1
|
Morrow A, Smale L, Meek PD, Lundrigan B. Trade-Offs in the Sensory Brain between Diurnal and Nocturnal Rodents. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:123-143. [PMID: 38569487 PMCID: PMC11346379 DOI: 10.1159/000538090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/20/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Transitions in temporal niche have occurred many times over the course of mammalian evolution. These are associated with changes in sensory stimuli available to animals, particularly with visual cues, because levels of light are so much higher during the day than at night. This relationship between temporal niche and available sensory stimuli elicits the expectation that evolutionary transitions between diurnal and nocturnal lifestyles will be accompanied by modifications of sensory systems that optimize the ability of animals to receive, process, and react to important stimuli in the environment. METHODS This study examines the influence of temporal niche on investment in sensory brain tissue of 13 rodent species (five diurnal; eight nocturnal). Animals were euthanized and the brains immediately frozen on dry ice; olfactory bulbs were subsequently dissected and weighed, and the remaining brain was weighed, sectioned, and stained. Stereo Investigator was used to calculate volumes of four sensory regions that function in processing visual (lateral geniculate nucleus, superior colliculus) and auditory (medial geniculate nucleus, inferior colliculus) information. A phylogenetic framework was used to assess the influence of temporal niche on the relative sizes of these brain structures and of olfactory bulb weights. RESULTS Compared to nocturnal species, diurnal species had larger visual regions, whereas nocturnal species had larger olfactory bulbs than their diurnal counterparts. Of the two auditory structures examined, one (medial geniculate nucleus) was larger in diurnal species, while the other (inferior colliculus) did not differ significantly with temporal niche. CONCLUSION Our results indicate a possible indirect association between temporal niche and auditory investment and suggest probable trade-offs of investment between olfactory and visual areas of the brain, with diurnal species investing more in processing visual information and nocturnal species investing more in processing olfactory information.
Collapse
Affiliation(s)
- Andrea Morrow
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
| | - Laura Smale
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
- Department of Psychology, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Paul Douglas Meek
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Coffs Harbour, NSW, Australia
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Barbara Lundrigan
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
- BEACON Center for the Study of Evolution, Michigan State University, East Lansing, MI, USA
- Michigan State University Museum, East Lansing, MI, USA
| |
Collapse
|
2
|
Cox DTC, Gaston KJ. Cathemerality: a key temporal niche. Biol Rev Camb Philos Soc 2024; 99:329-347. [PMID: 37839797 DOI: 10.1111/brv.13024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Given the marked variation in abiotic and biotic conditions between day and night, many species specialise their physical activity to being diurnal or nocturnal, and it was long thought that these strategies were commonly fairly fixed and invariant. The term 'cathemeral', was coined in 1987, when Tattersall noted activity in a Madagascan primate during the hours of both daylight and darkness. Initially thought to be rare, cathemerality is now known to be a quite widespread form of time partitioning amongst arthropods, fish, birds, and mammals. Herein we provide a synthesis of present understanding of cathemeral behaviour, arguing that it should routinely be included alongside diurnal and nocturnal strategies in schemes that distinguish and categorise species across taxa according to temporal niche. This synthesis is particularly timely because (i) the study of animal activity patterns is being revolutionised by new and improved technologies; (ii) it is becoming apparent that cathemerality covers a diverse range of obligate to facultative forms, each with their own common sets of functional traits, geographic ranges and evolutionary history; (iii) daytime and nighttime activity likely plays an important but currently neglected role in temporal niche partitioning and ecosystem functioning; and (iv) cathemerality may have an important role in the ability of species to adapt to human-mediated pressures.
Collapse
Affiliation(s)
- Daniel T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Kevin J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
3
|
Nelson J, Woeste EM, Oba K, Bitterman K, Billings BK, Sacco J, Jacobs B, Sherwood CC, Manger PR, Spocter MA. Neuropil Variation in the Prefrontal, Motor, and Visual Cortex of Six Felids. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:25-44. [PMID: 38354714 DOI: 10.1159/000537843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Felids have evolved a specialized suite of morphological adaptations for obligate carnivory. Although the musculoskeletal anatomy of the Felidae has been studied extensively, the comparative neuroanatomy of felids is relatively unexplored. Little is known about how variation in the cerebral anatomy of felids relates to species-specific differences in sociality, hunting strategy, or activity patterns. METHODS We quantitatively analyzed neuropil variation in the prefrontal, primary motor, and primary visual cortices of six species of Felidae (Panthera leo, Panthera uncia, Panthera tigris, Panthera leopardus, Acinonyx jubatus, Felis sylvestris domesticus) to investigate relationships with brain size, neuronal cell parameters, and select behavioral and ecological factors. Neuropil is the dense, intricate network of axons, dendrites, and synapses in the brain, playing a critical role in information processing and communication between neurons. RESULTS There were significant species and regional differences in neuropil proportions, with African lion, cheetah, and tiger having more neuropil in all three cortical regions in comparison to the other species. Based on regression analyses, we find that the increased neuropil fraction in the prefrontal cortex supports social and behavioral flexibility, while in the primary motor cortex, this facilitates the neural activity needed for hunting movements. Greater neuropil fraction in the primary visual cortex may contribute to visual requirements associated with diel activity patterns. CONCLUSION These results provide a cross-species comparison of neuropil fraction variation in the Felidae, particularly the understudied Panthera, and provide evidence for convergence of the neuroanatomy of Panthera and cheetahs.
Collapse
Affiliation(s)
- Jacob Nelson
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Erin M Woeste
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Ken Oba
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Kathleen Bitterman
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
| | - Brendon K Billings
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - James Sacco
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa, USA
| | - Bob Jacobs
- Department of Psychology, Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, Colorado, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Muhammad A Spocter
- Department of Anatomy, Des Moines University, West Des Moines, Iowa, USA
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Gerber BD, Devarajan K, Farris ZJ, Fidino M. A model-based hypothesis framework to define and estimate the diel niche via the 'Diel.Niche' R package. J Anim Ecol 2024; 93:132-146. [PMID: 38213300 DOI: 10.1111/1365-2656.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024]
Abstract
How animals use the diel period (24-h light-dark cycle) is of fundamental importance to understand their niche. While ecological and evolutionary literature abound with discussion of diel phenotypes (e.g. diurnal, nocturnal, crepuscular, cathemeral), they lack clear and explicit quantitative definitions. As such, inference can be confounded when evaluating hypotheses of animal diel niche switching or plasticity across studies because researchers may be operating under different definitions of diel phenotypes. We propose quantitative definitions of diel phenotypes using four alternative hypothesis sets (maximizing, traditional, general and selection) aimed at achieving different objectives. Each hypothesis set is composed of mutually exclusive hypotheses defined based on the activity probabilities in the three fundamental periods of light availability (twilight, daytime and night-time). We develop a Bayesian modelling framework that compares diel phenotype hypotheses using Bayes factors and estimates model parameters using a multinomial model with linear inequality constraints. Model comparison, parameter estimation and visualizing results can be done in the Diel.Niche R package. A simplified R Shiny web application is also available. We provide extensive simulation results to guide researchers on the power to discriminate among hypotheses for a range of sample sizes (10-1280). We also work through several examples of using data to make inferences on diel activity, and include online vignettes on how to use the Diel.Niche package. We demonstrate how our modelling framework complements other analyses, such as circular kernel density estimators and animal movement modelling. Our aim is to encourage standardization of the language of diel activity and bridge conceptual frameworks and hypotheses in diel research with data and models. Lastly, we hope more research focuses on the ecological and conservation importance of understanding how animals use diel time.
Collapse
Affiliation(s)
- Brian D Gerber
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, USA
| | - Kadambari Devarajan
- Department of Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, USA
| | - Zach J Farris
- Department of Public Health and Exercise Science, Appalachian State University, Boone, North Carolina, USA
| | - Mason Fidino
- Conservation & Science Department, Lincoln Park Zoo, Chicago, Illinois, USA
| |
Collapse
|
5
|
Blary CLM, Duriez O, Bonadonna F, Mitkus M, Caro SP, Besnard A, Potier S. Low achromatic contrast sensitivity in birds: a common attribute shared by many phylogenetic orders. J Exp Biol 2024; 227:jeb246342. [PMID: 38099472 DOI: 10.1242/jeb.246342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024]
Abstract
Vision is an important sensory modality in birds, which can outperform other vertebrates in some visual abilities. However, sensitivity to achromatic contrasts - the ability to discern luminance difference between two objects or an object and its background - has been shown to be lower in birds compared with other vertebrates. We conducted a comparative study to evaluate the achromatic contrast sensitivity of 32 bird species from 12 orders using the optocollic reflex technique. We then performed an analysis to test for potential variability in contrast sensitivity depending on the corneal diameter to the axial length ratio, a proxy of the retinal image brightness. To account for potential influences of evolutionary relatedness, we included phylogeny in our analyses. We found a low achromatic contrast sensitivity for all avian species studied compared with other vertebrates (except small mammals), with high variability between species. This variability is partly related to phylogeny but appears to be independent of image brightness.
Collapse
Affiliation(s)
- Constance L M Blary
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
- Agence de l'environnement et de la Maîtrise de l'Energie 20, 49004 Angers Cedex 01, France
| | - Olivier Duriez
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | | | - Mindaugas Mitkus
- Institute of Biosciences, Life Sciences Center, Vilnius University, 10257 Vilnius, Lithuania
| | - Samuel P Caro
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Aurélien Besnard
- CEFE, Univ Montpellier, CNRS, EPHE PSL University, IRD, 34293 Montpellier, France
| | - Simon Potier
- Lund Vision Group, Department of Biology, Lund University, Lund 22362, Sweden
- Les Ailes de l'Urga, 27320 Marcilly la Campagne, France
| |
Collapse
|
6
|
Brivio F, Apollonio M, Anderwald P, Filli F, Bassano B, Bertolucci C, Grignolio S. Seeking temporal refugia to heat stress: increasing nocturnal activity despite predation risk. Proc Biol Sci 2024; 291:20231587. [PMID: 38228177 DOI: 10.1098/rspb.2023.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
Flexibility in activity timing may enable organisms to quickly adapt to environmental changes. Under global warming, diurnally adapted endotherms may achieve a better energy balance by shifting their activity towards cooler nocturnal hours. However, this shift may expose animals to new or increased environmental challenges (e.g. increased predation risk, reduced foraging efficiency). We analysed a large dataset of activity data from 47 ibex (Capra ibex) in two protected areas, characterized by varying levels of predation risk (presence versus absence of the wolf-Canis lupus). We found that ibex increased nocturnal activity following warmer days and during brighter nights. Despite the considerable sexual dimorphism typical of this species and the consequent different predation-risk perception, males and females demonstrated consistent responses to heat in both predator-present and predator-absent areas. This supports the hypothesis that shifting activity towards nighttime may be a common strategy adopted by diurnal endotherms in response to global warming. As nowadays different pressures are pushing mammals towards nocturnality, our findings emphasize the urgent need to integrate knowledge of temporal behavioural modifications into management and conservation planning.
Collapse
Affiliation(s)
- Francesca Brivio
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari 07100, Italy
| | - Marco Apollonio
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, Sassari 07100, Italy
| | | | | | - Bruno Bassano
- Gran Paradiso National Park, Via Pio VII 9, Torino 10135, Italy
| | - Cristiano Bertolucci
- Department of Life Science and Biotechnology, University of Ferrara, via Borsari 46, Ferrara, 44121, Italy
| | - Stefano Grignolio
- Department of Life Science and Biotechnology, University of Ferrara, via Borsari 46, Ferrara, 44121, Italy
| |
Collapse
|
7
|
Scott JE. The macroevolutionary dynamics of activity pattern in mammals: Primates in context. J Hum Evol 2023; 184:103436. [PMID: 37741141 DOI: 10.1016/j.jhevol.2023.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023]
Abstract
Activity pattern has played a prominent role in discussions of primate evolutionary history. Most primates are either diurnal or nocturnal, but a small number are active both diurnally and nocturnally. This pattern-cathemerality-also occurs at low frequency across mammals. Using a large sample of mammalian species, this study evaluates two macroevolutionary hypotheses proposed to explain why cathemerality is less common than diurnality and nocturnality: 1) that cathemeral lineages have higher extinction probabilities (differential diversification) and 2) that transitions out of cathemerality are more frequent, making it a less persistent state (differential state persistence). Rates of speciation, extinction, and transition between character states were estimated using hidden-rates models applied to a phylogenetic tree containing 3013 mammals classified by activity pattern. The models failed to detect consistent differences in diversification dynamics among activity patterns, but there is strong support for differential state persistence. Transition rates out of cathemerality tend to be much higher than transition rates out of nocturnality. Transition rates out of diurnality are similar to those for cathemerality in most clades, with two important exceptions: diurnality is unusually persistent in anthropoid primates and sciurid rodents. These two groups combine very low rates of transition out of diurnality with high speciation rates. This combination has no parallels among cathemeral lineages, explaining why diurnality has become more common than cathemerality in mammals. Similarly, the combination of rates found in anthropoids is sufficient to explain the low relative frequency of cathemerality in primates, making it unnecessary to appeal to high extinction probabilities in cathemeral lineages in this clade. These findings support the hypothesis that the distribution of activity patterns across mammals has been influenced primarily by differential state persistence, whereas the effect of differential diversification appears to have been more idiosyncratic.
Collapse
Affiliation(s)
- Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
8
|
Breitenbach R, Ambros S, Risko G, Arcusa I, Durland Donahou A, Wolovich CK. The importance of auditory, olfactory, and visual cues for insect foraging in owl monkeys (Aotus nancymaae). Am J Primatol 2023; 85:e23539. [PMID: 37504384 DOI: 10.1002/ajp.23539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/01/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Nocturnal mammals have unique sensory adaptations to facilitate foraging at night. Owl monkeys (Aotus spp.) are pair-living nocturnal platyrrhines adept at capturing insect prey under low-light conditions. Owl monkeys use acoustic and chemical cues in intraspecific communication and use olfaction to detect fruit as they forage. We conducted an experiment to determine which cues (auditory, olfactory, and visual) Aotus nancymaae rely upon when foraging for insects. We scored the behavior of 23 captive owl monkeys during a series of trials in which monkeys were provided sensory boxes with insect cues either present (experimental box) or absent (control box). Each cue was tested alone and in combination with all other cues (multimodal cues). We used generalized linear mixed models to determine which cues elicited the greatest behavioral response. Owl monkeys approached and spent more time near experimental boxes than control boxes. Male owl monkeys were quicker than their female partners to approach the sensory boxes, suggesting that males may be less neophobic than females. The owl monkeys exhibited behaviors associated with olfaction and foraging (e.g., sneezing, trilling) during trials with multimodal cues and when only olfactory cues were present. When only visual or auditory cues were present, owl monkeys exhibited fewer foraging-related behaviors. After approaching a sensory box, however, they often touched boxes containing visual cues. A. nancymaae may rely on olfactory cues at night to detect a food source from several meters away and then rely more on visual cues once they are closer to the food source. Their use of sensory cues during insect foraging differs from nocturnal strepsirrhines, possibly reflecting physiological constraints associated with phylogeny, given that owl monkeys evolved nocturnality secondarily from a more recent diurnal ancestor.
Collapse
Affiliation(s)
| | - Samantha Ambros
- DuMond Conservancy for Primates and Tropical Forests, Miami, Florida, USA
| | - Gabrielle Risko
- Biology Department, Florida Southern College, Lakeland, Florida, USA
| | - Isabel Arcusa
- Biology Department, Florida Southern College, Lakeland, Florida, USA
| | | | | |
Collapse
|
9
|
Smith TD, Ruf I, DeLeon VB. Ontogenetic transformation of the cartilaginous nasal capsule in mammals, a review with new observations on bats. Anat Rec (Hoboken) 2023. [PMID: 36647334 DOI: 10.1002/ar.25152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The nasal capsule, as the most rostral part of the chondrocranium, is a critical point of connection with the facial skeleton. Its fate may influence facial form, and the varied fates of cartilage may be a vehicle contributing to morphological diversity. Here, we review ontogenetic changes in the cartilaginous nasal capsule of mammals, and make new observations on perinatal specimens of two chiropteran species of different suborders. Our observations reveal some commonalities between Rousettus leschenaultii and Desmodus rotundus, such as perinatal ossification of the first ethmoturbinal. However, in Rousettus, ossification of turbinals is demonstrated as either perichondrial or endochondral. In Desmodus, perichondrial and endochondral ossification of the posterior nasal cupula is observed at birth, a part of the nasal capsule previously shown to persist as cartilage into infancy in Rousettus. Combined with prior findings on cranial cartilages we identify several diverse transformational mechanisms by which cartilage as a tissue type may contribute to morphological diversity of the cranium. First, cartilage differentiates in an iterative fashion to increase nasal complexity, but still retains the capacity for later elaboration via de novo bone emanating outward before or after cartilage ossifies. Second, cartilage acts as a driver of growth at growth centers, or via interstitial growth (e.g., septal cartilage). Finally, cartilage as a tissue may influence the timing of ossification and union of the facial and basicranial skeleton. In particular, cartilage at certain points of ontogeny may "model" via selective resorption, showing some similarity to bone.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Irina Ruf
- Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Veilleux CC, Dominy NJ, Melin AD. The sensory ecology of primate food perception, revisited. Evol Anthropol 2022; 31:281-301. [PMID: 36519416 DOI: 10.1002/evan.21967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 09/06/2022] [Accepted: 10/23/2022] [Indexed: 12/23/2022]
Abstract
Twenty years ago, Dominy and colleagues published "The sensory ecology of primate food perception," an impactful review that brought new perspectives to understanding primate foraging adaptations. Their review synthesized information on primate senses and explored how senses informed feeding behavior. Research on primate sensory ecology has seen explosive growth in the last two decades. Here, we revisit this important topic, focusing on the numerous new discoveries and lines of innovative research. We begin by reviewing each of the five traditionally recognized senses involved in foraging: audition, olfaction, vision, touch, and taste. For each sense, we provide an overview of sensory function and comparative ecology, comment on the state of knowledge at the time of the original review, and highlight advancements and lingering gaps in knowledge. Next, we provide an outline for creative, multidisciplinary, and innovative future research programs that we anticipate will generate exciting new discoveries in the next two decades.
Collapse
Affiliation(s)
- Carrie C Veilleux
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| | - Nathaniel J Dominy
- Department of Anthropology, Dartmouth College, Hanover, New Hampshire, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada.,Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Deppisch P, Helfrich-Förster C, Senthilan PR. The Gain and Loss of Cryptochrome/Photolyase Family Members during Evolution. Genes (Basel) 2022; 13:1613. [PMID: 36140781 PMCID: PMC9498864 DOI: 10.3390/genes13091613] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
The cryptochrome/photolyase (CRY/PL) family represents an ancient group of proteins fulfilling two fundamental functions. While photolyases repair UV-induced DNA damages, cryptochromes mainly influence the circadian clock. In this study, we took advantage of the large number of already sequenced and annotated genes available in databases and systematically searched for the protein sequences of CRY/PL family members in all taxonomic groups primarily focusing on metazoans and limiting the number of species per taxonomic order to five. Using BLASTP searches and subsequent phylogenetic tree and motif analyses, we identified five distinct photolyases (CPDI, CPDII, CPDIII, 6-4 photolyase, and the plant photolyase PPL) and six cryptochrome subfamilies (DASH-CRY, mammalian-type MCRY, Drosophila-type DCRY, cnidarian-specific ACRY, plant-specific PCRY, and the putative magnetoreceptor CRY4. Manually assigning the CRY/PL subfamilies to the species studied, we have noted that over evolutionary history, an initial increase of various CRY/PL subfamilies was followed by a decrease and specialization. Thus, in more primitive organisms (e.g., bacteria, archaea, simple eukaryotes, and in basal metazoans), we find relatively few CRY/PL members. As species become more evolved (e.g., cnidarians, mollusks, echinoderms, etc.), the CRY/PL repertoire also increases, whereas it appears to decrease again in more recent organisms (humans, fruit flies, etc.). Moreover, our study indicates that all cryptochromes, although largely active in the circadian clock, arose independently from different photolyases, explaining their different modes of action.
Collapse
Affiliation(s)
| | | | - Pingkalai R. Senthilan
- Neurobiology & Genetics, Theodor-Boveri Institute, Biocenter, Julius-Maximilians-University Würzburg, 97074 Wurzburg, Germany
| |
Collapse
|
12
|
Rial RV, Canellas F, Akaârir M, Rubiño JA, Barceló P, Martín A, Gamundí A, Nicolau MC. The Birth of the Mammalian Sleep. BIOLOGY 2022; 11:biology11050734. [PMID: 35625462 PMCID: PMC9138988 DOI: 10.3390/biology11050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Mammals evolved from reptiles as a consequence of an evolutionary bottleneck. Some diurnal reptiles extended their activity, first to twilight and then to the entire dark time. This forced the change of the visual system. Pursuing maximal sensitivity, they abandoned the filters protecting the eyes against the dangerous diurnal light, which, in turn, forced immobility in lightproof burrows during light time. This was the birth of the mammalian sleep. Then, the Cretacic-Paleogene extinction of dinosaurs leaved free the diurnal niche and allowed the expansion of a few early mammals to diurnal life and the high variability of sleep traits. On the other hand, we propose that the idling rest is a state showing homeostatic regulation. Therefore, the difference between behavioral rest and wakeful idling is rather low: both show quiescence, raised sensory thresholds, reversibility, specific sleeping-resting sites and body positions, it is a pleasing state, and both are dependent of circadian and homeostatic regulation. Indeed, the most important difference is the unconsciousness of sleep and the consciousness of wakeful idling. Thus, we propose that sleep is a mere upgrade of the wakeful rest, and both may have the same function: guaranteeing rest during a part of the daily cycle. Abstract Mammals evolved from small-sized reptiles that developed endothermic metabolism. This allowed filling the nocturnal niche. They traded-off visual acuity for sensitivity but became defenseless against the dangerous daylight. To avoid such danger, they rested with closed eyes in lightproof burrows during light-time. This was the birth of the mammalian sleep, the main finding of this report. Improved audition and olfaction counterweighed the visual impairments and facilitated the cortical development. This process is called “The Nocturnal Evolutionary Bottleneck”. Pre-mammals were nocturnal until the Cretacic-Paleogene extinction of dinosaurs. Some early mammals returned to diurnal activity, and this allowed the high variability in sleeping patterns observed today. The traits of Waking Idleness are almost identical to those of behavioral sleep, including homeostatic regulation. This is another important finding of this report. In summary, behavioral sleep seems to be an upgrade of Waking Idleness Indeed, the trait that never fails to show is quiescence. We conclude that the main function of sleep consists in guaranteeing it during a part of the daily cycle.
Collapse
Affiliation(s)
- Rubén V. Rial
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- Correspondence: ; Tel.: +34-971-173-147; Fax: +34-971-173-184
| | - Francesca Canellas
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Mourad Akaârir
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - José A. Rubiño
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Pere Barceló
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Aida Martín
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - Antoni Gamundí
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| | - M. Cristina Nicolau
- Laboratori de Neurofisiologia del Son i dels Ritmes Biològics, Grup de Recerca Neurofisiologia del Son i Ritmes Biològics, Department of Biologia, Universitat de les Illes Balears, Ctra Valldemossa, km 7.5, 07122 Palma de Mallorca, Illes Balears, Spain; (F.C.); (M.A.); (J.A.R.); (P.B.); (A.M.); (A.G.); (M.C.N.)
- IdISBa, Institut d’Investigació Sanitària de les Illes Balears, Hospital Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
- IUNICS, Institut Universitari d’Investigació en Ciències de la Salut, Hospital Universitary Son Espases, 07120 Palma de Mallorca, Illes Balears, Spain
| |
Collapse
|
13
|
Oosthuizen MK, Bennett NC. Clocks Ticking in the Dark: A Review of Biological Rhythms in Subterranean African Mole-Rats. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.878533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological rhythms are rhythmic fluctuations of biological functions that occur in almost all organisms and on several time scales. These rhythms are generated endogenously and entail the coordination of physiological and behavioural processes to predictable, external environmental rhythms. The light-dark cycle is usually the most prominent environmental cue to which animals synchronise their rhythms. Biological rhythms are believed to provide an adaptive advantage to organisms. In the present review, we will examine the occurrence of circadian and seasonal rhythms in African mole-rats (family Bathyergidae). African mole-rats are strictly subterranean, they very rarely emerge aboveground and therefore, do not have regular access to environmental light. A key adaptation to their specialised habitat is a reduction in the visual system. Mole-rats exhibit both daily and seasonal rhythmicity in a range of behaviours and physiological variables, albeit to different degrees and with large variability. We review previous research on the entire circadian system of African mole-rats and discuss output rhythms in detail. Laboratory experiments imply that light remains the strongest zeitgeber for entrainment but in the absence of light, animals can entrain to ambient temperature rhythms. Field studies report that rhythmic daily and seasonal behaviour is displayed in their natural habitat. We suggest that ambient temperature and rainfall play an important role in the timing of rhythmic behaviour in mole-rats, and that they likely respond directly to these zeitgebers in the field rather than exhibit robust endogenous rhythms. In the light of climate change, these subterranean animals are buffered from the direct and immediate effects of changes in temperature and rainfall, partly because they do not have robust circadian rhythms, however, on a longer term they are vulnerable to changes in their food sources and dispersal abilities.
Collapse
|
14
|
Early evolution of diurnal habits in owls (Aves, Strigiformes) documented by a new and exquisitely preserved Miocene owl fossil from China. Proc Natl Acad Sci U S A 2022; 119:e2119217119. [PMID: 35344399 PMCID: PMC9169863 DOI: 10.1073/pnas.2119217119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceOwls, with their largely nocturnal habits, contrast strikingly with the vast majority of diurnal birds. A new spectacular late Miocene owl skeleton from China unexpectedly preserves the oldest evidence for daytime behavior in owls. The extinct owl is a member of the clade Surniini, which contains most living diurnal owl species. Analysis of the preserved eye bones documents them as consistent with diurnal birds, and phylogenetically constrained character mapping coincides with a reconstruction of an early evolutionary reversal away from nocturnal habits in this owl group. These results support a potential Miocene origin of nonnocturnal habits in a globally distributed owl group, which may be linked to steppe habitat expansion and climatic cooling in the late Miocene.
Collapse
|
15
|
Damsgaard C, Country MW. The Opto-Respiratory Compromise: Balancing Oxygen Supply and Light Transmittance in the Retina. Physiology (Bethesda) 2022; 37:101-113. [PMID: 34843655 PMCID: PMC9159541 DOI: 10.1152/physiol.00027.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The light-absorbing retina has an exceptionally high oxygen demand, which imposes two conflicting needs: high rates of blood perfusion and an unobstructed light path devoid of blood vessels. This review discusses mechanisms and physiological trade-offs underlying retinal oxygen supply in vertebrates and examines how these physiological systems supported the evolution of vision.
Collapse
Affiliation(s)
- Christian Damsgaard
- 1Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark,2Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Michael W. Country
- 3Retinal Neurophysiology Section, National Eye Institute,
National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
16
|
Newham E, Gill PG, Corfe IJ. New tools suggest a middle Jurassic origin for mammalian endothermy: Advances in state-of-the-art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time: Advances in state-of-the-art techniques uncover new insights on the evolutionary patterns of mammalian endothermy through time. Bioessays 2022; 44:e2100060. [PMID: 35170781 DOI: 10.1002/bies.202100060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/18/2022]
Abstract
We suggest that mammalian endothermy was established amongst Middle Jurassic crown mammals, through reviewing state-of-the-art fossil and living mammal studies. This is considerably later than the prevailing paradigm, and has important ramifications for the causes, pattern, and pace of physiological evolution amongst synapsids. Most hypotheses argue that selection for either enhanced aerobic activity, or thermoregulation was the primary driver for synapsid physiological evolution, based on a range of fossil characters that have been linked to endothermy. We argue that, rather than either alternative being the primary selective force for the entirety of endothermic evolution, these characters evolved quite independently through time, and across the mammal family tree, principally as a response to shifting environmental pressures and ecological opportunities. Our interpretations can be tested using closely linked proxies for both factors, derived from study of fossils of a range of Jurassic and Cretaceous mammaliaforms and early mammals.
Collapse
Affiliation(s)
- Elis Newham
- School of Engineering and Materials Science, Queen Mary University of London, London, UK.,Department of Palaeontology, Institute for Geosciences, University of Bonn, Bonn, Germany
| | - Pamela G Gill
- School of Earth Sciences, University of Bristol, Bristol, UK.,Earth Sciences Department, Natural History Museum, London, UK
| | - Ian J Corfe
- Jernvall Laboratory, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Geological Survey of Finland, Espoo, Finland
| |
Collapse
|
17
|
Kaas JH, Qi HX, Stepniewska I. Escaping the nocturnal bottleneck, and the evolution of the dorsal and ventral streams of visual processing in primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210293. [PMID: 34957843 PMCID: PMC8710890 DOI: 10.1098/rstb.2021.0293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Early mammals were small and nocturnal. Their visual systems had regressed and they had poor vision. After the extinction of the dinosaurs 66 mya, some but not all escaped the 'nocturnal bottleneck' by recovering high-acuity vision. By contrast, early primates escaped the bottleneck within the age of dinosaurs by having large forward-facing eyes and acute vision while remaining nocturnal. We propose that these primates differed from other mammals by changing the balance between two sources of visual information to cortex. Thus, cortical processing became less dependent on a relay of information from the superior colliculus (SC) to temporal cortex and more dependent on information distributed from primary visual cortex (V1). In addition, the two major classes of visual information from the retina became highly segregated into magnocellular (M cell) projections from V1 to the primate-specific temporal visual area (MT), and parvocellular-dominated projections to the dorsolateral visual area (DL or V4). The greatly expanded P cell inputs from V1 informed the ventral stream of cortical processing involving temporal and frontal cortex. The M cell pathways from V1 and the SC informed the dorsal stream of cortical processing involving MT, surrounding temporal cortex, and parietal-frontal sensorimotor domains. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Jon H. Kaas
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| | - Hui-Xin Qi
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| | - Iwona Stepniewska
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| |
Collapse
|
18
|
Valente R, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC. Functional or Vestigial? The Genomics of the Pineal Gland in Xenarthra. J Mol Evol 2021; 89:565-575. [PMID: 34342686 DOI: 10.1007/s00239-021-10025-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 11/28/2022]
Abstract
Vestigial organs are historical echoes of past phenotypes. Determining whether a specific organ constitutes a functional or vestigial structure can be a challenging task, given that distinct levels of atrophy may arise between and within lineages. The mammalian pineal gland, an endocrine organ involved in melatonin biorhythmicity, represents a classic example, often yielding contradicting anatomical observations. In Xenarthra (sloths, anteaters, and armadillos), a peculiar mammalian order, the presence of a distinct pineal organ was clearly observed in some species (i.e., Linnaeus's two-toed sloth), but undetected in other closely related species (i.e., brown-throated sloth). In the nine-banded armadillo, contradicting evidence supports either functional or vestigial scenarios. Thus, to untangle the physiological status of the pineal gland in Xenarthra, we used a genomic approach to investigate the evolution of the gene hub responsible for melatonin synthesis and signaling. We show that both synthesis and signaling compartments are eroded and were probably lost independently among Xenarthra orders. Additionally, by expanding our analysis to 157 mammal genomes, we offer a comprehensive view showing that species with very distinctive habitats and lifestyles have convergently evolved a similar phenotype: Cetacea, Pholidota, Dermoptera, Sirenia, and Xenarthra. Our findings suggest that the recurrent inactivation of melatonin genes correlates with pineal atrophy and endorses the use of genomic analyses to ascertain the physiological status of suspected vestigial structures.
Collapse
Affiliation(s)
- Raul Valente
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Filipe Alves
- MARE-Marine and Environmental Sciences Centre, ARDITI, Madeira, Portugal.,OOM-Oceanic Observatory of Madeira, Funchal, Portugal
| | - Isabel Sousa-Pinto
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - L Filipe C Castro
- CIMAR/CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal. .,FCUP-Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal.
| |
Collapse
|
19
|
Cangiano L, Asteriti S. Interphotoreceptor coupling: an evolutionary perspective. Pflugers Arch 2021; 473:1539-1554. [PMID: 33988778 PMCID: PMC8370920 DOI: 10.1007/s00424-021-02572-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/13/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
In the vertebrate retina, signals generated by cones of different spectral preference and by highly sensitive rod photoreceptors interact at various levels to extract salient visual information. The first opportunity for such interaction is offered by electrical coupling of the photoreceptors themselves, which is mediated by gap junctions located at the contact points of specialised cellular processes: synaptic terminals, telodendria and radial fins. Here, we examine the evolutionary pressures for and against interphotoreceptor coupling, which are likely to have shaped how coupling is deployed in different species. The impact of coupling on signal to noise ratio, spatial acuity, contrast sensitivity, absolute and increment threshold, retinal signal flow and colour discrimination is discussed while emphasising available data from a variety of vertebrate models spanning from lampreys to primates. We highlight the many gaps in our knowledge, persisting discrepancies in the literature, as well as some major unanswered questions on the actual extent and physiological role of cone-cone, rod-cone and rod-rod communication. Lastly, we point toward limited but intriguing evidence suggestive of the ancestral form of coupling among ciliary photoreceptors.
Collapse
Affiliation(s)
- Lorenzo Cangiano
- Dept. of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy.
| | - Sabrina Asteriti
- Dept. of Translational Research, University of Pisa, Via San Zeno 31, 56123, Pisa, Italy
| |
Collapse
|
20
|
Bell RB, Bradley BJ, Kamilar JM. The Evolutionary Ecology of Primate Hair Coloration: A Phylogenetic Approach. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09547-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Tse YT, Calede JJM. Quantifying the link between craniodental morphology and diet in the Soricidae using geometric morphometrics. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Dietary adaptations have often been associated with heightened taxonomic diversity. Yet, one of the most species-rich mammalian families, the Soricidae, is often considered to be ecologically and morphologically relatively homogenous. Here, we use geometric morphometrics to capture skull and dentary morphology in a broad sample of shrew species and test the hypothesis that morphological variation among shrew species reflects adaptations to food hardness. Our analyses demonstrate that morphology is associated with dietary ecology. Species that consume hard food items are larger and have specific morphological adaptions including an anteroposteriorly expanded parietal, an anteroposteriorly short and dorsoventrally tall rostrum, a mediolaterally wide palate, buccolingually wide cheek teeth, a large coronoid process and a dorsoventrally short jaw joint. The masseter muscle does not appear to play an important role in the strong bite force of shrews and the dentary is a better indicator of ecology than the skull. Our phylogenetic flexible discriminant function analysis suggests that the evolutionary history of shrews has shaped their morphology, canalizing dietary adaptations and enabling functional equivalence whereby different morphologies achieve similar dietary performances. Our work makes possible future studies of niche partitioning among sympatric species as well as the investigation of the diet of extinct soricids.
Collapse
Affiliation(s)
- Yuen Ting Tse
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, OH, USA
| | - Jonathan J M Calede
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, OH, USA
- The Ohio State University at Marion, Marion, Ohio, OH, USA
| |
Collapse
|
22
|
Elmer LK, Madliger CL, Blumstein DT, Elvidge CK, Fernández-Juricic E, Horodysky AZ, Johnson NS, McGuire LP, Swaisgood RR, Cooke SJ. Exploiting common senses: sensory ecology meets wildlife conservation and management. CONSERVATION PHYSIOLOGY 2021; 9:coab002. [PMID: 33815799 PMCID: PMC8009554 DOI: 10.1093/conphys/coab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 05/21/2023]
Abstract
Multidisciplinary approaches to conservation and wildlife management are often effective in addressing complex, multi-factor problems. Emerging fields such as conservation physiology and conservation behaviour can provide innovative solutions and management strategies for target species and systems. Sensory ecology combines the study of 'how animals acquire' and process sensory stimuli from their environments, and the ecological and evolutionary significance of 'how animals respond' to this information. We review the benefits that sensory ecology can bring to wildlife conservation and management by discussing case studies across major taxa and sensory modalities. Conservation practices informed by a sensory ecology approach include the amelioration of sensory traps, control of invasive species, reduction of human-wildlife conflicts and relocation and establishment of new populations of endangered species. We illustrate that sensory ecology can facilitate the understanding of mechanistic ecological and physiological explanations underlying particular conservation issues and also can help develop innovative solutions to ameliorate conservation problems.
Collapse
Affiliation(s)
- Laura K Elmer
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Christine L Madliger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Chris K Elvidge
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, VA 23668, USA
| | - Nicholas S Johnson
- USGS, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI 49759, USA
| | - Liam P McGuire
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ronald R Swaisgood
- Institute for Conservation Research, San Diego Zoo Global, San Diego, CA 92027-7000, USA
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
23
|
Cox DTC, Gardner AS, Gaston KJ. Diel niche variation in mammals associated with expanded trait space. Nat Commun 2021; 12:1753. [PMID: 33741946 PMCID: PMC7979707 DOI: 10.1038/s41467-021-22023-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/08/2021] [Indexed: 01/28/2023] Open
Abstract
Mammalian life shows huge diversity, but most groups remain nocturnal in their activity pattern. A key unresolved question is whether mammal species that have diversified into different diel niches occupy unique regions of functional trait space. For 5,104 extant mammals we show here that daytime-active species (cathemeral or diurnal) evolved trait combinations along different gradients from those of nocturnal and crepuscular species. Hypervolumes of five major functional traits (body mass, litter size, diet, foraging strata, habitat breadth) reveal that 30% of diurnal trait space is unique, compared to 55% of nocturnal trait space. Almost half of trait space (44%) of species with apparently obligate diel niches is shared with those that can switch, suggesting that more species than currently realised may be somewhat flexible in their activity patterns. Increasingly, conservation measures have focused on protecting functionally unique species; for mammals, protecting functional distinctiveness requires a focus across diel niches.
Collapse
Affiliation(s)
- D T C Cox
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - A S Gardner
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - K J Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
24
|
Oel AP, Neil GJ, Dong EM, Balay SD, Collett K, Allison WT. Nrl Is Dispensable for Specification of Rod Photoreceptors in Adult Zebrafish Despite Its Deeply Conserved Requirement Earlier in Ontogeny. iScience 2020; 23:101805. [PMID: 33299975 PMCID: PMC7702016 DOI: 10.1016/j.isci.2020.101805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The transcription factor NRL (neural retina leucine zipper) has been canonized as the master regulator of photoreceptor cell fate in the retina. NRL is necessary and sufficient to specify rod cell fate and to preclude cone cell fate in mice. By engineering zebrafish, we tested if NRL function has conserved roles beyond mammals or beyond nocturnal species, i.e., in a vertebrate possessing a greater and more typical diversity of cone sub-types. Transgenic expression of Nrl from zebrafish or mouse was sufficient to induce rod photoreceptor cells. Zebrafish nrl−/− mutants lacked rods (and had excess UV-sensitive cones) as young larvae; thus, the conservation of Nrl function between mice and zebrafish appears sound. Strikingly, however, rods were abundant in adult nrl−/− null mutant zebrafish. Rods developed in adults despite Nrl protein being undetectable. Therefore, a yet-to-be-revealed non-canonical pathway independent of Nrl is able to specify the fate of some rod photoreceptors. Nrl is conserved and sufficient to specify rod photoreceptors in the zebrafish retina Nrl is necessary for rod photoreceptors in early ontogeny of zebrafish larvae Zebrafish Nrl is functionally conserved with mouse and human NRL Remarkably, Nrl is dispensable for rod specification in adult zebrafish
Collapse
Affiliation(s)
- A Phillip Oel
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Gavin J Neil
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Emily M Dong
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Spencer D Balay
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - Keon Collett
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton AB, T7Y 1C4, Canada.,Department of Medical Genetics, University of Alberta, Edmonton AB, T6G 2R3, Canada
| |
Collapse
|
25
|
Thomas KN, Gower DJ, Bell RC, Fujita MK, Schott RK, Streicher JW. Eye size and investment in frogs and toads correlate with adult habitat, activity pattern and breeding ecology. Proc Biol Sci 2020; 287:20201393. [PMID: 32962540 PMCID: PMC7542830 DOI: 10.1098/rspb.2020.1393] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Frogs and toads (Amphibia: Anura) display diverse ecologies and behaviours, which are often correlated with visual capacity in other vertebrates. Additionally, anurans exhibit a broad range of relative eye sizes, which have not previously been linked to ecological factors in this group. We measured relative investment in eye size and corneal size for 220 species of anurans representing all 55 currently recognized families and tested whether they were correlated with six natural history traits hypothesized to be associated with the evolution of eye size. Anuran eye size was significantly correlated with habitat, with notable decreases in eye investment among fossorial, subfossorial and aquatic species. Relative eye size was also associated with mating habitat and activity pattern. Compared to other vertebrates, anurans have relatively large eyes for their body size, indicating that vision is probably of high importance. Our study reveals the role that ecology and behaviour may have played in the evolution of anuran visual systems and highlights the usefulness of museum specimens, and importance of broad taxonomic sampling, for interpreting macroecological patterns.
Collapse
Affiliation(s)
- Kate N Thomas
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - David J Gower
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0162, USA.,Department of Herpetology, California Academy of Sciences, San Francisco, CA 94118, USA
| | - Matthew K Fujita
- Department of Biology, Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ryan K Schott
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0162, USA
| | | |
Collapse
|
26
|
Fear of the dark? A mesopredator mitigates large carnivore risk through nocturnality, but humans moderate the interaction. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02831-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
While constrained by endogenous rhythms, morphology and ecology, animals may still exhibit flexible activity patterns in response to risk. Temporal avoidance of interspecific aggression can enable access to resources without spatial exclusion. Apex predators, including humans, can affect mesopredator activity patterns. Human context might also modify temporal interactions between predators. We explored activity patterns, nocturnality and the effects of human activity upon a guild of carnivores (grey wolf, Canis lupus; Eurasian lynx, Lynx lynx; red fox, Vulpes vulpes) using travel routes in Plitvice Lakes National Park, Croatia. Humans were diurnal, foxes nocturnal and large carnivores active during the night, immediately after sunrise and before sunset. Carnivore activity patterns overlapped greatly and to a similar extent for all pairings. Activity curves followed expectations based on interspecific killing, with activity peaks coinciding where body size differences were small (wolf and lynx) but not when they were intermediate (foxes to large carnivores). Carnivore activity, particularly fox, overlapped much less with that of diurnal humans. Foxes responded to higher large carnivore activity by being more nocturnal. Low light levels likely provide safer conditions by reducing the visual detectability of mesopredators. The nocturnal effect of large carnivores was however moderated and reduced by human activity. This could perhaps be due to temporal shielding or interference with risk cues. Subtle temporal avoidance and nocturnality may enable mesopredators to cope with interspecific aggression at shared spatial resources. Higher human activity moderated the effects of top-down temporal suppression which could consequently affect the trophic interactions of mesopredators.
Significance statement
Temporal partitioning can provide an important mechanism for spatial resource access and species coexistence. Our findings show that carnivores partition the use of shared travel routes in time, using the cover of darkness to travel safely where their suppressors (large carnivores) are more active. We however observed fox nocturnality to be flexible, with responses depending on the activity levels but also the composition of apex predators. High human activity modified the top-down temporal suppression of mesopredators by large carnivores. The use of time by predators can have demographic and trophic consequences. Prey accessibility and susceptibility can be temporally variable. As such, the ecosystem services and the ecological roles of predators may be affected by human time use as well as that of intraguild competitors. Temporal interactions should not be overlooked when evaluating human use and conservation priorities in protected areas.
Collapse
|
27
|
Monson TA. Patterns and magnitudes of craniofacial covariation in extant cercopithecids. Anat Rec (Hoboken) 2020; 303:3068-3084. [PMID: 32220100 DOI: 10.1002/ar.24398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/15/2020] [Accepted: 01/25/2020] [Indexed: 01/17/2023]
Abstract
The cranium contains almost all of the vertebrate sensory organs and plays an essential role in vertebrate evolution. Research on the primate cranium has revealed that it is both highly integrated and modular, but studies have historically focused on covariance between the neurocranium and facial skeleton rather than on bones specific to special senses such as vision. The goal of this work is to investigate patterns and magnitudes of craniofacial covariation in extant cercopithecids with particular attention to the orbits. This study takes a quantitative approach using data collected from 38 homologous cranial landmarks across 11 genera of cercopithecid monkeys (Cercopithecidae, N = 291). These data demonstrate that both patterns and magnitudes of craniofacial covariation differ across Cercopithecidae at subfamily, tribe, and genus levels, with the strongest integration in the papionins (and specifically Papio) and significantly weaker covariation in the colobines, particularly Presbytis. Orbital height does not covary with other measurements of the cranium to the same degree as other cranial traits in Cercopithecidae and is highly constrained across the family. This study has important implications for our understanding of the evolution and development of morphological diversity in the cercopithecid cranium and evolution of the primate eye. This study also highlights the potential error of broad assumptions about generalizing patterns and magnitudes of modularity and integration across primates. Additionally, these findings reiterate the importance of trait selection for interpreting fossil taxonomy, as craniofacial covariation may impact phenotypes commonly used to differentiate fossil primate species.
Collapse
Affiliation(s)
- Tesla A Monson
- Department of Anthropology, Western Washington University, Bellingham, Washington, USA
| |
Collapse
|
28
|
Wu Y, Wang H. Convergent evolution of bird-mammal shared characteristics for adapting to nocturnality. Proc Biol Sci 2020; 286:20182185. [PMID: 30963837 DOI: 10.1098/rspb.2018.2185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The diapsid lineage (birds) and synapsid lineage (mammals), share a suite of functionally similar characteristics (e.g. endothermy) that are considered to be a result of their convergent evolution, but the candidate selections leading to this convergent evolution are still under debate. Here, we used a newly developed molecular phyloecological approach to reconstruct the diel activity pattern of the common ancestors of living birds. Our results strongly suggest that they had adaptations to nocturnality during their early evolution, which is remarkably similar to that of ancestral mammals. Given their similar adaptation to nocturnality, we propose that the shared traits in birds and mammals may have partly evolved as a result of the convergent evolution of their early ancestors adapting to ecological factors (e.g. low ambient temperature) associated with nocturnality. Finally, a conceptually unifying ecological model on the evolution of endothermy in diverse organisms with an emphasis on low ambient temperature is proposed. We reason that endothermy may evolve as an adaptive strategy to enable organisms to effectively implement various life-cycle activities under relatively low-temperature environments. In particular, a habitat shift from high-temperature to relatively low-temperature environments is identified as a common factor underlying the evolution of endothermy.
Collapse
Affiliation(s)
- Yonghua Wu
- 1 School of Life Sciences, Northeast Normal University , 5268 Renmin Street, Changchun 130024 , People's Republic of China.,2 Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University , 2555 Jingyue Street, Changchun 130117 , People's Republic of China
| | - Haifeng Wang
- 3 Department of Bioengineering, Stanford University , Stanford, CA 94305 , USA
| |
Collapse
|
29
|
Salazar J, Severin D, Vega-Zuniga T, Fernández-Aburto P, Deichler A, Sallaberry A. M, Mpodozis J. Anatomical Specializations Related to Foraging in the Visual System of a Nocturnal Insectivorous Bird, the Band-Winged Nightjar (Aves: Caprimulgiformes). BRAIN, BEHAVIOR AND EVOLUTION 2019; 94:27-36. [DOI: 10.1159/000504162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/19/2022]
Abstract
Nocturnal animals that rely on their visual system for foraging, mating, and navigation usually exhibit specific traits associated with living in scotopic conditions. Most nocturnal birds have several visual specializations, such as enlarged eyes and an increased orbital convergence. However, the actual role of binocular vision in nocturnal foraging is still debated. Nightjars (Aves: Caprimulgidae) are predators that actively pursue and capture flying insects in crepuscular and nocturnal environments, mainly using a conspicuous “sit-and-wait” tactic on which pursuit begins with an insect flying over the bird that sits on the ground. In this study, we describe the visual system of the band-winged nightjar (Systellura longirostris), with emphasis on anatomical features previously described as relevant for nocturnal birds. Orbit convergence, determined by 3D scanning of the skull, was 73.28°. The visual field, determined by ophthalmoscopic reflex, exhibits an area of maximum binocular overlap of 42°, and it is dorsally oriented. The eyes showed a nocturnal-like normalized corneal aperture/axial length index. Retinal ganglion cells (RGCs) were relatively scant, and distributed in an unusual oblique-band pattern, with higher concentrations in the ventrotemporal quadrant. Together, these results indicate that the band-winged nightjar exhibits a retinal specialization associated with the binocular area of their dorsal visual field, a relevant area for pursuit triggering and prey attacks. The RGC distribution observed is unusual among birds, but similar to that of some visually dependent insectivorous bats, suggesting that those features might be convergent in relation to feeding strategies.
Collapse
|
30
|
Abstract
The evidence that diel patterns of physiology and behaviour in mammals are governed by circadian ‘clocks’ is based almost entirely on studies of nocturnal rodents. The emergent circadian paradigm, however, neglects the roles of energy metabolism and alimentary function (feeding and digestion) as determinants of activity pattern. The temporal control of activity varies widely across taxa, and ungulates, microtine rodents, and insectivores provide examples in which circadian timekeeping is vestigial. The nocturnal rodent/human paradigm of circadian organisation is unhelpful when considering the broader manifestation of activity patterns in mammals. The evidence that daily patterns of physiology and behaviour in mammals are governed by circadian ‘clocks’ is based almost entirely on studies of nocturnal rodents. This Essay proposes that the nocturnal rodent/human paradigm of circadian rhythms is unhelpful when considering the broader manifestation of temporal organisation of activity in mammals.
Collapse
|
31
|
|
32
|
Liu Y, Chi H, Li L, Rossiter SJ, Zhang S. Molecular Data Support an Early Shift to an Intermediate-Light Niche in the Evolution of Mammals. Mol Biol Evol 2019; 35:1130-1134. [PMID: 29462332 DOI: 10.1093/molbev/msy019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The visual ability and associated photic niche of early mammals is debated. The theory that ancestral mammals were nocturnal is supported by diverse adaptations. However, others argue that photopigment repertoires of early mammals are more consistent with a crepuscular niche, and support for this also comes from inferred spectral tuning of middle/long wavelength-sensitive (M/LWS) opsin sequences. Functional studies have suggested that the M/LWS pigment in the ancestor of Mammalia was either red- or green-sensitive; however, these were based on outdated phylogenies with key lineages omitted. By performing the most detailed study to date of middle/long-wave mammalian color vision, we provide the first experimental evidence that the M/LWS pigment of amniotes underwent a 9-nm spectral shift towards shorter wavelengths in the Mammalia ancestor, exceeding predictions from known critical sites. Our results suggest early mammals were yellow-sensitive, possibly representing an adaptive trade-off for both crepuscular (twilight) and nocturnal (moonlight) niches.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hai Chi
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Longfei Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Shuyi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
33
|
Casares-Hidalgo C, Pérez-Ramos A, Forner-Gumbau M, Pastor FJ, Figueirido B. Taking a look into the orbit of mammalian carnivorans. J Anat 2019; 234:622-636. [PMID: 30861123 DOI: 10.1111/joa.12953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 11/26/2022] Open
Abstract
In this study, we explore the relationship between orbit anatomy and different ecological factors in carnivorous mammals from a phylogenetic perspective. We calculated the frontation (α), convergence (β), and orbitotemporal (Ω) angles of the orbit from 3D coordinates of anatomical landmarks in a wide sample of carnivores with different kinds of visual strategy (i.e. photopic, scotopic, and mesopic), habitat (i.e. open, mixed, and closed), and substrate use (i.e. arboreal, terrestrial, and aquatic). We used Bloomberg's K and Pagel's λ to assess phylogenetic signal in frontation, convergence, and orbitotemporal angles. The association of orbit orientation with skull length and ecology was explored using phylogenetic generalized least squares and phylogenetic manova, respectively. Moreover, we also computed phylomorphospaces from orbit orientation. Our results indicate that there is not a clear association between orbit orientation and the ecology of living carnivorans. We hypothesize that the evolution of the orbit in mammalian carnivores represents a new case of an ecological bottleneck specific to carnivorans. New directions for future research are discussed in light of this new evidence.
Collapse
Affiliation(s)
- Carlos Casares-Hidalgo
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Alejandro Pérez-Ramos
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Manuel Forner-Gumbau
- Departament de Matemàtiques, Facultat de Ciències, Universitat Jaume I (Castelló de la Plana), Castellón de la Plana, Spain
| | - Francisco J Pastor
- Departmento de Anatomía y Radiología, Museo de Anatomía, Universidad de Valladolid, Valladolid, Spain
| | - Borja Figueirido
- Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
34
|
Rapid Change in Mammalian Eye Shape Is Explained by Activity Pattern. Curr Biol 2019; 29:1082-1088.e3. [PMID: 30853430 DOI: 10.1016/j.cub.2019.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/08/2019] [Accepted: 02/05/2019] [Indexed: 11/21/2022]
Abstract
The rate of morphological evolution along the branches of a phylogeny varies widely [1-6]. Although such rate variation is often assumed to reflect the strength of historical natural selection resulting in adaptation [7-14], this lacks empirical and analytical evidence. One way to demonstrate a relationship between branchwise rates and adaptation would be to show that rapid rates of evolution are linked with ecological shifts or key innovations. Here, we test for this link by determining whether activity pattern, the time of day at which species are active, explains rapid bursts of evolutionary change in eye shape. Using modern approaches to identify shifts in the rate of morphological evolution [7, 13], we find that over 74% of rapid eye-shape change during mammalian evolutionary history is directly explained by distinct selection pressures acting on nocturnal, cathemeral, and diurnal species. Our results reveal how ecological changes occurring along the branches of a phylogeny can manifest in subsequent changes in the rate of morphological evolution. Although selective pressures exerted by different activity patterns have acted uniformly across all mammals, we find differences in the rate of eye-shape evolution among orders. The key to understanding this is in how ecology itself has evolved. We find heterogeneity in how activity pattern has evolved among mammals that ultimately led to differences in the rate of eye-shape evolution among species. Our approach represents an exciting new way to pinpoint factors driving adaptation, enabling a clearer understanding of the factors that drive the evolution of biological diversity.
Collapse
|
35
|
Abstract
The existence of a synthetic program of research on what was then termed the "nocturnal problem" and that we might now call "nighttime ecology" was declared more than 70 years ago. In reality, this failed to materialize, arguably as a consequence of practical challenges in studying organisms at night and instead concentrating on the existence of circadian rhythms, the mechanisms that give rise to them, and their consequences. This legacy is evident to this day, with consideration of the ecology of the nighttime markedly underrepresented in ecological research and literature. However, several factors suggest that it would be timely to revive the vision of a comprehensive research program in nighttime ecology. These include (i) that the study of the ecology of the night is being revolutionized by new and improved technologies; (ii) suggestions that, far from being a minor component of biodiversity, a high proportion of animal species are active at night; (iii) that fundamental questions about differences and connections between the ecology of the daytime and the nighttime remain largely unanswered; and (iv) that the nighttime environment is coming under severe anthropogenic pressure. In this article, I seek to reestablish nighttime ecology as a synthetic program of research, highlighting key focal topics and questions and providing an overview of the current state of understanding and developments.
Collapse
|
36
|
Smith SM, Angielczyk KD, Schmitz L, Wang SC. Do Bony Orbit Dimensions Predict Diel Activity Pattern in Sciurid Rodents? Anat Rec (Hoboken) 2018; 301:1774-1787. [DOI: 10.1002/ar.23900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/09/2018] [Accepted: 03/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Stephanie M. Smith
- Department of Biology and Burke Museum of Natural History and Culture University of Washington Seattle Washington
| | | | - Lars Schmitz
- W.M. Keck Science Department Claremont McKenna, Pfizer, and Scripps Colleges Claremont California
| | - Steve C. Wang
- Department of Mathematics and Statistics Swarthmore College Swarthmore Pennsylvania
| |
Collapse
|
37
|
Gaynor KM, Hojnowski CE, Carter NH, Brashares JS. The influence of human disturbance on wildlife nocturnality. Science 2018; 360:1232-1235. [PMID: 29903973 DOI: 10.1126/science.aar7121] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/07/2018] [Indexed: 12/22/2022]
Abstract
Rapid expansion of human activity has driven well-documented shifts in the spatial distribution of wildlife, but the cumulative effect of human disturbance on the temporal dynamics of animals has not been quantified. We examined anthropogenic effects on mammal diel activity patterns, conducting a meta-analysis of 76 studies of 62 species from six continents. Our global study revealed a strong effect of humans on daily patterns of wildlife activity. Animals increased their nocturnality by an average factor of 1.36 in response to human disturbance. This finding was consistent across continents, habitats, taxa, and human activities. As the global human footprint expands, temporal avoidance of humans may facilitate human-wildlife coexistence. However, such responses can result in marked shifts away from natural patterns of activity, with consequences for fitness, population persistence, community interactions, and evolution.
Collapse
Affiliation(s)
- Kaitlyn M Gaynor
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, Berkeley, CA 94720, USA.
| | - Cheryl E Hojnowski
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Neil H Carter
- Human-Environment Systems Research Center, Boise State University, Boise, ID 83725, USA
| | - Justin S Brashares
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
38
|
Scott JE. Reevaluating cases of trait-dependent diversification in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 167:244-256. [DOI: 10.1002/ajpa.23621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/23/2018] [Accepted: 05/12/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Jeremiah E. Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific; Western University of Health Sciences; Pomona California 91766
| |
Collapse
|
39
|
Perry BW, Card DC, McGlothlin JW, Pasquesi GIM, Adams RH, Schield DR, Hales NR, Corbin AB, Demuth JP, Hoffmann FG, Vandewege MW, Schott RK, Bhattacharyya N, Chang BSW, Casewell NR, Whiteley G, Reyes-Velasco J, Mackessy SP, Gamble T, Storey KB, Biggar KK, Passow CN, Kuo CH, McGaugh SE, Bronikowski AM, de Koning APJ, Edwards SV, Pfrender ME, Minx P, Brodie ED, Brodie ED, Warren WC, Castoe TA. Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome. Genome Biol Evol 2018; 10:2110-2129. [PMID: 30060036 PMCID: PMC6110522 DOI: 10.1093/gbe/evy157] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
Colubridae represents the most phenotypically diverse and speciose family of snakes, yet no well-assembled and annotated genome exists for this lineage. Here, we report and analyze the genome of the garter snake, Thamnophis sirtalis, a colubrid snake that is an important model species for research in evolutionary biology, physiology, genomics, behavior, and the evolution of toxin resistance. Using the garter snake genome, we show how snakes have evolved numerous adaptations for sensing and securing prey, and identify features of snake genome structure that provide insight into the evolution of amniote genomes. Analyses of the garter snake and other squamate reptile genomes highlight shifts in repeat element abundance and expansion within snakes, uncover evidence of genes under positive selection, and provide revised neutral substitution rate estimates for squamates. Our identification of Z and W sex chromosome-specific scaffolds provides evidence for multiple origins of sex chromosome systems in snakes and demonstrates the value of this genome for studying sex chromosome evolution. Analysis of gene duplication and loss in visual and olfactory gene families supports a dim-light ancestral condition in snakes and indicates that olfactory receptor repertoires underwent an expansion early in snake evolution. Additionally, we provide some of the first links between secreted venom proteins, the genes that encode them, and their evolutionary origins in a rear-fanged colubrid snake, together with new genomic insight into the coevolutionary arms race between garter snakes and highly toxic newt prey that led to toxin resistance in garter snakes.
Collapse
Affiliation(s)
- Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington
| | - Daren C Card
- Department of Biology, University of Texas at Arlington, Arlington
| | - Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia
| | | | - Richard H Adams
- Department of Biology, University of Texas at Arlington, Arlington
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington
| | - Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington
| | - Andrew B Corbin
- Department of Biology, University of Texas at Arlington, Arlington
| | - Jeffery P Demuth
- Department of Biology, University of Texas at Arlington, Arlington
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State.,Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville
| | - Michael W Vandewege
- Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University
| | - Ryan K Schott
- Department of Ecology and Evolutionary Biology, Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia
| | - Nihar Bhattacharyya
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Belinda S W Chang
- Department of Ecology and Evolutionary Biology, Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, Canada
| | - Nicholas R Casewell
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Gareth Whiteley
- Alistair Reid Venom Research Unit, Parasitology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Jacobo Reyes-Velasco
- Department of Biology, University of Texas at Arlington, Arlington.,Department of Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | | | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.,Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | | | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University
| | - A P Jason de Koning
- Department of Biochemistry and Molecular Biology, Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University
| | - Michael E Pfrender
- Department of Biological Sciences and Environmental Change Initiative, University of Notre Dame
| | - Patrick Minx
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis
| | | | | | - Wesley C Warren
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington
| |
Collapse
|
40
|
Iglesias TL, Dornburg A, Warren DL, Wainwright PC, Schmitz L, Economo EP. Eyes Wide Shut: the impact of dim-light vision on neural investment in marine teleosts. J Evol Biol 2018; 31:1082-1092. [DOI: 10.1111/jeb.13299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Teresa L. Iglesias
- Physics and Biology Unit; Okinawa Institute of Science and Technology Graduate University; Okinawa Japan
- Macquarie University; Sydney NSW Australia
| | - Alex Dornburg
- North Carolina Museum of Natural Sciences; Raleigh NC USA
| | - Dan L. Warren
- Macquarie University; Sydney NSW Australia
- Senckenberg Biodiversity and Climate Research Center (SBiK-F); Frankfurt am Main Germany
| | | | - Lars Schmitz
- W.M. Keck Science Department Claremont; Claremont McKenna, Scripps and Pitzer Colleges; Claremont CA USA
| | - Evan P. Economo
- Biodiversity and Biocomplexity Unit; Okinawa Institute of Science and Technology Graduate University; Okinawa Japan
| |
Collapse
|
41
|
Borges R, Johnson WE, O'Brien SJ, Gomes C, Heesy CP, Antunes A. Adaptive genomic evolution of opsins reveals that early mammals flourished in nocturnal environments. BMC Genomics 2018; 19:121. [PMID: 29402215 PMCID: PMC5800076 DOI: 10.1186/s12864-017-4417-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/22/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Based on evolutionary patterns of the vertebrate eye, Walls (1942) hypothesized that early placental mammals evolved primarily in nocturnal habitats. However, not only Eutheria, but all mammals show photic characteristics (i.e. dichromatic vision, rod-dominated retina) suggestive of a scotopic eye design. RESULTS Here, we used integrative comparative genomic and phylogenetic methodologies employing the photoreceptive opsin gene family in 154 mammals to test the likelihood of a nocturnal period in the emergence of all mammals. We showed that mammals possess genomic patterns concordant with a nocturnal ancestry. The loss of the RH2, VA, PARA, PARIE and OPN4x opsins in all mammals led us to advance a probable and most-parsimonious hypothesis of a global nocturnal bottleneck that explains the loss of these genes in the emerging lineage (> > 215.5 million years ago). In addition, ancestral character reconstruction analyses provided strong evidence that ancestral mammals possessed a nocturnal lifestyle, ultra-violet-sensitive vision, low visual acuity and low orbit convergence (i.e. panoramic vision). CONCLUSIONS Overall, this study provides insight into the evolutionary history of the mammalian eye while discussing important ecological aspects of the photic paleo-environments ancestral mammals have occupied.
Collapse
Affiliation(s)
- Rui Borges
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA, 22630, USA
| | - Stephen J O'Brien
- Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, St. Petersburg, Russia, 199004
- Guy Harvey Oceanographic Center, Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, 8000, North Ocean Drive, Ft Lauderdale, 33004, Florida, USA
| | - Cidália Gomes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal
- ICBAS, Institute of the Biomedical Sciences of Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Christopher P Heesy
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th avenue, Glendale, AZ, USA
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal.
| |
Collapse
|
42
|
Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat Ecol Evol 2017; 1:1889-1895. [DOI: 10.1038/s41559-017-0366-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/05/2017] [Indexed: 11/08/2022]
|
43
|
|
44
|
Pallas SL. The Impact of Ecological Niche on Adaptive Flexibility of Sensory Circuitry. Front Neurosci 2017; 11:344. [PMID: 28701910 PMCID: PMC5487431 DOI: 10.3389/fnins.2017.00344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022] Open
Abstract
Evolution and development are interdependent, particularly with regard to the construction of the nervous system and its position as the machine that produces behavior. On the one hand, the processes directing development and plasticity of the brain provide avenues through which natural selection can sculpt neural cell fate and connectivity, and on the other hand, they are themselves subject to selection pressure. For example, mutations that produce heritable perturbations in neuronal birth and death rates, transcription factor expression, or availability of axon guidance factors within sensory pathways can markedly affect the development of form and thus the function of stimulus decoding circuitry. This evolvability of flexible circuits makes them more adaptable to environmental variation. Although there is general agreement on this point, whether the sensitivity of circuits to environmental influence and the mechanisms underlying development and plasticity of sensory pathways are similar across species from different ecological niches has received almost no attention. Neural circuits are generally more sensitive to environmental influences during an early critical period, but not all niches afford the same access to stimuli in early life. Furthermore, depending on predictability of the habitat and ecological niche, sensory coding circuits might be more susceptible to sensory experience in some species than in others. Despite decades of work on understanding the mechanisms underlying critical period plasticity, the importance of ecological niche in visual pathway development has received little attention. Here, I will explore the relationship between critical period plasticity and ecological niche in mammalian sensory pathways.
Collapse
Affiliation(s)
- Sarah L. Pallas
- Neuroscience Institute, Georgia State UniversityAtlanta, GA, United States
| |
Collapse
|
45
|
Anderson SR, Wiens JJ. Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution 2017. [PMID: 28636789 DOI: 10.1111/evo.13284] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Many animals are active only during a particular time (e.g., day vs. night), a partitioning that may have important consequences for species coexistence. An open question is the extent to which this diel activity niche is evolutionarily conserved or labile. Here, we analyze diel activity data across a phylogeny of 1914 tetrapod species. We find strong phylogenetic signal, showing that closely related species tend to share similar activity patterns. Ancestral reconstructions show that nocturnality was the most likely ancestral diel activity pattern for tetrapods and many major clades within it (e.g., amphibians, mammals). Remarkably, nocturnal activity appears to have been maintained continuously in some lineages for ∼350 million years. Thus, we show that traits involved in local-scale resource partitioning can be conserved over strikingly deep evolutionary time scales. We also demonstrate a potentially important (but often overlooked) metric of niche conservatism. Finally, we show that diurnal lineages appear to have faster speciation and diversification rates than nocturnal lineages, which may explain why there are presently more diurnal tetrapod species even though diurnality appears to have evolved more recently. Overall, our results may have implications for studies of community ecology, species richness, and the evolution of diet and communication systems.
Collapse
Affiliation(s)
- Samantha R Anderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| |
Collapse
|
46
|
Beston SM, Wostl E, Walsh MR. The evolution of vertebrate eye size across an environmental gradient: phenotype does not predict genotype in a Trinidadian killifish. Evolution 2017; 71:2037-2049. [PMID: 28574174 DOI: 10.1111/evo.13283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 11/28/2022]
Abstract
Vertebrates exhibit substantial variation in eye size. Eye size correlates positively with visual capacity and behaviors that enhance fitness, such as predator avoidance. This foreshadows a connection between predation and eye size evolution. Yet, the conditions that favor evolutionary shifts in eye size, besides the well-known role for light availability, are unclear. We tested the influence of predation on the evolution of eye size in Trinidadian killifish, Rivulus hartii. Rivulus are located across a series of communities where they coexist with visually oriented piscivores ("high predation" sites), and no predators ("Rivulus-only" sites). Wild-caught Rivulus from high predation sites generally exhibited a smaller relative eye size than communities that lack predators. Yet, such differences were inconsistent across rivers. Second-generation common garden reared fish revealed repeatable decreases in eye size in Rivulus from high predation sites. We performed additional experiments that tested the importance of light and resources on eye size evolution. Sites that differ in light or resource availability did not differ in eye size. Our results argue that differences in predator-induced mortality underlie genetically-based shifts in vertebrate eye size. We discuss the drivers of eye size evolution in light of the nonparallel trends between the phenotypic and common garden results.
Collapse
Affiliation(s)
- Shannon M Beston
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Elijah Wostl
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
47
|
Isbell LA, Bidner LR, Crofoot MC, Matsumoto-Oda A, Farine DR. GPS-identified, low-level nocturnal activity of vervets (Chlorocebus pygerythrus) and olive baboons (Papio anubis) in Laikipia, Kenya. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:203-211. [PMID: 28573721 DOI: 10.1002/ajpa.23259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/09/2017] [Accepted: 05/19/2017] [Indexed: 11/09/2022]
Abstract
OBJECTIVES Except for owl monkeys (Aotus spp.), all anthropoid primates are considered strictly diurnal. Recent studies leveraging new technologies have shown, however, that some diurnal anthropoids also engage in nocturnal activity. Here we examine the extent to which vervets (Chlorocebus pygerythrus) and olive baboons (Papio anubis) are active at night. MATERIALS AND METHODS We deployed GPS collars with tri-axial accelerometer data loggers on 18 free-ranging adult females: 12 vervets spread among 5 social groups, and 6 olive baboons spread among 4 groups. Their locations were recorded every 15 min, and their activity levels, for 3 s/min over 7.5 months. We also used camera traps that were triggered by heat and movement at seven sleeping sites. RESULTS Travel was detected on 0.4% of 2,029 vervet-nights involving 3 vervets and 1.1% of 1,109 baboon-nights involving 5 baboons. Travel was mainly arboreal for vervets but mainly terrestrial for baboons. During the night, vervets and baboons were active 13% and 15% of the time, respectively. Activity varied little throughout the night and appeared unaffected by moon phase. DISCUSSION Our results confirm the low nocturnality of vervets and olive baboons, which we suggest is related to living near the equator with consistent 12-hr days, in contrast to other anthropoids that are more active at night. Since anthropoid primates are thought to have evolved in northern latitudes, with later dispersal to tropical latitudes, our results may have implications for understanding the evolution of anthropoid diurnality.
Collapse
Affiliation(s)
- Lynne A Isbell
- Department of Anthropology, University of California, Davis, California.,Mpala Research Centre, Nanyuki, P.O. Box 555, Kenya.,Animal Behavior Graduate Group, University of California, Davis, California
| | - Laura R Bidner
- Department of Anthropology, University of California, Davis, California.,Mpala Research Centre, Nanyuki, P.O. Box 555, Kenya
| | - Margaret C Crofoot
- Department of Anthropology, University of California, Davis, California.,Mpala Research Centre, Nanyuki, P.O. Box 555, Kenya.,Animal Behavior Graduate Group, University of California, Davis, California.,Smithsonian Tropical Research Institute, Balboa, Ancon, Panama
| | - Akiko Matsumoto-Oda
- Mpala Research Centre, Nanyuki, P.O. Box 555, Kenya.,Graduate School of Tourism Sciences, University of the Ryukyus, Okinawa, Japan.,Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
| | - Damien R Farine
- Department of Anthropology, University of California, Davis, California.,Mpala Research Centre, Nanyuki, P.O. Box 555, Kenya.,Department of Collective Behaviour, Max Planck Institute for Ornithology, Konstanz, Germany.,Chair of Biodiversity and Conservation, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
48
|
Morrow JM, Castiglione GM, Dungan SZ, Tang PL, Bhattacharyya N, Hauser FE, Chang BSW. An experimental comparison of human and bovine rhodopsin provides insight into the molecular basis of retinal disease. FEBS Lett 2017; 591:1720-1731. [PMID: 28369862 DOI: 10.1002/1873-3468.12637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/22/2017] [Accepted: 03/25/2017] [Indexed: 11/05/2022]
Abstract
Rhodopsin is the visual pigment that mediates dim-light vision in vertebrates and is a model system for the study of retinal disease. The majority of rhodopsin experiments are performed using bovine rhodopsin; however, recent evidence suggests that significant functional differences exist among mammalian rhodopsins. In this study, we identify differences in both thermal decay and light-activated retinal release rates between bovine and human rhodopsin and perform mutagenesis studies to highlight two clusters of substitutions that contribute to these differences. We also demonstrate that the retinitis pigmentosa-associated mutation G51A behaves differently in human rhodopsin compared to bovine rhodopsin and determine that the thermal decay rate of an ancestrally reconstructed mammalian rhodopsin displays an intermediate phenotype compared to the two extant pigments.
Collapse
Affiliation(s)
- James M Morrow
- Department of Cell and Systems Biology, University of Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | | | - Sarah Z Dungan
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - Portia L Tang
- Department of Cell and Systems Biology, University of Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | | | - Frances E Hauser
- Department of Ecology and Evolutionary Biology, University of Toronto, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Canada.,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Canada
| |
Collapse
|
49
|
Wu Y, Wang H, Hadly EA. Invasion of Ancestral Mammals into Dim-light Environments Inferred from Adaptive Evolution of the Phototransduction Genes. Sci Rep 2017; 7:46542. [PMID: 28425474 PMCID: PMC5397851 DOI: 10.1038/srep46542] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/17/2017] [Indexed: 02/02/2023] Open
Abstract
Nocturnality is a key evolutionary innovation of mammals that enables mammals to occupy relatively empty nocturnal niches. Invasion of ancestral mammals into nocturnality has long been inferred from the phylogenetic relationships of crown Mammalia, which is primarily nocturnal, and crown Reptilia, which is primarily diurnal, although molecular evidence for this is lacking. Here we used phylogenetic analyses of the vision genes involved in the phototransduction pathway to predict the diel activity patterns of ancestral mammals and reptiles. Our results demonstrated that the common ancestor of the extant Mammalia was dominated by positive selection for dim-light vision, supporting the predominate nocturnality of the ancestral mammals. Further analyses showed that the nocturnality of the ancestral mammals was probably derived from the predominate diurnality of the ancestral amniotes, which featured strong positive selection for bright-light vision. Like the ancestral amniotes, the common ancestor of the extant reptiles and various taxa in Squamata, one of the main competitors of the temporal niches of the ancestral mammals, were found to be predominate diurnality as well. Despite this relatively apparent temporal niche partitioning between ancestral mammals and the relevant reptiles, our results suggested partial overlap of their temporal niches during crepuscular periods.
Collapse
Affiliation(s)
- Yonghua Wu
- School of Life Sciences, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China.,Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Haifeng Wang
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Elizabeth A Hadly
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA
| |
Collapse
|
50
|
Russo GA, Kirk EC. Another look at the foramen magnum in bipedal mammals. J Hum Evol 2017; 105:24-40. [DOI: 10.1016/j.jhevol.2017.01.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 11/28/2022]
|