels. Our results reveal how the visual systems of these three hawkmoth species are intimately matched to their visual ecologies.
Collapse
Affiliation(s)
- A L Stöckl
- Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| | - D O'Carroll
- Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| | - E J Warrant
- Department of Biology, University of Lund, Sölvegatan 35, 22362 Lund, Sweden
| |
Collapse
|
28
|
Palavalli-Nettimi R, Narendra A. Miniaturisation decreases visual navigational competence in ants. J Exp Biol 2018; 221:jeb.177238. [DOI: 10.1242/jeb.177238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/15/2018] [Indexed: 12/25/2022]
Abstract
Evolution of smaller body size in a given lineage, called miniaturisation, is commonly observed in many animals including ants. It affects various morphological features and is hypothesized to result in inferior behavioural capabilities, possibly owing to smaller sensory organs. To test this hypothesis, we studied whether reduced spatial resolution of compound eyes influences obstacle detection or obstacle avoidance in five different species of ants. We trained all ant species to travel to a sugar feeder. During their return journeys, we placed an obstacle close to the nest entrance. We found that ants with higher spatial resolution exited the corridor, the area covered between either ends of the obstacle, on average 10 cm earlier suggesting they detected the obstacle earlier in their path. Ants with the lowest spatial resolution changed their viewing directions only when they were close to the obstacle. We discuss the effects of miniaturisation on visual navigational competence in ants.
Collapse
Affiliation(s)
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
29
|
Narendra A, Ramirez-Esquivel F. Subtle changes in the landmark panorama disrupt visual navigation in a nocturnal bull ant. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0068. [PMID: 28193813 DOI: 10.1098/rstb.2016.0068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 11/12/2022] Open
Abstract
The ability of ants to navigate when the visual landmark information is altered has often been tested by creating large and artificial discrepancies in their visual environment. Here, we had an opportunity to slightly modify the natural visual environment around the nest of the nocturnal bull ant Myrmecia pyriformis We achieved this by felling three dead trees, two located along the typical route followed by the foragers of that particular nest and one in a direction perpendicular to their foraging direction. An image difference analysis showed that the change in the overall panorama following the removal of these trees was relatively little. We filmed the behaviour of ants close to the nest and tracked their entire paths, both before and after the trees were removed. We found that immediately after the trees were removed, ants walked slower and were less directed. Their foraging success decreased and they looked around more, including turning back to look towards the nest. We document how their behaviour changed over subsequent nights and discuss how the ants may detect and respond to a modified visual environment in the evening twilight period.This article is part of the themed issue 'Vision in dim light'.
Collapse
Affiliation(s)
- Ajay Narendra
- Department of Biological Sciences, Macquarie University, 205 Culloden Road, Sydney, New South Wales 2109, Australia
| | - Fiorella Ramirez-Esquivel
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
30
|
Ramirez-Esquivel F, Ribi WA, Narendra A. Techniques for Investigating the Anatomy of the Ant Visual System. J Vis Exp 2017. [PMID: 29286364 DOI: 10.3791/56339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
This article outlines a suite of techniques in light microscopy (LM) and electron microscopy (EM) which can be used to study the internal and external eye anatomy of insects. These include traditional histological techniques optimized for work on ant eyes and adapted to work in concert with other techniques such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM). These techniques, although vastly useful, can be difficult for the novice microscopist, so great emphasis has been placed in this article on troubleshooting and optimization for different specimens. We provide information on imaging techniques for the entire specimen (photo-microscopy and SEM) and discuss their advantages and disadvantages. We highlight the technique used in determining lens diameters for the entire eye and discuss new techniques for improvement. Lastly, we discuss techniques involved in preparing samples for LM and TEM, sectioning, staining, and imaging these samples. We discuss the hurdles that one might come across when preparing samples and how best to navigate around them.
Collapse
Affiliation(s)
| | - Willi A Ribi
- Research School of Biology, Australian National University
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University;
| |
Collapse
|
31
|
Stöckl A, Smolka J, O'Carroll D, Warrant E. Resolving the Trade-off Between Visual Sensitivity and Spatial Acuity-Lessons from Hawkmoths. Integr Comp Biol 2017; 57:1093-1103. [PMID: 28992251 DOI: 10.1093/icb/icx058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The visual systems of many animals, particularly those active during the day, are optimized for high spatial acuity. However, at night, when photons are sparse and the visual signal competes with increased noise levels, fine spatial resolution cannot be sustained and is traded-off for the greater sensitivity required to see in dim light. High spatial acuity demands detectors and successive visual processing units whose receptive fields each cover only a small area of visual space, in order to reassemble a finely sampled and well resolved image. However, the smaller the sampled area, the fewer the photons that can be collected, and thus the worse the visual sensitivity becomes-leading to the classical trade-off between sensitivity and resolution. Nocturnal animals usually resolve this trade-off in favour of sensitivity, and thus have lower spatial acuity than their diurnal counterparts. Here we review results highlighting how hawkmoths, a highly visual group of insects with species active at different light intensities, resolve the trade-off between sensitivity and spatial resolution. We compare adaptations both in the optics and retina, as well as at higher levels of neural processing in a nocturnal and a diurnal hawkmoth species, and also give a perspective on the behavioral consequences. We broaden the scope of our review by drawing comparisons with the adaptive strategies used by other nocturnal and diurnal insects.
Collapse
Affiliation(s)
- Anna Stöckl
- Department of Biology, Lund University, Lund 22362, Sweden
| | - Jochen Smolka
- Department of Biology, Lund University, Lund 22362, Sweden
| | | | - Eric Warrant
- Department of Biology, Lund University, Lund 22362, Sweden
| |
Collapse
|
32
|
Narendra A, Kamhi JF, Ogawa Y. Moving in Dim Light: Behavioral and Visual Adaptations in Nocturnal Ants. Integr Comp Biol 2017; 57:1104-1116. [DOI: 10.1093/icb/icx096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
33
|
Freas CA, Narendra A, Lemesle C, Cheng K. Polarized light use in the nocturnal bull ant, Myrmecia midas. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170598. [PMID: 28879002 PMCID: PMC5579118 DOI: 10.1098/rsos.170598] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
Solitary foraging ants have a navigational toolkit, which includes the use of both terrestrial and celestial visual cues, allowing individuals to successfully pilot between food sources and their nest. One such celestial cue is the polarization pattern in the overhead sky. Here, we explore the use of polarized light during outbound and inbound journeys and with different home vectors in the nocturnal bull ant, Myrmecia midas. We tested foragers on both portions of the foraging trip by rotating the overhead polarization pattern by ±45°. Both outbound and inbound foragers responded to the polarized light change, but the extent to which they responded to the rotation varied. Outbound ants, both close to and further from the nest, compensated for the change in the overhead e-vector by about half of the manipulation, suggesting that outbound ants choose a compromise heading between the celestial and terrestrial compass cues. However, ants returning home compensated for the change in the e-vector by about half of the manipulation when the remaining home vector was short (1-2 m) and by more than half of the manipulation when the remaining vector was long (more than 4 m). We report these findings and discuss why weighting on polarization cues change in different contexts.
Collapse
|
34
|
Ribi W, Zeil J. Three-dimensional visualization of ocellar interneurons of the orchid beeEuglossa imperialisusing micro X-ray computed tomography. J Comp Neurol 2017; 525:3581-3595. [PMID: 28608425 DOI: 10.1002/cne.24260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Willi Ribi
- Research School of Biology, The Australian National University; Canberra Australian Capital Territory Australia
| | - Jochen Zeil
- Research School of Biology, The Australian National University; Canberra Australian Capital Territory Australia
| |
Collapse
|
35
|
Ramirez-Esquivel F, Leitner NE, Zeil J, Narendra A. The sensory arrays of the ant, Temnothorax rugatulus. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:552-563. [PMID: 28347859 DOI: 10.1016/j.asd.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 06/06/2023]
Abstract
Individual differences in response thresholds to task-related stimuli may be one mechanism driving task allocation among social insect workers. These differences may arise at various stages in the nervous system. We investigate variability in the peripheral nervous system as a simple mechanism that can introduce inter-individual differences in sensory information. In this study we describe size-dependent variation of the compound eyes and the antennae in the ant Temnothorax rugatulus. Head width in T. rugatulus varies between 0.4 and 0.7 mm (2.6-3.8 mm body length). But despite this limited range of worker sizes we find sensory array variability. We find that the number of ommatidia and of some, but not all, antennal sensilla types vary with head width. The antennal array of T. rugatulus displays the full complement of sensillum types observed in other species of ants, although at much lower quantities than other, larger, studied species. In addition, we describe what we believe to be a new type of sensillum in hymenoptera that occurs on the antennae and on all body segments. T. rugatulus has apposition compound eyes with 45-76 facets per eye, depending on head width, with average lens diameters of 16.5 μm, rhabdom diameters of 5.7 μm and inter-ommatidial angles of 16.8°. The optical system of T. rugatulus ommatidia is severely under focussed, but the absolute sensitivity of the eyes is unusually high. We discuss the functional significance of these findings and the extent to which the variability of sensory arrays may correlate with task allocation.
Collapse
Affiliation(s)
| | - Nicole E Leitner
- Department of Ecology and Evolutionary Biology, University of Arizona, PO Box 210088, Tucson, AZ 85721-0088, USA.
| | - Jochen Zeil
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
36
|
Freas CA, Narendra A, Cheng K. Compass cues used by a nocturnal bull ant, Myrmecia midas. ACTA ACUST UNITED AC 2017; 220:1578-1585. [PMID: 28183865 DOI: 10.1242/jeb.152967] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/05/2017] [Indexed: 11/20/2022]
Abstract
Ants use both terrestrial landmarks and celestial cues to navigate to and from their nest location. These cues persist even as light levels drop during the twilight/night. Here, we determined the compass cues used by a nocturnal bull ant, Myrmecia midas, in which the majority of individuals begin foraging during the evening twilight period. Myrmecia midas foragers with vectors of ≤5 m when displaced to unfamiliar locations did not follow the home vector, but instead showed random heading directions. Foragers with larger home vectors (≥10 m) oriented towards the fictive nest, indicating a possible increase in cue strength with vector length. When the ants were displaced locally to create a conflict between the home direction indicated by the path integrator and terrestrial landmarks, foragers oriented using landmark information exclusively and ignored any accumulated home vector regardless of vector length. When the visual landmarks at the local displacement site were blocked, foragers were unable to orient to the nest direction and their heading directions were randomly distributed. Myrmecia midas ants typically nest at the base of the tree and some individuals forage on the same tree. Foragers collected on the nest tree during evening twilight were unable to orient towards the nest after small lateral displacements away from the nest. This suggests the possibility of high tree fidelity and an inability to extrapolate landmark compass cues from information collected on the tree and at the nest site to close displacement sites.
Collapse
Affiliation(s)
- Cody A Freas
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
37
|
Douglass JK, Wehling MF. Rapid mapping of compound eye visual sampling parameters with FACETS, a highly automated wide-field goniometer. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:839-851. [PMID: 27655343 DOI: 10.1007/s00359-016-1119-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 11/29/2022]
Abstract
A highly automated goniometer instrument (called FACETS) has been developed to facilitate rapid mapping of compound eye parameters for investigating regional visual field specializations. The instrument demonstrates the feasibility of analyzing the complete field of view of an insect eye in a fraction of the time required if using non-motorized, non-computerized methods. Faster eye mapping makes it practical for the first time to employ sample sizes appropriate for testing hypotheses about the visual significance of interspecific differences in regional specializations. Example maps of facet sizes are presented from four dipteran insects representing the Asilidae, Calliphoridae, and Stratiomyidae. These maps provide the first quantitative documentation of the frontal enlarged-facet zones (EFZs) that typify asilid eyes, which, together with the EFZs in male Calliphoridae, are likely to be correlated with high-spatial-resolution acute zones. The presence of EFZs contrasts sharply with the almost homogeneous distribution of facet sizes in the stratiomyid. Moreover, the shapes of EFZs differ among species, suggesting functional specializations that may reflect differences in visual ecology. Surveys of this nature can help identify species that should be targeted for additional studies, which will elucidate fundamental principles and constraints that govern visual field specializations and their evolution.
Collapse
Affiliation(s)
- John K Douglass
- Eglin Air Force Base, 101 W. Eglin Blvd., Eglin AFB, FL, 32542, USA.
| | - Martin F Wehling
- Eglin Air Force Base, 101 W. Eglin Blvd., Eglin AFB, FL, 32542, USA
| |
Collapse
|
38
|
Narendra A, Greiner B, Ribi WA, Zeil J. Light and dark adaptation mechanisms in the compound eyes of Myrmecia ants that occupy discrete temporal niches. J Exp Biol 2016; 219:2435-42. [DOI: 10.1242/jeb.142018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/31/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Ants of the Australian genus Myrmecia partition their foraging niche temporally, allowing them to be sympatric with overlapping foraging requirements. We used histological techniques to study the light and dark adaptation mechanisms in the compound eyes of diurnal (Myrmecia croslandi), crepuscular (M. tarsata, M. nigriceps) and nocturnal ants (M. pyriformis). We found that, except in the day-active species, all ants have a variable primary pigment cell pupil that constricts the crystalline cone in bright light to control for light flux. We show for the nocturnal M. pyriformis that the constriction of the crystalline cone by the primary pigment cells is light dependent whereas the opening of the aperture is regulated by an endogenous rhythm. In addition, in the light-adapted eyes of all species, the retinular cell pigment granules radially migrate towards the rhabdom, a process that in both the day-active M. croslandi and the night-active M. pyriformis is driven by ambient light intensity. Visual system properties thus do not restrict crepuscular and night-active ants to their temporal foraging niche, while day-active ants require high light intensities to operate. We discuss the ecological significance of these adaptation mechanisms and their role in temporal niche partitioning.
Collapse
Affiliation(s)
- Ajay Narendra
- Department of Biological Sciences, Macquarie University, 205 Culloden Road, Sydney, NSW 2109, Australia
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT 2601, Australia
| | - Birgit Greiner
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT 2601, Australia
| | - Willi A. Ribi
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT 2601, Australia
- Department of Biology, University of Lund, Lund S-22362, Sweden
| | - Jochen Zeil
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT 2601, Australia
| |
Collapse
|
39
|
Raderschall CA, Narendra A, Zeil J. Head roll stabilisation in the nocturnal bull ant Myrmecia pyriformis: implications for visual navigation. ACTA ACUST UNITED AC 2016; 219:1449-57. [PMID: 26994172 DOI: 10.1242/jeb.134049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Ant foragers are known to memorise visual scenes that allow them to repeatedly travel along idiosyncratic routes and to return to specific places. Guidance is provided by a comparison between visual memories and current views, which critically depends on how well the attitude of the visual system is controlled. Here we show that nocturnal bull ants stabilise their head to varying degrees against locomotion-induced body roll movements, and this ability decreases as light levels fall. There are always un-compensated head roll oscillations that match the frequency of the stride cycle. Head roll stabilisation involves both visual and non-visual cues as ants compensate for body roll in complete darkness and also respond with head roll movements when confronted with visual pattern oscillations. We show that imperfect head roll control degrades navigation-relevant visual information and discuss ways in which navigating ants may deal with this problem.
Collapse
Affiliation(s)
- Chloé A Raderschall
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Ajay Narendra
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia Department of Biological Sciences, Macquarie University, W19F, 205 Culloden Road, Sydney, New South Wales 2109, Australia
| | - Jochen Zeil
- Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
40
|
Narendra A, Ramirez-Esquivel F, Ribi WA. Compound eye and ocellar structure for walking and flying modes of locomotion in the Australian ant, Camponotus consobrinus. Sci Rep 2016; 6:22331. [PMID: 26975481 PMCID: PMC4792140 DOI: 10.1038/srep22331] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/04/2016] [Indexed: 11/08/2022] Open
Abstract
Ants are unusual among insects in that individuals of the same species within a single colony have different modes of locomotion and tasks. We know from walking ants that vision plays a significant role in guiding this behaviour, but we know surprisingly little about the potential contribution of visual sensory structures for a flying mode of locomotion. Here we investigate the structure of the compound eye and ocelli in pedestrian workers, alate females and alate males of an Australian ant, Camponotus consobrinus, and discuss the trade-offs involved in optical sensitivity and spatial resolution. Male ants have more but smaller ommatidia and the smallest interommatidial angles, which is most likely an adaptation to visually track individual flying females. Both walking and flying forms of ants have a similar proportion of specialized receptors sensitive to polarized skylight, but the absolute number of these receptors varies, being greatest in males. Ocelli are present only in the flying forms. Each ocellus consists of a bipartite retina with a horizon-facing dorsal retina, which contains retinula cells with long rhabdoms, and a sky-facing ventral retina with shorter rhabdoms. We discuss the implications of these and their potential for sensing the pattern of polarized skylight.
Collapse
MESH Headings
- Adaptation, Ocular/physiology
- Animals
- Ants/cytology
- Ants/physiology
- Ants/ultrastructure
- Australia
- Compound Eye, Arthropod/cytology
- Compound Eye, Arthropod/physiology
- Compound Eye, Arthropod/ultrastructure
- Female
- Flight, Animal/physiology
- Locomotion/physiology
- Male
- Microscopy, Electron, Transmission
- Photoreceptor Cells, Invertebrate/cytology
- Photoreceptor Cells, Invertebrate/physiology
- Photoreceptor Cells, Invertebrate/ultrastructure
- Sex Factors
- Spatial Navigation/physiology
- Vision, Ocular/physiology
- Walking/physiology
Collapse
Affiliation(s)
- Ajay Narendra
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | | | - Willi A. Ribi
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Department of Biology, University of Lund, Lund S-22362, Sweden
| |
Collapse
|
41
|
Into the black and back: the ecology of brain investment in Neotropical army ants (Formicidae: Dorylinae). THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2016; 103:31. [DOI: 10.1007/s00114-016-1353-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/28/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
|
42
|
Yilmaz A, Lindenberg A, Albert S, Grübel K, Spaethe J, Rössler W, Groh C. Age-related and light-induced plasticity in opsin gene expression and in primary and secondary visual centers of the nectar-feeding ant Camponotus rufipes. Dev Neurobiol 2016; 76:1041-57. [PMID: 26724470 DOI: 10.1002/dneu.22374] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 12/29/2022]
Abstract
Camponotus rufipes workers are characterized by an age-related polyethism. In the initial weeks of adult life, young workers perform tasks inside the nest before they switch to multimodal foraging tasks outside. We tested the hypothesis that this transition is accompanied by profound adaptations in the peripheral and central visual systems. Our results show that C. rufipes workers of all tested ages (between 1 and 42 days) express three genes encoding for ultraviolet (UV), blue (BL), and long-wavelength (LW1) sensitive opsins in their retina, which are likely to provide the substrate for trichromatic color vision. Expression levels of all three opsin genes increased significantly within the first two weeks of adulthood and following light exposure. Interestingly, the volumes of all three optic neuropils (lamina, medulla, and lobula) showed corresponding volume increases. Tracing of connections to higher visual centers in the mushroom bodies (MBs) revealed only one optic pathway, the anterior superior optic tract, emerging from the medulla and sending segregated input to the MB-calyx collar. The MB collar volumes and densities of synaptic complexes (microglomeruli, MGs) increased with age. Exposure to light for 4 days induced a decrease in MG densities followed by an increase after extended light exposure. This shows that plasticity in retinal opsin gene expression and structural neuroplasticity in primary and secondary visual centers comprise both "experience-independent" and "experience-dependent" elements. We conclude that both sources of plasticity in the visual system represent important components promoting optimal timing of the interior-forager transition and flexibility of age-related division of labor. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1041-1057, 2016.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Behavioral Physiology & Sociobiology, University of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Annekathrin Lindenberg
- Department of Behavioral Physiology & Sociobiology, University of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Stefan Albert
- Department of Behavioral Physiology & Sociobiology, University of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Kornelia Grübel
- Department of Behavioral Physiology & Sociobiology, University of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Johannes Spaethe
- Department of Behavioral Physiology & Sociobiology, University of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Wolfgang Rössler
- Department of Behavioral Physiology & Sociobiology, University of Würzburg, Am Hubland, Würzburg, 97074, Germany
| | - Claudia Groh
- Department of Behavioral Physiology & Sociobiology, University of Würzburg, Am Hubland, Würzburg, 97074, Germany
| |
Collapse
|
43
|
Ramirez-Esquivel F, Zeil J, Narendra A. The antennal sensory array of the nocturnal bull ant Myrmecia pyriformis. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:543-558. [PMID: 25102426 DOI: 10.1016/j.asd.2014.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 07/11/2014] [Accepted: 07/27/2014] [Indexed: 06/03/2023]
Abstract
Insects use antennal sensilla to not only detect chemical and mechanical cues but also to sense changes in temperature, humidity and CO(2) levels. Very little is known about the variation in numbers, size and structure of sensilla in ants. Here we describe in detail the array of sensilla on the apical segment of the antennae of the nocturnal Australian bull ant Myrmecia pyriformis. Using scanning electron microscopy techniques we identified eight types of sensilla: trichodea curvata, basiconica, trichodea, coelocapitular, chaetica, trichoid II, ampullacea and coeloconica. Mapping the spatial location of each sensillum revealed distinct distribution patterns for different types of sensilla which were consistent across different individuals. We found, in most cases, the number of sensilla increases with the size of the apical antennomere, which in turn increases with body size. Conversely, the size of sensilla did not appreciably increase with the size of the apical antennomere. We discuss the size, numbers and distribution of sensilla of M. pyriformis compared to other ant species. Lastly, given the inconsistent use of sensillum nomenclature and difficulties associated in reliable identification we have attempted to consolidate the ant sensilla literature to make possible interspecific comparisons.
Collapse
Affiliation(s)
- Fiorella Ramirez-Esquivel
- ARC Centre of Excellence in Vision Science, Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.
| | - Jochen Zeil
- ARC Centre of Excellence in Vision Science, Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Ajay Narendra
- ARC Centre of Excellence in Vision Science, Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
44
|
Yilmaz A, Aksoy V, Camlitepe Y, Giurfa M. Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants. Front Behav Neurosci 2014; 8:205. [PMID: 24982621 PMCID: PMC4056385 DOI: 10.3389/fnbeh.2014.00205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/21/2014] [Indexed: 11/13/2022] Open
Abstract
Insects have evolved physiological adaptations and behavioral strategies that allow them to cope with a broad spectrum of environmental challenges and contribute to their evolutionary success. Visual performance plays a key role in this success. Correlates between life style and eye organization have been reported in various insect species. Yet, if and how visual ecology translates effectively into different visual discrimination and learning capabilities has been less explored. Here we report results from optical and behavioral analyses performed in two sympatric ant species, Formica cunicularia and Camponotus aethiops. We show that the former are diurnal while the latter are cathemeral. Accordingly, F. cunicularia workers present compound eyes with higher resolution, while C. aethiops workers exhibit eyes with lower resolution but higher sensitivity. The discrimination and learning of visual stimuli differs significantly between these species in controlled dual-choice experiments: discrimination learning of small-field visual stimuli is achieved by F. cunicularia but not by C. aethiops, while both species master the discrimination of large-field visual stimuli. Our work thus provides a paradigmatic example about how timing of foraging activities and visual environment match the organization of compound eyes and visually-driven behavior. This correspondence underlines the relevance of an ecological/evolutionary framework for analyses in behavioral neuroscience.
Collapse
Affiliation(s)
- Ayse Yilmaz
- Department of Biology, Faculty of Sciences, Trakya University Edirne, Turkey ; Department of Behavioral Physiology and Sociobiology, University of Würzburg Würzburg, Germany
| | - Volkan Aksoy
- Department of Biology, Faculty of Sciences, Trakya University Edirne, Turkey
| | - Yilmaz Camlitepe
- Department of Biology, Faculty of Sciences, Trakya University Edirne, Turkey
| | - Martin Giurfa
- Research Centre for Animal Cognition, Université de Toulouse Toulouse, France ; CNRS, Research Centre for Animal Cognition Toulouse, France
| |
Collapse
|
45
|
Zeil J, Narendra A, Stürzl W. Looking and homing: how displaced ants decide where to go. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130034. [PMID: 24395961 DOI: 10.1098/rstb.2013.0034] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We caught solitary foragers of the Australian Jack Jumper ant, Myrmecia croslandi, and released them in three compass directions at distances of 10 and 15 m from the nest at locations they have never been before. We recorded the head orientation and the movements of ants within a radius of 20 cm from the release point and, in some cases, tracked their subsequent paths with a differential GPS. We find that upon surfacing from their transport vials onto a release platform, most ants move into the home direction after looking around briefly. The ants use a systematic scanning procedure, consisting of saccadic head and body rotations that sweep gaze across the scene with an average angular velocity of 90° s(-1) and intermittent changes in turning direction. By mapping the ants' gaze directions onto the local panorama, we find that neither the ants' gaze nor their decisions to change turning direction are clearly associated with salient or significant features in the scene. Instead, the ants look most frequently in the home direction and start walking fast when doing so. Displaced ants can thus identify home direction with little translation, but exclusively through rotational scanning. We discuss the navigational information content of the ants' habitat and how the insects' behaviour informs us about how they may acquire and retrieve that information.
Collapse
Affiliation(s)
- Jochen Zeil
- ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, , Building 46, Biology Place, Canberra, Australian Capital Territory 0200, Australia
| | | | | |
Collapse
|
46
|
Narendra A, Alkaladi A, Raderschall CA, Robson SKA, Ribi WA. Compound eye adaptations for diurnal and nocturnal lifestyle in the intertidal ant, Polyrhachis sokolova. PLoS One 2013; 8:e76015. [PMID: 24155883 PMCID: PMC3796537 DOI: 10.1371/journal.pone.0076015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/19/2013] [Indexed: 11/25/2022] Open
Abstract
The Australian intertidal ant, Polyrhachis sokolova lives in mudflat habitats and nests at the base of mangroves. They are solitary foraging ants that rely on visual cues. The ants are active during low tides at both day and night and thus experience a wide range of light intensities. We here ask the extent to which the compound eyes of P. sokolova reflect the fact that they operate during both day and night. The ants have typical apposition compound eyes with 596 ommatidia per eye and an interommatidial angle of 6.0°. We find the ants have developed large lenses (33 µm in diameter) and wide rhabdoms (5 µm in diameter) to make their eyes highly sensitive to low light conditions. To be active at bright light conditions, the ants have developed an extreme pupillary mechanism during which the primary pigment cells constrict the crystalline cone to form a narrow tract of 0.5 µm wide and 16 µm long. This pupillary mechanism protects the photoreceptors from bright light, making the eyes less sensitive during the day. The dorsal rim area of their compound eye has specialised photoreceptors that could aid in detecting the orientation of the pattern of polarised skylight, which would assist the animals to determine compass directions required while navigating between nest and food sources.
Collapse
Affiliation(s)
- Ajay Narendra
- ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ali Alkaladi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, North Campus, Jeddah, Saudi Arabia
| | - Chloé A. Raderschall
- ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Simon K. A. Robson
- Centre for Tropical Biodiversity & Climate Change, School of Marine and Tropical Biology, Faculty of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Willi A. Ribi
- ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- Private University of Liechtenstein, Triesen, Principality of Liechtenstein
| |
Collapse
|
47
|
Narendra A, Gourmaud S, Zeil J. Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc Biol Sci 2013; 280:20130683. [PMID: 23804615 DOI: 10.1098/rspb.2013.0683] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ants are efficient navigators, guided by path integration and visual landmarks. Path integration is the primary strategy in landmark-poor habitats, but landmarks are readily used when available. The landmark panorama provides reliable information about heading direction, routes and specific location. Visual memories for guidance are often acquired along routes or near to significant places. Over what area can such locally acquired memories provide information for reaching a place? This question is unusually approachable in the solitary foraging Australian jack jumper ant, since individual foragers typically travel to one or two nest-specific foraging trees. We find that within 10 m from the nest, ants both with and without home vector information available from path integration return directly to the nest from all compass directions, after briefly scanning the panorama. By reconstructing panoramic views within the successful homing range, we show that in the open woodland habitat of these ants, snapshot memories acquired close to the nest provide sufficient navigational information to determine nest-directed heading direction over a surprisingly large area, including areas that animals may have not visited previously.
Collapse
Affiliation(s)
- Ajay Narendra
- ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | |
Collapse
|
48
|
Does structural complexity determine the morphology of assemblages? An experimental test on three continents. PLoS One 2013; 8:e64005. [PMID: 23691137 PMCID: PMC3656910 DOI: 10.1371/journal.pone.0064005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 04/09/2013] [Indexed: 11/24/2022] Open
Abstract
Understanding how species will respond to global change depends on our ability to distinguish generalities from idiosyncrasies. For diverse, but poorly known taxa, such as insects, species traits may provide a short-cut to predicting species turnover. We tested whether ant traits respond consistently to habitat complexity across geographically independent ant assemblages, using an experimental approach and baits. We repeated our study in six paired simple and complex habitats on three continents with distinct ant faunas. We also compared traits amongst ants with different foraging strategies. We hypothesised that ants would be larger, broader, have longer legs and more dorsally positioned eyes in simpler habitats. In agreement with predictions, ants had longer femurs and dorsally positioned eyes in simple habitats. This pattern was most pronounced for ants that discovered resources. Body size and pronotum width responded as predicted for experimental treatments, but were inconsistent across continents. Monopolising ants were smaller, with shorter femurs than those that occupied or discovered resources. Consistent responses for several traits suggest that many, but not all, aspects of morphology respond predictably to habitat complexity, and that foraging strategy is linked with morphology. Some traits thus have the potential to be used to predict the direction of species turnover, changes in foraging strategy and, potentially, evolution in response to changes in habitat structure.
Collapse
|
49
|
Narendra A, Reid SF, Raderschall CA. Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels. PLoS One 2013; 8:e58801. [PMID: 23484052 PMCID: PMC3590162 DOI: 10.1371/journal.pone.0058801] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/08/2013] [Indexed: 11/21/2022] Open
Abstract
Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available.
Collapse
Affiliation(s)
- Ajay Narendra
- ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | | | | |
Collapse
|
50
|
Streinzer M, Brockmann A, Nagaraja N, Spaethe J. Sex and caste-specific variation in compound eye morphology of five honeybee species. PLoS One 2013; 8:e57702. [PMID: 23460896 PMCID: PMC3584085 DOI: 10.1371/journal.pone.0057702] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 01/24/2013] [Indexed: 11/30/2022] Open
Abstract
Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana). In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the timing mechanisms and sensory physiology of mating related signals.
Collapse
Affiliation(s)
- Martin Streinzer
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Würzburg, Germany.
| | | | | | | |
Collapse
|