1
|
Yue J, Yan Z, Liu W, Liu J, Yang D. A visual pollination mechanism of a new specialized pollinating weevil-plant reciprocity system. FRONTIERS IN PLANT SCIENCE 2024; 15:1432263. [PMID: 39220015 PMCID: PMC11362035 DOI: 10.3389/fpls.2024.1432263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Introduction Pollinating flower-consuming mutualisms are considered exemplary models for studying coevolution due to their rarity. Visual cues are considered to have a major role in facilitating the evolution of floral patterns in these systems. We present a new specialized pollinating flower-consuming mutualism from the plant Wurfbainia villosa, which is a traditional Chinese herbal medicine, by a pollinating weevil, Xenysmoderes sp. Methods In this study, We utilized monochrome plates for binary-choice tests to determine weevil color preferences, conducted behavioral choice experiments, using trackballs, photographed flowers and weevils, and employed blue sticky boards to attract weevils in the field. Results Tests were conducted using colorpreferring weevils in both indoor and outdoor field systems, and validation experiments were performed. Behavioral tests were conducted to investigate the role of the visual cues in the pollinator attraction of W. villosa, which is a selfcompatible insect-pollinated plant that relies primarily on the Xenysmoderes sp. weevil for pollination due to its specialized gynandrium-like structure. Behavioral tests demonstrated that a blue color wavelength of 480 nm and the blue color system, as along with the UV-style pattern of the flowers, particularly the parts with specialized gynandrium-like structures in the labellum, were significantly attractive to both male and female weevils. These results were further confirmed through the field blue sticky board trap method. Discussion These findings indicated that the interaction between W. villosa and Xenysmoderes sp. weevil was a novel symbiotic relationship involving pollinator flower consumption. Additionally, Wurfbainia villosa flowers developed specific visual cues of UV patterns and specialized structures that played a crucial role in attracting pollinators.
Collapse
Affiliation(s)
- Jianjun Yue
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, China
| | - Zhen Yan
- Yunnan Key Laboratory of Southern Medicine Utilization, Institute of Medicinal Plant Development Yunnan Branch, Chinese Academy of Medical Sciences and Peking Union Medical College, Jinghong, China
| | - Wei Liu
- School of Traditional Dai-Thai Medicine, West Yunnan University of Applied Sciences, Jinghong, China
| | - Ju Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Acoca-Pidolle S, Gauthier P, Devresse L, Deverge Merdrignac A, Pons V, Cheptou PO. Ongoing convergent evolution of a selfing syndrome threatens plant-pollinator interactions. THE NEW PHYTOLOGIST 2024; 242:717-726. [PMID: 38113924 DOI: 10.1111/nph.19422] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023]
Abstract
Plant-pollinator interactions evolved early in the angiosperm radiation. Ongoing environmental changes are however leading to pollinator declines that may cause pollen limitation to plants and change the evolutionary pressures shaping plant mating systems. We used resurrection ecology methodology to contrast ancestors and contemporary descendants in four natural populations of the field pansy (Viola arvensis) in the Paris region (France), a depauperate pollinator environment. We combine population genetics analysis, phenotypic measurements and behavioural tests on a common garden experiment. Population genetics analysis reveals 27% increase in realized selfing rates in the field during this period. We documented trait evolution towards smaller and less conspicuous corollas, reduced nectar production and reduced attractiveness to bumblebees, with these trait shifts convergent across the four studied populations. We demonstrate the rapid evolution of a selfing syndrome in the four studied plant populations, associated with a weakening of the interactions with pollinators over the last three decades. This study demonstrates that plant mating systems can evolve rapidly in natural populations in the face of ongoing environmental changes. The rapid evolution towards a selfing syndrome may in turn further accelerate pollinator declines, in an eco-evolutionary feedback loop with broader implications to natural ecosystems.
Collapse
Affiliation(s)
- Samson Acoca-Pidolle
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, 34293, France
| | - Perrine Gauthier
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, 34293, France
| | - Louis Devresse
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, 34293, France
| | - Antoine Deverge Merdrignac
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, 34293, France
| | - Virginie Pons
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, 34293, France
| | - Pierre-Olivier Cheptou
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), University of Montpellier, CNRS, EPHE, IRD, Montpellier, 34293, France
| |
Collapse
|
3
|
McCarren S, Johnson SD, Theron GL, Coetzee A, Turner R, Midgley J. Flower orientation and corolla length as reproductive barriers in the pollinator-driven divergence of Erica shannonea and Erica ampullacea. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:1083-1090. [PMID: 37676744 DOI: 10.1111/plb.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
A variety of reproductive barriers can enable reproductive isolation and stable coexistence of plant species. Differing floral traits might play an important role in reproductive isolation imposed by pollinators. Such shifts in pollinator use have been hypothesized to contribute to the radiation of Erica (Ericaceae) in the Cape Floristic Region, South Africa. The sister species Erica shannonea and Erica ampullacea co-occur and overlap in flowering phenology. Both have unscented long-tubed flowers consistent with adaptations for pollination by long-proboscid flies (LPFs), but differences in flower orientation and corolla tube length are indicative of a shift in pollinator species. We conducted controlled pollination experiments and pollinator observations to determine the breeding system and pollinators of the two species. Both species are self-incompatible and require pollinator visits for seed production, suggesting that pollinators could strongly influence flower evolution. The horizontally orientated flowers of E. shannonea were found to be pollinated by Philoliche rostrata (Tabanidae), which has a long, fixed forward-pointing proboscis, while the vertically upright orientated flowers of E. ampullacea were found to be pollinated by Prosoeca westermanni (Nemestrinidae), which has a shorter proboscis that can swivel downwards. The nemestrinid fly's proboscis is too short to access the nectar in the relative long-tubed flowers of E. shannonea and the tabanid fly's proboscis cannot swivel down to access the upright flowers of E. ampullacea. Consequently, these traits are likely to act as reproductive barriers between the two Erica species and thereby might have contributed to speciation and enable stable coexistence.
Collapse
Affiliation(s)
- S McCarren
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - S D Johnson
- Centre for Functional Biodiversity, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - G L Theron
- Department of Natural Sciences, KwaZulu-Natal Museum, Pietermaritzburg, South Africa
| | - A Coetzee
- Nelson-Mandela University, George, South Africa
| | - R Turner
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - J Midgley
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Yang X, Wang Y, Liu TX, Liu Q, Liu J, Lü TF, Yang RX, Guo FX, Wang YZ. CYCLOIDEA-like genes control floral symmetry, floral orientation, and nectar guide patterning. THE PLANT CELL 2023; 35:2799-2820. [PMID: 37132634 PMCID: PMC10396386 DOI: 10.1093/plcell/koad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
Actinomorphic flowers usually orient vertically (relative to the horizon) and possess symmetric nectar guides, while zygomorphic flowers often face horizontally and have asymmetric nectar guides, indicating that floral symmetry, floral orientation, and nectar guide patterning are correlated. The origin of floral zygomorphy is dependent on the dorsoventrally asymmetric expression of CYCLOIDEA (CYC)-like genes. However, how horizontal orientation and asymmetric nectar guides are achieved remains poorly understood. Here, we selected Chirita pumila (Gesneriaceae) as a model plant to explore the molecular bases for these traits. By analyzing gene expression patterns, protein-DNA and protein-protein interactions, and encoded protein functions, we identified multiple roles and functional divergence of 2 CYC-like genes, i.e. CpCYC1 and CpCYC2, in controlling floral symmetry, floral orientation, and nectar guide patterning. CpCYC1 positively regulates its own expression, whereas CpCYC2 does not regulate itself. In addition, CpCYC2 upregulates CpCYC1, while CpCYC1 downregulates CpCYC2. This asymmetric auto-regulation and cross-regulation mechanism might explain the high expression levels of only 1 of these genes. We show that CpCYC1 and CpCYC2 determine asymmetric nectar guide formation, likely by directly repressing the flavonoid synthesis-related gene CpF3'5'H. We further suggest that CYC-like genes play multiple conserved roles in Gesneriaceae. These findings shed light on the repeated origins of zygomorphic flowers in angiosperms.
Collapse
Affiliation(s)
- Xia Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Yang Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Xia Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Tian-Feng Lü
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Rui-Xue Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Xian Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yin-Zheng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Fairnie ALM, Yeo MTS, Gatti S, Chan E, Travaglia V, Walker JF, Moyroud E. Eco-Evo-Devo of petal pigmentation patterning. Essays Biochem 2022; 66:753-768. [PMID: 36205404 PMCID: PMC9750854 DOI: 10.1042/ebc20220051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Colourful spots, stripes and rings decorate the corolla of most flowering plants and fulfil important biotic and abiotic functions. Spatial differences in the pigmentation of epidermal cells can create these patterns. The last few years have yielded new data that have started to illuminate the mechanisms controlling the function, formation and evolution of petal patterns. These advances have broad impacts beyond the immediate field as pigmentation patterns are wonderful systems to explore multiscale biological problems: from understanding how cells make decisions at the microscale to examining the roots of biodiversity at the macroscale. These new results also reveal there is more to petal patterning than meets the eye, opening up a brand new area of investigation. In this mini-review, we summarise our current knowledge on the Eco-Evo-Devo of petal pigmentation patterns and discuss some of the most exciting yet unanswered questions that represent avenues for future research.
Collapse
Affiliation(s)
- Alice L M Fairnie
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - May T S Yeo
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| | - Stefano Gatti
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Emily Chan
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Valentina Travaglia
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Joseph F Walker
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
| | - Edwige Moyroud
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, U.K
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EJ, U.K
| |
Collapse
|
6
|
Phylogenetic Analysis and Flower Color Evolution of the Subfamily Linoideae (Linaceae). PLANTS 2022; 11:plants11121579. [PMID: 35736730 PMCID: PMC9231132 DOI: 10.3390/plants11121579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
The taxonomy of the subfamily Linoideae at the intergeneric and section levels has been questioned throughout the years, and the evolution of floral characters remains poorly understood. In particular, the evolution of flower color is still uncertain, despite its ecological importance and being one of the most variable and striking traits in Angiospermae. We evaluated the phylogenetic relationships of the genera and sections and used the phylogeny to reconstruct the ancestral state of flower color. The results suggest reevaluating the taxonomic status of segregated genera and re-incorporating them into Linum. Four of the five sections currently accepted were recovered as monophyletic (Cathartolinum, Dasylinum, Linum, and Syllinum). We propose accepting the section Stellerolinon and reevaluating Linopsis, whose representatives were recovered in three separate clades. The ancestral flower color for Linoideae was yellow-white. The flower colors purple and yellow-white were recovered at the deepest nodes of the two main clades. Pink, blue, and red colors were the most recent to evolve. These results appear to be related to diversification events, biogeographical history, and ecological aspects of the subfamily. Our reconstruction constitutes the first plausible scenario that explores the evolution of flower color, leading to new testable hypotheses for future research on the flax group.
Collapse
|
7
|
Sinnott‐Armstrong MA, Deanna R, Pretz C, Liu S, Harris JC, Dunbar‐Wallis A, Smith SD, Wheeler LC. How to approach the study of syndromes in macroevolution and ecology. Ecol Evol 2022; 12:e8583. [PMID: 35342598 PMCID: PMC8928880 DOI: 10.1002/ece3.8583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022] Open
Abstract
Syndromes, wherein multiple traits evolve convergently in response to a shared selective driver, form a central concept in ecology and evolution. Recent work has questioned the existence of some classic syndromes, such as pollination and seed dispersal syndromes. Here, we discuss some of the major issues that have afflicted research into syndromes in macroevolution and ecology. First, correlated evolution of traits and hypothesized selective drivers is often relied on as the only evidence for adaptation of those traits to those hypothesized drivers, without supporting evidence. Second, the selective driver is often inferred from a combination of traits without explicit testing. Third, researchers often measure traits that are easy for humans to observe rather than measuring traits that are suited to testing the hypothesis of adaptation. Finally, species are often chosen for study because of their striking phenotypes, which leads to the illusion of syndromes and divergence. We argue that these issues can be avoided by combining studies of trait variation across entire clades or communities with explicit tests of adaptive hypotheses and that taking this approach will lead to a better understanding of syndrome-like evolution and its drivers.
Collapse
Affiliation(s)
- Miranda A. Sinnott‐Armstrong
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Rocio Deanna
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
- Instituto Multidisciplinario de Biología VegetalIMBIV (CONICET‐UNC)CórdobaArgentina
- Departamento de Ciencias FarmacéuticasFacultad de Ciencias Químicas (FCQ, UNC)CórdobaArgentina
| | - Chelsea Pretz
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Sukuan Liu
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Jesse C. Harris
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Amy Dunbar‐Wallis
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Stacey D. Smith
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| | - Lucas C. Wheeler
- Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderColoradoUSA
| |
Collapse
|
8
|
Qian LS, Shi HH, Ou XK, Sun H. Elevational patterns of functional diversity and trait of Delphinium (Ranunculaceae) in Hengduan Mountains, China. PLANT DIVERSITY 2022; 44:20-29. [PMID: 35281121 PMCID: PMC8897183 DOI: 10.1016/j.pld.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Elevational patterns of trait occurrence and functional diversity provide an important perspective for understanding biodiversity. However, previous studies have mostly examined functional diversity at the community scale. Here, we examined large-scale patterns of trait occurrence and functional diversity in Delphinium along an elevational gradient from 1000 to 5700 m in the Hengduan Mountains, SW China. Elevational distribution and trait data of 102 Delphinium species were compiled to evaluate the patterns of interspecific traits, species richness, and functional diversity. We found that the distribution of species richness showed a unimodal curve that peaked between 3500 and 4000 m; functional diversity and traits showed different patterns along an elevational gradient. The functional diversity increased at a lower rate along an elevation gradient, whereas species richness continued to increase. Species with large ranges and non-endemic species were most affected by geometric constraints. Richness of species endemic to the Hengduan Mountains peaked at higher elevations, likely due to increased speciation and restricted dispersion under alpine conditions. We conclude that the middle elevation region is not only the functionally richest but also the most functionally stable region for Delphinium, which could be insurance against environmental change. Extreme conditions and strong environmental filters in an alpine environment may cause the convergence of species traits, which could relate to reducing nutrient trait investment and increasing reproductive trait investment. We conclude that large-scale studies are consistent with previous studies at the community scale. This may indicate that the relationship between functional diversity and species richness across different scales is the same.
Collapse
Affiliation(s)
- Li-Shen Qian
- School of Life Sciences, Yunnan University, Kunming, 650091, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Hong-Hua Shi
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiao-Kun Ou
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Hang Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
9
|
Abstract
Communication occurs when a sender emits a cue perceived by a receiver that changes the receiver's behavior. Plants perceive information regarding light, water, other nutrients, touch, herbivores, pathogens, mycorrhizae, and nitrogen-fixing bacteria. Plants also emit cues perceived by other plants, beneficial microbes, herbivores, enemies of herbivores, pollinators, and seed dispersers. Individuals responding to light cues experienced increased fitness. Evidence for benefits of responding to cues involving herbivores and pathogens is more limited. The benefits of emitting cues are also less clear, particularly for plant–plant communication. Reliance on multiple or dosage-dependent cues can reduce inappropriate responses, and plants often remember past cues. Plants have multiple needs and prioritize conflicting cues such that the risk of abiotic stress is treated as greater than that of shading, which is in turn treated as greater than that of consumption. Plants can distinguish self from nonself and kin from strangers. They can identify the species of competitor or consumer and respond appropriately. Cues involving mutualists often contain highly specific information.
Collapse
Affiliation(s)
- Richard Karban
- Department of Entomology and Nematology, University of California, Davis, California 95616, USA
| |
Collapse
|
10
|
Chao CT, Kuo CC, Chang JT, Chai MW, Liao PC. Evolution of floral characters and biogeography of Heloniadeae (Melanthiaceae): an example of breeding system shifts with inflorescence change. Sci Rep 2021; 11:21494. [PMID: 34728750 PMCID: PMC8563777 DOI: 10.1038/s41598-021-01049-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022] Open
Abstract
Heloniadeae (Melanthiaceae) presents an East Asia–North America disjunct distribution. Different molecular and morphological data nevertheless support the tribe as a monophyletic group. However, their phylogenetic relationships and biogeographic history, together with the character evolution, are not clear. Therefore, we constructed a Bayesian phylogenetic tree for Heloniadeae using cpDNA and inferred the historical biogeography and floral character evolution. The results revealed that Heloniadeae was distributed in high-latitudes of East Asia and North America, originating since 22.2 mya. The East Asia clade migrated into southwest China, and subsequently colonized the Korean Peninsula, Taiwan, the Ryukyus, and spread northward to Japan and southern Sakhalin. The evolution of the inflorescence and number of flowers were phylogenetically conserved, associated with the historical biogeography of Heloniadeae. The inflorescences transferred from raceme to sub-umbel, and the number of flowers decreased during the dispersal process, which may be accompanied by changes in the breeding system. Besides, the anthesis period was more affected by the habitat environment than phylogenetic constraints. The flowering temperature of Heloniadeae was below 20 °C in most species, except H. kawanoi. Such a low temperature might not be conductive to pollinator activities, but it could be compensated by sustaining seed production with long-lasting flowers.
Collapse
Affiliation(s)
- Chien-Ti Chao
- School of Life Science, National Taiwan Normal University, No. 88, Tingchou Rd. Section 4, Wenshan District, Taipei City, 116, Taiwan.
| | - Chu-Chia Kuo
- Department of Biological Resources, National Chiayi University, No. 300, Hsuehfu Rd., Chiayi City, Chiayi County, 600, Taiwan
| | - Jui-Tse Chang
- School of Life Science, National Taiwan Normal University, No. 88, Tingchou Rd. Section 4, Wenshan District, Taipei City, 116, Taiwan
| | - Min-Wei Chai
- School of Life Science, National Taiwan Normal University, No. 88, Tingchou Rd. Section 4, Wenshan District, Taipei City, 116, Taiwan
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, No. 88, Tingchou Rd. Section 4, Wenshan District, Taipei City, 116, Taiwan.
| |
Collapse
|
11
|
Trunschke J, Lunau K, Pyke GH, Ren ZX, Wang H. Flower Color Evolution and the Evidence of Pollinator-Mediated Selection. FRONTIERS IN PLANT SCIENCE 2021; 12:617851. [PMID: 34381464 PMCID: PMC8350172 DOI: 10.3389/fpls.2021.617851] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/14/2021] [Indexed: 06/01/2023]
Abstract
The evolution of floral traits in animal-pollinated plants involves the interaction between flowers as signal senders and pollinators as signal receivers. Flower colors are very diverse, effect pollinator attraction and flower foraging behavior, and are hypothesized to be shaped through pollinator-mediated selection. However, most of our current understanding of flower color evolution arises from variation between discrete color morphs and completed color shifts accompanying pollinator shifts, while evidence for pollinator-mediated selection on continuous variation in flower colors within populations is still scarce. In this review, we summarize experiments quantifying selection on continuous flower color variation in natural plant populations in the context of pollinator interactions. We found that evidence for significant pollinator-mediated selection is surprisingly limited among existing studies. We propose several possible explanations related to the complexity in the interaction between the colors of flowers and the sensory and cognitive abilities of pollinators as well as pollinator behavioral responses, on the one hand, and the distribution of variation in color phenotypes and fitness, on the other hand. We emphasize currently persisting weaknesses in experimental procedures, and provide some suggestions for how to improve methodology. In conclusion, we encourage future research to bring together plant and animal scientists to jointly forward our understanding of the mechanisms and circumstances of pollinator-mediated selection on flower color.
Collapse
Affiliation(s)
- Judith Trunschke
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Klaus Lunau
- Institute of Sensory Ecology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Graham H. Pyke
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Department of Biological Sciences, Macquarie University, Ryde, NSW, Australia
| | - Zong-Xin Ren
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
12
|
Skaliter O, Kitsberg Y, Sharon E, Shklarman E, Shor E, Masci T, Yue Y, Arien Y, Tabach Y, Shafir S, Vainstein A. Spatial patterning of scent in petunia corolla is discriminated by bees and involves the ABCG1 transporter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1746-1758. [PMID: 33837586 DOI: 10.1111/tpj.15269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 05/27/2023]
Abstract
Floral guides are patterned cues that direct the pollinator to the plant reproductive organs. The spatial distribution of showy visual and olfactory traits allows efficient plant-pollinator interactions. Data on the mechanisms underlying floral volatile patterns or their interactions with pollinators are lacking. Here we characterize the spatial emission patterns of volatiles from the corolla of the model plant Petunia × hybrida and reveal the ability of honeybees to distinguish these patterns. Along the adaxial epidermis, in correlation with cell density, the petal base adjacent to reproductive organs emitted significantly higher levels of volatiles than the distal petal rim. Volatile emission could also be differentiated between the two epidermal surfaces: emission from the adaxial side was significantly higher than that from the abaxial side. Similar emission patterns were also observed in other petunias, Dianthus caryophyllus (carnation) and Argyranthemum frutescens (Marguerite daisy). Analyses of transcripts involved in volatile production/emission revealed lower levels of the plasma-membrane transporter ABCG1 in the abaxial versus adaxial epidermis. Transient overexpression of ABCG1 enhanced emission from the abaxial epidermis to the level of the adaxial epidermis, suggesting its involvement in spatial emission patterns in the epidermal layers. Proboscis extension response experiments showed that differences in emission levels along the adaxial epidermis, that is, petal base versus rim, detected by GC-MS are also discernible by honeybees.
Collapse
Affiliation(s)
- Oded Skaliter
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yaarit Kitsberg
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elad Sharon
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Elena Shklarman
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ekaterina Shor
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tania Masci
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuling Yue
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yael Arien
- B. Triwaks Bee Research Center, Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Sharoni Shafir
- B. Triwaks Bee Research Center, Department of Entomology, Institute of Environmental Sciences, Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
13
|
Roguz K, Hill L, Koethe S, Lunau K, Roguz A, Zych M. Visibility and attractiveness of Fritillaria (Liliaceae) flowers to potential pollinators. Sci Rep 2021; 11:11006. [PMID: 34040041 PMCID: PMC8155214 DOI: 10.1038/s41598-021-90140-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/05/2021] [Indexed: 02/04/2023] Open
Abstract
Visual floral characters play an important role in shaping plant-pollinator interactions. The genus Fritillaria L. (Liliaceae), comprising approximately 140 species, is described as displaying a remarkable variety of flower colours and sizes. Despite this variation in visual floral traits of fritillaries, little is known about the potential role of these features in shaping plant-pollinator interactions. Here, we seek to clarify the role of visual attraction in species offering a robust food reward for pollinators early in the spring, which is the case for Fritillaria. We also searched for potential tendencies in the evolution of floral traits crucial for plant-pollinator communication. The generality of species with green and purple flowers may indicate an influence of environmental factors other than pollinators. The flowers of the studied species seem to be visible but not very visually attractive to potential pollinators. The food rewards are hidden within the nodding perianth, and both traits are conserved among fritillaries. Additionally, visual floral traits are not good predictors of nectar properties. When in the flowers, pollinators are navigated by nectar guides in the form of contrasting nectary area colouration. Flower colour does not serve as a phenotypic filter against illegitimate pollinators-red and orange bird-pollinated fritillaries are visible to bees.
Collapse
Affiliation(s)
- Katarzyna Roguz
- Botanic Garden, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | | | - Sebastian Koethe
- Institute of Sensory Ecology, Faculty of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Klaus Lunau
- Institute of Sensory Ecology, Faculty of Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Agata Roguz
- National Information Processing Institute, Al. Niepodległości 188 B, 00-608, Warszawa, Poland
| | - Marcin Zych
- Botanic Garden, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
14
|
Tunes P, Camargo MGG, Guimarães E. Floral UV Features of Plant Species From a Neotropical Savanna. FRONTIERS IN PLANT SCIENCE 2021; 12:618028. [PMID: 34025689 PMCID: PMC8137824 DOI: 10.3389/fpls.2021.618028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Despite the wide interest in flower colours, only after the end of the nineteenth-century studies started to comprise floral UV reflection, which is invisible to humans but visible to the major groups of pollinators. Many flowers and inflorescences display colour patterns, an important signal for pollinators, promoted by the presence of at least two different colours within flowers or inflorescences, including colours in the UV waveband. For Neotropical savanna plant species, we characterised floral UV features using UV-photography and reflectance measurements. We tested (i) whether floral UV features were constrained by their shared ancestry, (ii) whether floral UV features were associated with pollinators, and (iii) whether floral UV features were associated with floral traits mediating these interactions, including floral resource, type of attraction unit and presence/absence of non-UV colour patterns. Of 80 plant species, ca. 70% were UV-patternless, most of them UV-absorbing. Approximately 30% presented one of three types of UV-patterns: bullseye, contrasting corolla markings oriented toward floral resources or contrasting reproductive structures, which were all considered as floral guides. Floral UV features were phylogenetically constrained and were associated with pollinators, floral resources and attraction unit, but not with non-UV colour patterns. UV-patternless flowers were associated with most of the pollination systems, while UV-patterned flowers were mainly associated with bee-pollination. UV-absorbing flowers comprised the only category with hawkmoth- and butterfly-pollinated flowers, and a high percentage of hummingbird-pollinated species. Nocturnal pollinated species were also commonly UV-absorbing, except for one UV-reflecting bat-pollinated species and one beetle-pollinated species with UV-reflecting stigmas. All types of floral UV features were associated with nectar; however, flowers with contrasting reproductive structures were mainly associated with pollen. There was an association between UV-absorbing species and the presence of inflorescences and intermediate attraction units. Our results evince that phylogenetic relatedness can constraint floral UV features' diversification, but combinations of evolutionary and ecological processes may be expected in this scenario.
Collapse
Affiliation(s)
- Priscila Tunes
- Laboratory of Ecology and Evolution of Plant-Animal Interactions, Postgraduate Program in Biological Sciences (Botany), Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | | | - Elza Guimarães
- Laboratory of Ecology and Evolution of Plant-Animal Interactions, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| |
Collapse
|
15
|
Lovo J, Alcantara S, Vasconcelos TNC, Sajo MDG, Rudall PJ, Prenner G, Aguiar AJC, Mello-Silva R. Evolutionary lability in floral ontogeny affects pollination biology in Trimezieae. AMERICAN JOURNAL OF BOTANY 2021; 108:828-843. [PMID: 34019302 DOI: 10.1002/ajb2.1655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
PREMISE There is little direct evidence linking floral development and pollination biology in plants. We characterize both aspects in plain and ornamented flowers of Trimezieae (Iridaceae) to investigate how changes in floral ontogeny may affect their interactions with pollinators through time. METHODS We examined floral ontogeny in 11 species and documented pollination biology in five species displaying a wide range of floral morphologies. We coded and reconstructed ancestral states of flower types over the tribal phylogeny to estimate the frequency of transition between different floral types. RESULTS All Trimezieae flowers are similar in early floral development, but ornamented flowers have additional ontogenetic steps compared with plain flowers, indicating heterochrony. Ornamented flowers have a hinge pollination mechanism (newly described here) and attract more pollinator guilds, while plain flowers offer less variety of resources for a shorter time. Although the ornamented condition is plesiomorphic in this clade, shifts to plain flowers have occurred frequently and abruptly during the past 5 million years, with some subsequent reversals. CONCLUSIONS Heterochrony has resulted in labile morphological changes during flower evolution in Trimezieae. Counterintuitively, species with plain flowers, which are endemic to the campo rupestre, are derived within the tribe and show a higher specialization than the ornamented species, with the former being visited by pollen-collecting bees only.
Collapse
Affiliation(s)
- Juliana Lovo
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Caixa Postal 5065, Cidade Universitária, João Pessoa, PB, 58051-970, Brazil
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| | - Suzana Alcantara
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
- Departamento de Botânica, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Thais N C Vasconcelos
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | | | - Paula J Rudall
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom
| | - Gerhard Prenner
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, United Kingdom
| | - Antônio J C Aguiar
- Departamento de Zoologia, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Renato Mello-Silva
- Departamento de Botânica, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
16
|
Floral morphs of Justicia adhatoda L. differ in fruit and seed, but not floral, traits or pollinator visitation. J Biosci 2021. [DOI: 10.1007/s12038-021-00159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Koski MH. Macroevolution of Flower Color Patterning: Biased Transition Rates and Correlated Evolution with Flower Size. FRONTIERS IN PLANT SCIENCE 2020; 11:945. [PMID: 32714351 PMCID: PMC7344184 DOI: 10.3389/fpls.2020.00945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Floral pigmentation patterns can both mediate plant-pollinator interactions and modify the abiotic environment of reproductive structures. To date, there have been no inquiries into the rate and directionality of macroevolutionary transitions between patterned and non-patterned petals despite their ecological importance and ubiquity across angiosperms. Petals in the Potentilleae tribe (Rosaceae) display color patterns in the ultraviolet (UV) and human-visible spectrum, or can be uniform in color (i.e., patternless). Using a phylogeny of Potentilleae, I test whether evolutionary transition rates between patterned and non-patterned petals are biased in either direction. I then examine whether UV and human-visible floral patterns are phylogenetically correlated and test the prediction that color patterns will evolve in concert with larger flowers if they function as guides to orient pollinators to floral rewards. I found that transition rates were biased toward petals that were uniform in color. Transition rates from patterned to uniformly colored petals were two and six times higher than the reverse for UV and human-visible pattern, respectively. The presence of UV and human-visible pattern evolved independently from one another. However, the evolution of human-visible pattern was associated with the evolution of larger flowers but the evolution of UV pattern was correlated with the evolution of smaller flowers. I posit that the transition bias toward non-patterned flowers may reflect developmental constraints on spatial regulation of pigments required to produce floral color patterning. The correlated evolution of larger flowers and human-visible pigmentation patterns support the hypothesis that nectar or pollen guides are more likely to evolve in larger-flowered species. This work provides insight into how transition rate bias and trait correlations can shape phylogenetic patterns of floral color pattern diversity.
Collapse
|
18
|
Abstract
Nectar is the most common floral reward for flower-visiting flies, bees, bats and birds. Many flowers hide nectar in the floral tube and preclude sensing of nectar by flower-visitors from a distance. Even in those flowers that offer easily accessible nectar, the nectaries are mostly inconspicuous to the human eye and the amount of nectar is sparse. It is widely accepted that many flowers display nectar guides in order to direct flower-visitors towards the nectar. Using false colour photography, covering ultraviolet, blue and green ranges of wavelength, revealed a yet unknown conspicuousness of nectar, nectaries and false nectaries for bees due to concordant reflection in the ultraviolet range of wavelength. Nectars, many nectaries and false nectaries have glossy surfaces and reflect all incident light including UV-light. In most cases, this is not particularly conspicuous to the human eye, but highly visible for UV-sensitive insects, due to the fact that the glossy areas are often positioned in UV-absorbing central flower parts and thus produce a strong UV-signal. The optical contrast produced by the glossiness of small smooth areas in close proximity to nectar holders represents a widespread yet overlooked floral cue that nectarivorous flower-visitors might use to locate the floral nectar.
Collapse
|
19
|
Harrap MJM, Hempel de Ibarra N, Whitney HM, Rands SA. Floral temperature patterns can function as floral guides. ARTHROPOD-PLANT INTERACTIONS 2020; 14:193-206. [PMID: 32215113 PMCID: PMC7073333 DOI: 10.1007/s11829-020-09742-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/03/2020] [Indexed: 05/25/2023]
Abstract
Floral guides are signal patterns that lead pollinators to floral rewards after they have located the flower, and increase foraging efficiency and pollen transfer. Patterns of several floral signalling modalities, particularly colour patterns, have been identified as being able to function as floral guides. Floral temperature frequently shows patterns that can be used by bumblebees for locating and recognising the flower, but whether these temperature patterns can function as a floral guide has not been explored. Furthermore, how combined patterns (using multiple signalling modalities) affect floral guide function has only been investigated in a few modality combinations. We assessed how artificial flowers induce behaviours in bumblebees when rewards are indicated by unimodal temperature patterns, unimodal colour patterns or multimodal combinations of these. Bees visiting flowers with unimodal temperature patterns showed an increased probability of finding rewards and increased learning of reward location, compared to bees visiting flowers without patterns. However, flowers with contrasting unimodal colour patterns showed further guide-related behavioural changes in addition to these, such as reduced reward search times and attraction to the rewarding feeder without learning. This shows that temperature patterns alone can function as a floral guide, but with reduced efficiency. When temperature patterns were added to colour patterns, bees showed similar improvements in learning reward location and reducing their number of failed visits in addition to the responses seen to colour patterns. This demonstrates that temperature pattern guides can have beneficial effects on flower handling both when alone or alongside colour patterns.
Collapse
Affiliation(s)
- Michael J. M. Harrap
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ UK
| | | | - Heather M. Whitney
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ UK
| | - Sean A. Rands
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ UK
| |
Collapse
|
20
|
Klomberg Y, Dywou Kouede R, Bartoš M, Mertens JEJ, Tropek R, Fokam EB, Janeček Š. The role of ultraviolet reflectance and pattern in the pollination system of Hypoxis camerooniana (Hypoxidaceae). AOB PLANTS 2019; 11:plz057. [PMID: 31649811 PMCID: PMC6803167 DOI: 10.1093/aobpla/plz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Apart from floral morphology and colours perceived by the human eye, ultraviolet (UV) reflectance acts as an important visual advertisement of numerous flowering plant species for pollinators. However, the effect of UV signalling on attracting pollinators of particular plant species is still insufficiently studied, especially in the Afrotropics. Therefore, we studied the pollination system of Hypoxis camerooniana in montane grasslands of Mount Cameroon, West/Central Africa. We focused mainly on the effects of the flowers' UV reflectance on its visitors. We experimentally removed UV reflection from petals either completely or partially. Thereafter, flower visitors were recorded and pistils were collected post-flowering to quantify germinated pollen tubes per treatments. The most important visitors were bees, followed by flies. Due to their contacts with reproductive organs bees are considered as the primary pollinators. Visitation rates were lower when UV reflectance was completely removed, whereas the decrease of frequency on half-treated flowers did not differ significantly from control treatments. The complete removal of UV also affected bees' landing behaviour, but not that of flies. We showed that the presence of UV reflectance is more important than UV pattern for bees visiting flowers of H. camerooniana. We hypothesize that exploiting all flowers irrespective of their pattern can be more efficient for pollinators in the open grasslands of high altitudes to spot these relatively scarce flowers by their UV reflectance. Furthermore, we highlight the necessity of both experimental and natural controls in similar studies to control for additional effects of the used UV manipulations. Many plants advertise their flowers with UV reflectance visible to their insect visitors. By manipulating the UV reflectance and pattern of Hypoxis camerooniana in the Afromontane grasslands of Mount Cameroon, we have shown how crucial it is for the predominant visitor, bees. Both bees' preferences for flowers and their behaviour during visits are influenced by changes in UV reflectance. However, the presence of some UV signal is more important than the specific pattern. Especially in montane grasslands with higher UV irradiation, the UV floral colours are important for recognition of flowers by potential pollinators.
Collapse
Affiliation(s)
- Yannick Klomberg
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - Raissa Dywou Kouede
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, PO Box 63 Buea, Cameroon
| | - Michael Bartoš
- Institute of Botany, Czech Academy of Sciences, Dukelská 135, 37901 Třeboň, Czechia
| | - Jan E J Mertens
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| | - Robert Tropek
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czechia
| | - Eric B Fokam
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, PO Box 63 Buea, Cameroon
| | - Štěpán Janeček
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 12844 Prague, Czechia
| |
Collapse
|
21
|
Garcia JE, Shrestha M, Howard SR, Petersen P, Dyer AG. Signal or cue: the role of structural colors in flower pollination. Curr Zool 2019; 65:467-481. [PMID: 31413719 PMCID: PMC6688579 DOI: 10.1093/cz/zoy096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/27/2017] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
Angle dependent colors, such as iridescence, are produced by structures present on flower petals changing their visual appearance. These colors have been proposed to act as signals for plant-insect communication. However, there is a paucity of behavioral data to allow for interpretations of how to classify these colors either as a signal or a cue when considering the natural conditions under which pollination occurs. We sampled flowers from 6 plant species across various viewpoints looking for changes in the visual appearance of the petals. Spectral characteristics were measured with different instruments to simulate both the spectral and spatial characteristics of honeybee's vision. We show the presence of color patches produced by angle dependent effects on the petals and the calyx of various species; however, the appearance of the angle dependent color patches significantly varies with viewpoint and would only be resolved by the insect eye at close distances. Behavior experiments with honeybees revealed that pollinators did not use angle dependent colors to drive behavior when presented with novel flower presentations. Results show that angle dependent colors do not comply with the requirements of a signal for plant-pollinator communication since the information transmitted by these colors would be unreliable for potential, free-flying pollination vectors. We thus classify angle dependent colors produced by micro- and ultra-structures as being a cue (a feature which has not evolved for communication), and observe no evidence supporting claims of these angle dependent colors having evolved as visual signal.
Collapse
Affiliation(s)
- Jair E Garcia
- School of Media and Communication, RMIT University, Melbourne, Victoria 3001, Australia
| | - Mani Shrestha
- School of Media and Communication, RMIT University, Melbourne, Victoria 3001, Australia
- Faculty of Information Technology, Monash University, Clayton, Victoria 3800, Australia
| | - Scarlett R Howard
- School of Media and Communication, RMIT University, Melbourne, Victoria 3001, Australia
| | - Phred Petersen
- School of Media and Communication, RMIT University, Melbourne, Victoria 3001, Australia
| | - Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
22
|
Harrap MJM, Lawson DA, Whitney HM, Rands SA. Cross-modal transfer in visual and nonvisual cues in bumblebees. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:427-437. [PMID: 30859258 PMCID: PMC6579774 DOI: 10.1007/s00359-019-01320-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Bumblebees Bombus terrestris are good at learning to distinguish between patterned flowers. They can differentiate between flowers that differ only in their patterning of scent, surface texture, temperature, or electrostatic charge, in addition to visual patterns. As recently shown, bumblebees trained to discriminate between nonvisual scent patterns can transfer this learning to visually patterned flowers that show similar spatial patterning to the learnt scent patterns. Bumblebees can, therefore, transfer learnt patterns between different sensory modalities, without needing to relearn them. We used differential conditioning techniques to explore whether cross-modal transfer of learnt patterns also occurred between visual and temperature patterns. Bumblebees that successfully learnt to distinguish rewarding and unrewarding temperature patterns did not show any preferences for the corresponding unlearnt visual pattern. Similarly, bumblebees that learnt visual patterns did not transfer these to temperature patterns, suggesting that they are unable to transfer learning of temperature and visual patterns. We discuss how cross-modality pattern learning may be limited to modalities that have potentially strong neurological links, such as the previously demonstrated transfer between scent and visual patterns.
Collapse
Affiliation(s)
- Michael J. M. Harrap
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ UK
| | - David A. Lawson
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ UK
| | - Heather M. Whitney
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ UK
| | - Sean A. Rands
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ UK
| |
Collapse
|
23
|
de Camargo MGG, Lunau K, Batalha MA, Brings S, de Brito VLG, Morellato LPC. How flower colour signals allure bees and hummingbirds: a community-level test of the bee avoidance hypothesis. THE NEW PHYTOLOGIST 2019; 222:1112-1122. [PMID: 30444536 DOI: 10.1111/nph.15594] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/08/2018] [Indexed: 05/07/2023]
Abstract
Colour signals are the main floral trait for plant-pollinator communication. Owing to visual specificities, flower visitors exert different selective pressures on flower colour signals of plant communities. Although they evolved to attract pollinators, matching their visual sensitivity and colour preferences, floral signals may also evolve to avoid less efficient pollinators and antagonistic flower visitors. We evaluated evidence for the bee avoidance hypothesis in a Neotropical community pollinated mainly by bees and hummingbirds, the campo rupestre. We analysed flower reflectance spectra, compared colour variables of bee-pollinated flowers (bee-flowers; 244 species) and hummingbird-pollinated flowers (hummingbird-flowers; 39 species), and looked for evidence of bee sensorial exclusion in hummingbird-flowers. Flowers were equally contrasting for hummingbirds. Hummingbird-flowers were less conspicuous to bees, reflecting mainly long wavelengths and avoiding red-blind visitors. Bee-flowers reflected more short wavelengths, were more conspicuous to bees (higher contrasts and spectral purity) than hummingbird-flowers and displayed floral guides more frequently, favouring flower attractiveness, discrimination and handling by bees. Along with no phylogenetic signal, the differences in colour signal strategies between bee- and hummingbird-flowers are the first evidence of the bee avoidance hypothesis at a community level and reinforce the role of pollinators as a selective pressure driving flower colour diversity.
Collapse
Affiliation(s)
- Maria Gabriela Gutierrez de Camargo
- Departamento de Botânica, Laboratório de Fenologia, Instituto de Biociências, UNESP-Universidade Estadual Paulista, 13506-900, Rio Claro, São Paulo, Brasil
| | - Klaus Lunau
- Department Biology, Institute of Sensory Ecology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marco Antônio Batalha
- Department of Botany, Federal University of São Carlos, 13565-905, São Carlos, São Paulo, Brazil
| | - Sebastian Brings
- Department Biology, Institute of Sensory Ecology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | | | - Leonor Patrícia Cerdeira Morellato
- Departamento de Botânica, Laboratório de Fenologia, Instituto de Biociências, UNESP-Universidade Estadual Paulista, 13506-900, Rio Claro, São Paulo, Brasil
| |
Collapse
|
24
|
Russell AL, Ashman TL. Associative learning of flowers by generalist bumble bees can be mediated by microbes on the petals. Behav Ecol 2019. [DOI: 10.1093/beheco/arz011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Communication is often vital to the maintenance of mutualisms. In plant-pollinator mutualisms, plants signal pollinators via floral displays, composed of olfactory, visual, and other plant-derived cues. While plants are understood to be associated with microbes, only recently has the role of microbial (yeast and bacteria) inhabitants of flowers as intermediaries of plant-pollinator communication been recognized. Animals frequently use microbial cues to find resources, yet no study has examined whether microbes directly mediate learned and innate pollinator responses. Here, we asked whether microbes on the flower surface, independent of their modification of floral rewards, can mediate these key components of pollinator preference. In the field, we characterized flower and bumble bee microbial abundance, and in laboratory assays we tested whether bumble bees (Bombus impatiens) discriminated flowers on the basis of an experimental floral microbial community on the petals and whether microbe-derived chemicals were effective cues. Learning of microbial community cues was associative and reward context-dependent and mediated by microbial chemicals. Deconstructing the experimental microbial community showed bees innately avoided flowers with bacteria, but were undeterred by yeast. Microbial cues thus potentially facilitate dynamic communication between plants and pollinators such as bumble bees, especially as pollinator visitation can change flower microbiota. We suggest that the study of communication in mutualism generally would benefit by considering not only the multicellular eukaryote partners, but their microbial associates.
Collapse
Affiliation(s)
- Avery L Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Bauder JAS, Karolyi F. Superlong Proboscises as Co-adaptations to Flowers. INSECT MOUTHPARTS 2019. [DOI: 10.1007/978-3-030-29654-4_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Lawson DA, Rands SA. The evolution of floral guides: using a genetic algorithm to investigate the evolution of floral cue arrangements. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- David A Lawson
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, UK
| | | |
Collapse
|
27
|
Russell AL, Mauerman KB, Golden RE, Papaj DR. Linking components of complex signals to morphological part: the role of anther and corolla in the complex floral display. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2017.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Lawson DA, Whitney HM, Rands SA. Nectar discovery speeds and multimodal displays: assessing nectar search times in bees with radiating and non-radiating guides. Evol Ecol 2017; 31:899-912. [PMID: 32009720 PMCID: PMC6959414 DOI: 10.1007/s10682-017-9916-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/25/2017] [Indexed: 11/04/2022]
Abstract
Floral displays are often composed of areas of contrasting stimuli which flower visitors use as guides, increasing both foraging efficiency and the likelihood of pollen transfer. Many aspects of how these displays benefit foraging efficiency are still unexplored, particularly those surrounding multimodal signals and the spatial arrangement of the display components. We compare the nectar discovery times of forager bumblebees (Bombus terrestris) when presented with artificial flowers with unimodal or compound displays of visual and/or olfactory stimuli, positioned in either radiating or non-radiating arrangements. We found that the addition of individual display components from either modality reduces nectar discovery time but there was no time benefit to bimodal displays over unimodal displays or any benefit to radiating stimuli arrangements over non-radiating arrangements. However, preference tests revealed a time advantage to radiating unimodal visual patterns over non-radiating unimodal visual patterns when both types were displayed simultaneously. These results suggest that the benefits of multimodal stimuli arrangements to pollinators are unrelated to benefits in nectar discovery time. Our results also suggest that spatial patterns of scent can be used as nectar guides and can reduce nectar discovery times without the aid of visual stimuli.
Collapse
Affiliation(s)
- David A Lawson
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ UK
| | - Heather M Whitney
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ UK
| | - Sean A Rands
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ UK
| |
Collapse
|
29
|
Navarro-Pérez ML, López J, Rodríguez-Riaño T, Bacchetta G, de Miguel Gordillo C, Ortega-Olivencia A. Confirmed mixed bird-insect pollination system of Scrophularia trifoliata L., a Tyrrhenian species with corolla spots. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:460-468. [PMID: 28130809 DOI: 10.1111/plb.12548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Both bird and mixed vertebrate-insect (MVI) pollination systems are very rare in Europe and the Mediterranean region. Because MVI can ensure reproduction over a wider range of environmental conditions than when insects are the sole pollinators, under certain circumstances such systems are highly advantageous to plants. Here, we investigated the pollination and some reproductive traits of the Tyrrhenian Scrophularia trifoliata, the only species of the genus possessing two showy dark spots inside the corolla, for which MVI pollination system had been inferred on the basis of limited censuses. We conducted field experiments to study MVI pollination and some reproductive traits and elucidate the role of corolla spots, analysing their ultraviolet pattern, histology and pigments versus the rest of the corolla. The primary pollinators were wasps and passerine birds. Corolla spots absorb UV light, present abundant anthocyanins and are histologically identical to the rest of the corolla. Control flowers had higher visitation frequency than flowers without spots. S. trifoliata is self-compatible, with efficient intrafloral protogyny and herkogamy that prevent self-pollination but not geitonogamy. We confirmed the existence of a mixed bird-insect pollination system in S. trifoliata. This system is found in three other Scrophularia species with large, showy flowers - two Mediterranean (S. grandiflora and S. sambucifolia) and one Macaronesian (S. calliantha). Unlike those species, S. trifoliata has two large spots inside the corolla. These likely operate as nectar guides and their dark colouration is related to abundant anthocyanin content.
Collapse
Affiliation(s)
- M L Navarro-Pérez
- Área de Botánica, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - J López
- Área de Botánica, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - T Rodríguez-Riaño
- Área de Botánica, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - G Bacchetta
- Dipartimento di Scienze della Vitae dell'Ambiente, Centro Conservazione Biodiversità (CCB), Universitá degli Studi di Cagliari, Cagliari, Italy
| | - C de Miguel Gordillo
- Área de Edafología y Química Agrícola, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Badajoz, Spain
| | - A Ortega-Olivencia
- Área de Botánica, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| |
Collapse
|
30
|
La Rosa RJ, Conner JK. Floral function: effects of traits on pollinators, male and female pollination success, and female fitness across three species of milkweeds (Asclepias). AMERICAN JOURNAL OF BOTANY 2017; 104:150-160. [PMID: 28104591 DOI: 10.3732/ajb.1600328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Central questions in plant reproductive ecology are whether the functions of floral traits in hermaphrodites create conflict between sexes that could slow evolution, and whether individual floral traits function in pollinator attraction, efficiency, or both. We studied how floral traits affect pollinator visitation and efficiency, and how they affect male and female function and female fitness within and across three Asclepias species that differ in floral morphology. METHODS Using separate multiple regressions, we regressed pollen removal, deposition, and fruit number onto six floral traits. We also used path analyses integrating these variables with pollinator visitation data for two of the species to further explore floral function and its effects on fruit production. KEY RESULTS Most traits affected male pollination success only, and these effects often differed between species. The exception was increased slit length, which increased pollinia insertion in two of the species. There were no interspecific differences in the effects of the traits on female pollination success. All traits except horn reach affected pollination efficiency in at least one species, and horn reach and two hood dimensions were the only traits to affect pollinator attraction, but in just one species. CONCLUSIONS Traits tended to function in only one sex, and more traits affected function through pollinator efficiency than through attraction. There was no significant link between female pollination success and female fitness in any of the three species; this pattern is consistent with fruit production not being limited by pollen deposition.
Collapse
Affiliation(s)
- Raffica J La Rosa
- W. K. Kellogg Biological Station, Department of Plant Biology, and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, Michigan 49060
| | - Jeffrey K Conner
- W. K. Kellogg Biological Station, Department of Plant Biology, and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, Michigan 49060
| |
Collapse
|
31
|
Convergent evolution of sexual deception via chromatic and achromatic contrast rather than colour mimicry. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9863-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
|
33
|
Sletvold N, Trunschke J, Smit M, Verbeek J, Ågren J. Strong pollinator-mediated selection for increased flower brightness and contrast in a deceptive orchid. Evolution 2016; 70:716-24. [PMID: 26878831 DOI: 10.1111/evo.12881] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 01/12/2016] [Accepted: 01/27/2016] [Indexed: 11/30/2022]
Abstract
Contrasting flower color patterns that putatively attract or direct pollinators toward a reward are common among angiosperms. In the deceptive orchid Anacamptis morio, the lower petal, which makes up most of the floral display, has a light central patch with dark markings. Within populations, there is pronounced variation in petal brightness, patch size, amount of dark markings, and contrast between patch and petal margin. We tested whether pollinators mediate selection on these color traits and on morphology (plant height, number of flowers, corolla size, spur length), and whether selection is consistent with facilitated or negative frequency-dependent pollination. Pollinators mediated strong selection for increased petal brightness (Δβpoll = 0.42) and contrast (Δβpoll = 0.51). Pollinators also tended to mediate stabilizing selection on brightness (Δγpoll = -0.27, n.s.) favoring the most common phenotype in the population. Selection for reduced petal brightness among hand-pollinated plants indicated a fitness cost associated with brightness. The results demonstrate that flower color traits influence pollination success and seed production in A. morio, indicating that they affect attractiveness to pollinators, efficiency of pollen transfer, or both. The documented selection is consistent with facilitated pollination and selection for color convergence toward cooccurring rewarding species.
Collapse
Affiliation(s)
- Nina Sletvold
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE-752 36, Uppsala, Sweden.
| | - Judith Trunschke
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE-752 36, Uppsala, Sweden
| | - Mart Smit
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE-752 36, Uppsala, Sweden
| | - Jeffrey Verbeek
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE-752 36, Uppsala, Sweden
| | - Jon Ågren
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, SE-752 36, Uppsala, Sweden
| |
Collapse
|
34
|
Brock MT, Lucas LK, Anderson NA, Rubin MJ, Markelz RJC, Covington MF, Devisetty UK, Chapple C, Maloof JN, Weinig C. Genetic architecture, biochemical underpinnings and ecological impact of floral UV patterning. Mol Ecol 2016; 25:1122-40. [PMID: 26800256 DOI: 10.1111/mec.13542] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022]
Abstract
Floral attraction traits can significantly affect pollinator visitation patterns, but adaptive evolution of these traits may be constrained by correlations with other traits. In some cases, molecular pathways contributing to floral attraction are well characterized, offering the opportunity to explore loci potentially underlying variation among individuals. Here, we quantify the range of variation in floral UV patterning (i.e. UV 'bulls-eye nectar guides) among crop and wild accessions of Brassica rapa. We then use experimental crosses to examine the genetic architecture, candidate loci and biochemical underpinnings of this patterning as well as phenotypic manipulations to test the ecological impact. We find qualitative variation in UV patterning between wild (commonly lacking UV patterns) and crop (commonly exhibiting UV patterns) accessions. Similar to the majority of crops, recombinant inbred lines (RILs) derived from an oilseed crop × WI fast-plant® cross exhibit UV patterns, the size of which varies extensively among genotypes. In RILs, we further observe strong statistical-genetic and QTL correlations within petal morphological traits and within measurements of petal UV patterning; however, correlations between morphology and UV patterning are weak or nonsignificant, suggesting that UV patterning is regulated and may evolve independently of overall petal size. HPLC analyses reveal a high concentration of sinapoyl glucose in UV-absorbing petal regions, which, in concert with physical locations of UV-trait QTLs, suggest a regulatory and structural gene as candidates underlying observed quantitative variation. Finally, insects prefer flowers with UV bulls-eye patterns over those that lack patterns, validating the importance of UV patterning in pollen-limited populations of B. rapa.
Collapse
Affiliation(s)
- Marcus T Brock
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Lauren K Lucas
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Nickolas A Anderson
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Matthew J Rubin
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - R J Cody Markelz
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Michael F Covington
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Upendra K Devisetty
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Julin N Maloof
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Cynthia Weinig
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA.,Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
35
|
Russell AL, Golden RE, Leonard AS, Papaj DR. Bees learn preferences for plant species that offer only pollen as a reward. Behav Ecol 2015. [DOI: 10.1093/beheco/arv213] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Hempel de Ibarra N, Langridge KV, Vorobyev M. More than colour attraction: behavioural functions of flower patterns. CURRENT OPINION IN INSECT SCIENCE 2015; 12:64-70. [PMID: 27064650 PMCID: PMC4804388 DOI: 10.1016/j.cois.2015.09.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Flower patterns are thought to influence foraging decisions of insect pollinators. However, the resolution of insect compound eyes is poor. Insects perceive flower patterns only from short distances when they initiate landings or search for reward on the flower. From further away flower displays jointly form larger-sized patterns within the visual scene that will guide the insect's flight. Chromatic and achromatic cues in such patterns may help insects to find, approach and learn rewarded locations in a flower patch, bringing them close enough to individual flowers. Flight trajectories and the spatial resolution of chromatic and achromatic vision in insects determine the effectiveness of floral displays, and both need to be considered in studies of plant-pollinator communication.
Collapse
Affiliation(s)
- Natalie Hempel de Ibarra
- University of Exeter, Centre for Research in Animal Behaviour, Department of Psychology, Exeter, UK
| | - Keri V Langridge
- University of Exeter, Centre for Research in Animal Behaviour, Department of Psychology, Exeter, UK
| | - Misha Vorobyev
- University of Auckland, School of Optometry and Vision Science, Auckland, New Zealand
| |
Collapse
|
37
|
Koski MH, Ashman TL. An altitudinal cline in UV floral pattern corresponds with a behavioral change of a generalist pollinator assemblage. Ecology 2015; 96:3343-53. [DOI: 10.1890/15-0242.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Ma X, Shi J, Bänziger H, Sun Y, Guo Y, Liu Z, Johnson SD, Luo Y. The functional significance of complex floral colour pattern in a food‐deceptive orchid. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Xiaokai Ma
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jun Shi
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hans Bänziger
- Department of Entomology Faculty of Agriculture Chiang Mai University Chiang Mai 50200 Thailand
| | - Yangna Sun
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- University of Chinese Academy of Sciences Beijing 100049 China
- The National Orchid Conservation Center of China/The Orchid Conservation & Research Center of Shenzhen Shenzhen 518114 China
| | - Yanyan Guo
- The National Orchid Conservation Center of China/The Orchid Conservation & Research Center of Shenzhen Shenzhen 518114 China
| | - Zhongjian Liu
- The National Orchid Conservation Center of China/The Orchid Conservation & Research Center of Shenzhen Shenzhen 518114 China
| | - Steven D. Johnson
- School of Life Sciences University of KwaZulu‐Natal Pietermaritzburg 3209 South Africa
| | - Yibo Luo
- State Key Laboratory of Systematic and Evolutionary Botany Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| |
Collapse
|
39
|
Vignolini S, Moyroud E, Hingant T, Banks H, Rudall PJ, Steiner U, Glover BJ. Is floral iridescence a biologically relevant cue in plant-pollinator signalling? A response to van der Kooi et al. (2014b). THE NEW PHYTOLOGIST 2015; 205:21-22. [PMID: 25382718 DOI: 10.1111/nph.13178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Orbán LL, Plowright CMS. Getting to the start line: how bumblebees and honeybees are visually guided towards their first floral contact. INSECTES SOCIAUX 2014; 61:325-336. [PMID: 25328168 PMCID: PMC4196025 DOI: 10.1007/s00040-014-0366-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 05/08/2023]
Abstract
Much of the literature on foraging behaviour in bees focuses on what they learn after they have had rewarded experience with flowers. This review focuses on how honeybees and bumblebees are drawn to candidate food sources in the first place: the foundation on which learning is built. Prior to rewarded foraging experience, flower-naïve bumblebees and honeybees rely heavily on visual cues to discover their first flower. This review lists methodological issues that surround the study of flower-naïve behaviour and describes technological advances. The role of distinct visual properties of flowers in attracting bees is considered: colour, floral size, patterning and social cues. The research reviewed is multi-disciplinary and takes the perspectives of both the bees and the plants they visit. Several avenues for future research are proposed.
Collapse
Affiliation(s)
- L. L. Orbán
- School of Psychology, University of Ottawa, Ottawa, Canada
- Present Address: Department of Psychology, Kwantlen Polytechnic University, 12666 72nd Avenue, Surrey, BC Canada
| | | |
Collapse
|
41
|
Visual ecology of flies with particular reference to colour vision and colour preferences. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:497-512. [PMID: 24664124 DOI: 10.1007/s00359-014-0895-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
The visual ecology of flies is outstanding among insects due to a combination of specific attributes. Flies' compound eyes possess an open rhabdom and thus separate rhabdomeres in each ommatidium assigned to two visual pathways. The highly sensitive, monovariant neural superposition system is based on the excitation of the peripheral rhabdomeres of the retinula cells R1-6 and controls optomotor reactions. The two forms of central rhabdomeres of R7/8 retinula cells in each ommatidium build up a system with four photoreceptors sensitive in different wavelength ranges and thought to account for colour vision. Evidence from wavelength discrimination tests suggests that all colour stimuli are assigned to one of just four colour categories, but cooperation of the two pathways is also evident. Flies use colour cues for various behavioural reactions such as flower visitation, proboscis extension, host finding, and egg deposition. Direct evidence for colour vision, the ability to discriminate colours according to spectral shape but independent of intensity, has been demonstrated for few fly species only. Indirect evidence for colour vision provided from electrophysiological recordings of the spectral sensitivity of photoreceptors and opsin genes indicates similar requisites in various flies; the flies' responses to coloured targets, however, are much more diverse.
Collapse
|
42
|
Koski MH, Ashman TL. Dissecting pollinator responses to a ubiquitous ultraviolet floral pattern in the wild. Funct Ecol 2014. [DOI: 10.1111/1365-2435.12242] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew H. Koski
- Department of Biological Sciences; University of Pittsburgh; 216 Clapp Hall, 4249 Fifth Ave. Pittsburgh PA 15260 USA
| | - Tia-Lynn Ashman
- Department of Biological Sciences; University of Pittsburgh; 216 Clapp Hall, 4249 Fifth Ave. Pittsburgh PA 15260 USA
| |
Collapse
|
43
|
Newman E, Manning J, Anderson B. Matching floral and pollinator traits through guild convergence and pollinator ecotype formation. ANNALS OF BOTANY 2014; 113:373-84. [PMID: 24052557 PMCID: PMC3890386 DOI: 10.1093/aob/mct203] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/18/2013] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Pollinator landscapes, as determined by pollinator morphology/behaviour, can vary inter- or intraspecifically, imposing divergent selective pressures and leading to geographically divergent floral ecotypes. Assemblages of plants pollinated by the same pollinator (pollinator guilds) should exhibit convergence of floral traits because they are exposed to similar selective pressures. Both convergence and the formation of pollination ecotypes should lead to matching of traits among plants and their pollinators. METHODS We examined 17 floral guild members pollinated in all or part of their range by Prosoeca longipennis, a long-proboscid fly with geographic variation in tongue length. Attractive floral traits such as colour, and nectar properties were recorded in populations across the range of each species. The length of floral reproductive parts, a mechanical fit trait, was recorded in each population to assess possible correlation with the mouthparts of the local pollinator. A multiple regression analysis was used to determine whether pollinators or abiotic factors provided the best explanation for variation in floral traits, and pollinator shifts were recorded in extralimital guild member populations. KEY RESULTS Nine of the 17 species were visited by alternative pollinator species in other parts of their ranges, and these displayed differences in mechanical fit and attractive traits, suggesting putative pollination ecotypes. Plants pollinated by P. longipennis were similar in colour throughout the pollinator range. Tube length of floral guild members co-varied with the proboscis length of P. longipennis. CONCLUSIONS Pollinator shifts have resulted in geographically divergent pollinator ecotypes across the ranges of several guild members. However, within sites, unrelated plants pollinated by P. longipennis are similar in the length of their floral parts, most probably as a result of convergent evolution in response to pollinator morphology. Both of these lines of evidence suggest that pollinators play an important role in selecting for certain floral traits.
Collapse
Affiliation(s)
- Ethan Newman
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - John Manning
- South African National Biodiversity Institute, Private Bag X7, Claremont, Cape Town 7735, South Africa
| | - Bruce Anderson
- Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
44
|
Van der Niet T, Peakall R, Johnson SD. Pollinator-driven ecological speciation in plants: new evidence and future perspectives. ANNALS OF BOTANY 2014; 113:199-211. [PMID: 24418954 PMCID: PMC3890394 DOI: 10.1093/aob/mct290] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/17/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND The hypothesis that pollinators have been important drivers of angiosperm diversity dates back to Darwin, and remains an important research topic today. Mounting evidence indicates that pollinators have the potential to drive diversification at several different stages of the evolutionary process. Microevolutionary studies have provided evidence for pollinator-mediated floral adaptation, while macroevolutionary evidence supports a general pattern of pollinator-driven diversification of angiosperms. However, the overarching issue of whether, and how, shifts in pollination system drive plant speciation represents a critical gap in knowledge. Bridging this gap is crucial to fully understand whether pollinator-driven microevolution accounts for the observed macroevolutionary patterns. Testable predictions about pollinator-driven speciation can be derived from the theory of ecological speciation, according to which adaptation (microevolution) and speciation (macroevolution) are directly linked. This theory is a particularly suitable framework for evaluating evidence for the processes underlying shifts in pollination systems and their potential consequences for the evolution of reproductive isolation and speciation. SCOPE This Viewpoint paper focuses on evidence for the four components of ecological speciation in the context of plant-pollinator interactions, namely (1) the role of pollinators as selective agents, (2) floral trait divergence, including the evolution of 'pollination ecotypes', (3) the geographical context of selection on floral traits, and (4) the role of pollinators in the evolution of reproductive isolation. This Viewpoint also serves as the introduction to a Special Issue on Pollinator-Driven Speciation in Plants. The 13 papers in this Special Issue range from microevolutionary studies of ecotypes to macroevolutionary studies of historical ecological shifts, and span a wide range of geographical areas and plant families. These studies further illustrate innovative experimental approaches, and they employ modern tools in genetics and floral trait quantification. Future advances to the field require better quantification of selection through male fitness and pollinator isolation, for instance by exploiting next-generation sequencing technologies. By combining these new tools with strategically chosen study systems, and smart experimental design, we predict that examples of pollinator-driven speciation will be among the most widespread and compelling of all cases of ecological speciation.
Collapse
Affiliation(s)
- Timotheüs Van der Niet
- Naturalis Biodiversity Center, P.O. Box 9514, 2300 RA, Leiden, The Netherlands
- Leiden University, Section Botany, P.O. Box 9514, 2300 RA, Leiden, The Netherlands
- School of Life Sciences, University of KwaZulu Natal, P/Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
| | - Rod Peakall
- Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Steven D. Johnson
- School of Life Sciences, University of KwaZulu Natal, P/Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
| |
Collapse
|
45
|
Campbell DR, Forster M, Bischoff M. Selection of trait combinations through bee and fly visitation to flowers of Polemonium foliosissimum. J Evol Biol 2013; 27:325-36. [PMID: 24341383 DOI: 10.1111/jeb.12295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 11/11/2013] [Accepted: 11/11/2013] [Indexed: 11/27/2022]
Abstract
Pollinators are known to exert natural selection on floral traits, but the extent to which combinations of floral traits are subject to correlational selection (nonadditive effects of two traits on fitness) is not well understood. Over two years, we used phenotypic manipulations of plant traits to test for effects of flower colour, flower shape and their interaction on rates of pollinator visitation to Polemonium foliosissimum. We also tested for correlational selection based on weighting visitation by the amount of conspecific pollen delivered per visit by each category of insect visitor. Although bumblebees were the presumed pollinators, solitary bees and flies contributed substantially (42%) to pollination. In manipulations of one trait at a time, insects visited flowers presenting the natural colour and shape over flowers manipulated to present artificial mutants with either paler colour or a more open or more tubular flower. When both colour and shape were manipulated in combination, selection on both traits arose, with bumblebees responding mainly to colour and flies responding mainly to shape. Despite selection on both floral traits, in a year with many bumblebees, we saw no evidence for correlational selection of these traits. In a year when flies predominated, fly visitation showed a pattern of correlational selection, but not favouring the natural phenotype, and correlational selection was still not detected for expected pollen receipt. These results show that flower colour and shape are subject to pollinator-mediated selection and that correlational selection can be generated based on pollinator visitation alone, but provide no evidence for correlational selection specifically for the current phenotype.
Collapse
Affiliation(s)
- D R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA; Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | | | | |
Collapse
|
46
|
Karolyi F, Morawetz L, Colville JF, Handschuh S, Metscher BD, Krenn HW. Time management and nectar flow: flower handling and suction feeding in long-proboscid flies (Nemestrinidae: Prosoeca). Naturwissenschaften 2013; 100:1083-93. [PMID: 24258261 PMCID: PMC3843750 DOI: 10.1007/s00114-013-1114-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 11/25/2022]
Abstract
A well-developed suction pump in the head represents an important adaptation for nectar-feeding insects, such as Hymenoptera, Lepidoptera and Diptera. This pumping organ creates a pressure gradient along the proboscis, which is responsible for nectar uptake. The extremely elongated proboscis of the genus Prosoeca (Nemestrinidae) evolved as an adaptation to feeding from long, tubular flowers. According to the functional constraint hypothesis, nectar uptake through a disproportionately elongated, straw-like proboscis increases flower handling time and consequently lowers the energy intake rate. Due to the conspicuous length variation of the proboscis of Prosoeca, individuals with longer proboscides are hypothesised to have longer handling times. To test this hypothesis, we used field video analyses of flower-visiting behaviour, detailed examinations of the suction pump morphology and correlations of proboscis length with body length and suction pump dimensions. Using a biomechanical framework described for nectar-feeding Lepidoptera in relation to proboscis length and suction pump musculature, we describe and contrast the system in long-proboscid flies. Flies with longer proboscides spent significantly more time drinking from flowers. In addition, proboscis length and body length showed a positive allometric relationship. Furthermore, adaptations of the suction pump included an allometric relationship between proboscis length and suction pump muscle volume and a combination of two pumping organs. Overall, the study gives detailed insight into the adaptations required for long-proboscid nectar feeding, and comparisons with other nectar-sucking insects allow further considerations of the evolution of the suction pump in insects with sucking mouthparts.
Collapse
Affiliation(s)
- Florian Karolyi
- Department of Integrative Zoology, Faculty of Life Science, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria,
| | | | | | | | | | | |
Collapse
|
47
|
Floral nectar guide patterns discourage nectar robbing by bumble bees. PLoS One 2013; 8:e55914. [PMID: 23418475 PMCID: PMC3572167 DOI: 10.1371/journal.pone.0055914] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/04/2013] [Indexed: 11/23/2022] Open
Abstract
Floral displays are under selection to both attract pollinators and deter antagonists. Here we show that a common floral trait, a nectar guide pattern, alters the behavior of bees that can act opportunistically as both pollinators and as antagonists. Generally, bees access nectar via the floral limb, transporting pollen through contact with the plant’s reproductive structures; however bees sometimes extract nectar from a hole in the side of the flower that they or other floral visitors create. This behavior is called “nectar robbing” because bees may acquire the nectar without transporting pollen. We asked whether the presence of a symmetric floral nectar guide pattern on artificial flowers affected bumble bees’ (Bombus impatiens) propensity to rob or access nectar “legitimately.” We discovered that nectar guides made legitimate visits more efficient for bees than robbing, and increased the relative frequency of legitimate visits, compared to flowers lacking nectar guides. This study is the first to show that beyond speeding nectar discovery, a nectar guide pattern can influence bees’ flower handling in a way that could benefit the plant.
Collapse
|
48
|
Jersáková J, Jürgens A, Šmilauer P, Johnson SD. The evolution of floral mimicry: identifying traits that visually attract pollinators. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02059.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jana Jersáková
- University of South Bohemia; Česke Budejovice Czech Republic
- School of Life Sciences; University of KwaZulu-Natal; Pietermaritzburg South Africa
| | - Andreas Jürgens
- School of Life Sciences; University of KwaZulu-Natal; Pietermaritzburg South Africa
| | - Petr Šmilauer
- University of South Bohemia; Česke Budejovice Czech Republic
| | - Steven D. Johnson
- School of Life Sciences; University of KwaZulu-Natal; Pietermaritzburg South Africa
| |
Collapse
|