1
|
Yanco SW, Oliver RY, Iannarilli F, Carlson BS, Heine G, Mueller U, Richter N, Vorneweg B, Andryushchenko Y, Batbayar N, Dagys M, Desholm M, Galtbalt B, Gavrilov AE, Goroshko OA, Ilyashenko EI, Ilyashenko VY, Månsson J, Mudrik EA, Natsagdorj T, Nilsson L, Sherub S, Skov H, Sukhbaatar T, Zydelis R, Wikelski M, Jetz W, Pokrovsky I. Migratory birds modulate niche tradeoffs in rhythm with seasons and life history. Proc Natl Acad Sci U S A 2024; 121:e2316827121. [PMID: 39312680 PMCID: PMC11474074 DOI: 10.1073/pnas.2316827121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Movement is a key means by which animals cope with variable environments. As they move, animals construct individual niches composed of the environmental conditions they experience. Niche axes may vary over time and covary with one another as animals make tradeoffs between competing needs. Seasonal migration is expected to produce substantial niche variation as animals move to keep pace with major life history phases and fluctuations in environmental conditions. Here, we apply a time-ordered principal component analysis to examine dynamic niche variance and covariance across the annual cycle for four species of migratory crane: common crane (Grus grus, n = 20), demoiselle crane (Anthropoides virgo, n = 66), black-necked crane (Grus nigricollis, n = 9), and white-naped crane (Grus vipio, n = 9). We consider four key niche components known to be important to aspects of crane natural history: enhanced vegetation index (resources availability), temperature (thermoregulation), crop proportion (preferred foraging habitat), and proximity to water (predator avoidance). All species showed a primary seasonal niche "rhythm" that dominated variance in niche components across the annual cycle. Secondary rhythms were linked to major species-specific life history phases (migration, breeding, and nonbreeding) as well as seasonal environmental patterns. Furthermore, we found that cranes' experiences of the environment emerge from time-dynamic tradeoffs among niche components. We suggest that our approach to estimating the environmental niche as a multidimensional and time-dynamical system of tradeoffs improves mechanistic understanding of organism-environment interactions.
Collapse
Affiliation(s)
- Scott W. Yanco
- Center for Biodiversity and Global Change, Yale University, New Haven, CT06511
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06511
| | - Ruth Y. Oliver
- Center for Biodiversity and Global Change, Yale University, New Haven, CT06511
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06511
- Bren School of Environmental Science and Management, University of California Santa Barbara, Santa Barbara, CA93117
| | - Fabiola Iannarilli
- Center for Biodiversity and Global Change, Yale University, New Haven, CT06511
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06511
| | - Ben S. Carlson
- Center for Biodiversity and Global Change, Yale University, New Haven, CT06511
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06511
| | - Georg Heine
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell78315, Germany
| | - Uschi Mueller
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell78315, Germany
| | - Nina Richter
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell78315, Germany
| | - Bernd Vorneweg
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell78315, Germany
| | - Yuriy Andryushchenko
- Schmalhausen Institute of Zoology of the National Academy of Sciences of Ukraine, Laboratory of Ornithology of the South of Ukraine, Kyiv01054, Ukraine
| | - Nyambayar Batbayar
- Wildlife Science and Conservation Center of Mongolia, Ulaanbaatar14210, Mongolia
| | | | | | - Batbayar Galtbalt
- Wildlife Science and Conservation Center of Mongolia, Ulaanbaatar14210, Mongolia
| | - Andrey E. Gavrilov
- Institute of Zoology, Ministry of Science and Higher Education of the Republic of Kazakhstan, Almaty050060, Kazakhstan
| | - Oleg A. Goroshko
- Daurskii State Nature Biosphere Reserve, Nizhny Tsasuchei, Transbaikalia674495, Russia
- Institute of Natural Resources, Ecology, and Cryology, Siberian Branch, Russian Academy of Sciences, Chita, Transbaikalia672014, Russia
| | - Elena I. Ilyashenko
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow119071, Russia
| | - Valentin Yu Ilyashenko
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow119071, Russia
| | - Johan Månsson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, RiddarhyttanS-730 91, Sweden
| | - Elena A. Mudrik
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow117971, Russia
| | | | - Lovisa Nilsson
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, Riddarhyttan, RiddarhyttanS-730 91, Sweden
| | - Sherub Sherub
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell78315, Germany
- Ugyen Wangchuck Institute for Forestry Research and Training, Bumthang32001, Bhutan
| | - Henrik Skov
- Ecology and Environment Department, DHI, Hørsholm2970, Denmark
| | | | | | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell78315, Germany
- Department of Biology, University of Konstanz, Konstanz78315, Germany
| | - Walter Jetz
- Center for Biodiversity and Global Change, Yale University, New Haven, CT06511
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06511
| | - Ivan Pokrovsky
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell78315, Germany
| |
Collapse
|
2
|
He M, Yao W, Meng Z, Liu J, Yan W, Meng W. Microplastic-contamination can reshape plant community by affecting soil properties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116844. [PMID: 39128455 DOI: 10.1016/j.ecoenv.2024.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Microplastics, as emerging contaminants, pose a serious threat to terrestrial ecosystems, yet their impact on plant communities remains largely unexplored. This study utilized the soil seed bank to establish naturally germinated plant communities and investigated the effects of polyethylene (PE) and polypropylene (PP) on community characteristics. Additionally, the study aimed to elucidate the mechanisms by which variations in soil properties influenced plant community. The results indicated that microplastics led to a significant increase in soil available potassium (AK), likely due to alterations in soil microorganism proliferation. Furthermore, microplastics caused a decrease in soil salinity, total phosphorus (TP), and ammonium nitrogen (AN). Additionally, plant community composition shifted, resulting in reduced stability and niche breadth of dominant species. Microplastics also impacted niche overlap and interspecific associations among dominant species, possibly due to the reduced accessibility of resources for dominant species. Salinity, AK, and TP were identified as major drivers of changes in niche breadth, niche overlap, and community stability, with TP exerting the strongest impact on plant community composition. These findings provide valuable insights for the restoration of plant communities in coastal saline-alkali wetland contaminated by microplastics.
Collapse
Affiliation(s)
- Mengxuan He
- Faculty of Geography, Tianjin Normal University, Tianjin 300387, China
| | - Wenshuang Yao
- Faculty of Geography, Tianjin Normal University, Tianjin 300387, China
| | - Zirui Meng
- Faculty of Geography, Tianjin Normal University, Tianjin 300387, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Wei Yan
- Tianjin Urban Planning & Design Institute Co., LTD, Tianjin 300190, China.
| | - Weiqing Meng
- Faculty of Geography, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
3
|
DeSimone JG, DeGroote LW, MacKenzie SA, Owen JC, Patterson AJ, Cohen EB. Persistent species relationships characterize migrating bird communities across stopover sites and seasons. Proc Natl Acad Sci U S A 2024; 121:e2322063121. [PMID: 39136989 PMCID: PMC11348330 DOI: 10.1073/pnas.2322063121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
Global migrations of diverse animal species often converge along the same routes, bringing together seasonal assemblages of animals that may compete, prey on each other, and share information or pathogens. These interspecific interactions, when energetic demands are high and the time to complete journeys is short, may influence survival, migratory success, stopover ecology, and migratory routes. Numerous accounts suggest that interspecific co-migrations are globally distributed in aerial, aquatic, and terrestrial systems, although the study of migration to date has rarely investigated species interactions among migrating animals. Here, we test the hypothesis that migrating animals are communities engaged in networks of ecological interactions. We leverage over half a million records of 50 bird species from five bird banding sites collected over 8 to 23 y to test for species associations using social network analyses. We find strong support for persistent species relationships across sites and between spring and fall migration. These relationships may be ecologically meaningful: They are often stronger among phylogenetically related species with similar foraging behaviors and nonbreeding ranges even after accounting for the nonsocial contributions to associations, including overlap in migration timing and habitat use. While interspecific interactions could result in costly competition or beneficial information exchange, we find that relationships are largely positive, suggesting limited competitive exclusion at the scale of a banding station during migratory stopovers. Our findings support an understanding of animal migrations that consist of networked communities rather than random assemblages of independently migrating species, encouraging future studies of the nature and consequences of co-migrant interactions.
Collapse
Affiliation(s)
- Joely G. DeSimone
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD21532
| | - Lucaske W. DeGroote
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD21532
- Powdermill Nature Reserve, Carnegie Museum of Natural History, Rector, PA15677
| | | | - Jennifer C. Owen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI48824
- Michigan State Bird Observatory, East Lansing, MI48823
| | | | - Emily B. Cohen
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD21532
| |
Collapse
|
4
|
Somveille M, Bossu CM, DeSaix MG, Alvarado AH, Gómez Villaverde S, Rodríguez Otero G, Hernández-Baños BE, Smith TB, Ruegg KC. Broad-scale seasonal climate tracking is a consequence, not a driver, of avian migratory connectivity. Ecol Lett 2024; 27:e14496. [PMID: 39132717 DOI: 10.1111/ele.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Tracking climatic conditions throughout the year is often assumed to be an adaptive behaviour underlying seasonal migration patterns in animal populations. We investigate this hypothesis using genetic markers data to map migratory connectivity for 27 genetically distinct bird populations from 7 species. We found that the variation in seasonal climate tracking across our suite of populations at a continental scale is more likely a consequence, rather than a direct driver, of migratory connectivity, which is primarily shaped by energy efficiency-i.e., optimizing the balance between accessing available resources and movement costs. However, our results also suggest that regional-scale seasonal precipitation tracking affects population migration destinations, thus revealing a potential scale dependency of ecological processes driving migration. Our results have implications for the conservation of these migratory species under climate change, as populations tracking climate seasonally are potentially at higher risk if they adapt to a narrow range of climatic conditions.
Collapse
Affiliation(s)
- Marius Somveille
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Christen M Bossu
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Matthew G DeSaix
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Allison H Alvarado
- Department of Biology, California State University Channel Islands, Camarillo, California, USA
| | | | - Genaro Rodríguez Otero
- Museo de Zoología, Departmento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Blanca E Hernández-Baños
- Museo de Zoología, Departmento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Thomas B Smith
- Center for Tropical Research, Institute for the Environment and Sustainability, University of California, Los Angeles, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
5
|
Pierce AK, Yanco SW, Wunder MB. Seasonal migration alters energetic trade-off optimization and shapes life history. Ecol Lett 2024; 27:e14392. [PMID: 38400796 DOI: 10.1111/ele.14392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/26/2024]
Abstract
Trade-offs between current and future reproduction manifest as a set of co-varying life history and metabolic traits, collectively referred to as 'pace of life' (POL). Seasonal migration modulates environmental dynamics and putatively affects POL, however, the mechanisms by which migratory behaviour shapes POL remain unclear. We explored how migratory behaviour interacts with environmental and metabolic dynamics to shape POL. Using an individual-based model of movement and metabolism, we compared fitness-optimized trade-offs among migration strategies. We found annual experienced seasonality modulated by migratory movements and distance between end-points primarily drove POL differentiation through developmental and migration phenology trade-offs. Similarly, our analysis of empirically estimated metabolic data from 265 bird species suggested seasonal niche tracking and migration distance interact to drive POL. We show multiple viable life-history strategies are conducive to a migratory lifestyle. Overall, our findings suggest metabolism mediates complex interactions between behaviour, environment and life history.
Collapse
Affiliation(s)
- Allison K Pierce
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Scott W Yanco
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Michael B Wunder
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| |
Collapse
|
6
|
Reeve AH, Kennedy JD, Pujolar JM, Petersen B, Blom MPK, Alström P, Haryoko T, Ericson PGP, Irestedt M, Nylander JAA, Jønsson KA. The formation of the Indo-Pacific montane avifauna. Nat Commun 2023; 14:8215. [PMID: 38081809 PMCID: PMC10713610 DOI: 10.1038/s41467-023-43964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The processes generating the earth's montane biodiversity remain a matter of debate. Two contrasting hypotheses have been advanced to explain how montane populations form: via direct colonization from other mountains, or, alternatively, via upslope range shifts from adjacent lowland areas. We seek to reconcile these apparently conflicting hypotheses by asking whether a species' ancestral geographic origin determines its mode of mountain colonization. Island-dwelling passerine birds at the faunal crossroads between Eurasia and Australo-Papua provide an ideal study system. We recover the phylogenetic relationships of the region's montane species and reconstruct their ancestral geographic ranges, elevational ranges, and migratory behavior. We also perform genomic population studies of three super-dispersive montane species/clades with broad island distributions. Eurasian-origin species populated archipelagos via direct colonization between mountains. This mode of colonization appears related to ancestral adaptations to cold and seasonal climates, specifically short-distance migration. Australo-Papuan-origin mountain populations, by contrast, evolved from lowland ancestors, and highland distribution mostly precludes their further colonization of island mountains. Our study explains much of the distributional variation within a complex biological system, and provides a synthesis of two seemingly discordant hypotheses for montane community formation.
Collapse
Affiliation(s)
- Andrew Hart Reeve
- Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark.
| | - Jonathan David Kennedy
- Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
| | - José Martín Pujolar
- Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Centre for Gelatinous Plankton Ecology and Evolution, DTU Aqua, Kemitorvet, Building 202, DK-2800, Kongens Lyngby, Denmark
| | - Bent Petersen
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, DK-1353, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Mozes P K Blom
- Museum für Naturkunde Berlin, Leibniz Institut für Evolutions- und Biodiversitätsforschung, 10115, Berlin, Germany
| | - Per Alström
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
| | - Per G P Ericson
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05, Stockholm, Sweden
| | - Martin Irestedt
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05, Stockholm, Sweden
| | - Johan A A Nylander
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05, Stockholm, Sweden
| | - Knud Andreas Jønsson
- Natural History Museum of Denmark, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05, Stockholm, Sweden
| |
Collapse
|
7
|
Khaliq I, Biber M, E. Bowler D, Hof C. Global change impacts on bird biodiversity in South Asia: potential effects of future land-use and climate change on avian species richness in Pakistan. PeerJ 2023; 11:e16212. [PMID: 37818326 PMCID: PMC10561643 DOI: 10.7717/peerj.16212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/10/2023] [Indexed: 10/12/2023] Open
Abstract
Evaluating the impact of future changes in land-use and climate on species communities, especially species richness, is one of the most important challenges of current research in ecology and conservation. The impact of environmental changes on species richness depends on its sensitivity (i.e., how strongly a given level of change influences the ecological community) and its exposure (i.e., the amount of change that occurs). To examine the sensitivity, exposure, and potential impact of future environmental conditions on bird communities, we compiled data on bird species richness for Pakistan-a neglected region in macro- or country-scale studies. Since bird species richness strongly varies across seasons due to the seasonal occurrence of migratory species in winter, we compared both wintering (migratory plus resident species) and breeding (resident species only) bird richness. We found breeding and wintering species richness to be sensitive to temperature, precipitation and rainfed cropland by being positively related to these factors. Exposure varied regionally, with projected temperature changes being most profound in northern regions while the strongest projected precipitation changes occurred in central and southern regions. The projected impact of future environmental change were highly heterogeneous across the country and differed between the wintering and breeding communities. Overall, the most negatively impacted region was projected to be the Khyber Pakhtunkha province in the North of Pakistan, due to reductions in precipitation and rainfed cropland, resulting in a projected negative impact, especially on wintering species richness. By highlighting the regional and seasonal bird communities most at risk, our findings provide useful information for policy makers to help devise new policies for mitigating negative impacts of future environmental changes on birds within Pakistan.
Collapse
Affiliation(s)
- Imran Khaliq
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dubendorf, Zurich, Switzerland
- Department of Zoology, Government (Defunct) College, Dera Ghazi Khan, Punjab, Pakistan
| | - Matthias Biber
- Terrestrial Ecology Research Group, Department for Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Munich, Germany
| | - Diana E. Bowler
- UK Centre for Ecology & Hydrology Maclean Building, Wallingford, Oxford, United Kingdom
| | - Christian Hof
- Terrestrial Ecology Research Group, Department for Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Munich, Germany
| |
Collapse
|
8
|
Le Clercq LS, Bazzi G, Cecere JG, Gianfranceschi L, Grobler JP, Kotzé A, Rubolini D, Liedvogel M, Dalton DL. Time trees and clock genes: a systematic review and comparative analysis of contemporary avian migration genetics. Biol Rev Camb Philos Soc 2023; 98:1051-1080. [PMID: 36879518 DOI: 10.1111/brv.12943] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Timing is a crucial aspect for survival and reproduction in seasonal environments leading to carefully scheduled annual programs of migration in many species. But what are the exact mechanisms through which birds (class: Aves) can keep track of time, anticipate seasonal changes, and adapt their behaviour? One proposed mechanism regulating annual behaviour is the circadian clock, controlled by a highly conserved set of genes, collectively called 'clock genes' which are well established in controlling the daily rhythmicity of physiology and behaviour. Due to diverse migration patterns observed within and among species, in a seemingly endogenously programmed manner, the field of migration genetics has sought and tested several candidate genes within the clock circuitry that may underlie the observed differences in breeding and migration behaviour. Among others, length polymorphisms within genes such as Clock and Adcyap1 have been hypothesised to play a putative role, although association and fitness studies in various species have yielded mixed results. To contextualise the existing body of data, here we conducted a systematic review of all published studies relating polymorphisms in clock genes to seasonality in a phylogenetically and taxonomically informed manner. This was complemented by a standardised comparative re-analysis of candidate gene polymorphisms of 76 bird species, of which 58 are migrants and 18 are residents, along with population genetics analyses for 40 species with available allele data. We tested genetic diversity estimates, used Mantel tests for spatial genetic analyses, and evaluated relationships between candidate gene allele length and population averages for geographic range (breeding- and non-breeding latitude), migration distance, timing of migration, taxonomic relationships, and divergence times. Our combined analysis provided evidence (i) of a putative association between Clock gene variation and autumn migration as well as a putative association between Adcyap1 gene variation and spring migration in migratory species; (ii) that these candidate genes are not diagnostic markers to distinguish migratory from sedentary birds; and (iii) of correlated variability in both genes with divergence time, potentially reflecting ancestrally inherited genotypes rather than contemporary changes driven by selection. These findings highlight a tentative association between these candidate genes and migration attributes as well as genetic constraints on evolutionary adaptation.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Gaia Bazzi
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca' Fornacetta 9, Ozzano Emilia (BO), I-40064, Italy
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale, via Ca' Fornacetta 9, Ozzano Emilia (BO), I-40064, Italy
| | - Luca Gianfranceschi
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
| | - Johannes Paul Grobler
- Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Diego Rubolini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, via Celoria 26, Milan, I-20133, Italy
- Istituto di Ricerca sulle Acque, IRSA-CNR, Via del Mulino 19, Brugherio (MB), I-20861, Italy
| | - Miriam Liedvogel
- Max Planck Research Group Behavioral Genomics, Max Planck Institute for Evolutionary Biology, Plön, 24306, Germany
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven, 26386, Germany
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
9
|
Environmentally driven phenotypic convergence and niche conservatism accompany speciation in hoary bats. Sci Rep 2022; 12:21877. [PMID: 36536003 PMCID: PMC9763480 DOI: 10.1038/s41598-022-26453-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Species that are geographically widespread may exist across environmentally heterogeneous landscapes that could influence patterns of occupation and phylogeographic structure. Previous studies have suggested that geographic range size should be positively correlated with niche breadth, allowing widespread species to sustain viable populations over diverse environmental gradients. We examined the congruence of phenotypic and phylogenetic divergence with the environmental factors that help maintain species level diversity in the geographically widespread hoary bats (Lasiurus cinereus sensu lato) across their distribution. Genetic sequences were analyzed using multiple phylogenetic and species delimitation methods, and phenotypic data were analyzed using supervised and unsupervised machine learning approaches. Spatial data from environmental, geographic, and topographic features were analyzed in a multiple regression analysis to determine their relative effect on phenotypic diversity. Ecological niches of each hoary bat species were examined in environmental space to quantify niche overlap, equivalency, and the magnitude of niche differentiation. Phylogenetic and species delimitation analyses support existence of three geographically structured species of hoary bat, each of which is phenotypically distinct. However, the Hawaiian hoary bat is morphologically more similar to the South American species than to the North American species despite a closer phylogenetic relationship to the latter. Multiple regression and niche analyses revealed higher environmental similarities between the South American and Hawaiian species. Hoary bats thus exhibit a pattern of phenotypic variation that disagrees with well-supported genetic divergences, instead indicating phenotypic convergence driven by similar environmental features and relatively conserved niches occupied in tropical latitudes.
Collapse
|
10
|
King DT, Wang G, Cunningham FL. Seasonal climatic niche and migration movements of Double-crested Cormorants. Ecol Evol 2022; 12:e9153. [PMID: 36016816 PMCID: PMC9396706 DOI: 10.1002/ece3.9153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022] Open
Abstract
Avian migrants are challenged by seasonal adverse climatic conditions and energetic costs of long-distance flying. Migratory birds may track or switch seasonal climatic niche between the breeding and non-breeding grounds. Satellite tracking enables avian ecologists to investigate seasonal climatic niche and circannual movement patterns of migratory birds. The Double-crested Cormorant (Nannopterum auritum, hereafter cormorant) wintering in the Gulf of Mexico (GOM) migrates to the Northern Great Plains and Great Lakes and is of economic importance because of its impacts on aquaculture. We tested the climatic niche switching hypothesis that cormorants would switch climatic niche between summer and winter because of substantial differences in climate between the non-breeding grounds in the subtropical region and breeding grounds in the northern temperate region. The ordination analysis of climatic niche overlap indicated that cormorants had separate seasonal climatic niche consisting of seasonal mean monthly minimum and maximum temperature, seasonal mean monthly precipitation, and seasonal mean wind speed. Despite non-overlapping summer and winter climatic niches, cormorants appeared to be subjected to similar wind speed between winter and summer habitats and were consistent with similar hourly flying speed between winter and summer. Therefore, substantial differences in temperature and precipitation may lead to the climatic niche switching of fish-eating cormorants, a dietary specialist, between the breeding and non-breeding grounds.
Collapse
Affiliation(s)
- D. Tommy King
- U. S. Department of Agriculture, Wildlife ServicesNational Wildlife Research CenterMississippi StateMississippiUSA
| | - Guiming Wang
- Department of Wildlife, Fisheries and AquacultureMississippi State UniversityMississippi StateMississippiUSA
| | - Fred L. Cunningham
- U. S. Department of Agriculture, Wildlife ServicesNational Wildlife Research CenterMississippi StateMississippiUSA
| |
Collapse
|
11
|
Wang D, Xu X, Zhang H, Xi Z, Abbott RJ, Fu J, Liu JQ. Abiotic niche divergence of hybrid species from their progenitors. Am Nat 2022; 200:634-645. [DOI: 10.1086/721372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Lambert C, Fort J. No evidence that seasonal changes in large-scale environmental conditions drive migration in seabirds. J Anim Ecol 2022; 91:1813-1825. [PMID: 35681266 DOI: 10.1111/1365-2656.13759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Seasonal variability is one of the main drivers of seasonal movements like migration. The literature has suggested that bird migration is often driven by poor environmental conditions during one season and permits avoidance of resource shortage or harsh weather by tracking the more favourable conditions. We tested at the global scale, and focusing on seabirds, whether this pattern exists in the marine realm. Specifically, we tested the hypothesis that seabird migration permits achieving stability in niche occupancy, and that it is triggered by seasonal variations in niche availability. We collated data on monthly presence of species over marine ecoregions from literature and expert knowledge. First, we quantified niche occupancy during breeding and non-breeding periods from environmental conditions encountered in ecoregions in which species were present at each periods and compared seasonal dynamics across migratory strategies. Second, we quantified the seasonal niche dynamics from simulated residency in breeding and non-breeding grounds to quantify the seasonality in niche availability and to test its effect on seabird migratory strategies. We demonstrated that all seabirds are niche trackers, yet resident and dispersive seabirds displayed higher levels of niche tracking throughout the year, regardless of the environmental seasonality, while migrants exhibited more divergent seasonal niches. In most cases, migratory status was not related to the unavailability of favourable conditions at the breeding or non-breeding grounds, suggesting that the availability of the favourable niche is not the main driver of migration. We hypothesise that this unexpected pattern might arise from strong constraints imposed on seabirds by the scarcity of suitable breeding sites which constrain the range of environments available for optimising reproductive success. This work sheds new light on the ecological drivers of migration.
Collapse
Affiliation(s)
| | - Jérôme Fort
- LIENSs UMR 7266 La Rochelle Université-CNRS, La Rochelle, France
| |
Collapse
|
13
|
Seasonal Distribution of the Broad-Tailed Hummingbird ( Selasphorus platycercus): A Climatic Approach. Zool Stud 2022; 61:e23. [PMID: 36330031 PMCID: PMC9537049 DOI: 10.6620/zs.2022.61-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/11/2022] [Indexed: 03/05/2023]
Abstract
The seasonal movements of birds are a phenomenon that has historically been of interest in ecology and biogeography. Despite this, information on how environmental conditions influence migratory behavior and its regulation is still scarce. In this work, we study the Broad-Tailed hummingbird Selasphorus platycercus from an analysis of its populations through longitudinal and latitudinal gradients. We use the frequencies of monthly presence records throughout the annual cycle to identify the breeding areas (corresponding to the summer months), of winter presence (corresponding to the winter months), and annual residence (presence records throughout the year). Subsequently, we use ecological niche models to reconstruct the potential distribution of the summer and winter niches by correlating the climates of each season with the corresponding records. We evaluate the species' climatic preferences between the breeding and winter seasons by transferring the niches from each season to the opposite and by their capacity to inter-predict records between seasons. In addition, we quantify the overlap between the summer and winter niches using a niche similarity analysis. Geographically, we see a clear seasonal turnover pattern along a north-south gradient and records throughout the year (resident populations) in the south-central region of its distribution. We observed a low inter-prediction of records between seasons. Together with the similarity analysis, we suggest that the species is niche-switching (i.e., has different seasonal niches). We identified three seasonal migration patterns among the species' populations: long-distance migratory, short-distance summer migrant, and resident. Our findings suggest that the different migration patterns in this species' populations all over its distribution can be explained through seasonal climatic variations throughout the year.
Collapse
|
14
|
Auteri GG. A conceptual framework to integrate cold-survival strategies: torpor, resistance and seasonal migration. Biol Lett 2022; 18:20220050. [PMID: 35506240 PMCID: PMC9065958 DOI: 10.1098/rsbl.2022.0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Freezing temperatures are inherently challenging for life, which is water based. How species cope with these conditions fundamentally shapes ecological and evolutionary processes. Despite this, there is no comprehensive conceptual framework for cold-survival strategies-seasonal migration, cold resistance and torpor. Here, I propose a framework with four components for conceptualizing and quantifying cold-survival strategies. Cold-survival strategies are (i) collectively encompassed by the proposed framework, and that this full breadth of strategies should be considered in focal species or systems (comprehensive consideration). These strategies also (ii) exist on a spectrum, such that species can exhibit partial use of strategies, (iii) are non-exclusive, such that some species use multiple strategies concurrently (combined use) and (iv) should collectively vary inversely and proportionally with one another when controlling for the external environment (e.g. when considering species that occur in sympatry in their summer range), such that use of one strategy reduces, collectively, the use of others (proportional use). This framework is relevant to understanding fundamental patterns and processes in evolution, ecology, physiology and conservation biology.
Collapse
Affiliation(s)
- Giorgia G Auteri
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
|
16
|
Céspedes Arias LN, Wilson S, Bayly NJ. Community modeling reveals the importance of elevation and land cover in shaping migratory bird abundance in the Andes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02481. [PMID: 34674344 PMCID: PMC9287004 DOI: 10.1002/eap.2481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/24/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The tropical Andes are characterized by extreme topographic and climatic complexity, which has likely contributed to their outstanding current species diversity, composed of many range-restricted species. However, little is known about how the distribution and abundance of highly mobile organisms, like long-distance migratory birds, varies across different land covers, elevations, and climatic conditions within the Andes. We conducted 1,606 distance-sampling point counts across the Colombian Andes, spanning elevations from 253 to 3,708 m, a range of precipitation regimes and representative land covers. We then employed a novel application of a multispecies hierarchical modeling approach to evaluate how elevation, local land cover, aboveground woody biomass, cloud cover, precipitation, and seasonality in precipitation shape the abundance of the migratory land bird community in the Andes. We detected 1,824 individuals of 29 species of migratory land birds, six of which were considered incidental in our study region. We modeled the abundance of the remaining 23 species, while considering observer and time of day effects on detectability. We found that both elevation and land cover had an overriding influence on the abundance of migratory species across the Andes, with strong evidence for a mid-elevation peak in abundance, and species-specific responses to both variables. As a community, migratory birds had the highest mean abundance in shade coffee plantations, secondary forest, and mature forest. Aboveground woody biomass did not affect the abundance of all species as a group, but a few showed strong responses to this variable. Contrary to predictions of a positive correlation between abundance and precipitation, we found no evidence for community-level responses to precipitation, aside for a weak tendency for birds to select areas with intermediate levels of precipitation. This novel use of a multispecies model sheds new light on the mechanisms shaping the winter distribution of migratory birds and highlights the importance of elevation and land cover types over climatic variables in the context of the Colombian Andes.
Collapse
Affiliation(s)
- Laura N. Céspedes Arias
- SELVA: Investigación para la Conservación en el NeotrópicoDG 42A #20‐37, 111311Bogotá D.C.Colombia
- Committee on Evolutionary BiologyThe University of ChicagoCulver Hall 402ChicagoIllinois60637USA
| | - Scott Wilson
- Wildlife Research DivisionPacific Wildlife Research CentreEnvironment and Climate Change Canada5421 Robertson RoadDeltaBritish ColumbiaV4K 3N2Canada
- Department of Forest and Conservation SciencesUniversity of British Columbia2424 Main MallVancouverBritish ColumbiaV6T 1Z4Canada
| | - Nicholas J. Bayly
- SELVA: Investigación para la Conservación en el NeotrópicoDG 42A #20‐37, 111311Bogotá D.C.Colombia
| |
Collapse
|
17
|
Yanco SW, Linkhart BD, Marra PP, Mika M, Ciaglo M, Carver A, Wunder MB. Niche dynamics suggest ecological factors influencing migration in an insectivorous owl. Ecology 2021; 103:e3617. [PMID: 34923636 DOI: 10.1002/ecy.3617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/20/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022]
Abstract
Seasonal migration is a widespread phenomenon undertaken by myriad organisms, including birds. Competing hypotheses about ultimate drivers of seasonal migration in birds contrast relative resource abundances at high latitudes ("southern home hypothesis") against avoidance of winter resource scarcity ("dispersal-migration hypothesis"). However, direct tests of these competing hypotheses have been rare and heretofore limited to historical biogeographic reconstructions. Here we derive novel predictions about the dynamics of individual niches from each hypothesis and provide a framework for evaluating support for these competing hypotheses using contemporary environmental and behavioral data. Using flammulated owls (Psiloscops flammeolus) as a model, we characterized year-round occupied niche dynamics using high resolution GPS tracking and remote-sensed environmental data. We also compared occupied niche dynamics to counterfactual niches using simulated alternative non-migratory strategies. Owls' occupied mean niche was conserved between seasons whereas niche variance was generally higher during migratory periods. Simulated year-round residents in Mexico would have experienced putatively more productive niches than migrants. These findings provide ecological support for the "dispersal-migration" hypothesis wherein winter resource scarcity is the primary driver of migration rather than summer resource abundances. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Scott W Yanco
- Dept. of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Brian D Linkhart
- Dept. of Organismal Biology and Ecology, Colorado College, Colorado Spring, Colorado, USA
| | - Peter P Marra
- Dept. of Biology and McCourt School of Public Policy, Georgetown University, Washington, D.C., USA
| | - Markus Mika
- Dept. of Biology, University of Wisconsin La Crosse, La Crosse, Wisconsin, USA
| | - Max Ciaglo
- 811 Rock Rose Court, Louisville, Colorado, USA
| | - Amber Carver
- Dept. of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Michael B Wunder
- Dept. of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| |
Collapse
|
18
|
Seasonal Dissociation in Fossorial Activity between the Llanos' Frog Populations as a Survival Strategy in Arid Subtropical Environments. J HERPETOL 2021. [DOI: 10.1670/20-096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Macpherson MP, Jahn AE, Mason NA. Morphology of migration: associations between wing shape, bill morphology and migration in kingbirds (Tyrannus). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Morphology is closely linked to locomotion and diet in animals. In animals that undertake long-distance migrations, limb morphology is under selection to maximize mobility and minimize energy expenditure. Migratory behaviours also interact with diet, such that migratory animals tend to be dietary generalists, whereas sedentary taxa tend to be dietary specialists. Despite a hypothesized link between migration status and morphology, phylogenetic comparative studies have yielded conflicting findings. We tested for evolutionary associations between migratory status and limb and bill morphology across kingbirds, a pan-American genus of birds with migratory, partially migratory and sedentary taxa. Migratory kingbirds had longer wings, in agreement with expectations that selection favours improved aerodynamics for long-distance migration. We also found an association between migratory status and bill shape, such that more migratory taxa had wider, deeper and shorter bills compared to sedentary taxa. However, there was no difference in intraspecific morphological variation among migrants, partial migrants and residents, suggesting that dietary specialization has evolved independently of migration strategy. The evolutionary links between migration, diet and morphology in kingbirds uncovered here further strengthen ecomorphological associations that underlie long-distance seasonal movements in animals.
Collapse
Affiliation(s)
- Maggie P Macpherson
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
- Louisiana State University Museum of Natural Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Alex E Jahn
- Departamento de Biodiversidade, Universidade Estadual Paulista, Av. 24a No. 1515, Rio Claro, Brazil
- Environmental Resilience Institute, Indiana University, 717 E 8th St., Bloomington, IN, USA
| | - Nicholas A Mason
- Louisiana State University Museum of Natural Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
20
|
Schumm YR, Metzger B, Neuling E, Austad M, Galea N, Barbara N, Quillfeldt P. Year-round spatial distribution and migration phenology of a rapidly declining trans-Saharan migrant—evidence of winter movements and breeding site fidelity in European turtle doves. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03082-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Populations of migratory bird species have suffered a sustained and severe decline for several decades. Contrary to non-migratory species, understanding the causal mechanisms proves difficult (for migratory bird species) as underlying processes may operate across broad geographic ranges and stages of the annual cycle. Therefore, the identification of migration routes, wintering grounds, and stopover sites is crucial for the development of relevant conservation strategies for declining migrant bird species. We still lack fundamental data of the non-breeding movements for many migratory species, such as European turtle doves Streptopelia turtur, a trans-Saharan migrant. For this species, knowledge of non-breeding movements is mainly based on ringing data that are limited by a low recovery rate in Africa, and tracking studies with a strong bias towards individuals breeding in France. We used Argos satellite transmitters to obtain detailed year-round tracks and provide new insights on migration strategies and winter quarters, of turtle doves breeding in Central and Eastern Europe. The tracking data along with analysis of land cover data confirm previously assumed use of multiple wintering sites and the use of a wide range of forest and agricultural landscapes at the breeding grounds. Tracking data in combination with environmental parameters demonstrated that most environmental parameters and niche breadth differed between breeding and wintering grounds. “Niche tracking” was only observed regarding night-time temperatures. Furthermore, we provide evidence for breeding site fidelity of adult individuals and for home range size to increase with an increasing proportion of agricultural used areas.
Significance statement
The European turtle dove, a Palearctic-African migrant species, is one of the fastest declining birds in Europe. The rapid decline is presumed to be caused mainly by habitat modification and agricultural changes. Here, we represent data on migration strategies, flyways, and behavior on European breeding and African non-breeding sites of turtle doves breeding in Central and Eastern Europe equipped with satellite transmitters. Our results confirm the use of different migration flyways and reveal an indication for “niche switching” behavior in terms of environmental factors during the different annual phases. The migratory behaviors revealed by the tracking approach, e.g., prolonged stopovers during autumn migration in Europe overlapping with time of hunting activities, stopovers in North Africa during spring migration, or evidence for loop migration, are important protection-relevant findings, particularly for the Central-Eastern flyway, for which no tracking data has been analyzed prior to our study.
Collapse
|
21
|
Lu M, Winner K, Jetz W. A unifying framework for quantifying and comparing n‐dimensional hypervolumes. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Muyang Lu
- Ecology and Evolutionary Biology Yale University New Haven CT USA
- Center for Biodiversity and Global Change Yale University New Haven CT USA
| | - Kevin Winner
- Ecology and Evolutionary Biology Yale University New Haven CT USA
- Center for Biodiversity and Global Change Yale University New Haven CT USA
| | - Walter Jetz
- Ecology and Evolutionary Biology Yale University New Haven CT USA
- Center for Biodiversity and Global Change Yale University New Haven CT USA
| |
Collapse
|
22
|
Ruegg K, Anderson EC, Somveille M, Bay RA, Whitfield M, Paxton EH, Smith TB. Linking climate niches across seasons to assess population vulnerability in a migratory bird. GLOBAL CHANGE BIOLOGY 2021; 27:3519-3531. [PMID: 33844878 DOI: 10.1111/gcb.15639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Global loss of biodiversity has placed new urgency on the need to understand factors regulating species response to rapid environmental change. While specialists are often less resilient to rapid environmental change than generalists, species-level analyses may obscure the extent of specialization when locally adapted populations vary in climate tolerances. Until recently, quantification of the degree of climate specialization in migratory birds below the species level was hindered by a lack of genomic and tracking information, but recent technological advances have helped to overcome these barriers. Here we take a genome-wide genetic approach to mapping population-specific migratory routes and quantifying niche breadth within genetically distinct populations of a migratory bird, the willow flycatcher (Empidonax traillii), which exhibits variation in the severity of population declines across its breeding range. While our sample size is restricted to the number of genetically distinct populations within the species, our results support the idea that locally adapted populations of the willow flycatcher with narrow climatic niches across seasons are already federally listed as endangered or in steep decline, while populations with broader climatic niches have remained stable in recent decades. Overall, this work highlights the value of quantifying niche breadth within genetically distinct groups across time and space when attempting to understand the factors that facilitate or constrain the response of locally adapted populations to rapid environmental change.
Collapse
Affiliation(s)
| | - Eric C Anderson
- Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, USA
| | | | - Rachael A Bay
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
| | | | - Eben H Paxton
- U.S. Geological Survey Pacific Island Ecosystems Research Center, Hawaii National Park, HI, USA
| | - Thomas B Smith
- Department of Ecology and Evolutionary Biology and Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
23
|
Torres-Martínez L, Porter SS, Wendlandt C, Purcell J, Ortiz-Barbosa G, Rothschild J, Lampe M, Warisha F, Le T, Weisberg AJ, Chang JH, Sachs JL. Evolution of specialization in a plant-microbial mutualism is explained by the oscillation theory of speciation. Evolution 2021; 75:1070-1086. [PMID: 33782951 DOI: 10.1111/evo.14222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/18/2021] [Accepted: 03/14/2021] [Indexed: 12/11/2022]
Abstract
Specialization in mutualisms is thought to be a major driver of diversification, but few studies have explored how novel specialization evolves, or its relation to the evolution of other niche axes. A fundamental question is whether generalist interactions evolve to become more specialized (i.e., oscillation hypothesis) or if partner switches evolve without any change in niche breadth (i.e., musical chairs hypothesis). We examined alternative models for the evolution of specialization by estimating the mutualistic, climatic, and edaphic niche breadths of sister plant species, combining phylogenetic, environmental, and experimental data on Acmispon strigosus and Acmispon wrangelianus genotypes across their overlapping ranges in California. We found that specialization along all three niche axes was asymmetric across species, such that the species with broader climatic and edaphic niches, Acmispon strigosus, was also able to gain benefit from and invest in associating with a broader set of microbial mutualists. Our data are consistent with the oscillation model of specialization, and a parallel narrowing of the edaphic, climatic, and mutualistic dimensions of the host species niche. Our findings provide novel evidence that the evolution of specialization in mutualism is accompanied by specialization in other niche dimensions.
Collapse
Affiliation(s)
- Lorena Torres-Martínez
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521
| | - Stephanie S Porter
- School of Biological Sciences, Washington State University, Vancouver, Washington, 98686, United States of America
| | - Camille Wendlandt
- School of Biological Sciences, Washington State University, Vancouver, Washington, 98686, United States of America
| | - Jessica Purcell
- Department of Entomology, University of California, Riverside, California, 92521, United States of America
| | - Gabriel Ortiz-Barbosa
- Department of Microbiology and Plant Pathology, University of California, Riverside, California, 92521, United States of America
| | - Jacob Rothschild
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521
| | - Mathew Lampe
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521
| | - Farsamin Warisha
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521
| | - Tram Le
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, United States of America
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, United States of America
| | - Joel L Sachs
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, 92521.,Department of Microbiology and Plant Pathology, University of California, Riverside, California, 92521, United States of America.,Institute of Integrative Genome Biology, University of California, Riverside, California, 92521, United States of America
| |
Collapse
|
24
|
Bay RA, Karp DS, Saracco JF, Anderegg WRL, Frishkoff LO, Wiedenfeld D, Smith TB, Ruegg K. Genetic variation reveals individual-level climate tracking across the annual cycle of a migratory bird. Ecol Lett 2021; 24:819-828. [PMID: 33594778 DOI: 10.1111/ele.13706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022]
Abstract
For migratory species, seasonal movements complicate local climate adaptation, as it is unclear whether individuals track climate niches across the annual cycle. In the migratory songbird yellow warbler (Setophaga petechia), we find a correlation between individual-level wintering and breeding precipitation, but not temperature. Birds wintering in the driest regions of the Neotropics breed in the driest regions of North America. Individuals from drier regions also possess distinct morphologies and population responses to varying rainfall. We find a positive association between bill size and breeding season precipitation which, given documented climate-associated genomic variation, might reflect adaptation to local precipitation regimes. Relative abundance in the breeding range is linked to interannual fluctuations in precipitation, but the directionality of this response varies across geography. Together, our results suggest that variation in climate optima may exist across the breeding range of yellow warblers and provide a mechanism for selection across the annual cycle.
Collapse
Affiliation(s)
- Rachael A Bay
- Department of Evolution and Ecology, University of California Davis, Davis, CA, 95616, USA
| | - Daniel S Karp
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, CA, 95616, USA
| | - James F Saracco
- The Institute for Bird Populations, Petaluma, CA, 94952, USA
| | - William R L Anderegg
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Luke O Frishkoff
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | | | - Thomas B Smith
- Institute of the Environment and Sustainability and Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA, 90024, USA
| | - Kristen Ruegg
- Department of Biology, Colorado State University, Fort Collins, CA, 80523, USA
| |
Collapse
|
25
|
Bonnet‐Lebrun A, Somveille M, Rodrigues ASL, Manica A. Exploring intraspecific variation in migratory destinations to investigate the drivers of migration. OIKOS 2020. [DOI: 10.1111/oik.07689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anne‐Sophie Bonnet‐Lebrun
- Dept of Zoology, Univ. of Cambridge Cambridge UK
- CEFE, Univ. de Montpellier, CNRS, EPHE, IRD, Univ. Paul Val�ry Montpellier 3 Montpellier France
| | - Marius Somveille
- BirdLife International, The David Attenborough Building Cambridge UK
| | - Ana S. L. Rodrigues
- CEFE, Univ. de Montpellier, CNRS, EPHE, IRD, Univ. Paul Val�ry Montpellier 3 Montpellier France
| | | |
Collapse
|
26
|
Eyres A, Böhning‐Gaese K, Orme CDL, Rahbek C, Fritz SA. A tale of two seasons: The link between seasonal migration and climatic niches in passerine birds. Ecol Evol 2020; 10:11983-11997. [PMID: 33209264 PMCID: PMC7663971 DOI: 10.1002/ece3.6729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
The question of whether migratory birds track a specific climatic niche by seasonal movements has important implications for understanding the evolution of migration, the factors affecting species' distributions, and the responses of migrants to climate change. Despite much research, previous studies of bird migration have produced mixed results. However, whether migrants track climate is only one half of the question, the other being why residents remain in the same geographic range year-round. We provide a literature overview and test the hypothesis of seasonal niche tracking by evaluating seasonal climatic niche overlap across 437 migratory and resident species from eight clades of passerine birds. Seasonal climatic niches were based on a new global dataset of breeding and nonbreeding ranges. Overlap between climatic niches was quantified using ordination methods. We compared niche overlap of migratory species to two null expectations, (a) a scenario in which they do not migrate and (b) in comparison with the overlap experienced by closely related resident species, while controlling for breeding location and range size. Partly in accordance with the hypothesis of niche tracking, we found that the overlap of breeding versus nonbreeding climatic conditions in migratory species was greater than the overlap they would experience if they did not migrate. However, this was only true for migrants breeding outside the tropics and only relative to the overlap species would experience if they stayed in the breeding range year-round. In contrast to the hypothesis of niche tracking, migratory species experienced lower seasonal climatic niche overlap than resident species, with significant differences between tropical and nontropical species. Our study suggests that in seasonal nontropical environments migration away from the breeding range may serve to avoid seasonally harsh climate; however, different factors may drive seasonal movements in the climatically more stable tropical regions.
Collapse
Affiliation(s)
- Alison Eyres
- Department of Biological SciencesGoethe UniversityFrankfurtGermany
- Senckenberg Biodiversity and Climate Research CentreSenckenberg Gesellschaft für NaturforschungFrankfurtGermany
| | - Katrin Böhning‐Gaese
- Department of Biological SciencesGoethe UniversityFrankfurtGermany
- Senckenberg Biodiversity and Climate Research CentreSenckenberg Gesellschaft für NaturforschungFrankfurtGermany
| | - C. David L. Orme
- Department of Life SciencesImperial College LondonLondon, AscotUK
| | - Carsten Rahbek
- Center for Macroecology, Evolution and Climate, GLOBE InstituteUniversity of CopenhagenCopenhagenDenmark
| | - Susanne A. Fritz
- Department of Biological SciencesGoethe UniversityFrankfurtGermany
- Senckenberg Biodiversity and Climate Research CentreSenckenberg Gesellschaft für NaturforschungFrankfurtGermany
| |
Collapse
|
27
|
Fandos G, Rotics S, Sapir N, Fiedler W, Kaatz M, Wikelski M, Nathan R, Zurell D. Seasonal niche tracking of climate emerges at the population level in a migratory bird. Proc Biol Sci 2020; 287:20201799. [PMID: 32962549 PMCID: PMC7542805 DOI: 10.1098/rspb.2020.1799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Seasonal animal migration is a widespread phenomenon. At the species level, it has been shown that many migratory animal species track similar climatic conditions throughout the year. However, it remains unclear whether such a niche tracking pattern is a direct consequence of individual behaviour or emerges at the population or species level through behavioural variability. Here, we estimated seasonal niche overlap and seasonal niche tracking at the individual and population level of central European white storks (Ciconia ciconia). We quantified niche tracking for both weather and climate conditions to control for the different spatio-temporal scales over which ecological processes may operate. Our results indicate that niche tracking is a bottom-up process. Individuals mainly track weather conditions while climatic niche tracking mainly emerges at the population level. This result may be partially explained by a high degree of intra- and inter-individual variation in niche overlap between seasons. Understanding how migratory individuals, populations and species respond to seasonal environments is key for anticipating the impacts of global environmental changes.
Collapse
Affiliation(s)
- Guillermo Fandos
- Institute for Biochemistry and Biology, University of Potsdam, D-14469, Potsdam, Germany.,Geography Department, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| | - Shay Rotics
- Movement Ecology Lab, Department of Ecology, Evolution, and Behaviour, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904 Jerusalem, Israel.,Department of Zoology, University of Cambridge, Cambridge, UK
| | - Nir Sapir
- Department Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, 3498838 Haifa, Israel
| | - Wolfgang Fiedler
- Max Planck Institute of Animal Behavior, D-78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michael Kaatz
- Vogelschutzwarte Storchenhof Loburg e.V., Loburg, Germany
| | - Martin Wikelski
- Max Planck Institute of Animal Behavior, D-78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
| | - Ran Nathan
- Movement Ecology Lab, Department of Ecology, Evolution, and Behaviour, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram, 91904 Jerusalem, Israel
| | - Damaris Zurell
- Institute for Biochemistry and Biology, University of Potsdam, D-14469, Potsdam, Germany.,Geography Department, Humboldt-Universität zu Berlin, D-10099 Berlin, Germany
| |
Collapse
|
28
|
Quillfeldt P, Weimerskirch H, Delord K, Cherel Y. Niche switching and leapfrog foraging: movement ecology of sympatric petrels during the early breeding season. MOVEMENT ECOLOGY 2020; 8:23. [PMID: 32514358 PMCID: PMC7260822 DOI: 10.1186/s40462-020-00212-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The timing of events in the early part of the breeding season is crucially important for successful reproduction. Long-lived animals that migrate large distances independently of each other meet at the breeding sites to re-establish their pair bonds and coordinate their breeding duties with their partners. METHODS Using miniature light-geolocation and immersion data together with blood stable isotopes, we studied the early breeding season in Thin-billed prions Pachyptila belcheri, Antarctic prions P. desolata and Blue petrels Halobaena caerulea breeding at Kerguelen Islands in the Indian Ocean. These three species exhibit differences in their winter habitat and timing of migration, moult and breeding. We hypothesised that these differences would influence their behaviour during the early breeding season. RESULTS In line with our hypothesis, we found clear differences not only in the timing of colony attendance, but also in the time budgets while at sea and in habitat use. Both early breeding Blue petrels and late breeding Antarctic prions spent about 8 h per day in flight and 15 h foraging. In comparison, Thin-billed prions, which breed in mid-summer, spent less time (5 h daily) in flight and more time (18 h daily) foraging, thus maximizing the time spent foraging during the longest daylight days of the year. While the ecological habitat parameters (sea temperature, wind, productivity) of Thin-billed prions and Blue petrels were relatively stable throughout the year, Antarctic prions showed clear niche switching, caused by leapfrogging between the northernmost winter distribution to the southernmost distribution during the early breeding season. Blood stable isotopes confirmed the habitat switch between the inter-breeding and early breeding periods and highlighted trophic segregation with Blue petrels feeding more on fish and Antarctic petrels more on crustaceans during the early breeding period. CONCLUSION We found that the three sympatric petrel species segregated in time and space, both in the winter and the early breeding season. The interplay of timing and distribution meant that the three species show the full range of migratory strategies, from niche-tracking Blue petrels to niche-switching Antarctic prions. The latitudinal distribution resembled the leapfrogging of terrestrial avian migrant species or populations.
Collapse
Affiliation(s)
- Petra Quillfeldt
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Henri Weimerskirch
- Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Karine Delord
- Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Yves Cherel
- Centre d’Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| |
Collapse
|
29
|
Basille M, Watling J, Romañach S, Borkhataria R. Joint seasonality in geographic and ecological spaces, illustrated with a partially migratory bird. Ecosphere 2020. [DOI: 10.1002/ecs2.3110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mathieu Basille
- Department of Wildlife Ecology and Conservation Fort Lauderdale Research and Education Center University of Florida Davie FL33314USA
| | - James Watling
- Department of Biology John Carroll University University Heights OH44118USA
| | - Stephanie Romañach
- Wetland and Aquatic Research Center U.S. Geological Survey Fort Lauderdale FL33314USA
| | - Rena Borkhataria
- Department of Wildlife Ecology and Conservation Everglades Research and Education Center University of Florida Belle Glade FL33430USA
| |
Collapse
|
30
|
Gámez-Brunswick C, Rojas-Soto O. The effect of seasonal variation on the activity patterns of the American black bear: an ecological niche modeling approach. MAMMALIA 2020. [DOI: 10.1515/mammalia-2019-0017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe American black bear (Ursus americanus) has very plastic activity patterns that maximize its ability to adapt to changing environments. Hibernation length is positively correlated with latitude, where northern populations remain in hibernation for up to 5 months during the winter; however, the species may not hibernate at all in its southern range. Several studies have focused on the description of the species’ ecology from specific locations; however, the macroecological perspective of the seasonal activity in black bears has not been explored. Using ecological niche models and temporal climate transfers, we tested for a correlation between the 971 monthly activity records we obtained for this species within its whole distribution and monthly climatic conditions. We observed that there was a high degree of geographic overlap among the monthly potential transferred areas and the monthly presence locality records. Thus, we suggest that climate is one of the main factors affecting the cycles of activity of this species and explains its hibernation patterns.
Collapse
Affiliation(s)
- Carolina Gámez-Brunswick
- Red de Biología Evolutiva, Laboratorio de Bioclimatología, Instituto de Ecología, A. C., km 2.5 Antigua Carretera a Coatepec no. 351, Xalapa91070, Veracruz, Mexico
| | - Octavio Rojas-Soto
- Red de Biología Evolutiva, Laboratorio de Bioclimatología, Instituto de Ecología, A. C., km 2.5 Antigua Carretera a Coatepec no. 351, Xalapa91070, Veracruz, Mexico
| |
Collapse
|
31
|
Simulation-based reconstruction of global bird migration over the past 50,000 years. Nat Commun 2020; 11:801. [PMID: 32071295 PMCID: PMC7028998 DOI: 10.1038/s41467-020-14589-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/03/2020] [Indexed: 11/17/2022] Open
Abstract
Migration is a widespread response of birds to seasonally varying climates. As seasonality is particularly pronounced during interglacial periods, this raises the question of the significance of bird migration during past periods with different patterns of seasonality. Here, we apply a mechanistic model to climate reconstructions to simulate the past 50,000 years of bird migration worldwide, a period encompassing the transition between the last glacial period and the current interglacial. Our results indicate that bird migration was also a prevalent phenomenon during the last ice age, almost as much as today, suggesting that it has been continually important throughout the glacial cycles of recent Earth history. We find however regional variations, with increasing migratory activity in the Americas, which is not mirrored in the Old World. These results highlight the strong flexibility of the global bird migration system and offer a baseline in the context of on-going anthropogenic climate change. It is unclear whether bird migration patterns are restricted to interglacial periods or are maintained during glacial maxima. Somveille et al. apply a global migration simulation model to climate reconstruction to show that the prevalence of this phenomenon has likely been largely maintained up to 50,000 years ago.
Collapse
|
32
|
Dahal N, Kumar S, Noon BR, Nayak R, Lama RP, Ramakrishnan U. The role of geography, environment, and genetic divergence on the distribution of pikas in the Himalaya. Ecol Evol 2020; 10:1539-1551. [PMID: 32076532 PMCID: PMC7029102 DOI: 10.1002/ece3.6007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/12/2019] [Accepted: 12/19/2019] [Indexed: 12/04/2022] Open
Abstract
Pikas (Ochotona Link, 1795) are high-altitude specialist species making them a useful bioindicator species to warming in high-altitude ecosystem. The Himalayan Mountains are an important part of their range, supporting approximately 23%-25% of total pika species worldwide, yet we lack basic information on the distribution patterns. We combine field-based surveys with genetics-based identification and phylogeny to identify differences in species-environment relationships. Further, we suggest putative evolutionary causes for the observed niche patterns. LOCATION Himalayan high-altitude region. METHODS We sampled 11 altitudinal transects (ranging from ~2,000 to 5,000 m) in the Himalaya to establish occurrence records. We collected 223 species records using genetic analyses to confirm species' identity (based on some invasive and mostly noninvasive biological samples). Niche and geographic overlap were estimated using kernel density estimates. RESULTS Most pikas in the Himalaya span wide elevation ranges and exhibit extensive spatial overlap with other species. However, even in areas of high species diversity, we found species to have a distinct environmental niche. Despite apparent overlapping distributions at broad spatial scales, in our field surveys, we encountered few cases of co-occurrence of species in the sampled transects. Deeply diverged sister-species pair had the least environmental niche overlap despite having the highest geographic range overlap. In contrast, sister-species pair with shallow genetic divergence had a higher environmental niche overlap but was geographically isolated. We hypothesize that the extent of environmental niche divergence in pikas is a function of divergence time within the species complex. We assessed vulnerability of species to future climate change using environmental niche and geographic breadth sizes as a proxies. Our findings suggest that O. sikimaria may be the most vulnerable species. Ochotona roylii appears to have the most unique environmental niche space, with least niche overlap with other pika species from the study area.
Collapse
Affiliation(s)
- Nishma Dahal
- National Centre for Biological SciencesTIFR, GKVK campusBangaloreIndia
- Nature Conservation FoundationMysoreIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Sunil Kumar
- Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsCOUSA
| | - Barry R. Noon
- Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsCOUSA
| | - Rajat Nayak
- Foundation for Ecological Research, Advocacy and LearningMorattandiTamil NaduIndia
| | | | - Uma Ramakrishnan
- National Centre for Biological SciencesTIFR, GKVK campusBangaloreIndia
| |
Collapse
|
33
|
Teitelbaum CS, Huang S, Hall RJ, Altizer S. Migratory behaviour predicts greater parasite diversity in ungulates. Proc Biol Sci 2019; 285:rspb.2018.0089. [PMID: 29563269 DOI: 10.1098/rspb.2018.0089] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/26/2018] [Indexed: 02/03/2023] Open
Abstract
Long-distance animal movements can increase exposure to diverse parasites, but can also reduce infection risk through escape from contaminated habitats or culling of infected individuals. These mechanisms have been demonstrated within and between populations in single-host/single-parasite interactions, but how long-distance movement behaviours shape parasite diversity and prevalence across host taxa is largely unknown. Using a comparative approach, we analyse the parasite communities of 93 migratory, nomadic and resident ungulate species. We find that migrants have higher parasite species richness than residents or nomads, even after considering other factors known to influence parasite diversity, such as body size and host geographical range area. Further analyses support a novel 'environmental tracking' hypothesis, whereby migration allows parasites to experience environments favourable to transmission year-round. In addition, the social aggregation and large group sizes that facilitate migration might increase infection risk for migrants. By contrast, we find little support for previously proposed hypotheses, including migratory escape and culling, in explaining the relationship between host movement and parasitism in mammals at this cross-species scale. Our findings, which support mechanistic links between long-distance movement and increased parasite richness at the species level, could help predict the effects of future environmental change on parasitism in migratory animals.
Collapse
Affiliation(s)
- Claire S Teitelbaum
- Odum School of Ecology, University of Georgia, Athens GA, USA .,Center for the Ecology of Infectious Diseases, University of Georgia, Athens GA, USA
| | - Shan Huang
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - Richard J Hall
- Odum School of Ecology, University of Georgia, Athens GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens GA, USA.,Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens GA, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens GA, USA.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens GA, USA
| |
Collapse
|
34
|
Srinivasan U, Elsen PR, Tingley MW, Wilcove DS. Temperature and competition interact to structure Himalayan bird communities. Proc Biol Sci 2019. [PMID: 29514971 DOI: 10.1098/rspb.2017.2593] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Longstanding theory predicts that competitive interactions set species' range limits in relatively aseasonal, species-rich regions, while temperature limits distributions in more seasonal, species-poor areas. More recent theory holds that species evolve narrow physiological tolerances in aseasonal regions, with temperature being an important determining factor in such zones. We tested how abiotic (temperature) and biotic (competition) factors set range limits and structure bird communities along strong, opposing, temperature-seasonality and species-richness gradients in the Himalayas, in two regions separated by 1500 km. By examining the degree to which seasonal elevational migration conserves year-round thermal niches across species, we show that species in the relatively aseasonal and speciose east are more constrained by temperature compared with species in the highly seasonal west. We further show that seasonality has a profound effect on the strength of competition between congeneric species. Competition appears to be stronger in winter, a period of resource scarcity in the Himalayas, in both the east and the west, with similarly sized eastern species more likely to segregate in thermal niche space in winter. Our results indicate that rather than acting in isolation, abiotic and biotic factors mediate each other to structure ecological communities.
Collapse
Affiliation(s)
- Umesh Srinivasan
- Program in Science, Technology and Environmental Policy, Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA
| | - Paul R Elsen
- Program in Science, Technology and Environmental Policy, Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Morgan W Tingley
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - David S Wilcove
- Program in Science, Technology and Environmental Policy, Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
35
|
Heim W, Eccard JA, Bairlein F. Migration phenology determines niche use of East Asian buntings (Emberizidae) during stopover. Curr Zool 2018; 64:681-692. [PMID: 30538727 PMCID: PMC6280105 DOI: 10.1093/cz/zoy016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/25/2018] [Indexed: 12/03/2022] Open
Abstract
Stopover niche utilization of birds during migration has not gained much attention so far, since the majority of the studies focuses on breeding or wintering areas. However, stopover sites are crucial for migratory birds. They are often used by a multitude of species, which could lead to increased competition. In this work, we investigated niche use of 8 migratory and closely related Emberiza bunting species at a stopover site in Far East Russia, situated on the poorly studied East Asian flyway. We used bird ringing data to evaluate morphological similarity as well as niche overlap on the trophic, spatial, and temporal dimension. Bill morphology was used as a proxy for their trophic niche. We were able to prove that a majority of the species occupies well-defined stopover niches on at least one of the dimensions. Niche breadth and niche overlap differ between spring and autumn season with higher overlap found during spring. Morphological differences are mostly related to overall size and wing pointedness. The temporal dimension is most important for segregation among the studied species. Furthermore, all species seem to exhibit a rather strict and consistent phenological pattern. Their occurrence at the study site is highly correlated with their geographic origin and the length of their migration route. We assume that buntings are able to use available resources opportunistically during stopover, while trying to follow a precise schedule in order to avoid competition and to ensure individual fitness.
Collapse
Affiliation(s)
- Wieland Heim
- Institute of Landscape Ecology, Münster University, Heisenbergstraße 2, Münster, Germany
| | - Jana A Eccard
- Animal Ecology, Institute of Biology and Biochemistry, Universität Potsdam, Maulbeerallee 1, Potsdam, Germany
| | - Franz Bairlein
- Institute of Avian Research “Vogelwarte Helgoland”, An der Vogelwarte 21, Wilhelmshaven, Germany
| |
Collapse
|
36
|
Winger BM, Auteri GG, Pegan TM, Weeks BC. A long winter for the Red Queen: rethinking the evolution of seasonal migration. Biol Rev Camb Philos Soc 2018; 94:737-752. [PMID: 30393938 DOI: 10.1111/brv.12476] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 12/27/2022]
Abstract
This paper advances an hypothesis that the primary adaptive driver of seasonal migration is maintenance of site fidelity to familiar breeding locations. We argue that seasonal migration is therefore principally an adaptation for geographic persistence when confronted with seasonality - analogous to hibernation, freeze tolerance, or other organismal adaptations to cyclically fluctuating environments. These ideas stand in contrast to traditional views that bird migration evolved as an adaptive dispersal strategy for exploiting new breeding areas and avoiding competitors. Our synthesis is supported by a large body of research on avian breeding biology that demonstrates the reproductive benefits of breeding-site fidelity. Conceptualizing migration as an adaptation for persistence places new emphasis on understanding the evolutionary trade-offs between migratory behaviour and other adaptations to fluctuating environments both within and across species. Seasonality-induced departures from breeding areas, coupled with the reproductive benefits of maintaining breeding-site fidelity, also provide a mechanism for explaining the evolution of migration that is agnostic to the geographic origin of migratory lineages (i.e. temperate or tropical). Thus, our framework reconciles much of the conflict in previous research on the historical biogeography of migratory species. Although migratory behaviour and geographic range change fluidly and rapidly in many populations, we argue that the loss of plasticity for migration via canalization is an overlooked aspect of the evolutionary dynamics of migration and helps explain the idiosyncratic distributions and migratory routes of long-distance migrants. Our synthesis, which revolves around the insight that migratory organisms travel long distances simply to stay in the same place, provides a necessary evolutionary context for understanding historical biogeographic patterns in migratory lineages as well as the ecological dynamics of migratory connectivity between breeding and non-breeding locations.
Collapse
Affiliation(s)
- Benjamin M Winger
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Giorgia G Auteri
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Teresa M Pegan
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| | - Brian C Weeks
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, U.S.A
| |
Collapse
|
37
|
Peña-Peniche A, Ruvalcaba-Ortega I, Rojas-Soto O. Climate complexity in the migratory cycle of Ammodramus bairdii. PLoS One 2018; 13:e0202678. [PMID: 30148886 PMCID: PMC6110464 DOI: 10.1371/journal.pone.0202678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 07/11/2018] [Indexed: 11/19/2022] Open
Abstract
One way to understand the ecology of bird migration is to analyze how birds use their ecological niche during their annual cycle. Ammodramus bairdii is a grassland specialist sparrow that breeds in southern Canada and the northern U.S.A. and winters in the Chihuahuan Desert. A continuous and alarming decrease of its populations has been observed over the last 50 years, and studying its seasonal distribution and associated climatic niches could help improve strategies for its conservation. We analyzed the temporal use of its Grinnellian niche (GN) -set of environmental conditions under which a species can establish and persist; in this case the climatic attributes-. We modeled the GN for the reproductive and winter seasons and projected them onto each other (inter-prediction), and also onto transient migratory periods. To measure niche breadth and their overlap, minimum convex polygons (MCP) were calculated for the climatic space. The niches of each of the two seasons were tested for similarity using the PCA axes of climatic variables. The geographic areas with optimal, suboptimal and marginal conditions were identified, based on the distance to the centroid of the GN. The models for each season revealed no geographic inter-prediction among them, with the exception of winter to migratory seasons. The niche breadth of the winter was greater than that of the reproductive season, with an overlap of 22.47% and 45.18%, respectively. The similarity analyses showed a value of zero between seasons. The climate conditions for the records during the migratory months corresponded with suboptimal and marginal conditions of the sparrow's winter niche. These results suggest that A. bairdii uses different climate conditions within ecological niches of each season during its migratory cycle.
Collapse
Affiliation(s)
- Alexander Peña-Peniche
- Red de Biología Evolutiva, Laboratorio de Bioclimatología, Instituto de Ecología, A.C., El Haya, Xalapa, Veracruz, México
| | - Irene Ruvalcaba-Ortega
- Universidad Autónoma de Nuevo León UANL, Facultad de Ciencias Biológicas, Laboratorio de Biología de la Conservación y Desarrollo Sustentable, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, México
| | - Octavio Rojas-Soto
- Red de Biología Evolutiva, Laboratorio de Bioclimatología, Instituto de Ecología, A.C., El Haya, Xalapa, Veracruz, México
| |
Collapse
|
38
|
Culumber ZW, Tobler M. Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes. J Evol Biol 2018; 31:722-734. [DOI: 10.1111/jeb.13260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/13/2018] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
| | - Michael Tobler
- Division of Biology Kansas State University Manhattan KS USA
| |
Collapse
|
39
|
Peters W, Hebblewhite M, Mysterud A, Spitz D, Focardi S, Urbano F, Morellet N, Heurich M, Kjellander P, Linnell JDC, Cagnacci F. Migration in geographic and ecological space by a large herbivore. ECOL MONOGR 2017. [DOI: 10.1002/ecm.1250] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wibke Peters
- Wildlife Biology Program; Department of Ecosystem and Conservation Sciences; University of Montana; Missoula Montana 59812 USA
- Biodiversity and Molecular Ecology Department; Research and Innovation Centre; Fondazione Edmund Mach; Via Mach 1 38010 San Michele all'Adige TN Italy
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis; University of Oslo; P.O. Box, 1066 Blindern 0316 Oslo Norway
| | - Mark Hebblewhite
- Wildlife Biology Program; Department of Ecosystem and Conservation Sciences; University of Montana; Missoula Montana 59812 USA
| | - Atle Mysterud
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis; University of Oslo; P.O. Box, 1066 Blindern 0316 Oslo Norway
| | - Derek Spitz
- Wildlife Biology Program; Department of Ecosystem and Conservation Sciences; University of Montana; Missoula Montana 59812 USA
| | - Stefano Focardi
- Istituto Superiore per la Protezione e Ricerca Ambientale; Via Ca'Fornacetta 9 40064 Ozzano dell'Emilia BO Italy
| | | | - Nicolas Morellet
- INRA UR35; Comportement et Écologie de la Faune Sauvage; Institut National de la Recherche Agronomique; B.P. 52627 31326 Castanet-Tolosan France
| | - Marco Heurich
- Department of Conservation and Research; Bavarian Forest National Park; Freyunger Street 2 94481 Grafenau Germany
- Wildlife Ecology and Management; Faculty of Environment and Natural Resources; University of Freiburg; Freiburg Germany
| | - Petter Kjellander
- Grimsö Wildlife Research Station; Department of Ecology; Swedish University of Agricultural Science (SLU); 73091 Riddarhyttan Sweden
| | - John D. C. Linnell
- Norwegian Institute for Nature Research (NINA); PO Box 5685 Sluppen 7485 Trondheim Norway
| | - Francesca Cagnacci
- Biodiversity and Molecular Ecology Department; Research and Innovation Centre; Fondazione Edmund Mach; Via Mach 1 38010 San Michele all'Adige TN Italy
- Organismic and Evolutionary Biology Department; Harvard University; 26 Oxford Street Cambridge Massachusetts 02138 USA
| |
Collapse
|