1
|
Le H, Mao J, Cavender-Bares J, Pinto-Ledezma JN, Deng Y, Zhao C, Xiong G, Xu W, Xie Z. Non-native plants tend to be phylogenetically distant but functionally similar to native plants under intense disturbance at the Three Gorges Reservoir Area. THE NEW PHYTOLOGIST 2024; 244:2078-2088. [PMID: 39262233 DOI: 10.1111/nph.20126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Darwin's two opposing hypotheses, proposing that non-native species closely or distantly related to native species are more likely to succeed, are known as 'Darwin's Naturalization Conundrum'. Recently, invasion ecologists have sought to unravel these hypotheses. Studies that incorporate rich observational data in disturbed ecosystems that integrate phylogenetic and functional perspectives have potential to shed light on the conundrum. Using 313 invaded plant communities including 46 invasive plant species and 531 native plant species across the Three Gorges Reservoir Area in China, we aim to evaluate the coexistence mechanisms of invasive and native plants by integrating phylogenetic and functional dimensions at spatial and temporal scales. Our findings revealed that invasive plants tended to co-occur more frequently with native plant species that were phylogenetically distant but functionally similar in the reservoir riparian zone. Furthermore, our study demonstrated that the filtering of flood-dry-flood cycles played a significant role in deepening functional similarities of native communities and invasive-native species over time. Our study highlights the contrasting effects of phylogenetic relatedness and functional similarity between invasive and native species in highly flood-disturbed habitats, providing new sights into Darwin's Naturalization Conundrum.
Collapse
Affiliation(s)
- Haichuan Le
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangtao Mao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jeannine Cavender-Bares
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Jesús N Pinto-Ledezma
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN, 55108, USA
| | - Ying Deng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Changming Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Gaoming Xiong
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Wenting Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Zongqiang Xie
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Combining Geographic Distribution and Trait Information to Infer Predator–Prey Species-Level Interaction Properties. DIVERSITY 2023. [DOI: 10.3390/d15010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biotic interactions are a key component of the proper functioning of ecosystems. However, information on biotic interactions is spatially and taxonomically biased and limited to several groups. The most efficient strategy to fill these gaps is to combine spatial information (species ranges) with different sources of information (functional and field data) to infer potential interactions. This approach is possible due to the fact that there is a correspondence between the traits of two trophic levels (e.g., predator and prey sizes are correlated). Therefore, our objective was to evaluate the performance of the joint use of spatial, functional and field data to infer properties of the predator–prey interaction for five neotropical cats. To do this, we used presence–absence matrices to obtain lists of potential prey species per grid-cell for each predator range. These lists were filtered according to different criteria (models), and for each model, an interaction property was estimated and compared with field observations. Our results show that the use of functional information and co-occurrence allows us to generate values similar to those observed in the field. We also observed that there were differences in model performance related to the intrinsic characteristics of the predator (body size) and the interaction property being evaluated.
Collapse
|
3
|
Du WB, Jia P, Du GZ. Current patterns of plant diversity and phylogenetic structure on the Kunlun Mountains. PLANT DIVERSITY 2022; 44:30-38. [PMID: 35281127 PMCID: PMC8897310 DOI: 10.1016/j.pld.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 06/14/2023]
Abstract
Large-scale patterns of biodiversity and the underlying mechanisms that regulate these patterns are central topics in biogeography and macroecology. The Qinghai-Tibet Plateau serves as a natural laboratory for studying these issues. However, most previous studies have focused on the entire Qinghai-Tibet Plateau, leaving independent physical geographic subunits in the region less well understood. We studied the current plant diversity of the Kunlun Mountains, an independent physical geographic subunit located in northwestern China on the northern edge of the Qinghai-Tibet Plateau. We integrated measures of species distribution, geological history, and phylogeography, and analyzed the taxonomic richness, phylogenetic diversity, and community phylogenetic structure of the current plant diversity in the area. The distribution patterns of 1911 seed plants showed that species were distributed mainly in the eastern regions of the Kunlun Mountains. The taxonomic richness, phylogenetic diversity, and genera richness showed that the eastern regions of the Kunlun Mountains should be the priority area of biodiversity conservation, particularly the southeastern regions. The proportion of Chinese endemic species inhabiting the Kunlun Mountains and their floristic similarity may indicate that the current patterns of species diversity were favored via species colonization. The Hengduan Mountains, a biodiversity hotspot, is likely the largest source of species colonization of the Kunlun Mountains after the Quaternary. The net relatedness index indicated that 20 of the 28 communities examined were phylogenetically dispersed, while the remaining communities were phylogenetically clustered. The nearest taxon index indicated that 27 of the 28 communities were phylogenetically clustered. These results suggest that species colonization and habitat filtering may have contributed to the current plant diversity of the Kunlun Mountains via ecological and evolutionary processes, and habitat filtering may play an important role in this ecological process.
Collapse
|
4
|
Du W, Jia P, Du G. Current biogeographical roles of the Kunlun Mountains. Ecol Evol 2022; 12:e8493. [PMID: 35136553 PMCID: PMC8809438 DOI: 10.1002/ece3.8493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/11/2022] Open
Abstract
Large-scale patterns of biodiversity and formation have garnered increasing attention in biogeography and macroecology. The Qinghai-Tibet Plateau (QTP) is an ideal area for exploring these issues. However, the QTP consists of multiple geographic subunits, which are understudied. The Kunlun Mountains is a geographical subunit situated in the northern edge of the QTP, in northwest China. The diversity pattern, community phylogenetic structures, and biogeographical roles of the current flora of the Kunlun Mountains were analyzed by collecting and integrating plant distribution, regional geological evolution, and phylogeography. A total of 1911 species, 397 genera, and 75 families present on the Kunlun Mountains, of which 29.8% of the seed plants were endemic to China. The mean divergence time (MDT) of the Kunlun Mountains flora was in the early Miocene (19.40 Ma). Analysis of plant diversity and MDT indicated that the eastern regions of the Kunlun Mountains were the center of species richness, endemic taxa, and ancient taxa. Geographical origins analysis showed that the Kunlun Mountains flora was diverse and that numerous clades were from East Asia and Tethyan. Analysis of geographical origins and geological history together highlighted that the extant biodiversity on the Kunlun Mountains appeared through species recolonization after climatic fluctuations and glaciations during the Quaternary. The nearest taxon index speculated that habitat filtering was the most important driving force for biodiversity patterns. These results suggest that the biogeographical roles of the Kunlun Mountains are corridor and sink, and the corresponding key processes are species extinction and immigration. The Kunlun Mountains also form a barrier, representing a boundary among multiple floras, and convert the Qinghai-Tibet Plateau into a relatively closed geographical unit.
Collapse
Affiliation(s)
- Weibo Du
- School of Life SciencesState Key Laboratory of Grassland and Agro‐EcosystemsLanzhou UniversityLanzhouChina
| | - Peng Jia
- School of Life SciencesState Key Laboratory of Grassland and Agro‐EcosystemsLanzhou UniversityLanzhouChina
| | - Guozhen Du
- School of Life SciencesState Key Laboratory of Grassland and Agro‐EcosystemsLanzhou UniversityLanzhouChina
| |
Collapse
|
5
|
Barreto E, Rangel TF, Pellissier L, Graham CH. Area, isolation and climate explain the diversity of mammals on islands worldwide. Proc Biol Sci 2021; 288:20211879. [PMID: 34905709 PMCID: PMC8670959 DOI: 10.1098/rspb.2021.1879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Insular biodiversity is expected to be regulated differently than continental biota, but their determinants remain to be quantified at a global scale. We evaluated the importance of physical, environmental and historical factors on mammal richness and endemism across 5592 islands worldwide. We fitted generalized linear and mixed models to accommodate variation among biogeographic realms and performed analyses separately for bats and non-volants. Richness on islands ranged from one to 234 species, with up to 177 single island endemics. Diversity patterns were most consistently influenced by the islands' physical characteristics. Area positively affected mammal diversity, in particular the number of non-volant endemics. Island isolation, both current and past, was associated with lower richness but greater endemism. Flight capacity modified the relative importance of past versus current isolation, with bats responding more strongly to current and non-volant mammals to past isolation. Biodiversity relationships with environmental factors were idiosyncratic, with a tendency for greater effects sizes with endemism than richness. The historical climatic change was positively associated with endemism. In line with theory, we found that area and isolation were among the strongest drivers of mammalian biodiversity. Our results support the importance of past conditions on current patterns, particularly of non-volant species.
Collapse
Affiliation(s)
- Elisa Barreto
- Programa de pósgraduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, Brazil.,Swiss Federal Institute for Forest, Snow and Landscape, Birmensdorf, Switzerland
| | - Thiago F Rangel
- Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape, Birmensdorf, Switzerland.,Landscape Ecology, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape, Birmensdorf, Switzerland
| |
Collapse
|
6
|
Corro EJ, Villalobos F, Lira-Noriega A, Guevara R, Guimarães PR, Dáttilo W. Annual precipitation predicts the phylogenetic signal in bat-fruit interaction networks across the Neotropics. Biol Lett 2021; 17:20210478. [PMID: 34847787 PMCID: PMC8633800 DOI: 10.1098/rsbl.2021.0478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022] Open
Abstract
Closely related species tend to be more similar than randomly selected species from the same phylogenetic tree. This pattern, known as a phylogenetic signal, has been extensively studied for intrinsic (e.g. morphology), as well as extrinsic (e.g. climatic preferences), properties but less so for ecological interactions. Phylogenetic signals of species interactions (i.e. resource use) can vary across time and space, but the causes behind such variations across broader spatial extents remain elusive. Here, we evaluated how current and historical climates influence phylogenetic signals of bat-fruit interaction networks across the Neotropics. We performed a model selection relating the phylogenetic signals of each trophic level (bats and plants) with a set of current and historical climatic factors deemed ecologically important in shaping biotic interactions. Bat and plant phylogenetic signals in bat-fruit interaction networks varied little with climatic factors, although bat phylogenetic signals positively covaried with annual precipitation. These findings indicated that water availability could increase resource availability, favouring higher niche partitioning of trophic resources among bat species and hence bat phylogenetic signals across bat-fruit interaction networks. Overall, our study advances our understanding of the spatial dynamics of bat-fruit interactions by highlighting the association of current climatic factors with phylogenetic patterns of biotic interactions.
Collapse
Affiliation(s)
- Erick J. Corro
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, CP 91073, Veracruz, Mexico
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Córdoba, CP 94500, Veracruz, Mexico
| | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, CP 91073, Veracruz, Mexico
| | - Andrés Lira-Noriega
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Xalapa, CP 91073, Veracruz, Mexico
- CONACYT Research Fellow, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Alcaldía Benito Juárez, CP 03940, Ciudad de México, Mexico
| | - Roger Guevara
- Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, CP 91073, Veracruz, Mexico
| | - Paulo R. Guimarães
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, CEP 05508-090, São Paulo, SP, Brazil
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, CP 91073, Veracruz, Mexico
| |
Collapse
|
7
|
Dáttilo W, Barrozo-Chávez N, Lira-Noriega A, Guevara R, Villalobos F, Santiago-Alarcon D, Neves FS, Izzo T, Ribeiro SP. Species-level drivers of mammalian ectoparasite faunas. J Anim Ecol 2020; 89:1754-1765. [PMID: 32198927 DOI: 10.1111/1365-2656.13216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Traditionally, most studies have described the organization of host-parasite interaction networks by considering only few host groups at limited geographical extents. However, host-parasite relationships are merged within different taxonomic groups and factors shaping these interactions likely differ between host and parasite groups, making group-level differences important to better understand the ecological and evolutionary dynamics of these interactive communities. Here we used a dataset of 629 ectoparasite species and 251 species of terrestrial mammals, comprising 10 orders distributed across the Nearctic and Neotropical regions of Mexico to assess the species-level drivers of mammalian ectoparasite faunas. Specifically, we evaluated whether body weight, geographical range size and within-range mammal species richness (i.e. diversity field) predict mammal ectoparasite species richness (i.e. degree centrality) and their closeness centrality within the mammal-ectoparasite network. In addition, we also tested if the observed patterns differ among mammal orders and if taxonomic closely related host mammals could more likely share the same set of ectoparasites. We found that ectoparasite species richness of small mammals (mainly rodents) with large proportional range sizes was high compared to large-bodied mammals, whereas the diversity field of mammals had no predictive value (except for bats). We also observed that taxonomic proximity was a main determinant of the probability to share ectoparasite species. Specifically, the probability to share ectoparasites in congeneric species reached up to 90% and decreased exponentially as the taxonomic distance increased. Further, we also detected that some ectoparasites are generalists and capable to infect mammalian species across different orders and that rodents have a remarkable role in the network structure, being closely connected to many other taxa. Hence, because many rodent species have synanthropic habits they could act as undesired reservoirs of disease agents for humans and urban animals. Considering the reported worldwide phenomenon of the proliferation of rodents accompanying the demographic decrease or even local extinction of large-bodied mammal species, these organisms may already be an increasing health threat in many regions of the world.
Collapse
Affiliation(s)
- Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología A.C., Xalapa, Mexico
| | - Nathalia Barrozo-Chávez
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | | | - Roger Guevara
- Red de Biología Evolutiva, Instituto de Ecología A.C., Xalapa, Mexico
| | | | - Diego Santiago-Alarcon
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología A.C., Xalapa, Mexico
| | - Frederico Siqueira Neves
- Departamento de Genética, Ecología e Evoluçã, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Izzo
- Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - Sérvio Pontes Ribeiro
- Laboratório de Ecohealth, Ecologia de Insetos de Dossel e Sucessão Natural, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
8
|
Pinto‐Ledezma JN, Villalobos F, Reich PB, Catford JA, Larkin DJ, Cavender‐Bares J. Testing Darwin’s naturalization conundrum based on taxonomic, phylogenetic, and functional dimensions of vascular plants. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jesús N. Pinto‐Ledezma
- Department of Ecology, Evolution and Behavior University of Minnesota 1479 Gortner Avenue Saint Paul Minnesota 55108 USA
| | - Fabricio Villalobos
- Red de Biología Evolutiva Instituto de Ecología A.C., Carretera Antigua a Coatepec 351, El Haya 91070Xalapa Veracruz México
| | - Peter B. Reich
- Department of Forest Resources University of Minnesota 1530 Cleveland Avenue Saint Paul Minnesota 55108 USA
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales 2753 Australia
| | - Jane A. Catford
- Department of Geography King’s College London Strand London WC2B 4BG UK
| | - Daniel J. Larkin
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota 135 Skok Hall, 2003 Upper Buford Circle Saint Paul Minnesota 55108 USA
| | - Jeannine Cavender‐Bares
- Department of Ecology, Evolution and Behavior University of Minnesota 1479 Gortner Avenue Saint Paul Minnesota 55108 USA
| |
Collapse
|
9
|
Sato E, Kusumoto B, Şekercioğlu ÇH, Kubota Y, Murakami M. The influence of ecological traits and environmental factors on the co‐occurrence patterns of birds on islands worldwide. Ecol Res 2020. [DOI: 10.1111/1440-1703.12103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eri Sato
- Faculty of Science Chiba University Chiba Japan
| | - Buntarou Kusumoto
- Biodiversity Informatics and Spatial Analysis Royal Botanic Gardens Kew Richmond UK
- Faculty of Science University of the Ryukyus Okinawa Japan
| | - Çağan H. Şekercioğlu
- Department of Biology University of Utah Salt Lake City Utah USA
- College of Sciences Koç University Istanbul Turkey
| | - Yasuhiro Kubota
- Faculty of Science University of the Ryukyus Okinawa Japan
- Marine and Terrestrial Field Ecology, Tropical Biosphere Research Center University of the Ryukyus Okinawa Japan
| | | |
Collapse
|
10
|
Varzinczak LH, Moura MO, Passos FC. Shifts to multiple optima underlie climatic niche evolution in New World phyllostomid bats. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Climate underlies species distribution patterns, especially in species where climate limits distributions, such as the phyllostomid bats, which are mostly restricted to the New World tropics. The evolutionary dynamics that shaped phyllostomid climatic niches remain unclear, and a broad phylogenetic perspective is required to uncover their patterns. We used geographical distributions and evolutionary relationships of 130 species, climate data and phylogenetic comparative methods to uncover dynamics of phyllostomid climatic niche evolution. Diversification of climatic niches began early in phyllostomid evolution (~34 Mya), with most changes taking place ~20 Mya. Although most of these bats were found in tropical regions, shifts towards different evolutionary optima were common. Shifts were mostly towards temperate climates, reflecting complexities in phyllostomid evolution highlighted by the probable role of species-specific adaptations to cope with these climates, the influence of palaeoclimatic events, and biogeographical effects related to the evolution and dispersal of clades in the New World. Our results broaden our understanding of the relationships between phyllostomid bats and climate, filling an important gap in knowledge and suggesting a complex evolution in their occupation of the climatic niche space.
Collapse
Affiliation(s)
- Luiz H Varzinczak
- Programa de Pós-Graduação em Ecologia e Conservação, Department of Zoology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Mauricio O Moura
- Programa de Pós-Graduação em Ecologia e Conservação, Department of Zoology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Fernando C Passos
- Programa de Pós-Graduação em Ecologia e Conservação, Department of Zoology, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
11
|
Stevens RD, Rowe RJ, Badgley C. Gradients of mammalian biodiversity through space and time. J Mammal 2019. [DOI: 10.1093/jmammal/gyz024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Richard D Stevens
- Department of Natural Resources Management and Museum of Texas Tech University, Lubbock, TX, USA
| | - Rebecca J Rowe
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Catherine Badgley
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
A synthesis of ecological and evolutionary determinants of bat diversity across spatial scales. BMC Ecol 2018; 18:18. [PMID: 29890975 PMCID: PMC5996565 DOI: 10.1186/s12898-018-0174-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 06/04/2018] [Indexed: 11/25/2022] Open
Abstract
Background Diversity patterns result from ecological to evolutionary processes operating at different spatial and temporal scales. Species trait variation determine the spatial scales at which organisms perceive the environment. Despite this knowledge, the coupling of all these factors to understand how diversity is structured is still deficient. Here, we review the role of ecological and evolutionary processes operating across different hierarchically spatial scales to shape diversity patterns of bats—the second largest mammal order and the only mammals with real flight capability. Main body We observed that flight development and its provision of increased dispersal ability influenced the diversification, life history, geographic distribution, and local interspecific interactions of bats, differently across multiple spatial scales. Niche packing combined with different flight, foraging and echolocation strategies and differential use of air space allowed the coexistence among bats as well as for an increased diversity supported by the environment. Considering distinct bat species distributions across space due to their functional characteristics, we assert that understanding such characteristics in Chiroptera improves the knowledge on ecological processes at different scales. We also point two main knowledge gaps that limit progress on the knowledge on scale-dependence of ecological and evolutionary processes in bats: a geographical bias, showing that research on bats is mainly done in the New World; and the lack of studies addressing the mesoscale (i.e. landscape and metacommunity scales). Conclusions We propose that it is essential to couple spatial scales and different zoogeographical regions along with their functional traits, to address bat diversity patterns and understand how they are distributed across the environment. Understanding how bats perceive space is a complex task: all bats can fly, but their perception of space varies with their biological traits. Electronic supplementary material The online version of this article (10.1186/s12898-018-0174-z) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Cavender-Bares J, Kothari S, Meireles JE, Kaproth MA, Manos PS, Hipp AL. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U.S. AMERICAN JOURNAL OF BOTANY 2018; 105:565-586. [PMID: 29689630 DOI: 10.1002/ajb2.1049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Evolutionary and biogeographic history, including past environmental change and diversification processes, are likely to have influenced the expansion, migration, and extinction of populations, creating evolutionary legacy effects that influence regional species pools and the composition of communities. We consider the consequences of the diversification process in shaping trait evolution and assembly of oak-dominated communities throughout the continental United States (U.S.). METHODS Within the U.S. oaks, we tested for phylogenetic and functional trait patterns at different spatial scales, taking advantage of a dated phylogenomic analysis of American oaks and the U.S. Forest Service (USFS) Forest Inventory and Analysis (FIA). KEY RESULTS We find (1) phylogenetic overdispersion at small grain sizes throughout the U.S. across all spatial extents and (2) a shift from overdispersion to clustering with increasing grain sizes. Leaf traits have evolved in a convergent manner, and these traits are clustered in communities at all spatial scales, except in the far west, where species with contrasting leaf types co-occur. CONCLUSIONS Our results support the hypotheses that (1) interspecific interactions were important in parallel adaptive radiation of the genus into a range of habitats across the continent and (2) that the diversification process is a critical driver of community assembly. Functional convergence of complementary species from distinct clades adapted to the same local habitats is a likely mechanism that allows distantly related species to coexist. Our findings contribute to an explanation of the long-term maintenance of high oak diversity and the dominance of the oak genus in North America.
Collapse
Affiliation(s)
- Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Shan Kothari
- Department of Plant Biology, University of Minnesota, 1479 Gortner Ave, St. Paul, MN, 55108, USA
| | - José Eduardo Meireles
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Matthew A Kaproth
- Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
- Department of Biological Sciences, Minnesota State University, Mankato, MN, 56001, USA
| | - Paul S Manos
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Andrew L Hipp
- The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USA
- The Field Museum, 1400 S Lake Shore Drive, Chicago, IL, 60605, USA
| |
Collapse
|
14
|
Kissling WD. Has frugivory influenced the macroecology and diversification of a tropical keystone plant family? RESEARCH IDEAS AND OUTCOMES 2017. [DOI: 10.3897/rio.3.e14944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Pie MR, Meyer ALS. The Evolution of Range Sizes in Mammals and Squamates: Heritability and Differential Evolutionary Rates for Low- and High-Latitude Limits. Evol Biol 2017. [DOI: 10.1007/s11692-017-9412-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Prinzing A, Ozinga WA, Brändle M, Courty PE, Hennion F, Labandeira C, Parisod C, Pihain M, Bartish IV. Benefits from living together? Clades whose species use similar habitats may persist as a result of eco-evolutionary feedbacks. THE NEW PHYTOLOGIST 2017; 213:66-82. [PMID: 27880007 DOI: 10.1111/nph.14341] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
Contents 66 I. 67 II. 68 III. 69 IV. 70 V. 73 VI. 75 VII. 77 78 References 78 SUMMARY: Recent decades have seen declines of entire plant clades while other clades persist despite changing environments. We suggest that one reason why some clades persist is that species within these clades use similar habitats, because such similarity may increase the degree of co-occurrence of species within clades. Traditionally, co-occurrence among clade members has been suggested to be disadvantageous because of increased competition and enemy pressure. Here, we hypothesize that increased co-occurrence among clade members promotes mutualist exchange, niche expansion or hybridization, thereby helping species avoid population decline from environmental change. We review the literature and analyse published data for hundreds of plant clades (genera) within a well-studied region and find major differences in the degree to which species within clades occupy similar habitats. We tentatively show that, in clades for which species occupy similar habitats, species tend to exhibit increased co-occurrence, mutualism, niche expansion, and hybridization - and rarely decline. Consistently, throughout the geological past, clades whose species occupied similar habitats often persisted through long time-spans. Overall, for many plant species, the occupation of similar habitats among fellow clade members apparently reduced their vulnerability to environmental change. Future research should identify when and how this previously unrecognized eco-evolutionary feedback operates.
Collapse
Affiliation(s)
- Andreas Prinzing
- University Rennes 1/Centre National de la Recherche Scientifique, Research Unit 'Ecobio - Ecosystèmes, Biodiversité, Evolution', Campus Beaulieu, Bâtiment 14 A, 35042, Rennes, France
| | - Wim A Ozinga
- Experimental Plant Ecology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands
- Alterra, Wageningen University & Research, PO Box 47, NL-6700, AA Wageningen, the Netherlands
| | - Martin Brändle
- Department of Ecology - Animal Ecology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch Strasse 8, D-35032, Marburg, Germany
| | - Pierre-Emmanuel Courty
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700, Fribourg, Switzerland
| | - Françoise Hennion
- University Rennes 1/Centre National de la Recherche Scientifique, Research Unit 'Ecobio - Ecosystèmes, Biodiversité, Evolution', Campus Beaulieu, Bâtiment 14 A, 35042, Rennes, France
| | - Conrad Labandeira
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20013, USA
- Department of Entomology and BEES Program, University of Maryland, College Park, MD, 20742, USA
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Christian Parisod
- Laboratory of Evolutionary Botany, Institute of Biology, University of Neuchatel, Rue Emile-Argand 11, 2000, Neuchatel, Switzerland
| | - Mickael Pihain
- University Rennes 1/Centre National de la Recherche Scientifique, Research Unit 'Ecobio - Ecosystèmes, Biodiversité, Evolution', Campus Beaulieu, Bâtiment 14 A, 35042, Rennes, France
| | - Igor V Bartish
- Institute of Botany, Academy of Sciences of Czech Republic, Zamek 1, Pruhonice, 25243, Czech Republic
| |
Collapse
|
17
|
Miller ET, Wagner SK, Harmon LJ, Ricklefs RE. Radiating despite a Lack of Character: Ecological Divergence among Closely Related, Morphologically Similar Honeyeaters (Aves: Meliphagidae) Co-occurring in Arid Australian Environments. Am Nat 2016; 189:E14-E30. [PMID: 28107055 DOI: 10.1086/690008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Quantifying the relationship between form and function can inform use of morphology as a surrogate for ecology. How the strength of this relationship varies continentally can inform understanding of evolutionary radiations; for example, does the relationship break down when certain lineages invade and diversify in novel habitats? The 75 species of Australian honeyeaters (Meliphagidae) are morphologically and ecologically diverse, with species feeding on nectar, insects, fruit, and other resources. We investigated Meliphagidae ecomorphology and community structure by (1) quantifying the concordance between morphology and ecology (foraging behavior), (2) estimating rates of trait evolution in relation to the packing of ecological space, and (3) comparing phylogenetic and trait community structure across the broad environmental gradients of the continent. We found that morphology explained 37% of the variance in ecology (and 62% vice versa), and we uncovered well-known bivariate relationships among the multivariate ecomorphological data. Ecological trait diversity declined less rapidly than phylogenetic diversity along a gradient of decreasing precipitation. We employ a new method (trait fields) and extend another (phylogenetic fields) to show that while species in phylogenetically clustered, arid-environment assemblages are similar morphologically, they are as varied in foraging behavior as those from more diverse assemblages. Thus, although closely related and similar morphologically, these arid-adapted species have diverged in ecological space to a similar degree as their mesic counterparts.
Collapse
|
18
|
Villalobos F, Carotenuto F, Raia P, Diniz-Filho JAF. Phylogenetic fields through time: temporal dynamics of geographical co-occurrence and phylogenetic structure within species ranges. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150220. [PMID: 26977061 DOI: 10.1098/rstb.2015.0220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Species co-occur with different sets of other species across their geographical distribution, which can be either closely or distantly related. Such co-occurrence patterns and their phylogenetic structure within individual species ranges represent what we call the species phylogenetic fields (PFs). These PFs allow investigation of the role of historical processes--speciation, extinction and dispersal--in shaping species co-occurrence patterns, in both extinct and extant species. Here, we investigate PFs of large mammalian species during the last 3 Myr, and how these correlate with trends in diversification rates. Using the fossil record, we evaluate species' distributional and co-occurrence patterns along with their phylogenetic structure. We apply a novel Bayesian framework on fossil occurrences to estimate diversification rates through time. Our findings highlight the effect of evolutionary processes and past climatic changes on species' distributions and co-occurrences. From the Late Pliocene to the Recent, mammal species seem to have responded in an individualistic manner to climate changes and diversification dynamics, co-occurring with different sets of species from different lineages across their geographical ranges. These findings stress the difficulty of forecasting potential effects of future climate changes on biodiversity.
Collapse
Affiliation(s)
- Fabricio Villalobos
- Departamento de Ecologia, ICB, Universidade Federal de Goiás, Campus II/UFG, CxP 131, 74001-970 Goiânia, Goiás, Brazil
| | - Francesco Carotenuto
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli Federico II, Largo S. Marcellino 10, 80138 Naples, Italy
| | - Pasquale Raia
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università di Napoli Federico II, Largo S. Marcellino 10, 80138 Naples, Italy
| | - José Alexandre F Diniz-Filho
- Departamento de Ecologia, ICB, Universidade Federal de Goiás, Campus II/UFG, CxP 131, 74001-970 Goiânia, Goiás, Brazil
| |
Collapse
|
19
|
Spalink D, Drew BT, Pace MC, Zaborsky JG, Li P, Cameron KM, Givnish TJ, Sytsma KJ. Evolution of geographical place and niche space: Patterns of diversification in the North American sedge (Cyperaceae) flora. Mol Phylogenet Evol 2016; 95:183-95. [DOI: 10.1016/j.ympev.2015.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 11/15/2022]
|
20
|
López-Aguirre C, Pérez-Torres J, Wilson LAB. Cranial and mandibular shape variation in the genus Carollia (Mammalia: Chiroptera) from Colombia: biogeographic patterns and morphological modularity. PeerJ 2015; 3:e1197. [PMID: 26413433 PMCID: PMC4581772 DOI: 10.7717/peerj.1197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/28/2015] [Indexed: 01/05/2023] Open
Abstract
Neotropical bats of the genus Carollia are widely studied due to their abundance, distribution and relevance for ecosystems. However, the ecomorphological boundaries of these species are poorly differentiated, and consequently correspondence between their geographic distribution, ecological plasticity and morphological variation remains unclear. In this study, patterns of cranial and mandibular morphological variation were assessed for Carollia brevicauda, C. castanea and C. perspicillata from Colombia. Using geometric morphometrics, morphological variation was examined with respect to: differences in intraspecific variation, morphological modularity and integration, and biogeographic patterns. Patterns of intraspecific variation were different for each species in both cranial and mandibular morphology, with functional differences apparent according to diet. Cranial modularity varied between species whereas mandibular modularity did not. High cranial and mandibular correlation reflects Cranium-Mandible integration as a functional unit. Similarity between the biogeographic patterns in C. brevicauda and C. perspicillata indicates that the Andes do not act as a barrier but rather as an independent region, isolating the morphology of Andean populations of larger-bodied species. The biogeographic pattern for C. castanea was not associated with the physiography of the Andes, suggesting that large body size does not benefit C. brevicauda and C. perspicillata in maintaining homogeneous morphologies among populations.
Collapse
Affiliation(s)
- Camilo López-Aguirre
- School of Biological, Earth, and Environmental Sciences, University of New South Wales , Sydney , Australia ; Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Pontificia Universidad Javeriana , Bogotá , Colombia
| | - Jairo Pérez-Torres
- Laboratorio de Ecología Funcional, Unidad de Ecología y Sistemática (UNESIS), Departamento de Biología, Pontificia Universidad Javeriana , Bogotá , Colombia
| | - Laura A B Wilson
- School of Biological, Earth, and Environmental Sciences, University of New South Wales , Sydney , Australia
| |
Collapse
|
21
|
Morphological diversity at different spatial scales in a Neotropical bat assemblage. Oecologia 2014; 176:557-68. [DOI: 10.1007/s00442-014-3039-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
|
22
|
Barnagaud JY, Daniel Kissling W, Sandel B, Eiserhardt WL, Şekercioğlu ÇH, Enquist BJ, Tsirogiannis C, Svenning JC. Ecological traits influence the phylogenetic structure of bird species co-occurrences worldwide. Ecol Lett 2014; 17:811-20. [DOI: 10.1111/ele.12285] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/10/2013] [Accepted: 03/25/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Jean-Yves Barnagaud
- Section for Ecoinformatics & Biodiversity; Department of Bioscience; Aarhus University; DK-8000 Aarhus C Denmark
| | - W. Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED); University of Amsterdam; P.O. Box 94248, 1090 GE Amsterdam The Netherlands
| | - Brody Sandel
- Section for Ecoinformatics & Biodiversity; Department of Bioscience; Aarhus University; DK-8000 Aarhus C Denmark
- Center for Massive Data Algorithmics (MADALGO); Aarhus University; DK-8000 Aarhus C Denmark
| | - Wolf L. Eiserhardt
- Section for Ecoinformatics & Biodiversity; Department of Bioscience; Aarhus University; DK-8000 Aarhus C Denmark
| | - Çağan H. Şekercioğlu
- Department of Biology; University of Utah; 257 S. 1400 E. Salt Lake City UT 84112 USA
- KuzeyDoğa Derneği; Ortakapı Mah. Șehit Yusuf Cad.; No:93 Kat:1 Merkez Kars 36100 Turkey
| | - Brian J. Enquist
- Department of Ecology and Evolutionary Biology; University of Arizona; P.O. Box 210088 Tucson 85721 AZ USA
- The Santa Fe Institute; 1399 Hyde Park Rd Santa Fe NM 87501 USA
| | - Constantinos Tsirogiannis
- Section for Ecoinformatics & Biodiversity; Department of Bioscience; Aarhus University; DK-8000 Aarhus C Denmark
- Center for Massive Data Algorithmics (MADALGO); Aarhus University; DK-8000 Aarhus C Denmark
| | - Jens-Christian Svenning
- Section for Ecoinformatics & Biodiversity; Department of Bioscience; Aarhus University; DK-8000 Aarhus C Denmark
| |
Collapse
|
23
|
Herrera-Alsina L, Villegas-Patraca R. Biologic interactions determining geographic range size: a one species response to phylogenetic community structure. Ecol Evol 2014; 4:968-76. [PMID: 24772275 PMCID: PMC3997314 DOI: 10.1002/ece3.959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/10/2013] [Accepted: 12/24/2013] [Indexed: 11/15/2022] Open
Abstract
Range size variation in closely related species suggests different responses to biotic and abiotic heterogeneity across large geographic regions. Species turnover generates a wide spectrum of species assemblages, resulting in different competition intensities among taxa, creating restrictions as important as environmental constraints. We chose to adopt the widely used phylogenetic relatedness (NRI) measurement to define a metric that depicts competition strength (via phylogenetic similarity), which one focal species confronts in its environment. This new approach (NRIfocal) measures the potential of the community structure effect over performance of a single species. We chose two ecologically similar Peucaea sparrows, which co-occur and have highly dissimilar range size to test whether the population response to competition intensity is different between species. We analyzed the correlation between both Peucaea species population sizes and NRIfocal using data from point counts. Results indicated that the widespread species population size was not associated with NRIfocal, whereas the population of restricted-sized species exhibited a negative relationship with competition intensity. Consequently, a species' sensitivity to competition might be a limiting factor to range expansion, which provides new insights into geographic range analysis and community ecology.
Collapse
Affiliation(s)
- Leonel Herrera-Alsina
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México Apartado Postal 27-3, CP 58089, Morelia, Michoacán, México ; Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México Apartado Postal 27-3, CP 58089, Morelia, Michoacán, México
| | - Rafael Villegas-Patraca
- Instituto de Ecología, A. C. Carretera antigua a Coatepec 351, El Haya, Xalapa, 91070, Veracruz, Mexico
| |
Collapse
|
24
|
Villalobos F, Lira-Noriega A, Soberón J, Arita HT. Co-diversity and co-distribution in phyllostomid bats: Evaluating the relative roles of climate and niche conservatism. Basic Appl Ecol 2014. [DOI: 10.1016/j.baae.2013.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Yan Y, Yang X, Tang Z. Patterns of species diversity and phylogenetic structure of vascular plants on the Qinghai-Tibetan Plateau. Ecol Evol 2013; 3:4584-95. [PMID: 24340197 PMCID: PMC3856756 DOI: 10.1002/ece3.847] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/13/2013] [Accepted: 09/17/2013] [Indexed: 11/24/2022] Open
Abstract
Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.
Collapse
Affiliation(s)
- Yujing Yan
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes, Peking University Beijing, 100871, China
| | | | | |
Collapse
|
26
|
Phylogenetic structure of host spectra in Palaearctic fleas: stability versus spatial variation in widespread, generalist species. Parasitology 2013; 141:181-91. [PMID: 24001220 DOI: 10.1017/s0031182013001376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigated spatial variation in the phylogenetic structure of host spectra in fleas parasitic on small mammals. Measures of phylogenetic host specificity ((phylogenetic species clustering (PSC) and phylogenetic species variability (PSV)) varied significantly more between than within flea species, but the proportion of variation which accounted for among-species differences was low. In 13 of 18 common flea species, at least one of the indices of the phylogenetic structure of regional host spectra revealed a significantly positive association with the phylogenetic structure of regional host assemblage, while relationships between PSC or PSV of the regional host spectrum and the distance from either the region of a flea's maximal abundance or latitude were not supported. Overall, results of this study demonstrated that although the degree of phylogenetic host specificity in fleas can be considered as a true attribute of a flea species, it is highly spatially variable, with phylogenetic structure of the surrounding host pool being the main reason behind this variation.
Collapse
|
27
|
Stevens RD. Gradients of Bat Diversity in Atlantic Forest of South America: Environmental Seasonality, Sampling Effort and Spatial Autocorrelation. Biotropica 2013. [DOI: 10.1111/btp.12056] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard D. Stevens
- Department of Biological Sciences; Louisiana State University; Baton Rouge LA 70803 U.S.A
| |
Collapse
|