1
|
Lyberger K, Farner JE, Couper L, Mordecai EA. Plasticity in mosquito size and thermal tolerance across a latitudinal climate gradient. J Anim Ecol 2025; 94:330-339. [PMID: 39030760 PMCID: PMC11747927 DOI: 10.1111/1365-2656.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/12/2024] [Indexed: 07/22/2024]
Abstract
Variation in heat tolerance among populations can determine whether a species is able to cope with ongoing climate change. Such variation may be especially important for ectotherms whose body temperatures, and consequently, physiological processes, are regulated by external conditions. Additionally, differences in body size are often associated with latitudinal clines, thought to be driven by climate gradients. While studies have begun to explore variation in body size and heat tolerance within species, our understanding of these patterns across large spatial scales, particularly regarding the roles of plasticity and genetic differences, remains incomplete. Here, we examine body size, as measured by wing length, and thermal tolerance, as measured by the time to immobilisation at high temperatures ("thermal knockdown"), in populations of the mosquito Aedes sierrensis collected from across a large latitudinal climate gradient spanning 1300 km (34-44° N). We find that mosquitoes collected from lower latitudes and warmer climates were more tolerant of high temperatures than those collected from higher latitudes and colder climates. Moreover, body size increased with latitude and decreased with temperature, a pattern consistent with James' rule, which appears to be a result of plasticity rather than genetic variation. Our results suggest that warmer environments produce smaller and more thermally tolerant populations.
Collapse
Affiliation(s)
| | | | - Lisa Couper
- Department of Environmental Health Sciences, University of California Berkeley
| | | |
Collapse
|
2
|
Blackwood PE, Martin AK, Sheridan JA. Climate but Not Land Use Influences Body Size of Fowler's Toad ( Anaxyrus fowleri). Ecol Evol 2025; 15:e71024. [PMID: 40027427 PMCID: PMC11868702 DOI: 10.1002/ece3.71024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Anthropogenic changes to the environment have been associated with changes in body size of multiple organisms. However, although climate and land use influences on body size have been examined separately, the simultaneous effects and potential interactions of these two factors on body size have rarely been studied. We examined the size and mass of a common North American toad (Fowler's toad, Anaxyrus fowleri) using museum specimens from 1931 to 1998 to quantify the potential interactive effects of climate change (temperature and precipitation) and land use change (forested area) on body size. We found that snout-vent length (SVL) and mass declined over time, and that size was negatively related to both temperature and precipitation (smaller size at higher values of temperature and precipitation). We did not find evidence of an effect of forest cover on size or mass. Our results suggest that Fowler's toad body size is affected by climate but not land use, and we encourage further examination of additional species and land cover variables (such as urbanization) to determine whether our results are representative of ectotherms more broadly. This work highlights the strength of climate in determining anuran body size and contrasts with existing studies showing interactive effects of climate and land use on animal body size.
Collapse
Affiliation(s)
- Paradyse E. Blackwood
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
- Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Amanda K. Martin
- Section of Amphibians and ReptilesCarnegie Museum of Natural HistoryPittsburghPennsylvaniaUSA
| | - Jennifer A. Sheridan
- Section of Amphibians and ReptilesCarnegie Museum of Natural HistoryPittsburghPennsylvaniaUSA
| |
Collapse
|
3
|
Johansen JL, Mitchell MD, Vaughan GO, Ripley DM, Shiels HA, Burt JA. Impacts of ocean warming on fish size reductions on the world's hottest coral reefs. Nat Commun 2024; 15:5457. [PMID: 38951524 PMCID: PMC11217398 DOI: 10.1038/s41467-024-49459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
The impact of ocean warming on fish and fisheries is vigorously debated. Leading theories project limited adaptive capacity of tropical fishes and 14-39% size reductions by 2050 due to mass-scaling limitations of oxygen supply in larger individuals. Using the world's hottest coral reefs in the Persian/Arabian Gulf as a natural laboratory for ocean warming - where species have survived >35.0 °C summer temperatures for over 6000 years and are 14-40% smaller at maximum size compared to cooler locations - we identified two adaptive pathways that enhance survival at elevated temperatures across 10 metabolic and swimming performance metrics. Comparing Lutjanus ehrenbergii and Scolopsis ghanam from reefs both inside and outside the Persian/Arabian Gulf across temperatures of 27.0 °C, 31.5 °C and 35.5 °C, we reveal that these species show a lower-than-expected rise in basal metabolic demands and a right-shifted thermal window, which aids in maintaining oxygen supply and aerobic performance to 35.5 °C. Importantly, our findings challenge traditional oxygen-limitation theories, suggesting a mismatch in energy acquisition and demand as the primary driver of size reductions. Our data support a modified resource-acquisition theory to explain how ocean warming leads to species-specific size reductions and why smaller individuals are evolutionarily favored under elevated temperatures.
Collapse
Affiliation(s)
- Jacob L Johansen
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Honolulu, HI, USA.
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Matthew D Mitchell
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Grace O Vaughan
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- BiOrbic, Bioeconomy SFI Research Centre, O'Brien Centre for Science, University College Dublin, Dublin, Ireland
| | - Daniel M Ripley
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - John A Burt
- Marine Biology Laboratory, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Mubadala ACCESS Center, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Botsch JC, Zaveri AN, Nell LA, McCormick AR, Book KR, Phillips JS, Einarsson Á, Ives AR. Disentangling the drivers of decadal body size decline in an insect population. GLOBAL CHANGE BIOLOGY 2024; 30:e17014. [PMID: 37943090 DOI: 10.1111/gcb.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/10/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
While climate warming is widely predicted to reduce body size of ectotherms, evidence for this trend is mixed. Body size depends not only on temperature but also on other factors, such as food quality and intraspecific competition. Because temperature trends or other long-term environmental factors may affect population size and food sources, attributing trends in average body size to temperature requires the separation of potentially confounding effects. We evaluated trends in the body size of the midge Tanytarsus gracilentus and potential drivers (water temperature, population size, and food quality) between 1977 and 2015 at Lake Mývatn, Iceland. Although temperatures increased at Mývatn over this period, there was only a slight (non-significant) decrease in midge adult body size, contrary to theoretical expectations. Using a state-space model including multiple predictors, body size was negatively associated with both water temperature and midge population abundance, and it was positively associated with 13 C enrichment of midges (an indicator of favorable food conditions). The magnitude of these effects were similar, such that simultaneous changes in temperature, abundance, and carbon stable isotopic signature could counteract each other in the long-term body size trend. Our results illustrate how multiple factors, all of which could be influenced by global change, interact to affect average ectotherm body size.
Collapse
Affiliation(s)
- Jamieson C Botsch
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aayush N Zaveri
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lucas A Nell
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amanda R McCormick
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - K Riley Book
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Joseph S Phillips
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Árni Einarsson
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
- Mývatn Research Station, Skútustaðir, Iceland
| | - Anthony R Ives
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Larger insects in a colder environment? Elevational and seasonal intraspecific differences in tropical moth sizes on Mount Cameroon. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467422000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Bergmann’s Rule describes an increase in the body size of endothermic animals with decreasing environmental temperatures. However, in ectothermic insects including moths, some of the few existing studies investigating size patterns along temperature gradients do not follow the Bergmann’s Cline. Intraspecific differences in moth sizes along spatiotemporal temperature gradients are unknown from the Palaeotropics, hindering general conclusions and understanding of the mechanism responsible. We measured intraspecific forewing size differences in 28 Afrotropical moth species sampled in 3 seasons along an elevational gradient on Mount Cameroon, West/Central Africa. Size increased significantly with elevation in 14 species but decreased significantly in 5 species. Additionally, we found significant inter-seasonal size differences in 21 species. Most of these variable species had longer forewings in the transition from the wet to dry season, which had caterpillars developing during the coldest part of the year. We conclude that environmental temperature affects the size of many Afrotropical moths, predominantly following prevailingly following Bergmann’s Cline. Nevertheless, the sizes of one-third of the species demonstrated a significant interaction between elevation and season. The responsible mechanisms can thus be assumed to be more complex than a simple response to ambient temperature.
Collapse
|
6
|
Teder T, Taits K, Kaasik A, Tammaru T. Limited sex differences in plastic responses suggest evolutionary conservatism of thermal reaction norms: A meta-analysis in insects. Evol Lett 2022; 6:394-411. [PMID: 36579171 PMCID: PMC9783480 DOI: 10.1002/evl3.299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Temperature has a profound effect on the growth and development of ectothermic animals. However, the extent to which ecologically driven selection pressures can adjust thermal plastic responses in growth schedules is not well understood. Comparing temperature-induced plastic responses between sexes provides a promising but underexploited approach to evaluating the evolvability of thermal reaction norms: males and females share largely the same genes and immature environments but typically experience different ecological selection pressures. We proceed from the idea that substantial sex differences in plastic responses could be interpreted as resulting from sex-specific life-history optimization, whereas similarity among the sexes should rather be seen as evidence of an essential role of physiological constraints. In this study, we performed a meta-analysis of sex-specific thermal responses in insect development times, using data on 161 species with comprehensive phylogenetic and ecological coverage. As a reference for judging the magnitude of sex specificity in thermal plasticity, we compared the magnitude of sex differences in plastic responses to temperature with those in response to diet. We show that sex-specific responses of development times to temperature variation are broadly similar. We also found no strong evidence for sex specificity in thermal responses to depend on the magnitude or direction of sex differences in development time. Sex differences in temperature-induced plastic responses were systematically less pronounced than sex differences in responses induced by variations in larval diet. Our results point to the existence of substantial constraints on the evolvability of thermal reaction norms in insects as the most likely explanation. If confirmed, the low evolvability of thermal response is an essential aspect to consider in predicting evolutionary responses to climate warming.
Collapse
Affiliation(s)
- Tiit Teder
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
- Department of Ecology, Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague165 21Czech Republic
| | - Kristiina Taits
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| | - Ants Kaasik
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| | - Toomas Tammaru
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| |
Collapse
|
7
|
Uemori K, Mita T, Hishi T. Differences in functional trait responses to elevation among feeding guilds of Aculeata community. Ecol Evol 2022; 12:e9171. [PMID: 35949524 PMCID: PMC9353017 DOI: 10.1002/ece3.9171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 11/11/2022] Open
Abstract
The response of communities to environmental change is expected to vary among feeding guilds. To evaluate the response of guilds to environmental factors without considering the taxonomic specificities, it is useful to examine Aculeata bees and wasps, which consist of closely related taxa including different guilds, pollinators, predators, and parasitoids. In this study, we evaluated changes in species diversity (SD) and functional traits of each feeding guild along an elevational gradient in a boreal forest in northern Japan. We used yellow pan traps to collect Aculeata bees and wasps at 200-1600 m above sea level. We investigated six functional traits (trophic level, seasonal duration, body size, elevational range, nesting position, and soil dependency) and the horizontal distribution of the species. The SD of all Aculeata, predators, and parasitoids decreased with an increase in elevation; however, the SD of pollinators did not show any specific trend. Although the functional trait composition of all Aculeata species did not show any trend, that of each feeding guild responded to elevation in different ways. Pollinators increased in body size and showed a decrease in seasonal duration with increasing elevation, suggesting that tolerance and seasonal escape from physical stress at high elevations are important for shaping pollinator communities. Predators increased their elevational range and the proportion of above-ground nesting species increased with increasing elevation, suggesting that the ability to live in a wider range of environments and avoid unsuitable soil environments at high elevations might be important. Parasitoids changed their hosts and displayed variable traits with increasing elevation, suggesting that brood parasitoids have difficulty in surviving at high elevation. The traits for each guild responded in different ways, even if they were dominated by the same environmental factors. Our findings imply that differences in the responses of functional traits would produce different community assembly patterns in different guilds during further climate change.
Collapse
Affiliation(s)
- Kazushige Uemori
- Department of Agro‐environmental Sciences, Graduate School of Bioresource and Bioenvironmental SciencesKyushu UniversityFukuokaJapan
| | - Toshiharu Mita
- Department of Bioresource Sciences, Faculty of AgricultureKyushu UniversityFukuokaJapan
| | - Takuo Hishi
- Department of Agro‐environmental Sciences, Faculty of AgricultureKyushu UniversityFukuokaJapan
- Kyushu University ForestFukuokaJapan
| |
Collapse
|
8
|
Deutsch C, Penn JL, Verberk WCEP, Inomura K, Endress MG, Payne JL. Impact of warming on aquatic body sizes explained by metabolic scaling from microbes to macrofauna. Proc Natl Acad Sci U S A 2022; 119:e2201345119. [PMID: 35787059 PMCID: PMC9282389 DOI: 10.1073/pnas.2201345119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Rising temperatures are associated with reduced body size in many marine species, but the biological cause and generality of the phenomenon is debated. We derive a predictive model for body size responses to temperature and oxygen (O2) changes based on thermal and geometric constraints on organismal O2 supply and demand across the size spectrum. The model reproduces three key aspects of the observed patterns of intergenerational size reductions measured in laboratory warming experiments of diverse aquatic ectotherms (i.e., the "temperature-size rule" [TSR]). First, the interspecific mean and variability of the TSR is predicted from species' temperature sensitivities of hypoxia tolerance, whose nonlinearity with temperature also explains the second TSR pattern-its amplification as temperatures rise. Third, as body size increases across the tree of life, the impact of growth on O2 demand declines while its benefit to O2 supply rises, decreasing the size dependence of hypoxia tolerance and requiring larger animals to contract by a larger fraction to compensate for a thermally driven rise in metabolism. Together our results support O2 limitation as the mechanism underlying the TSR, and they provide a physiological basis for projecting ectotherm body size responses to climate change from microbes to macrofauna. For small species unable to rapidly migrate or evolve greater hypoxia tolerance, ocean warming and O2 loss in this century are projected to induce >20% reductions in body mass. Size reductions at higher trophic levels could be even stronger and more variable, compounding the direct impact of human harvesting on size-structured ocean food webs.
Collapse
Affiliation(s)
- Curtis Deutsch
- School of Oceanography, University of Washington, Seattle, WA 98105
- Department of Geosciences, Princeton University, Princeton, NJ 08540
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08540
| | - Justin L. Penn
- School of Oceanography, University of Washington, Seattle, WA 98105
- Department of Geosciences, Princeton University, Princeton, NJ 08540
| | - Wilco C. E. P. Verberk
- Department of Animal Ecology and Physiology, Radboud University, Nijmegen, 6500 GL Nijmegen,The Netherlands
| | - Keisuke Inomura
- School of Oceanography, University of Washington, Seattle, WA 98105
- Department of Marine Science, University of Rhode Island, Narragansett, RI 02882
| | | | - Jonathan L. Payne
- Department of Geological Sciences, Stanford University, Stanford, CA 94305
| |
Collapse
|
9
|
Seifert CL, Strutzenberger P, Fiedler K. Ecological specialisation and range size determine intraspecific body size variation in a speciose clade of insect herbivores. OIKOS 2022. [DOI: 10.1111/oik.09338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlo L. Seifert
- Dept of Nature Forest Conservation, Georg‐August‐Univ. of Göttingen Göttingen Germany
| | | | - Konrad Fiedler
- Dept of Botany and Biodiversity Research, Univ. of Vienna Vienna Austria
| |
Collapse
|
10
|
Romero GQ, Gonçalves-Souza T, Roslin T, Marquis RJ, Marino NAC, Novotny V, Cornelissen T, Orivel J, Sui S, Aires G, Antoniazzi R, Dáttilo W, Breviglieri CPB, Busse A, Gibb H, Izzo TJ, Kadlec T, Kemp V, Kersch-Becker M, Knapp M, Kratina P, Luke R, Majnarić S, Maritz R, Mateus Martins P, Mendesil E, Michalko J, Mrazova A, Novais S, Pereira CC, Perić MS, Petermann JS, Ribeiro SP, Sam K, Trzcinski MK, Vieira C, Westwood N, Bernaschini ML, Carvajal V, González E, Jausoro M, Kaensin S, Ospina F, Cristóbal-Pérez EJ, Quesada M, Rogy P, Srivastava DS, Szpryngiel S, Tack AJM, Teder T, Videla M, Viljur ML, Koricheva J. Climate variability and aridity modulate the role of leaf shelters for arthropods: A global experiment. GLOBAL CHANGE BIOLOGY 2022; 28:3694-3710. [PMID: 35243726 DOI: 10.1111/gcb.16150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Current climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient. We then probed the impact of short- versus long-term climatic impacts on roll use, by comparing the relative impact of conditions during the experiment versus average, baseline conditions at the site. Leaf shelters supported larger organisms and higher arthropod biomass and species diversity than non-rolled control leaves. However, the magnitude of the leaf rolls' effect differed between long- and short-term climate conditions, metrics (species richness, biomass, and body size), and trophic groups (predators vs. herbivores). The effect of leaf rolls on predator richness was influenced only by baseline climate, increasing in magnitude in regions experiencing increased long-term aridity, regardless of latitude, elevation, and weather during the experiment. This suggests that shelter use by predators may be innate, and thus, driven by natural selection. In contrast, the effect of leaf rolls on predator biomass and predator body size decreased with increasing temperature, and increased with increasing precipitation, respectively, during the experiment. The magnitude of shelter usage by herbivores increased with the abundance of predators and decreased with increasing temperature during the experiment. Taken together, these results highlight that leaf roll use may have both proximal and ultimate causes. Projected increases in climate variability and aridity are, therefore, likely to increase the importance of biotic refugia in mitigating the effects of climate change on species persistence.
Collapse
Affiliation(s)
- Gustavo Q Romero
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Thiago Gonçalves-Souza
- Laboratory of Ecological Synthesis and Biodiversity Conservation, Department of Biology, Federal Rural University of Pernambuco (UFRPE), Recife, Brazil
| | - Tomas Roslin
- Spatial Foodweb Ecology Group, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Spatial Foodweb Ecology Group, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Robert J Marquis
- Whitney R. Harris World Ecology Center, Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA
| | - Nicholas A C Marino
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vojtech Novotny
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Tatiana Cornelissen
- Centre for Ecological Synthesis and Conservation, Department of Genetics, Ecology and Evolution, UFMG, Belo Horizonte, Brazil
| | - Jerome Orivel
- CNRS, UMR Ecologie des Forêts de Guyane (EcoFoG), AgroParisTech, CIRAD, INRAE, Université de Guyane, Université des Antilles, Campus agronomique, Kourou cedex, France
| | - Shen Sui
- New Guinea Binatang Research Center, Nagada Harbour, Madang, Papua New Guinea
| | - Gustavo Aires
- Laboratory of Ecological Synthesis and Biodiversity Conservation, Department of Biology, Federal Rural University of Pernambuco (UFRPE), Recife, Brazil
| | - Reuber Antoniazzi
- Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, Texas, USA
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología A.C, Xalapa, Mexico
| | - Crasso P B Breviglieri
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Annika Busse
- Department of Nature Conservation and Research, Bavarian Forest National Park, Grafenau, Germany
| | - Heloise Gibb
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | - Thiago J Izzo
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Cuiabá, Brasil
| | - Tomas Kadlec
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Victoria Kemp
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Monica Kersch-Becker
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michal Knapp
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Rebecca Luke
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Stefan Majnarić
- Faculty of Science, Department of biology, University of Zagreb, Zagreb, Croatia
| | - Robin Maritz
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, South Africa
| | - Paulo Mateus Martins
- Laboratory of Ecological Synthesis and Biodiversity Conservation, Department of Biology, Federal Rural University of Pernambuco (UFRPE), Recife, Brazil
- Programa de Pós-graduação em Etnobiologia e Conservação da Natureza, Universidade Federal Rural de Pernambuco (UFRPE) [Federal Rural University of Pernambuco], Recife, Brazil
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Esayas Mendesil
- Department of Horticulture and Plant Sciences, Jimma University, Jimma, Ethiopia
| | - Jaroslav Michalko
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
- Mlynany Arboretum, Institute of Forest Ecology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Anna Mrazova
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Samuel Novais
- Red de Interacciones Multitróficas, Instituto de Ecología A.C, Xalapa, Mexico
| | - Cássio C Pereira
- Centre for Ecological Synthesis and Conservation, Department of Genetics, Ecology and Evolution, UFMG, Belo Horizonte, Brazil
| | - Mirela S Perić
- Faculty of Science, Department of biology, University of Zagreb, Zagreb, Croatia
| | - Jana S Petermann
- Department of Environment and Biodiversity, University of Salzburg, Salzburg, Austria
| | - Sérvio P Ribeiro
- Laboratory of Ecoehalth, Ecology of Canopy Insects and Natural Succession, NUPEB-Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Katerina Sam
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - M Kurtis Trzcinski
- Department of Forest & Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Camila Vieira
- Pós-graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Natalie Westwood
- Dept. of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maria L Bernaschini
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Valentina Carvajal
- Laboratorio de Ecologia, Grupo de Investigación en Ecosistemas Tropicales, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Colombia
| | - Ezequiel González
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
- Institute for Environmental Science, University of Koblenz-Landau, Landau, Germany
| | - Mariana Jausoro
- Departamento de Ciencias Basicas, Universidad Nacional de Chilecito, Chilecito, Spain
| | - Stanis Kaensin
- New Guinea Binatang Research Center, Nagada Harbour, Madang, Papua New Guinea
| | - Fabiola Ospina
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales, Colombia
| | - E Jacob Cristóbal-Pérez
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores Unidad Morelia
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Mauricio Quesada
- Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Escuela Nacional de Estudios Superiores Unidad Morelia
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Pierre Rogy
- Dept. of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diane S Srivastava
- Dept. of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scarlett Szpryngiel
- Department of Zoology, The Swedish Museum of Natural History, Stockholm, Sweden
| | - Ayco J M Tack
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Tiit Teder
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Martin Videla
- Instituto Multidisciplinario de Biología Vegetal (CONICET-Universidad Nacional de Córdoba), Córdoba, Argentina
| | - Mari-Liis Viljur
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology (Zoology III), Julius Maximilians University Würzburg, Rauhenebrach, Germany
| | - Julia Koricheva
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| |
Collapse
|
11
|
Wilson RJ, Siqueira AF, Brooks SJ, Price BW, Simon LM, Walt SJ, Fenberg PB. Applying computer vision to digitised natural history collections for climate change research: Temperature‐size responses in British butterflies. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca J. Wilson
- School of Ocean and Earth Sciences University of Southampton Southampton UK
- Department of Life Sciences Natural History Museum London UK
| | | | | | | | - Lea M. Simon
- School of Ocean and Earth Sciences University of Southampton Southampton UK
| | - Stéfan J. Walt
- Berkeley Institute for Data Science University of California Berkeley CA USA
| | - Phillip B. Fenberg
- School of Ocean and Earth Sciences University of Southampton Southampton UK
- Department of Life Sciences Natural History Museum London UK
| |
Collapse
|
12
|
Wootton HF, Morrongiello JR, Schmitt T, Audzijonyte A. Smaller adult fish size in warmer water is not explained by elevated metabolism. Ecol Lett 2022; 25:1177-1188. [PMID: 35266600 PMCID: PMC9545254 DOI: 10.1111/ele.13989] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Fish and other ectotherms living in warmer waters often grow faster as juveniles, mature earlier, but become smaller adults. Known as the temperature‐size rule (TSR), this pattern is commonly attributed to higher metabolism in warmer waters, leaving fewer resources for growth. An alternative explanation focuses on growth and reproduction trade‐offs across temperatures. We tested these hypotheses by measuring growth, maturation, metabolism and reproductive allocation from zebrafish populations kept at 26 and 30°C across six generations. Zebrafish growth and maturation followed TSR expectations but were not explained by baseline metabolic rate, which converged between temperature treatments after a few generations. Rather, we found that females at 30°C allocated more to reproduction, especially when maturing at the smallest sizes. We show that elevated temperatures do not necessarily increase baseline metabolism if sufficient acclimation is allowed and call for an urgent revision of modelling assumptions used to predict population and ecosystem responses to warming.
Collapse
Affiliation(s)
- Henry F Wootton
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - John R Morrongiello
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas Schmitt
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Asta Audzijonyte
- IMAS, University of Tasmania, Hobart, Tasmania, Australia.,Centre for Marine Socioecology, Hobart, Tasmania, Australia
| |
Collapse
|
13
|
Quantitative mismatch between empirical temperature-size rule slopes and predictions based on oxygen limitation. Sci Rep 2021; 11:23594. [PMID: 34880310 PMCID: PMC8654919 DOI: 10.1038/s41598-021-03051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 11/08/2022] Open
Abstract
In ectotherms, adult body size commonly declines with increasing environmental temperature, a pattern known as the temperature-size rule. One influential hypothesis explaining this observation is that the challenge of obtaining sufficient oxygen to support metabolism becomes greater with increasing body size, and more so at high temperatures. Yet, previous models based on this hypothesis do not account for phenotypic plasticity in the physiology of organisms that counteracts oxygen limitation at high temperature. Here, we model the predicted strength of the temperature-size response using estimates of how both the oxygen supply and demand is affected by temperature when allowing for phenotypic plasticity in the aquatic ectotherm Daphnia magna. Our predictions remain highly inconsistent with empirical temperature-size responses, with the prior being close to one order of magnitude stronger than the latter. These results fail to provide quantitative support for the hypothesis that oxygen limitation drives temperature-size clines in aquatic ectotherms. Future studies into the role of oxygen limitation should address how the strength of the temperature-size response may be shaped by evolution under fluctuating temperature regimes. Finally, our results caution against applying deterministic models based on the oxygen limitation hypothesis when predicting future changes in ectotherm size distributions under climate change.
Collapse
|
14
|
Vanbergen AJ, Boissieres C, Gray A, Chapman DS. Habitat loss, predation pressure and episodic heat-shocks interact to impact arthropods and photosynthetic functioning of microecosystems. Proc Biol Sci 2021; 288:20210032. [PMID: 33823665 PMCID: PMC8059533 DOI: 10.1098/rspb.2021.0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/16/2021] [Indexed: 01/22/2023] Open
Abstract
Ecosystems face multiple, potentially interacting, anthropogenic pressures that can modify biodiversity and ecosystem functioning. Using a bryophyte-microarthropod microecosystem we tested the combined effects of habitat loss, episodic heat-shocks and an introduced non-native apex predator on ecosystem function (chlorophyll fluorescence as an indicator of photosystem II function) and microarthropod communities (abundance and body size). The photosynthetic function was degraded by the sequence of heat-shock episodes, but unaffected by microecosystem patch size or top-down pressure from the introduced predator. In small microecosystem patches without the non-native predator, Acari abundance decreased with heat-shock frequency, while Collembola abundance increased. These trends disappeared in larger microecosystem patches or when predators were introduced, although Acari abundance was lower in large patches that underwent heat-shocks and were exposed to the predator. Mean assemblage body length (Collembola) was reduced independently in small microecosystem patches and with greater heat-shock frequency. Our experimental simulation of episodic heatwaves, habitat loss and non-native predation pressure in microecosystems produced evidence of individual and potentially synergistic and antagonistic effects on ecosystem function and microarthropod communities. Such complex outcomes of interactions between multiple stressors need to be considered when assessing anthropogenic risks for biota and ecosystem functioning.
Collapse
Affiliation(s)
- Adam J. Vanbergen
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - Claire Boissieres
- L'Ecole Nationale Supérieure Agronomique de Toulouse (ENSAT), Avenue de l'Agrobiopole, BP 32607, Auzeville-Tolosane 31326, Castanet-Tolosan, France
| | - Alan Gray
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
| | - Daniel S. Chapman
- UK Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian EH26 0QB, UK
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
15
|
Verberk WC, Atkinson D, Hoefnagel KN, Hirst AG, Horne CR, Siepel H. Shrinking body sizes in response to warming: explanations for the temperature-size rule with special emphasis on the role of oxygen. Biol Rev Camb Philos Soc 2021; 96:247-268. [PMID: 32959989 PMCID: PMC7821163 DOI: 10.1111/brv.12653] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 01/04/2023]
Abstract
Body size is central to ecology at levels ranging from organismal fecundity to the functioning of communities and ecosystems. Understanding temperature-induced variations in body size is therefore of fundamental and applied interest, yet thermal responses of body size remain poorly understood. Temperature-size (T-S) responses tend to be negative (e.g. smaller body size at maturity when reared under warmer conditions), which has been termed the temperature-size rule (TSR). Explanations emphasize either physiological mechanisms (e.g. limitation of oxygen or other resources and temperature-dependent resource allocation) or the adaptive value of either a large body size (e.g. to increase fecundity) or a short development time (e.g. in response to increased mortality in warm conditions). Oxygen limitation could act as a proximate factor, but we suggest it more likely constitutes a selective pressure to reduce body size in the warm: risks of oxygen limitation will be reduced as a consequence of evolution eliminating genotypes more prone to oxygen limitation. Thus, T-S responses can be explained by the 'Ghost of Oxygen-limitation Past', whereby the resulting (evolved) T-S responses safeguard sufficient oxygen provisioning under warmer conditions, reflecting the balance between oxygen supply and demands experienced by ancestors. T-S responses vary considerably across species, but some of this variation is predictable. Body-size reductions with warming are stronger in aquatic taxa than in terrestrial taxa. We discuss whether larger aquatic taxa may especially face greater risks of oxygen limitation as they grow, which may be manifested at the cellular level, the level of the gills and the whole-organism level. In contrast to aquatic species, terrestrial ectotherms may be less prone to oxygen limitation and prioritize early maturity over large size, likely because overwintering is more challenging, with concomitant stronger end-of season time constraints. Mechanisms related to time constraints and oxygen limitation are not mutually exclusive explanations for the TSR. Rather, these and other mechanisms may operate in tandem. But their relative importance may vary depending on the ecology and physiology of the species in question, explaining not only the general tendency of negative T-S responses but also variation in T-S responses among animals differing in mode of respiration (e.g. water breathers versus air breathers), genome size, voltinism and thermally associated behaviour (e.g. heliotherms).
Collapse
Affiliation(s)
- Wilco C.E.P. Verberk
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| | - David Atkinson
- Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolL69 7ZBU.K.
| | - K. Natan Hoefnagel
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
- Faculty of Science and Engineering, Ocean Ecosystems — Energy and Sustainability Research Institute GroningenUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Andrew G. Hirst
- School of Environmental SciencesUniversity of LiverpoolLiverpoolL69 3GPU.K.
- Centre for Ocean Life, DTU AquaTechnical University of DenmarkLyngbyDenmark
| | - Curtis R. Horne
- School of Environmental SciencesUniversity of LiverpoolLiverpoolL69 3GPU.K.
| | - Henk Siepel
- Department of Animal Ecology and Physiology, Institute for Water and Wetland ResearchRadboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
16
|
Theodorou P, Baltz LM, Paxton RJ, Soro A. Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol Appl 2021; 14:53-68. [PMID: 33519956 PMCID: PMC7819558 DOI: 10.1111/eva.13087] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Urbanization is a global phenomenon with major effects on species, the structure of community functional traits and ecological interactions. Body size is a key species trait linked to metabolism, life-history and dispersal as well as a major determinant of ecological networks. Here, using a well-replicated urban-rural sampling design in Central Europe, we investigate the direction of change of body size in response to urbanization in three common bumblebee species, Bombus lapidarius, Bombus pascuorum and Bombus terrestris, and potential knock-on effects on pollination service provision. We found foragers of B. terrestris to be larger in cities and the body size of all species to be positively correlated with road density (albeit at different, species-specific scales); these are expected consequences of habitat fragmentation resulting from urbanization. High ambient temperature at sampling was associated with both a small body size and an increase in variation of body size in all three species. At the community level, the community-weighted mean body size and its variation increased with urbanization. Urbanization had an indirect positive effect on pollination services through its effects not only on flower visitation rate but also on community-weighted mean body size and its variation. We discuss the eco-evolutionary implications of the effect of urbanization on body size, and the relevance of these findings for the key ecosystem service of pollination.
Collapse
Affiliation(s)
- Panagiotis Theodorou
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Lucie M. Baltz
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Robert J. Paxton
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Antonella Soro
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
17
|
Stoffels RJ, Weatherman KE, Bond NR, Morrongiello JR, Thiem JD, Butler G, Koster W, Kopf RK, McCasker N, Ye Q, Zampatti B, Broadhurst B. Stage-dependent effects of river flow and temperature regimes on the growth dynamics of an apex predator. GLOBAL CHANGE BIOLOGY 2020; 26:6880-6894. [PMID: 32970901 DOI: 10.1111/gcb.15363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/09/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
In the world's rivers, alteration of flow is a major driver of biodiversity decline. Global warming is now affecting the thermal and hydrological regimes of rivers, compounding the threat and complicating conservation planning. To inform management under a non-stationary climate, we must improve our understanding of how flow and thermal regimes interact to affect the population dynamics of riverine biota. We used long-term growth biochronologies, spanning 34 years and 400,000 km2 , to model the growth dynamics of a long-lived, apex predator (Murray cod) as a function of factors extrinsic (river discharge; air temperature; sub-catchment) and intrinsic (age; individual) to the population. Annual growth of Murray cod showed significant, curvilinear, life-stage-specific responses to an interaction between annual discharge and temperature. Growth of early juveniles (age 1+ and 2+ years) exhibited a unimodal relationship with annual discharge, peaking near median annual discharge. Growth of late juveniles (3+ to 5+) and adults (>5+) increased with annual discharge, with the rate of increase being particularly high in adults, whose growth peaked during years with flooding. Years with very low annual discharge, as experienced during drought and under high abstraction, suppress growth rates of all Murray cod life-stages. Unimodal relationships between growth and annual temperature were evident across all life stages. Contrary to expectations of the Temperature Size Rule, the annual air temperature at which maximum growth occurred increased with age. The stage-specific response of Murray cod to annual discharge indicates that no single magnitude of annual discharge is optimal for cod populations, adding further weight to the case for maintaining and/or restoring flow variability in riverine ecosystems. With respect to climate change impacts, on balance our results indicate that the primary mechanism by which climate change threatens Murray cod growth is through alteration of river flows, not through warming annual mean temperatures per se.
Collapse
Affiliation(s)
- Rick J Stoffels
- National Institute of Water and Atmospheric Research (NIWA), Christchurch, New Zealand
| | - Kyle E Weatherman
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Vic., Australia
| | - Nick R Bond
- Centre for Freshwater Ecosystems, La Trobe University, Wodonga, Vic., Australia
| | - John R Morrongiello
- School of BioSciences, The University of Melbourne, Melbourne, Vic., Australia
| | - Jason D Thiem
- Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, NSW, Australia
| | - Gavin Butler
- Department of Primary Industries, Grafton Fisheries Centre, Grafton, NSW, Australia
| | - Wayne Koster
- Arthur Rylah Institute, Melbourne, Vic., Australia
| | - R Keller Kopf
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Nicole McCasker
- Institute of Land, Water and Society, Charles Sturt University, Albury, NSW, Australia
| | - Qifeng Ye
- South Australian Research and Development Institute, West Beach, SA, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Brenton Zampatti
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, SA, Australia
| | - Ben Broadhurst
- Centre for Applied Water Science, University of Canberra, Bruce, ACT, Australia
| |
Collapse
|
18
|
Büntgen U, Jenny H, Galván JD, Piermattei A, Krusic PJ, Bollmann K. Stable body size of Alpine ungulates. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200196. [PMID: 32874622 PMCID: PMC7428221 DOI: 10.1098/rsos.200196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
In many species, decreasing body size has been associated with increasing temperatures. Although climate-induced phenotypic shifts, and evolutionary impacts, can affect the structure and functioning of marine and terrestrial ecosystems through biological and metabolic rules, evidence for shrinking body size is often challenged by (i) relatively short intervals of observation, (ii) a limited number of individuals, and (iii) confinement to small and isolated populations. To overcome these issues and provide important multi-species, long-term information for conservation managers and scientists, we compiled and analysed 222 961 measurements of eviscerated body weight, 170 729 measurements of hind foot length and 145 980 measurements of lower jaw length, in the four most abundant Alpine ungulate species: ibex (Capra ibex), chamois (Rupicapra rupicapra), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Regardless of age, sex and phylogeny, the body mass and size of these sympatric animals, from the eastern Swiss Alps, remained stable between 1991 and 2013. Neither global warming nor local hunting influenced the fitness of the wild ungulates studied at a detectable level. However, we cannot rule out possible counteracting effects of enhanced nutritional resources associated with longer and warmer growing seasons, as well as the animals' ability to migrate along extensive elevational gradients in the highly diversified alpine landscape of this study.
Collapse
Affiliation(s)
- Ulf Büntgen
- Department of Geography, University of Cambridge, Downing Place CB2 3EN, UK
- Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
- Global Change Research Centre (CzechGlobe), 603 00 Brno, Czech Republic
- Department of Geography, Faculty of Science, Masaryk University, 613 00 Brno, Czech Republic
| | - Hannes Jenny
- Department of Wildlife and Fishery Service Grisons, Canton of Grisons, Loëstrasse 14, 7001 Chur, Switzerland
| | - J. Diego Galván
- Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
| | - Alma Piermattei
- Department of Geography, University of Cambridge, Downing Place CB2 3EN, UK
| | - Paul J. Krusic
- Department of Geography, University of Cambridge, Downing Place CB2 3EN, UK
- Department of Physical Geography, Stockholm University, SE-10691 Stockholm, Sweden
| | - Kurt Bollmann
- Swiss Federal Research Institute WSL, Zürcherstr. 111, 8903 Birmensdorf, Switzerland
| |
Collapse
|
19
|
Wilson RJ, Brooks SJ, Fenberg PB. The influence of ecological and life history factors on ectothermic temperature-size responses: Analysis of three Lycaenidae butterflies (Lepidoptera). Ecol Evol 2019; 9:10305-10316. [PMID: 31632644 PMCID: PMC6787867 DOI: 10.1002/ece3.5550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/25/2022] Open
Abstract
Body size has been shown to decrease with increasing temperature in many species, prompting the suggestion that it is a universal ecological response. However, species with complex life cycles, such as holometabolous insects, may have correspondingly complicated temperature-size responses. Recent research suggests that life history and ecological traits may be important for determining the direction and strength of temperature-size responses. Yet, these factors are rarely included in analyses. Here, we aim to determine whether the size of the bivoltine butterfly, Polyommatus bellargus, and the univoltine butterflies, Plebejus argus and Polyommatus coridon, change in response to temperature and whether these responses differ between the sexes, and for P. bellargus, between generations. Forewing length was measured using digital specimens from the Natural History Museum, London (NHM), from one locality in the UK per species. The data were initially compared to annual and seasonal temperature values, without consideration of life history factors. Sex and generation of the individuals and mean monthly temperatures, which cover the growing period for each species, were then included in analyses. When compared to annual or seasonal temperatures only, size was not related to temperature for P. bellargus and P. argus, but there was a negative relationship between size and temperature for P. coridon. When sex, generation, and monthly temperatures were included, male adult size decreased as temperature increased in the early larval stages, and increased as temperature increased during the late larval stages. Results were similar but less consistent for females, while second generation P. bellargus showed no temperature-size response. In P. coridon, size decreased as temperature increased during the pupal stage. These results highlight the importance of including life history factors, sex, and monthly temperature data when studying temperature-size responses for species with complex life cycles.
Collapse
Affiliation(s)
- Rebecca J. Wilson
- Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
- Department of Life SciencesNatural History MuseumLondonUK
| | | | - Phillip B. Fenberg
- Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK
- Department of Life SciencesNatural History MuseumLondonUK
| |
Collapse
|
20
|
Loisel A, Isla A, Daufresne M. Variation of thermal plasticity in growth and reproduction patterns: Importance of ancestral and developmental temperatures. J Therm Biol 2019; 84:460-468. [DOI: 10.1016/j.jtherbio.2019.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/09/2019] [Accepted: 07/26/2019] [Indexed: 11/25/2022]
|
21
|
Huss M, Lindmark M, Jacobson P, van Dorst RM, Gårdmark A. Experimental evidence of gradual size-dependent shifts in body size and growth of fish in response to warming. GLOBAL CHANGE BIOLOGY 2019; 25:2285-2295. [PMID: 30932292 PMCID: PMC6850025 DOI: 10.1111/gcb.14637] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 03/16/2019] [Indexed: 05/25/2023]
Abstract
A challenge facing ecologists trying to predict responses to climate change is the few recent analogous conditions to use for comparison. For example, negative relationships between ectotherm body size and temperature are common both across natural thermal gradients and in small-scale experiments. However, it is unknown if short-term body size responses are representative of long-term responses. Moreover, to understand population responses to warming, we must recognize that individual responses to temperature may vary over ontogeny. To enable predictions of how climate warming may affect natural populations, we therefore ask how body size and growth may shift in response to increased temperature over life history, and whether short- and long-term growth responses differ. We addressed these questions using a unique setup with multidecadal artificial heating of an enclosed coastal bay in the Baltic Sea and an adjacent reference area (both with unexploited populations), using before-after control-impact paired time-series analyses. We assembled individual growth trajectories of ~13,000 unique individuals of Eurasian perch and found that body growth increased substantially after warming, but the extent depended on body size: Only among small-bodied perch did growth increase with temperature. Moreover, the strength of this response gradually increased over the 24 year warming period. Our study offers a unique example of how warming can affect fish populations over multiple generations, resulting in gradual changes in body growth, varying as organisms develop. Although increased juvenile growth rates are in line with predictions of the temperature-size rule, the fact that a larger body size at age was maintained over life history contrasts to that same rule. Because the artificially heated area is a contemporary system mimicking a warmer sea, our findings can aid predictions of fish responses to further warming, taking into account that growth responses may vary both over an individual's life history and over time.
Collapse
Affiliation(s)
- Magnus Huss
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Max Lindmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Philip Jacobson
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Renee M. van Dorst
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesÖregrundSweden
| |
Collapse
|
22
|
A synthesis of major environmental-body size clines of the sexes within arthropod species. Oecologia 2019; 190:343-353. [PMID: 31161468 PMCID: PMC6571078 DOI: 10.1007/s00442-019-04428-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/28/2019] [Indexed: 12/02/2022]
Abstract
Body size at maturity often varies with environmental conditions, as well as between males and females within a species [termed Sexual Size Dimorphism (SSD)]. Variation in body size clines between the sexes can determine the degree to which SSD varies across environmental gradients. We use a meta-analytic approach to investigate whether major biogeographical and temporal (intra-annually across seasons) body size clines differ systematically between the sexes in arthropods. We consider 329 intra-specific environmental gradients in adult body size across latitude, altitude and with seasonal temperature variation, representing 126 arthropod species from 16 taxonomic orders. On average, we observe greater variability in male than female body size across latitude, consistent with the hypothesis that, over evolutionary time, directional selection has acted more strongly on male than female size. In contrast, neither sex exhibits consistently greater proportional changes in body size than the other sex across altitudinal or seasonal gradients, akin to earlier findings for plastic temperature-size responses measured in the laboratory. Variation in the degree to which body size gradients differ between the sexes cannot be explained by a range of potentially influential factors, including environment type (aquatic vs. terrestrial), voltinism, mean species’ body size, degree of SSD, or gradient direction. Ultimately, if we are to make better sense of the patterns (or lack thereof) in SSD across environmental gradients, we require a more detailed understanding of the underlying selective pressures driving clines in body size. Such understanding will provide a more comprehensive hypothesis-driven approach to explaining biogeographical and temporal variation in SSD.
Collapse
|
23
|
Kirk D, Luijckx P, Stanic A, Krkošek M. Predicting the Thermal and Allometric Dependencies of Disease Transmission via the Metabolic Theory of Ecology. Am Nat 2019; 193:661-676. [PMID: 31002572 DOI: 10.1086/702846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The metabolic theory of ecology (MTE) provides a general framework of allometric and thermal dependence that may be useful for predicting how climate change will affect disease spread. Using Daphnia magna and a microsporidian gut parasite, we conducted two experiments across a wide thermal range and fitted transmission models that utilize MTE submodels for transmission parameters. We decomposed transmission into contact rate and probability of infection and further decomposed probability of infection into a product of gut residence time (GRT) and per-parasite infection rate of gut cells. Contact rate generally increased with temperature and scaled positively with body size, whereas infection rate had a narrow hump-shaped thermal response and scaled negatively with body size. GRT increased with host size and was longest at extreme temperatures. GRT and infection rate inside the gut combined to create a 3.5 times higher probability of infection for the smallest relative to the largest individuals. Small temperature changes caused large differences in transmission. We also fit several alternative transmission models to data at individual temperatures. The more complex models-parasite antagonism or synergism and host heterogeneity-did not substantially improve the fit to the data. Our results show that transmission rate is the product of several distinct thermal and allometric functions that can be predicted continuously across temperature and host size using the MTE.
Collapse
|
24
|
Horne CR, Hirst AG, Atkinson D, Almeda R, Kiørboe T. Rapid shifts in the thermal sensitivity of growth but not development rate causes temperature–size response variability during ontogeny in arthropods. OIKOS 2019. [DOI: 10.1111/oik.06016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Curtis R. Horne
- School of Environmental Sciences, Univ. of Liverpool Liverpool L69 3GP UK
| | - Andrew G. Hirst
- School of Environmental Sciences, Univ. of Liverpool Liverpool L69 3GP UK
- Centre for Ocean Life, DTU Aqua, Technical Univ. of Denmark Lyngby Denmark
| | - David Atkinson
- Inst. of Integrative Biology, Univ. of Liverpool Liverpool UK
| | - Rodrigo Almeda
- Centre for Ocean Life, DTU Aqua, Technical Univ. of Denmark Lyngby Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life, DTU Aqua, Technical Univ. of Denmark Lyngby Denmark
| |
Collapse
|
25
|
Sohlström EH, Marian L, Barnes AD, Haneda NF, Scheu S, Rall BC, Brose U, Jochum M. Applying generalized allometric regressions to predict live body mass of tropical and temperate arthropods. Ecol Evol 2018; 8:12737-12749. [PMID: 30619578 PMCID: PMC6308897 DOI: 10.1002/ece3.4702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
Abstract
The ecological implications of body size extend from the biology of individual organisms to ecosystem-level processes. Measuring body mass for high numbers of invertebrates can be logistically challenging, making length-mass regressions useful for predicting body mass with minimal effort. However, standardized sets of scaling relationships covering a large range in body length, taxonomic groups, and multiple geographical regions are scarce. We collected 6,212 arthropods from 19 higher-level taxa in both temperate and tropical locations to compile a comprehensive set of linear models relating live body mass to a range of predictor variables. We measured live weight (hereafter, body mass), body length and width of each individual and conducted linear regressions to predict body mass using body length, body width, taxonomic group, and geographic region. Additionally, we quantified prediction discrepancy when using parameters from arthropods of a different geographic region. Incorporating body width into taxon- and region-specific length-mass regressions yielded the highest prediction accuracy for body mass. Using regression parameters from a different geographic region increased prediction discrepancy, causing over- or underestimation of body mass depending on geographical origin and whether body width was included. We present a comprehensive range of parameters for predicting arthropod body mass and provide guidance for selecting optimal scaling relationships. Given the importance of body mass for functional invertebrate ecology and the paucity of adequate regressions to predict arthropod body mass from different geographical regions, our study provides a long-needed resource for quantifying live body mass in invertebrate ecology research.
Collapse
Affiliation(s)
- Esra H. Sohlström
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiodiversityFriedrich Schiller University JenaJenaGermany
| | - Lucas Marian
- J. F. Blumenbach Institute for Zoology & AnthropologyUniversity of GoettingenGoettingenGermany
| | - Andrew D. Barnes
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- J. F. Blumenbach Institute for Zoology & AnthropologyUniversity of GoettingenGoettingenGermany
- Leipzig UniversityInstitute of BiologyLeipzigGermany
- School of ScienceUniversity of WaikatoHamiltonNew Zealand
| | - Noor F. Haneda
- Faculty of Forestry, Department of SilvicultureBogor Agricultural UniversityBogorIndonesia
| | - Stefan Scheu
- J. F. Blumenbach Institute for Zoology & AnthropologyUniversity of GoettingenGoettingenGermany
| | - Björn C. Rall
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiodiversityFriedrich Schiller University JenaJenaGermany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiodiversityFriedrich Schiller University JenaJenaGermany
| | - Malte Jochum
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- J. F. Blumenbach Institute for Zoology & AnthropologyUniversity of GoettingenGoettingenGermany
- Leipzig UniversityInstitute of BiologyLeipzigGermany
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| |
Collapse
|
26
|
Merckx T, Kaiser A, Van Dyck H. Increased body size along urbanization gradients at both community and intraspecific level in macro-moths. GLOBAL CHANGE BIOLOGY 2018; 24:3837-3848. [PMID: 29791767 DOI: 10.1111/gcb.14151] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/16/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Urbanization involves a cocktail of human-induced rapid environmental changes and is forecasted to gain further importance. Urban-heat-island effects result in increased metabolic costs expected to drive shifts towards smaller body sizes. However, urban environments are also characterized by strong habitat fragmentation, often selecting for dispersal phenotypes. Here, we investigate to what extent, and at which spatial scale(s), urbanization drives body size shifts in macro-moths-an insect group characterized by positive size-dispersal links-at both the community and intraspecific level. Using light and bait trapping as part of a replicated, spatially nested sampling design, we show that despite the observed urban warming of their woodland habitat, macro-moth communities display considerable increases in community-weighted mean body size because of stronger filtering against small species along urbanization gradients. Urbanization drives intraspecific shifts towards increased body size too, at least for a third of species analysed. These results indicate that urbanization drives shifts towards larger, and hence, more mobile species and individuals in order to mitigate low connectivity of ecological resources in urban settings. Macro-moths are a key group within terrestrial ecosystems, and since body size is central to species interactions, such urbanization-driven phenotypic change may impact urban ecosystem functioning, especially in terms of nocturnal pollination and food web dynamics. Although we show that urbanization's size-biased filtering happens simultaneously and coherently at both the inter- and intraspecific level, we demonstrate that the impact at the community level is most pronounced at the 800 m radius scale, whereas species-specific size increases happen at local and landscape scales (50-3,200 m radius), depending on the species. Hence, measures-such as creating and improving urban green infrastructure-to mitigate the effects of urbanization on body size will have to be implemented at multiple spatial scales in order to be most effective.
Collapse
Affiliation(s)
- Thomas Merckx
- Behavioural Ecology and Conservation Group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Aurélien Kaiser
- Behavioural Ecology and Conservation Group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| | - Hans Van Dyck
- Behavioural Ecology and Conservation Group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
Dobashi T, Iida M, Takemoto K. Decomposing the effects of ocean environments on predator-prey body-size relationships in food webs. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180707. [PMID: 30109114 PMCID: PMC6083727 DOI: 10.1098/rsos.180707] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Body-size relationships between predators and their prey are important in ecological studies because they reflect the structure and function of food webs. Inspired by studies on the impact of global warming on food webs, the effects of temperature on body-size relationships have been widely investigated; however, the impact of environmental factors on body-size relationships has not been fully evaluated because climate warming affects various ocean environments. Thus, here, we comprehensively investigated the effects of ocean environments and predator-prey body-size relationships by integrating a large-scale dataset of predator-prey body-size relationships in marine food webs with global oceanographic data. We showed that various oceanographic parameters influence prey size selection. In particular, oxygen concentration, primary production and salinity, in addition to temperature, significantly alter body-size relationships. Furthermore, we demonstrated that variability (seasonality) of ocean environments significantly affects body-size relationships. The effects of ocean environments on body-size relationships were generally remarkable for small body sizes, but were also significant for large body sizes and were relatively weak for intermediate body sizes, in the cases of temperature seasonality, oxygen concentration and salinity variability. These findings break down the complex effects of ocean environments on body-size relationships, advancing our understanding of how ocean environments influence the structure and functioning of food webs.
Collapse
Affiliation(s)
- Tomoya Dobashi
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Midori Iida
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Kazuhiro Takemoto
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| |
Collapse
|
28
|
Merckx T, Souffreau C, Kaiser A, Baardsen LF, Backeljau T, Bonte D, Brans KI, Cours M, Dahirel M, Debortoli N, De Wolf K, Engelen JMT, Fontaneto D, Gianuca AT, Govaert L, Hendrickx F, Higuti J, Lens L, Martens K, Matheve H, Matthysen E, Piano E, Sablon R, Schön I, Van Doninck K, De Meester L, Van Dyck H. Body-size shifts in aquatic and terrestrial urban communities. Nature 2018; 558:113-116. [PMID: 29795350 DOI: 10.1038/s41586-018-0140-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 04/11/2018] [Indexed: 01/09/2023]
Abstract
Body size is intrinsically linked to metabolic rate and life-history traits, and is a crucial determinant of food webs and community dynamics1,2. The increased temperatures associated with the urban-heat-island effect result in increased metabolic costs and are expected to drive shifts to smaller body sizes 3 . Urban environments are, however, also characterized by substantial habitat fragmentation 4 , which favours mobile species. Here, using a replicated, spatially nested sampling design across ten animal taxonomic groups, we show that urban communities generally consist of smaller species. In addition, although we show urban warming for three habitat types and associated reduced community-weighted mean body sizes for four taxa, three taxa display a shift to larger species along the urbanization gradients. Our results show that the general trend towards smaller-sized species is overruled by filtering for larger species when there is positive covariation between size and dispersal, a process that can mitigate the low connectivity of ecological resources in urban settings 5 . We thus demonstrate that the urban-heat-island effect and urban habitat fragmentation are associated with contrasting community-level shifts in body size that critically depend on the association between body size and dispersal. Because body size determines the structure and dynamics of ecological networks 1 , such shifts may affect urban ecosystem function.
Collapse
Affiliation(s)
- Thomas Merckx
- Behavioural Ecology and Conservation Group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Caroline Souffreau
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | - Aurélien Kaiser
- Behavioural Ecology and Conservation Group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lisa F Baardsen
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Thierry Backeljau
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium.,Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Kristien I Brans
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | - Marie Cours
- Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Maxime Dahirel
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium.,ECOBIO (Ecosystèmes, biodiversité, évolution), CNRS, Université de Rennes, Rennes, France
| | - Nicolas Debortoli
- Laboratory of Evolutionary Genetics and Ecology, URBE, NAXYS, University of Namur, Namur, Belgium
| | - Katrien De Wolf
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Jessie M T Engelen
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | - Diego Fontaneto
- National Research Council, Institute of Ecosystem Study, Verbania-Pallanza, Italy
| | - Andros T Gianuca
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Helmholtz Centre for Environmental Research (UFZ), Department of Community Ecology, Halle, Germany
| | - Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | - Frederik Hendrickx
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Janet Higuti
- Centre of Research in Limnology, Ichthyology and Aquaculture/PEA, State University of Maringá, Maringá, Brazil
| | - Luc Lens
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Koen Martens
- Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Limnology Research Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Hans Matheve
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Erik Matthysen
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Elena Piano
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Rose Sablon
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Isa Schön
- Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Zoology Research Group, University of Hasselt, Hasselt, Belgium
| | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology, URBE, NAXYS, University of Namur, Namur, Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | - Hans Van Dyck
- Behavioural Ecology and Conservation Group, Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
29
|
Pequeno PACL, Franklin E, Norton RA, de Morais JW. A tropical arthropod unravels local and global environmental dependence of seasonal temperature-size response. Biol Lett 2018; 14:rsbl.2018.0125. [PMID: 29720446 DOI: 10.1098/rsbl.2018.0125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/13/2018] [Indexed: 11/12/2022] Open
Abstract
In most ectotherms, adult body size decreases with warming, the so-called 'temperature-size rule' (TSR). However, the extent to which the strength of the TSR varies naturally within species is little known, and the significance of this phenomenon for tropical biota has been largely neglected. Here, we show that the adult body mass of the soil mite Rostrozetes ovulum declined as maximum temperature increased over seasons in a central Amazonian rainforest. Further, per cent decline per °C was fourfold higher in riparian than in upland forests, possibly reflecting differences in oxygen and/or resource supply. Adding our results to a global dataset revealed that, across terrestrial arthropods, the seasonal TSR is generally stronger in hotter environments. Our study suggests that size thermal dependence varies predictably with the environment both locally and globally.
Collapse
Affiliation(s)
| | - Elizabeth Franklin
- Biodiversity Coordination, National Institute for Amazonia Research, Manaus, Brazil
| | - Roy A Norton
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA
| | - José W de Morais
- Biodiversity Coordination, National Institute for Amazonia Research, Manaus, Brazil
| |
Collapse
|
30
|
Horne CR, Hirst AG, Atkinson D. Insect temperature–body size trends common to laboratory, latitudinal and seasonal gradients are not found across altitudes. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Curtis R. Horne
- School of Environmental SciencesUniversity of Liverpool Liverpool UK
| | - Andrew G. Hirst
- School of Environmental SciencesUniversity of Liverpool Liverpool UK
- Centre for Ocean LifeNational Institute for Aquatic ResourcesTechnical University of Denmark Charlottenlund Denmark
| | - David Atkinson
- Institute of Integrative BiologyUniversity of Liverpool Liverpool UK
| |
Collapse
|
31
|
Ryan WH. Temperature-Dependent Growth and Fission Rate Plasticity Drive Seasonal and Geographic Changes in Body Size in a Clonal Sea Anemone. Am Nat 2017; 191:210-219. [PMID: 29351015 DOI: 10.1086/695496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The temperature-size rule is a commonly observed pattern where adult body size is negatively correlated with developmental temperature. In part, this may occur as a consequence of allometric scaling, where changes in the ratio of surface area to mass limit oxygen diffusion as body size increases. As oxygen demand increases with temperature, a smaller body should be favored as temperature increases. For clonal animals, small changes in growth and/or fission rate can rapidly alter the average body size of clonal descendants. Here I test the hypothesis that the clonal sea anemone Diadumene lineata is able to track an optimal body size through seasonal temperature changes using fission rate plasticity. Individuals from three regions (Florida, Georgia, and Massachusetts) across the species' latitudinal range were grown in a year-long reciprocal common garden experiment mimicking seasonal temperature changes at three sites. Average body size was found to be smaller and fission rates higher in warmer conditions, consistent with the temperature-size rule pattern. However, seasonal size and fission patterns reflect a complex interaction between region-specific thermal reaction norms and the local temperature regime. These details provide insight into both the range of conditions required for oxygen limitation to contribute to a negative correlation between body size and temperature and the role that fission rate plasticity can play in tracking a rapidly changing optimal phenotype.
Collapse
|
32
|
Dahirel M, Dierick J, De Cock M, Bonte D. Intraspecific variation shapes community-level behavioral responses to urbanization in spiders. Ecology 2017; 98:2379-2390. [PMID: 28585743 DOI: 10.1002/ecy.1915] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/09/2017] [Accepted: 05/24/2017] [Indexed: 01/08/2023]
Abstract
Urban areas are an extreme example of human-changed environments, exposing organisms to multiple and strong selection pressures. Adaptive behavioral responses are thought to play a major role in animals' success or failure in such new environments. Approaches based on functional traits have proven especially valuable to understand how species communities respond to environmental gradients. Until recently, they have, however, often ignored the potential consequences of intraspecific trait variation (ITV). When ITV is prevalent, it may highly impact ecological processes and resilience against stressors. This may be especially relevant in animals, in which behavioral traits can be altered very flexibly at the individual level to track environmental changes. We investigated how species turnover and ITV influenced community-level behavioral responses in a set of 62 sites of varying levels of urbanization, using orb web spiders and their webs as models of foraging behavior. ITV alone explained around one-third of the total trait variation observed among communities. Spider web structure changed according to urbanization, in ways that increase the capture efficiency of webs in a context of smaller urban prey. These trait shifts were partly mediated by species turnover, but ITV increased their magnitude, potentially helping to buffer the effects of environmental changes on communities. The importance of ITV varied depending on traits and on the spatial scale at which urbanization was considered. Despite being neglected from community-level analyses in animals, our results highlight the importance of accounting for intraspecific trait variation to fully understand trait responses to (human-induced) environmental changes and their impact on ecosystem functioning.
Collapse
Affiliation(s)
- Maxime Dahirel
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium.,UMR 6553 Ecobio, Université de Rennes 1/CNRS, Rennes, France
| | - Jasper Dierick
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Maarten De Cock
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
33
|
Alfsnes K, Leinaas HP, Hessen DO. Genome size in arthropods; different roles of phylogeny, habitat and life history in insects and crustaceans. Ecol Evol 2017; 7:5939-5947. [PMID: 28811889 PMCID: PMC5552920 DOI: 10.1002/ece3.3163] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/23/2017] [Indexed: 02/05/2023] Open
Abstract
Despite the major role of genome size for physiology, ecology, and evolution, there is still mixed evidence with regard to proximate and ultimate drivers. The main causes of large genome size are proliferation of noncoding elements and/or duplication events. The relative role and interplay between these proximate causes and the evolutionary patterns shaped by phylogeny, life history traits or environment are largely unknown for the arthropods. Genome size shows a tremendous variability in this group, and it has a major impact on a range of fitness-related parameters such as growth, metabolism, life history traits, and for many species also body size. In this study, we compared genome size in two major arthropod groups, insects and crustaceans, and related this to phylogenetic patterns and parameters affecting ambient temperature (latitude, depth, or altitude), insect developmental mode, as well as crustacean body size and habitat, for species where data were available. For the insects, the genome size is clearly phylogeny-dependent, reflecting primarily their life history and mode of development, while for crustaceans there was a weaker association between genome size and phylogeny, suggesting life cycle strategies and habitat as more important determinants. Maximum observed latitude and depth, and their combined effect, showed positive, and possibly phylogenetic independent, correlations with genome size for crustaceans. This study illustrate the striking difference in genome sizes both between and within these two major groups of arthropods, and that while living in the cold with low developmental rates may promote large genomes in marine crustaceans, there is a multitude of proximate and ultimate drivers of genome size.
Collapse
Affiliation(s)
- Kristian Alfsnes
- Department of BiosciencesUniversity of OsloOsloNorway
- Department of Molecular BiologyNorwegian Institute of Public HealthOsloNorway
| | | | | |
Collapse
|