1
|
Wolf M, de Jong MJ, Janke A. Ocean-Wide Conservation Genomics of Blue Whales Suggest New Northern Hemisphere Subspecies. Mol Ecol 2025; 34:e17619. [PMID: 39688592 DOI: 10.1111/mec.17619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
The blue whale is an endangered and globally distributed species of baleen whale with multiple described subspecies, including the morphologically and genetically distinct pygmy blue whale. North Atlantic and North Pacific populations, however, are currently regarded as a single subspecies despite being separated by continental land masses and acoustic call differences. To determine the degree of isolation among the Northern Hemisphere populations, 14 North Pacific and 6 Western Australian blue whale nuclear and mitochondrial genomes were sequenced and analysed together with 11 publicly available North Atlantic blue whale genomes. Population genomic analyses revealed distinctly differentiated clusters and limited genetic exchange among all three populations, indicating a high degree of isolation between the Northern Hemisphere populations. Nevertheless, the genomic and mitogenomic distances between all blue whale populations, including the Western Australian pygmy blue whale, are low when compared to other inter-subspecies distances in cetaceans. Given that the Western Australian pygmy blue whale is an already recognised subspecies and further supported by previously reported acoustic differences, a proposal is made to treat the two Northern Hemisphere populations as separate subspecies, namely Balaenoptera musculus musculus (North Atlantic blue whale) and Balaenoptera musculus sulfureus (North Pacific blue whale). Furthermore, a first molecular viability assessment of all three populations not only found a generally high genomic diversity among blue whales but also a lack of alleles at low frequency, non-neutral evolution and increased effects of inbreeding. This suggests a substantial anthropogenic impact on the genotypes of blue whales and calls for careful monitoring in future conservation plans.
Collapse
Affiliation(s)
- Magnus Wolf
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Evolution and Biodiversity (IEB), University of Muenster, Muenster, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Menno J de Jong
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Genty G, Sandoval-Castillo J, Beheregaray LB, Möller LM. Into the Blue: Exploring genetic mechanisms behind the evolution of baleen whales. Gene 2024; 929:148822. [PMID: 39103058 DOI: 10.1016/j.gene.2024.148822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Marine ecosystems are ideal for studying evolutionary adaptations involved in lineage diversification due to few physical barriers and reduced opportunities for strict allopatry compared to terrestrial ecosystems. Cetaceans (whales, dolphins, and porpoises) are a diverse group of mammals that successfully adapted to various habitats within the aquatic environment around 50 million years ago. While the overall adaptive transition from terrestrial to fully aquatic species is relatively well understood, the radiation of modern whales is still unclear. Here high-quality genomes derived from previously published data were used to identify genomic regions that potentially underpinned the diversification of baleen whales (Balaenopteridae). A robust molecular phylogeny was reconstructed based on 10,159 single copy and complete genes for eight mysticetes, seven odontocetes and two cetacean outgroups. Analysis of positive selection across 3,150 genes revealed that balaenopterids have undergone numerous idiosyncratic and convergent genomic variations that may explain their diversification. Genes associated with aging, survival and homeostasis were enriched in all species. Additionally, positive selection on genes involved in the immune system were disclosed for the two largest species, blue and fin whales. Such genes can potentially be ascribed to their morphological evolution, allowing them to attain greater length and increased cell number. Further evidence is presented about gene regions that might have contributed to the extensive anatomical changes shown by cetaceans, including adaptation to distinct environments and diets. This study contributes to our understanding of the genomic basis of diversification in baleen whales and the molecular changes linked to their adaptive radiation, thereby enhancing our understanding of cetacean evolution.
Collapse
Affiliation(s)
- Gabrielle Genty
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Luciana M Möller
- Cetacean Ecology, Behaviour and Evolution Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia; Molecular Ecology Lab, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| |
Collapse
|
3
|
Jauhal AA, Constantine R, Newcomb RD. A Comparative Genomics Approach to Understanding the Evolution of Olfaction in Cetaceans. J Mol Evol 2024; 92:912-929. [PMID: 39581917 DOI: 10.1007/s00239-024-10217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/02/2024] [Indexed: 11/26/2024]
Abstract
Major evolutionary transitions, such as the shift of cetaceans from terrestrial to marine life, can put pressure on sensory systems to adapt to a new set of relevant stimuli. Relatively little is known about the role of smell in the evolution of mysticetes (baleen whales). While their toothed cousins, the odontocetes, lack the anatomical features to smell, it is less clear whether baleen whales have retained this sense, and if so, when the pressure on olfaction diverged in the cetacean evolutionary lineage. We examined eight genes encoding olfactory signal transduction pathway components and key chaperones for signs of inactivating mutations and selective pressures. All of the genes we examined were intact in all eight mysticete genomes examined, despite inactivating mutations in odontocete homologs in multiple genes. We also tested several models representing various hypotheses regarding the evolutionary history of olfaction in cetaceans. Our results support a model where olfactory ability is specifically reduced in the odontocete lineage following their split from stem cetaceans and serve to clarify the evolutionary history of olfaction in cetaceans.
Collapse
Affiliation(s)
- April A Jauhal
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
- The New Zealand Institute for Plant & Food Research, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Rochelle Constantine
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Richard D Newcomb
- The New Zealand Institute for Plant & Food Research, Private Bag 92169, Auckland, 1142, New Zealand
| |
Collapse
|
4
|
Vazquez JM, Lauterbur ME, Mottaghinia S, Bucci M, Fraser D, Gray-Sandoval G, Gaucherand L, Haidar ZR, Han M, Kohler W, Lama TM, Le Corf A, Loyer C, Maesen S, McMillan D, Li S, Lo J, Rey C, Capel SLR, Singer M, Slocum K, Thomas W, Tyburec JD, Villa S, Miller R, Buchalski M, Vazquez-Medina JP, Pfeffer S, Etienne L, Enard D, Sudmant PH. Extensive longevity and DNA virus-driven adaptation in nearctic Myotis bats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617725. [PMID: 39416019 PMCID: PMC11482938 DOI: 10.1101/2024.10.10.617725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The genus Myotis is one of the largest clades of bats, and exhibits some of the most extreme variation in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To study the evolution of longevity-associated traits and infectious disease, we generated near-complete genome assemblies and cell lines for 8 closely related species of Myotis. Using genome-wide screens of positive selection, analyses of structural variation, and functional experiments in primary cell lines, we identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in bats. We find that Myotis bats have some of the most significant variation in cancer risk across mammals and demonstrate a unique DNA damage response in primary cells of the long-lived M. lucifugus. We also find evidence of abundant adaptation in response to DNA viruses - but not RNA viruses - in Myotis and other bats in sharp contrast with other mammals, potentially contributing to the role of bats as reservoirs of zoonoses. Together, our results demonstrate how genomics and primary cells derived from diverse taxa uncover the molecular bases of extreme adaptations in non-model organisms.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- These authors contributed equally
| | - M. Elise Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Current affiliation: Department of Biology, University of Vermont, Burlington, VT USA
- These authors contributed equally
| | - Saba Mottaghinia
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Melanie Bucci
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Devaughn Fraser
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | | | - Léa Gaucherand
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Zeinab R Haidar
- Department of Biology, California State Polytechnic University, Humboldt, Arcata, CA USA
- Current affiliation: Western EcoSystems Technology Inc, Cheyenne, WY USA
| | - Melissa Han
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - William Kohler
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Tanya M. Lama
- Department of Biological Sciences, Smith College, Northampton, MA USA
| | - Amandine Le Corf
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Clara Loyer
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Sarah Maesen
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Dakota McMillan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Department of Science and Biotechnology, Berkeley City College, Berkeley, CA USA
| | - Stacy Li
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Johnathan Lo
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
| | - Carine Rey
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
| | - Samantha LR Capel
- Current affiliation: Wildlife Diversity Program, Wildlife Division, Connecticut Department of Energy and Environmental Protection, Burlington, CT, United States
| | - Michael Singer
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | | | - William Thomas
- Department of Ecology and Evolution, Stony Brook University, Stony Brook NY USA
| | | | - Sarah Villa
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA USA
| | - Richard Miller
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI USA
| | - Michael Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA, United States
| | | | - Sébastien Pfeffer
- Université de Strasbourg, Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR5308, Ecole Normale Supérieure ENS de Lyon, Université de Lyon, Lyon, France
- Senior author
| | - David Enard
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
- Senior author
- These authors contributed equally
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA USA
- Senior author
- These authors contributed equally
- Lead contact
| |
Collapse
|
5
|
Crossman CA, Fontaine MC, Frasier TR. A comparison of genomic diversity and demographic history of the North Atlantic and Southwest Atlantic southern right whales. Mol Ecol 2024; 33:e17099. [PMID: 37577945 DOI: 10.1111/mec.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Right whales (genus Eubalaena) were among the first, and most extensively pursued, targets of commercial whaling. However, understanding the impacts of this persecution requires knowledge of the demographic histories of these species prior to exploitation. We used deep whole genome sequencing (~40×) of 12 North Atlantic (E. glacialis) and 10 Southwest Atlantic southern (E. australis) right whales to quantify contemporary levels of genetic diversity and infer their demographic histories over time. Using coalescent- and identity-by-descent-based modelling to estimate ancestral effective population sizes from genomic data, we demonstrate that North Atlantic right whales have lived with smaller effective population sizes (Ne) than southern right whales in the Southwest Atlantic since their divergence and describe the decline in both populations around the time of whaling. North Atlantic right whales exhibit reduced genetic diversity and longer runs of homozygosity leading to higher inbreeding coefficients compared to the sampled population of southern right whales. This study represents the first comprehensive assessment of genome-wide diversity of right whales in the western Atlantic and underscores the benefits of high coverage, genome-wide datasets to help resolve long-standing questions about how historical changes in effective population size over different time scales shape contemporary diversity estimates. This knowledge is crucial to improve our understanding of the right whales' history and inform our approaches to address contemporary conservation issues. Understanding and quantifying the cumulative impact of long-term small Ne, low levels of diversity and recent inbreeding on North Atlantic right whale recovery will be important next steps.
Collapse
Affiliation(s)
- Carla A Crossman
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Michael C Fontaine
- Laboratoire MIVEGEC (Université de Montpellier, CNRS 5290, IRD 224), Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Timothy R Frasier
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
6
|
Didier G, Laurin M. Testing extinction events and temporal shifts in diversification and fossilization rates through the skyline Fossilized Birth-Death (FBD) model: The example of some mid-Permian synapsid extinctions. Cladistics 2024; 40:282-306. [PMID: 38651531 DOI: 10.1111/cla.12577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/23/2024] [Accepted: 03/07/2024] [Indexed: 04/25/2024] Open
Abstract
In the last decade, the Fossilized Birth-Death (FBD) process has yielded interesting clues about the evolution of biodiversity through time. To facilitate such studies, we extend our method to compute the probability density of phylogenetic trees of extant and extinct taxa in which the only temporal information is provided by the fossil ages (i.e. without the divergence times) in order to deal with the piecewise constant FBD process, known as the "skyline FBD", which allows rates to change between pre-defined time intervals, as well as modelling extinction events at the bounds of these intervals. We develop approaches based on this method to assess hypotheses about the diversification process and to answer questions such as "Does a mass extinction occur at this time?" or "Is there a change in the fossilization rate between two given periods?". Our software can also yield Bayesian and maximum-likelihood estimates of the parameters of the skyline FBD model under various constraints. These approaches are applied to a simulated dataset in order to test their ability to answer the questions above. Finally, we study an updated dataset of Permo-Carboniferous synapsids to get additional insights into the dynamics of biodiversity change in three clades (Ophiacodontidae, Edaphosauridae and Sphenacodontidae) in the Pennsylvanian (Late Carboniferous) and Cisuralian (Early Permian), and to assess support for end-Sakmarian (or Artinskian) and end-Cisuralian mass extinction events discussed in previous studies.
Collapse
Affiliation(s)
| | - Michel Laurin
- CR2P ("Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements"; UMR 7207), CNRS/MNHN/UPMC, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
7
|
Bukhman YV, Morin PA, Meyer S, Chu LF, Jacobsen JK, Antosiewicz-Bourget J, Mamott D, Gonzales M, Argus C, Bolin J, Berres ME, Fedrigo O, Steill J, Swanson SA, Jiang P, Rhie A, Formenti G, Phillippy AM, Harris RS, Wood JMD, Howe K, Kirilenko BM, Munegowda C, Hiller M, Jain A, Kihara D, Johnston JS, Ionkov A, Raja K, Toh H, Lang A, Wolf M, Jarvis ED, Thomson JA, Chaisson MJP, Stewart R. A High-Quality Blue Whale Genome, Segmental Duplications, and Historical Demography. Mol Biol Evol 2024; 41:msae036. [PMID: 38376487 PMCID: PMC10919930 DOI: 10.1093/molbev/msae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.
Collapse
Affiliation(s)
- Yury V Bukhman
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Li-Fang Chu
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | | | | | - Daniel Mamott
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Maylie Gonzales
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Cara Argus
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jennifer Bolin
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Mark E Berres
- University of Wisconsin Biotechnology Center, Bioinformatics Resource Center, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - John Steill
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Scott A Swanson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Peng Jiang
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Arang Rhie
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - Adam M Phillippy
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Robert S Harris
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Bogdan M Kirilenko
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Chetan Munegowda
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Aashish Jain
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Alexander Ionkov
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Kalpana Raja
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Huishi Toh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Aimee Lang
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Magnus Wolf
- Institute for Evolution and Biodiversity (IEB), University of Muenster, 48149, Muenster, Germany
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
8
|
Rule JP, Duncan RJ, Marx FG, Pollock TI, Evans AR, Fitzgerald EM. Giant baleen whales emerged from a cold southern cradle. Proc Biol Sci 2023; 290:20232177. [PMID: 38113937 PMCID: PMC10730287 DOI: 10.1098/rspb.2023.2177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Baleen whales (mysticetes) include the largest animals on the Earth. How they achieved such gigantic sizes remains debated, with previous research focusing primarily on when mysticetes became large, rather than where. Here, we describe an edentulous baleen whale fossil (21.12-16.39 mega annum (Ma)) from South Australia. With an estimated body length of 9 m, it is the largest mysticete from the Early Miocene. Analysing body size through time shows that ancient baleen whales from the Southern Hemisphere were larger than their northern counterparts. This pattern seemingly persists for much of the Cenozoic, even though southern specimens contribute only 19% to the global mysticete fossil record. Our findings contrast with previous ideas of a single abrupt shift towards larger size during the Plio-Pleistocene, which we here interpret as a glacially driven Northern Hemisphere phenomenon. Our results highlight the importance of incorporating Southern Hemisphere fossils into macroevolutionary patterns, especially in light of the high productivity of Southern Ocean environments.
Collapse
Affiliation(s)
- James P. Rule
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Sciences, Museums Victoria Research Institute, Museums Victoria, Melbourne, Victoria 3001, Australia
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Ruairidh J. Duncan
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Sciences, Museums Victoria Research Institute, Museums Victoria, Melbourne, Victoria 3001, Australia
| | - Felix G. Marx
- Museum of New Zealand Te Papa Tongarewa, Wellington 6011, New Zealand
- Department of Geology, University of Otago, Dunedin 9016, New Zealand
| | - Tahlia I. Pollock
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Department of Anatomy and Developmental Biology, Monash University, Victoria, Australia
| | - Alistair R. Evans
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Sciences, Museums Victoria Research Institute, Museums Victoria, Melbourne, Victoria 3001, Australia
| | - Erich M.G. Fitzgerald
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Sciences, Museums Victoria Research Institute, Museums Victoria, Melbourne, Victoria 3001, Australia
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
9
|
Coiro M, Allio R, Mazet N, Seyfullah LJ, Condamine FL. Reconciling fossils with phylogenies reveals the origin and macroevolutionary processes explaining the global cycad biodiversity. THE NEW PHYTOLOGIST 2023; 240:1616-1635. [PMID: 37302411 PMCID: PMC10953041 DOI: 10.1111/nph.19010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
The determinants of biodiversity patterns can be understood using macroevolutionary analyses. The integration of fossils into phylogenies offers a deeper understanding of processes underlying biodiversity patterns in deep time. Cycadales are considered a relict of a once more diverse and globally distributed group but are restricted to low latitudes today. We still know little about their origin and geographic range evolution. Combining molecular data for extant species and leaf morphological data for extant and fossil species, we study the origin of cycad global biodiversity patterns through Bayesian total-evidence dating analyses. We assess the ancestral geographic origin and trace the historical biogeography of cycads with a time-stratified process-based model. Cycads originated in the Carboniferous on the Laurasian landmass and expanded in Gondwana in the Jurassic. Through now-vanished continental connections, Antarctica and Greenland were crucial biogeographic crossroads for cycad biogeography. Vicariance is an essential speciation mode in the deep and recent past. Their latitudinal span increased in the Jurassic and restrained toward subtropical latitudes in the Neogene in line with biogeographic inferences of high-latitude extirpations. We show the benefits of integrating fossils into phylogenies to estimate ancestral areas of origin and to study evolutionary processes explaining the global distribution of present-day relict groups.
Collapse
Affiliation(s)
- Mario Coiro
- Department of PalaeontologyUniversity of Vienna1090ViennaAustria
- Ronin Institute for Independent ScholarshipMontclairNJ07043USA
| | - Rémi Allio
- Centre de Biologie pour la Gestion des Populations, INRAE, CIRAD, IRD, Montpellier SupAgroUniversité de Montpellier34988MontpellierFrance
| | - Nathan Mazet
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de MontpellierPlace Eugène Bataillon34095MontpellierFrance
| | | | - Fabien L. Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de MontpellierPlace Eugène Bataillon34095MontpellierFrance
| |
Collapse
|
10
|
Werth AJ, Crompton AW. Cetacean tongue mobility and function: A comparative review. J Anat 2023; 243:343-373. [PMID: 37042479 PMCID: PMC10439401 DOI: 10.1111/joa.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
Cetaceans are atypical mammals whose tongues often depart from the typical (basal) mammalian condition in structure, mobility, and function. Their tongues are dynamic, innovative multipurpose tools that include the world's largest muscular structures. These changes reflect the evolutionary history of cetaceans' secondary adaptation to a fully aquatic environment. Cetacean tongues play no role in mastication and apparently a greatly reduced role in nursing (mainly channeling milk ingestion), two hallmarks of Mammalia. Cetacean tongues are not involved in drinking, breathing, vocalizing, and other non-feeding activities; they evidently play no or little role in taste reception. Although cetaceans do not masticate or otherwise process food, their tongues retain key roles in food ingestion, transport, securing/positioning, and swallowing, though by different means than most mammals. This is due to cetaceans' aquatic habitat, which in turn altered their anatomy (e.g., the intranarial larynx and consequent soft palate alteration). Odontocetes ingest prey via raptorial biting or tongue-generated suction. Odontocete tongues expel water and possibly uncover benthic prey via hydraulic jetting. Mysticete tongues play crucial roles driving ram, suction, or lunge ingestion for filter feeding. The uniquely flaccid rorqual tongue, not a constant volume hydrostat (as in all other mammalian tongues), invaginates into a balloon-like pouch to temporarily hold engulfed water. Mysticete tongues also create hydrodynamic flow regimes and hydraulic forces for baleen filtration, and possibly for cleaning baleen. Cetacean tongues lost or modified much of the mobility and function of generic mammal tongues, but took on noteworthy morphological changes by evolving to accomplish new tasks.
Collapse
Affiliation(s)
- Alexander J Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, Virginia, USA
| | - A W Crompton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Storrie L, Loseto LL, Sutherland EL, MacPhee SA, O'Corry-Crowe G, Hussey NE. Do beluga whales truly migrate? Testing a key trait of the classical migration syndrome. MOVEMENT ECOLOGY 2023; 11:53. [PMID: 37649126 PMCID: PMC10469428 DOI: 10.1186/s40462-023-00416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/05/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Migration enables organisms to access resources in separate regions that have predictable but asynchronous spatiotemporal variability in habitat quality. The classical migration syndrome is defined by key traits including directionally persistent long-distance movements during which maintenance activities are suppressed. But recently, seasonal round-trip movements have frequently been considered to constitute migration irrespective of the traits required to meet this movement type, conflating common outcomes with common traits required for a mechanistic understanding of long-distance movements. We aimed to test whether a cetacean ceases foraging during so-called migratory movements, conforming to a trait that defines classical migration. METHODS We used location and dive data collected by satellite tags deployed on beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea population, which undertake long-distance directed movements between summer and winter areas. To identify phases of directionally persistent travel, behavioural states (area-restricted search, ARS; or Transit) were decoded using a hidden-Markov model, based on step length and turning angle. Established dive profiles were then used as a proxy for foraging, to test the hypothesis that belugas cease foraging during these long-distance transiting movements, i.e., they suppress maintenance activities. RESULTS Belugas principally made directed horizontal movements when moving between summer and winter residency areas, remaining in a Transit state for an average of 75.4% (range = 58.5-87.2%) of the time. All individuals, however, exhibited persistent foraging during Transit movements (75.8% of hours decoded as the Transit state had ≥ 1 foraging dive). These data indicate that belugas actively search for and/or respond to resources during these long-distance movements that are typically called a migration. CONCLUSIONS The long-distance movements of belugas do not conform to the traits defining the classical migration syndrome, but instead have characteristics of both migratory and nomadic behaviour, which may prove adaptive in the face of unpredictable environmental change. Such patterns are likely present in other cetaceans that have been labeled as migratory. Examination of not only horizontal movement state, but also the vertical behaviour of aquatic animals during directed movements is essential for identifying whether a species exhibits traits of the classical migration syndrome or another long-distance movement strategy, enabling improved ecological inference.
Collapse
Affiliation(s)
- Luke Storrie
- Centre for Earth Observation Science, Department of Environment and Geography, The University of Manitoba, Winnipeg, MB, Canada.
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada.
| | - Lisa L Loseto
- Centre for Earth Observation Science, Department of Environment and Geography, The University of Manitoba, Winnipeg, MB, Canada
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Emma L Sutherland
- Centre for Earth Observation Science, Department of Environment and Geography, The University of Manitoba, Winnipeg, MB, Canada
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Shannon A MacPhee
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Greg O'Corry-Crowe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
12
|
Abstract
Recent research on mysticete fossils from the Late Eocene and Oligocene has revolutionised our understanding of the diversity and evolutionary scenarios for early baleen whales. For example, aetiocetids are a possible, though controversial, lineage that bridges the gap between the toothed and baleen-bearing mysticetes, and eomysticetids show a further transitional step towards the baleen-bearing status, with the presence of non-functional dentition in adults. However, information about the origin of crown mysticetes, including the most recent common ancestor of all extant lineages and its descendants, is critical to further understanding the evolution of baleen whales. The phylogenetic positions of the Oligocene Toipahautea, Whakakai, Horopeta, and Mauicetus from New Zealand remain unresolved and problematic, but all four genera show a close relationship with crown mysticetes. The original and subsequent cladistic analyses have consistently revealed a sister relationship between the Toipahautea-to-Mauicetus grade and crown mysticetes, and Horopeta has been placed close to the cetotheriids within the crown group. This review aims to stimulate more research on this topic by elucidating the origin of crown mysticetes, which likely experienced a poorly known radiation event during the Oligocene that established the modern lineages.
Collapse
Affiliation(s)
- Cheng-Hsiu Tsai
- Department of Life Science, Institute of Ecology and Evolutionary Biology, and Museum of Zoology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Bianucci G, Lambert O, Urbina M, Merella M, Collareta A, Bennion R, Salas-Gismondi R, Benites-Palomino A, Post K, de Muizon C, Bosio G, Di Celma C, Malinverno E, Pierantoni PP, Villa IM, Amson E. A heavyweight early whale pushes the boundaries of vertebrate morphology. Nature 2023; 620:824-829. [PMID: 37532931 DOI: 10.1038/s41586-023-06381-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
The fossil record of cetaceans documents how terrestrial animals acquired extreme adaptations and transitioned to a fully aquatic lifestyle1,2. In whales, this is associated with a substantial increase in maximum body size. Although an elongate body was acquired early in cetacean evolution3, the maximum body mass of baleen whales reflects a recent diversification that culminated in the blue whale4. More generally, hitherto known gigantism among aquatic tetrapods evolved within pelagic, active swimmers. Here we describe Perucetus colossus-a basilosaurid whale from the middle Eocene epoch of Peru. It displays, to our knowledge, the highest degree of bone mass increase known to date, an adaptation associated with shallow diving5. The estimated skeletal mass of P. colossus exceeds that of any known mammal or aquatic vertebrate. We show that the bone structure specializations of aquatic mammals are reflected in the scaling of skeletal fraction (skeletal mass versus whole-body mass) across the entire disparity of amniotes. We use the skeletal fraction to estimate the body mass of P. colossus, which proves to be a contender for the title of heaviest animal on record. Cetacean peak body mass had already been reached around 30 million years before previously assumed, in a coastal context in which primary productivity was particularly high.
Collapse
Affiliation(s)
- Giovanni Bianucci
- Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
| | - Olivier Lambert
- D.O. Terre et Histoire de la Vie, Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium
| | - Mario Urbina
- Departamento de Paleontología de Vertebrados, Museo de Historia Natural-Universidad Nacional Mayor de San Marcos, Lima, Perú
| | - Marco Merella
- Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
| | - Alberto Collareta
- Dipartimento di Scienze della Terra, Università di Pisa, Pisa, Italy
| | - Rebecca Bennion
- D.O. Terre et Histoire de la Vie, Institut Royal des Sciences Naturelles de Belgique, Brussels, Belgium
- Evolution & Diversity Dynamics Lab, UR Geology, Université de Liège, Liège, Belgium
| | - Rodolfo Salas-Gismondi
- Departamento de Paleontología de Vertebrados, Museo de Historia Natural-Universidad Nacional Mayor de San Marcos, Lima, Perú
- Facultad de Ciencias y Filosofía/Centro de Investigación para el Desarrollo Integral y Sostenible, Laboratorios de Investigación y Desarrollo, Universitad Peruana Cayetano Heredia Lima, Lima, Perú
| | - Aldo Benites-Palomino
- Departamento de Paleontología de Vertebrados, Museo de Historia Natural-Universidad Nacional Mayor de San Marcos, Lima, Perú
- Department of Paleontology, University of Zurich, Zurich, Switzerland
| | - Klaas Post
- Natuurhistorisch Museum Rotterdam, Rotterdam, The Netherlands
| | - Christian de Muizon
- Département Origines et Évolution, CR2P (CNRS, MNHN, Sorbonne Université), Muséum National d'Histoire Naturelle, Paris, France
| | - Giulia Bosio
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Claudio Di Celma
- School of Science and Technology, University of Camerino, Camerino, Italy
| | - Elisa Malinverno
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano-Bicocca, Milano, Italy
| | | | | | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, Germany.
| |
Collapse
|
14
|
McEntee MHF, Foroughirad V, Krzyszczyk E, Mann J. Sex bias in mortality risk changes over the lifespan of bottlenose dolphins. Proc Biol Sci 2023; 290:20230675. [PMID: 37491966 PMCID: PMC10369037 DOI: 10.1098/rspb.2023.0675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Research on sex biases in longevity in mammals often assumes that male investment in competition results in a female survival advantage that is constant throughout life. We use 35 years of longitudinal data on 1003 wild bottlenose dolphins (Tursiops aduncus) to examine age-specific mortality, demonstrating a time-varying effect of sex on mortality hazard over the five-decade lifespan of a social mammal. Males are at higher risk of mortality than females during the juvenile period, but the gap between male and female mortality hazard closes in the mid-teens, coincident with the onset of female reproduction. Female mortality hazard is non-significantly higher than male mortality hazard in adulthood, resulting in a moderate male bias in the oldest age class. Bottlenose dolphins have an intensely male-competitive mating system, and juvenile male mortality has been linked to social competition. Contrary to predictions from sexual selection theory, however, male-male competition does not result in sustained male-biased mortality. As female dolphins experience high costs of sexual coercion in addition to long and energetically expensive periods of gestation and lactation, this suggests that substantial female investment in reproduction can elevate female mortality risk and impact sex biases in lifespan.
Collapse
Affiliation(s)
| | | | - Ewa Krzyszczyk
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- School of Natural Sciences, Bangor University, Bangor, Wales LL57 2DG, UK
| | - Janet Mann
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- Department of Psychology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
15
|
Videsen SKA, Simon M, Christiansen F, Friedlaender A, Goldbogen J, Malte H, Segre P, Wang T, Johnson M, Madsen PT. Cheap gulp foraging of a giga-predator enables efficient exploitation of sparse prey. SCIENCE ADVANCES 2023; 9:eade3889. [PMID: 37352356 PMCID: PMC10289661 DOI: 10.1126/sciadv.ade3889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
The giant rorqual whales are believed to have a massive food turnover driven by a high-intake lunge feeding style aptly described as the world's largest biomechanical action. This high-drag feeding behavior is thought to limit dive times and constrain rorquals to target only the densest prey patches, making them vulnerable to disturbance and habitat change. Using biologging tags to estimate energy expenditure as a function of feeding rates on 23 humpback whales, we show that lunge feeding is energetically cheap. Such inexpensive foraging means that rorquals are flexible in the quality of prey patches they exploit and therefore more resilient to environmental fluctuations and disturbance. As a consequence, the food turnover and hence the ecological role of these marine giants have likely been overestimated.
Collapse
Affiliation(s)
- Simone K. A. Videsen
- Zoophysiology, Department of Biology, Aarhus University, Denmark
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Malene Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Fredrik Christiansen
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
- Marine Mammal Research, Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
| | - Ari Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jeremy Goldbogen
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - Hans Malte
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| | - Paolo Segre
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA, USA
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| | - Mark Johnson
- Zoophysiology, Department of Biology, Aarhus University, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Peter T. Madsen
- Zoophysiology, Department of Biology, Aarhus University, Denmark
| |
Collapse
|
16
|
Wolf M, Zapf K, Gupta DK, Hiller M, Árnason Ú, Janke A. The genome of the pygmy right whale illuminates the evolution of rorquals. BMC Biol 2023; 21:79. [PMID: 37041515 PMCID: PMC10091562 DOI: 10.1186/s12915-023-01579-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Baleen whales are a clade of gigantic and highly specialized marine mammals. Their genomes have been used to investigate their complex evolutionary history and to decipher the molecular mechanisms that allowed them to reach these dimensions. However, many unanswered questions remain, especially about the early radiation of rorquals and how cancer resistance interplays with their huge number of cells. The pygmy right whale is the smallest and most elusive among the baleen whales. It reaches only a fraction of the body length compared to its relatives and it is the only living member of an otherwise extinct family. This placement makes the pygmy right whale genome an interesting target to update the complex phylogenetic past of baleen whales, because it splits up an otherwise long branch that leads to the radiation of rorquals. Apart from that, genomic data of this species might help to investigate cancer resistance in large whales, since these mechanisms are not as important for the pygmy right whale as in other giant rorquals and right whales. RESULTS Here, we present a first de novo genome of the species and test its potential in phylogenomics and cancer research. To do so, we constructed a multi-species coalescent tree from fragments of a whole-genome alignment and quantified the amount of introgression in the early evolution of rorquals. Furthermore, a genome-wide comparison of selection rates between large and small-bodied baleen whales revealed a small set of conserved candidate genes with potential connections to cancer resistance. CONCLUSIONS Our results suggest that the evolution of rorquals is best described as a hard polytomy with a rapid radiation and high levels of introgression. The lack of shared positive selected genes between different large-bodied whale species supports a previously proposed convergent evolution of gigantism and hence cancer resistance in baleen whales.
Collapse
Affiliation(s)
- Magnus Wolf
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt Am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Strasse. 9, Frankfurt Am Main, Germany
| | - Konstantin Zapf
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt Am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Strasse. 9, Frankfurt Am Main, Germany
| | - Deepak Kumar Gupta
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt Am Main, Germany
| | - Michael Hiller
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt Am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt Am Main, Germany
- Institute of Cell Biology and Neuroscience, Goethe University Frankfurt, Max-Von-Laue-Str. 9, Frankfurt Am Main, Germany
| | - Úlfur Árnason
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurosurgery, Skane University Hospital in Lund, Lund, Sweden
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt Am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Max-Von-Laue-Strasse. 9, Frankfurt Am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt Am Main, Germany
| |
Collapse
|
17
|
Cade DE, Kahane-Rapport SR, Gough WT, Bierlich KC, Linsky JMJ, Calambokidis J, Johnston DW, Goldbogen JA, Friedlaender AS. Minke whale feeding rate limitations suggest constraints on the minimum body size for engulfment filtration feeding. Nat Ecol Evol 2023; 7:535-546. [PMID: 36914772 DOI: 10.1038/s41559-023-01993-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/05/2023] [Indexed: 03/16/2023]
Abstract
Bulk filter feeding has enabled gigantism throughout evolutionary history. The largest animals, extant rorqual whales, utilize intermittent engulfment filtration feeding (lunge feeding), which increases in efficiency with body size, enabling their gigantism. The smallest extant rorquals (7-10 m minke whales), however, still exhibit short-term foraging efficiencies several times greater than smaller non-filter-feeding cetaceans, raising the question of why smaller animals do not utilize this foraging modality. We collected 437 h of bio-logging data from 23 Antarctic minke whales (Balaenoptera bonaerensis) to test the relationship of feeding rates (λf) to body size. Here, we show that while ultra-high nighttime λf (mean ± s.d.: 165 ± 40 lunges h-1; max: 236 lunges h-1; mean depth: 28 ± 46 m) were indistinguishable from predictions from observations of larger species, daytime λf (mean depth: 72 ± 72 m) were only 25-40% of predicted rates. Both λf were near the maxima allowed by calculated biomechanical, physiological and environmental constraints, but these temporal constraints meant that maximum λf was below the expected λf for animals smaller than ~5 m-the length of weaned minke whales. Our findings suggest that minimum size for specific filter-feeding body plans may relate broadly to temporal restrictions on filtration rate and have implications for the evolution of filter feeding.
Collapse
Affiliation(s)
- David E Cade
- Institute of Marine Science, University of California, Santa Cruz, CA, USA.
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA.
| | | | - William T Gough
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - K C Bierlich
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| | - Jacob M J Linsky
- Institute of Marine Science, University of California, Santa Cruz, CA, USA
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, Australia
| | | | - David W Johnston
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | | | - Ari S Friedlaender
- Institute of Marine Science, University of California, Santa Cruz, CA, USA
| |
Collapse
|
18
|
Lauridsen H, Bie Thøstesen C, Pedersen CCE, Ringgaard S, Elstrup M, Møller PR, Johansson DK, Alstrup AKO. Heterochronic maturation of anatomical plugs for protecting the airway in rorqual whales (Balaenopteridae). ROYAL SOCIETY OPEN SCIENCE 2022; 9:220459. [PMID: 36533195 PMCID: PMC9748495 DOI: 10.1098/rsos.220459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Recently, a unique mechanism for protecting the airway during lunge feeding was discovered in rorqual whales (Balaenopteridae). This mechanism is based on an oral plug structure in the soft palate with similarities in musculo-fatty composition to the nasal plugs protecting the respiratory tract of rorquals from water entry and barotrauma during diving. As a follow-up, we present here a developmental series on fetal, prenatal, juvenile and adult specimens across five species of rorquals, showing differential maturation of the nasal and oral respiratory protection plugs. Nasal plugs are fully formed to serve an immediate crucial function at birth. By contrast, the soft palate remains muscular until the onset of solid food intake, where a musculo-fatty oral plug is developed.
Collapse
Affiliation(s)
- Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | | | | | - Steffen Ringgaard
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Mette Elstrup
- Department of Natural History, Museumof Southern Jutland, 6510 Gram, Denmark
| | - Peter Rask Møller
- Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- Norwegian College of Fishery Science, UiT – The Arctic University of Norway, 9037 Tromsø, Norway
| | | | - Aage Kristian Olsen Alstrup
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
- Department of Nuclear Medicine & PET, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg Ø, Denmark
| |
Collapse
|
19
|
Gough WT, Cade DE, Czapanskiy MF, Potvin J, Fish FE, Kahane-Rapport SR, Savoca MS, Bierlich KC, Johnston DW, Friedlaender AS, Szabo A, Bejder L, Goldbogen JA. Fast and Furious: Energetic Tradeoffs and Scaling of High-Speed Foraging in Rorqual Whales. Integr Org Biol 2022; 4:obac038. [PMID: 36127894 PMCID: PMC9475666 DOI: 10.1093/iob/obac038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/30/2022] [Accepted: 08/21/2022] [Indexed: 11/20/2022] Open
Abstract
Although gigantic body size and obligate filter feeding mechanisms have evolved in multiple vertebrate lineages (mammals and fishes), intermittent ram (lunge) filter feeding is unique to a specific family of baleen whales: rorquals. Lunge feeding is a high cost, high benefit feeding mechanism that requires the integration of unsteady locomotion (i.e., accelerations and maneuvers); the impact of scale on the biomechanics and energetics of this foraging mode continues to be the subject of intense study. The goal of our investigation was to use a combination of multi-sensor tags paired with UAS footage to determine the impact of morphometrics such as body size on kinematic lunging parameters such as fluking timing, maximum lunging speed, and deceleration during the engulfment period for a range of species from minke to blue whales. Our results show that, in the case of krill-feeding lunges and regardless of size, animals exhibit a skewed gradient between powered and fully unpowered engulfment, with fluking generally ending at the point of both the maximum lunging speed and mouth opening. In all cases, the small amounts of propulsive thrust generated by the tail were unable to overcome the high drag forces experienced during engulfment. Assuming this thrust to be minimal, we predicted the minimum speed of lunging across scale. To minimize the energetic cost of lunge feeding, hydrodynamic theory predicts slower lunge feeding speeds regardless of body size, with a lower boundary set by the ability of the prey to avoid capture. We used empirical data to test this theory and instead found that maximum foraging speeds remain constant and high (∼4 m s–1) across body size, even as higher speeds result in lower foraging efficiency. Regardless, we found an increasing relationship between body size and this foraging efficiency, estimated as the ratio of energetic gain from prey to energetic cost. This trend held across timescales ranging from a single lunge to a single day and suggests that larger whales are capturing more prey—and more energy—at a lower cost.
Collapse
Affiliation(s)
- William T Gough
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - David E Cade
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - Max F Czapanskiy
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - Jean Potvin
- Saint Louis University , Saint Louis, MO 63103, USA
| | - Frank E Fish
- West Chester University , West Chester, PA 19383, USA
| | | | - Matthew S Savoca
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| | - K C Bierlich
- Oregon State University , Corvallis, OR 97331, USA
| | | | | | - Andy Szabo
- Alaska Whale Foundation , Sitka, AK, 99835, USA
| | - Lars Bejder
- Hawaii Institute of Marine Biology, University of Hawaii at Manoa , Kaheohe, HI 96822, USA
- Department of Bioscience, Aarhus University , Aarhus 8000, Denmark
| | - Jeremy A Goldbogen
- Hopkins Marine Station, Stanford University , Pacific Grove, CA 94305, USA
| |
Collapse
|
20
|
Anatomical, Ontogenetic, and Genomic Homologies Guide Reconstructions of the Teeth-to-Baleen Transition in Mysticete Whales. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Beaulieu JM, O'Meara BC. Fossils Do Not Substantially Improve, and May Even Harm, Estimates of Diversification Rate Heterogeneity. Syst Biol 2022; 72:50-61. [PMID: 35861420 DOI: 10.1093/sysbio/syac049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
The fossilized birth-death (FBD) model is a naturally appealing way of directly incorporating fossil information when estimating diversification rates. However, an important yet often overlooked property of the original FBD derivation is that it distinguishes between two types of sampled lineages. Here we first discuss and demonstrate the impact of severely undersampling, and even not including fossils that represent samples of lineages that also had sampled descendants. We then explore the benefits of including fossils, generally, by implementing and then testing two-types of FBD models, including one that converts a fossil set into stratigraphic ranges, in more complex likelihood-based models that assume multiple rate classes across the tree. Under various simulation scenarios, including a scenario that exists far outside the set of models we evaluated, including fossils rarely outperforms analyses that exclude them altogether. At best, the inclusion of fossils improves precision but does not influence bias. Similarly, we found that converting the fossil set to stratigraphic ranges, which is one way to remedy the effects of undercounting the number of k-type fossils, results in turnover rates and extinction fraction estimates that are generally underestimated. While fossils remain essential for understanding diversification through time, in the specific case of understanding diversification given an existing, largely modern tree, they are not especially beneficial.
Collapse
Affiliation(s)
- Jeremy M Beaulieu
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, 72701 USA
| | - Brian C O'Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996-1610 USA
| |
Collapse
|
22
|
Pyenson ND, Koch PL. Oh, the shark has such teeth: Did megatooth sharks play a larger role in prehistoric food webs? SCIENCE ADVANCES 2022; 8:eadd2674. [PMID: 35731872 PMCID: PMC11325863 DOI: 10.1126/sciadv.add2674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extinct megatooth sharks were globally distributed and contributed to ocean food chains that were potentially one to two steps longer than any food chain today.
Collapse
Affiliation(s)
- Nicholas D Pyenson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
| | - Paul L Koch
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 USA
| |
Collapse
|
23
|
Cooke R, Gearty W, Chapman ASA, Dunic J, Edgar GJ, Lefcheck JS, Rilov G, McClain CR, Stuart-Smith RD, Kathleen Lyons S, Bates AE. Anthropogenic disruptions to longstanding patterns of trophic-size structure in vertebrates. Nat Ecol Evol 2022; 6:684-692. [PMID: 35449460 DOI: 10.1038/s41559-022-01726-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022]
Abstract
Diet and body mass are inextricably linked in vertebrates: while herbivores and carnivores have converged on much larger sizes, invertivores and omnivores are, on average, much smaller, leading to a roughly U-shaped relationship between body size and trophic guild. Although this U-shaped trophic-size structure is well documented in extant terrestrial mammals, whether this pattern manifests across diverse vertebrate clades and biomes is unknown. Moreover, emergence of the U-shape over geological time and future persistence are unknown. Here we compiled a comprehensive dataset of diet and body size spanning several vertebrate classes and show that the U-shaped pattern is taxonomically and biogeographically universal in modern vertebrate groups, except for marine mammals and seabirds. We further found that, for terrestrial mammals, this U-shape emerged by the Palaeocene and has thus persisted for at least 66 million years. Yet disruption of this fundamental trophic-size structure in mammals appears likely in the next century, based on projected extinctions. Actions to prevent declines in the largest animals will sustain the functioning of Earth's wild ecosystems and biomass energy distributions that have persisted through deep time.
Collapse
Affiliation(s)
- Rob Cooke
- UK Centre for Ecology & Hydrology, Wallingford, UK. .,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden. .,Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.
| | - William Gearty
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Abbie S A Chapman
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Jillian Dunic
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Jonathan S Lefcheck
- Tennenbaum Marine Observatories Network and MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Gil Rilov
- National Institute of Oceanography, Israel Limnological and Oceanographic Research, Haifa, Israel
| | | | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - S Kathleen Lyons
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda E Bates
- Biology Department, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
24
|
Meloro C. Evolution: The shape of cetacean skulls through deep time. Curr Biol 2022; 32:R457-R459. [PMID: 35609540 DOI: 10.1016/j.cub.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cetaceans (comprising whales, dolphins and porpoises) adapted towards a fully aquatic lifestyle. These adaptations are especially evident in their skulls. Based on a rich sample of fossil and extant cetacean skulls, a new study identifies links between shape changes and ecological specialisation through deep time.
Collapse
Affiliation(s)
- Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
25
|
Segre PS, Gough WT, Roualdes EA, Cade DE, Czapanskiy MF, Fahlbusch J, Kahane-Rapport SR, Oestreich WK, Bejder L, Bierlich KC, Burrows JA, Calambokidis J, Chenoweth EM, di Clemente J, Durban JW, Fearnbach H, Fish FE, Friedlaender AS, Hegelund P, Johnston DW, Nowacek DP, Oudejans MG, Penry GS, Potvin J, Simon M, Stanworth A, Straley JM, Szabo A, Videsen SKA, Visser F, Weir CR, Wiley DN, Goldbogen JA. Scaling of maneuvering performance in baleen whales: larger whales outperform expectations. J Exp Biol 2022; 225:274595. [PMID: 35234874 PMCID: PMC8976943 DOI: 10.1242/jeb.243224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022]
Abstract
Despite their enormous size, whales make their living as voracious predators. To catch their much smaller, more maneuverable prey, they have developed several unique locomotor strategies that require high energetic input, high mechanical power output and a surprising degree of agility. To better understand how body size affects maneuverability at the largest scale, we used bio-logging data, aerial photogrammetry and a high-throughput approach to quantify the maneuvering performance of seven species of free-swimming baleen whale. We found that as body size increases, absolute maneuvering performance decreases: larger whales use lower accelerations and perform slower pitch-changes, rolls and turns than smaller species. We also found that baleen whales exhibit positive allometry of maneuvering performance: relative to their body size, larger whales use higher accelerations, and perform faster pitch-changes, rolls and certain types of turns than smaller species. However, not all maneuvers were impacted by body size in the same way, and we found that larger whales behaviorally adjust for their decreased agility by using turns that they can perform more effectively. The positive allometry of maneuvering performance suggests that large whales have compensated for their increased body size by evolving more effective control surfaces and by preferentially selecting maneuvers that play to their strengths.
Collapse
Affiliation(s)
- Paolo S Segre
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - William T Gough
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Edward A Roualdes
- Department of Mathematics and Statistics, California State University, Chico, Chico, CA 95929, USA
| | - David E Cade
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.,Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Max F Czapanskiy
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - James Fahlbusch
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.,Cascadia Research Collective, Olympia, WA 98501, USA
| | - Shirel R Kahane-Rapport
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.,Department of Biological Science, California State University, Fullerton, Fullerton, CA 92834, USA
| | | | - Lars Bejder
- Marine Mammal Research Program, Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, HI 96744, USA.,Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - K C Bierlich
- Division of Marine Science and Conservation, Duke University Marine Laboratory, Beaufort, NC 28516, USA.,Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, OR 97365, USA
| | - Julia A Burrows
- Division of Marine Science and Conservation, Duke University Marine Laboratory, Beaufort, NC 28516, USA.,Stanford University, Stanford, CA 94305, USA
| | | | - Ellen M Chenoweth
- University of Alaska Fairbanks, Fairbanks, AK 99775, USA.,Department of Natural Sciences, University of Alaska Southeast, AK 99835, USA
| | - Jacopo di Clemente
- Marine Mammal Research, Department of Ecoscience, Aarhus University, 8000 Aarhus C, Denmark.,Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark.,Department of Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - John W Durban
- Southall Environmental Associates, Inc., Aptos, CA 95003, USA
| | - Holly Fearnbach
- SR3, SeaLife Response, Rehabilitation and Research, Des Moines, WA 98198, USA
| | - Frank E Fish
- Department of Biology, West Chester University, PA 19383, USA
| | - Ari S Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Peter Hegelund
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk 3900, Greenland
| | - David W Johnston
- Division of Marine Science and Conservation, Duke University Marine Laboratory, Beaufort, NC 28516, USA
| | - Douglas P Nowacek
- Nicholas School of the Environment and Pratt School of Engineering, Duke University Marine Lab, Beaufort, NC 28516, USA
| | | | - Gwenith S Penry
- Institute for Coastal and Marine Research, Nelson Mandela University, Gqeberha 6031, South Africa
| | - Jean Potvin
- Department of Physics, Saint Louis University, St Louis, MO 63103, USA
| | - Malene Simon
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk 3900, Greenland
| | | | - Janice M Straley
- Department of Natural Sciences, University of Alaska Southeast, AK 99835, USA
| | - Andrew Szabo
- Alaska Whale Foundation, Petersburg, AK 99833, USA
| | - Simone K A Videsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Fleur Visser
- Kelp Marine Research, 1624 CJ Hoorn, The Netherlands.,Department of Freshwater and Marine Ecology, IBED, University of Amsterdam, 1090 GE Amsterdam, The Netherlands.,Department of Coastal Systems, Royal Netherlands Institute for Sea Research, Texel, 1790 AB Den Burg, The Netherlands
| | | | - David N Wiley
- NOAA/Stellwagen Bank National Marine Sanctuary, Scituate, MA 02066, USA
| | - Jeremy A Goldbogen
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
26
|
Delsett LL, Pyenson ND. Early and fast rise of Mesozoic ocean giants. Science 2021; 374:1554-1555. [PMID: 34941421 DOI: 10.1126/science.abm3751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Lene Liebe Delsett
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Natural History Museum, University of Oslo, Oslo, Norway
| | - Nicholas D Pyenson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Burke Museum of Natural History and Culture, Seattle, WA, USA
| |
Collapse
|
27
|
Sander PM, Griebeler EM, Klein N, Juarbe JV, Wintrich T, Revell LJ, Schmitz L. Early giant reveals faster evolution of large body size in ichthyosaurs than in cetaceans. Science 2021; 374:eabf5787. [PMID: 34941418 DOI: 10.1126/science.abf5787] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- P Martin Sander
- Abteilung Paläontologie, Institut für Geowissenschaften, Universität Bonn, 53115 Bonn, Germany.,The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Eva Maria Griebeler
- Institut für Organismische und Molekulare Evolutionsbiologie, Evolutionäre Ökologie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Nicole Klein
- Abteilung Paläontologie, Institut für Geowissenschaften, Universität Bonn, 53115 Bonn, Germany
| | - Jorge Velez Juarbe
- Department of Mammalogy, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Tanja Wintrich
- Abteilung Paläontologie, Institut für Geowissenschaften, Universität Bonn, 53115 Bonn, Germany.,Anatomisches Institut, Universität Bonn, 53115 Bonn, Germany
| | - Liam J Revell
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.,Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Lars Schmitz
- The Dinosaur Institute, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA.,W.M. Keck Science Department of Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA
| |
Collapse
|
28
|
Zhang Q, Ree RH, Salamin N, Xing Y, Silvestro D. Fossil-Informed Models Reveal a Boreotropical Origin and Divergent Evolutionary Trajectories in the Walnut Family (Juglandaceae). Syst Biol 2021; 71:242-258. [PMID: 33964165 PMCID: PMC8677545 DOI: 10.1093/sysbio/syab030] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Temperate woody plants in the Northern Hemisphere have long been known to exhibit high species richness in East Asia and North America and significantly lower diversity in Europe, but the causes of this pattern remain debated. Here, we quantify the roles of dispersal, niche evolution, and extinction in shaping the geographic diversity of the temperate woody plant family Juglandaceae (walnuts and their relatives). Integrating evidence from molecular, morphological, fossil, and (paleo)environmental data, we find strong support for a Boreotropical origin of the family with contrasting evolutionary trajectories between the temperate subfamily Juglandoideae and the tropical subfamily Engelhardioideae. Juglandoideae rapidly evolved frost tolerance when the global climate shifted to ice-house conditions from the Oligocene, with diversification at high latitudes especially in Europe and Asia during the Miocene. Subsequent range contraction at high latitudes and high levels of extinction in Europe driven by global cooling led to the current regional disparity in species diversity. Engelhardioideae showed temperature conservatism while adapting to increased humidity, tracking tropical climates to low latitudes since the middle Eocene with comparatively little diversification, perhaps due to high competition in the tropical zone. The biogeographic history of Juglandaceae shows that the North Atlantic land bridge and Europe played more critical roles than previously thought in linking the floras of East Asia and North America, and showcases the complex interplay among climate change, niche evolution, dispersal, and extinction that shaped the modern disjunct pattern of species richness in temperate woody plants. [Boreotropical origin; climatic niche evolution; disjunct distribution; dispersal; diversity anomaly; extinction; Juglandaceae.].
Collapse
Affiliation(s)
- Qiuyue Zhang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, China
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
- College of Resources and Environment, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Richard H Ree
- Life Sciences Section, Negaunee Integrative Research Center, Field Museum, Chicago, IL, 60605, USA
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Yaowu Xing
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, 666303 Mengla, China
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland
| |
Collapse
|
29
|
Social exploitation of extensive, ephemeral, environmentally controlled prey patches by supergroups of rorqual whales. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Bisconti M, Daniello R, Damarco P, Tartarelli G, Pavia M, Carnevale G. High Encephalization in a Fossil Rorqual Illuminates Baleen Whale Brain Evolution. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:78-90. [PMID: 34758463 DOI: 10.1159/000519852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022]
Abstract
Baleen whales are considered underencephalized mammals due to their reduced brain size with respect to their body size (encephalization quotient [EQ] << 1). Despite their low EQ, mysticetes exhibit complex behavioral patterns in terms of motor abilities, vocal repertoire, and cultural learning. Very scarce information is available about the morphological evolution of the brain in this group; this makes it difficult to investigate the historical changes in brain shape and size in order to relate the origin of the complex mysticete behavioral repertoire to the evolution of specific neural substrates. Here, the first description of the virtual endocast of a fossil balaenopterid species, Marzanoptera tersillae from the Italian Pliocene, reveals an EQ of around 3, which is exceptional for baleen whales. The endocast showed a morphologically different organization of the brain in this fossil whale as the cerebral hemispheres are anteroposteriorly shortened, the cerebellum lacks the posteromedial expansion of the cerebellar hemispheres, and the cerebellar vermis is unusually reduced. The comparative reductions of the cerebral and cerebellar hemispheres suggest that the motor behavior of M. tersillae probably was less sophisticated than that exhibited by the extant rorqual and humpback species. The presence of an EQ value in this fossil species that is around 10 times higher than that of extant mysticetes opens new questions about brain evolution and provides new, invaluable information about the evolutionary path of morphological and size change in the brain of baleen whales.
Collapse
Affiliation(s)
- Michelangelo Bisconti
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy.,Paleontology Department, Natural History Museum of San Diego, San Diego, California, USA
| | - Riccardo Daniello
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
| | - Piero Damarco
- Museo Paleontologico Territoriale dell'Astigiano, Ente di Gestione del Parco Paleontologico Astigiano, Asti, Italy
| | | | - Marco Pavia
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
31
|
Ifrim C, Stinnesbeck W, González González AH, Schorndorf N, Gale AS. Ontogeny, evolution and palaeogeographic distribution of the world's largest ammonite Parapuzosia (P.) seppenradensis (Landois, 1895). PLoS One 2021; 16:e0258510. [PMID: 34758037 PMCID: PMC8580234 DOI: 10.1371/journal.pone.0258510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
The world’s largest ammonite, Parapuzosia (P.) seppenradensis (Landois, 1895), fascinated the world ever since the discovery, in 1895, of a specimen of 1.74 metres (m) diameter near Seppenrade in Westfalia, Germany, but subsequent findings of the taxon are exceedingly rare and its systematic position remains enigmatic. Here we revise the historical specimens and document abundant new material from England and Mexico. Our study comprises 154 specimens of large (< 1 m diameter) to giant (> 1m diameter) Parapuzosia from the Santonian and lower Campanian, mostly with stratigraphic information. High-resolution integrated stratigraphy allows for precise cross-Atlantic correlation of the occurrences. Our specimens were analysed regarding morphometry, growth stages and stratigraphic occurrence wherever possible. Our analysis provides insight into the ontogeny of Parapuzosia (P.) seppenradensis and into the evolution of this species from its potential ancestor P. (P.) leptophylla Sharpe, 1857. The latter grew to shell diameters of about 1 m and was restricted to Europe in the early Santonian, but it reached the Gulf of Mexico during the late Santonian. P. (P.) seppenradensis first appears in the uppermost Santonian- earliest Campanian on both sides of the Atlantic. Initially, it also reached diameters of about 1 m, but gradual evolutionary increase in size is seen in the middle early Campanian to diameters of 1.5 to 1.8 m. P. (P.) seppenradensis is characterized by five ontogenetic growth stages and by size dimorphism. We therefore here include the many historic species names used in the past to describe the morphological and size variability of the taxon. The concentration of adult shells in small geographic areas and scarcity of Parapuzosia in nearby coeval outcrop regions may point to a monocyclic, possibly even semelparous reproduction strategy in this giant cephalopod. Its gigantism exceeds a general trend of size increase in late Cretaceous cephalopods. Whether the coeval increase in size of mosasaurs, the top predators in Cretaceous seas, caused ecological pressure on Parapuzosia towards larger diameters remains unclear.
Collapse
Affiliation(s)
- Christina Ifrim
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Wolfgang Stinnesbeck
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | | | - Nils Schorndorf
- Institut für Geowissenschaften, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Andrew S. Gale
- School of the Environment, Geography and Geological Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Earth Sciences Department, Natural History Museum, London, United Kingdom
| |
Collapse
|
32
|
Vertebrate Palaeoecology of the Pisco Formation (Miocene, Peru): Glimpses into the Ancient Humboldt Current Ecosystem. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9111188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The northward-flowing Humboldt Current hosts perpetually high levels of productivity along the western coast of South America. Here, we aim to elucidate the deep-time history of this globally important ecosystem based on a detailed palaeoecological analysis of the exceptionally preserved middle–upper Miocene vertebrate assemblages of the Pisco Formation of the East Pisco Basin, southern Peru. We summarise observations on hundreds of fossil whales, dolphins, seals, seabirds, turtles, crocodiles, sharks, rays, and bony fishes to reconstruct ecological relationships in the wake of the Middle Miocene Climatic Optimum, and the marked cooling that followed it. The lowermost, middle Miocene Pisco sequence (P0) and its vertebrate assemblage testify to a warm, semi-enclosed, near-shore palaeoenvironment. During the first part of the Tortonian (P1), high productivity within a prominent upwelling system supported a diverse assemblage of mesopredators, at least some of which permanently resided in the Pisco embayment and used it as a nursery or breeding/calving area. Younger portions of the Pisco Formation (P2) reveal a more open setting, with wide-ranging species like rorquals increasingly dominating the vertebrate assemblage, but also local differences reflecting distance from the coast. Like today, these ancient precursors of the modern Humboldt Current Ecosystem were based on sardines, but notably differed from their present-day equivalent in being dominated by extremely large-bodied apex predators like Livyatan melvillei and Carcharocles megalodon.
Collapse
|
33
|
Lambert O, Goolaerts S. Late Miocene Survival of a Hyper-Longirostrine Dolphin and the Neogene to Recent Evolution of Rostrum Proportions Among Odontocetes. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09573-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Buddhachat K, Brown JL, Kaewkool M, Poommouang A, Kaewmong P, Kittiwattanawong K, Nganvongpanit K. Life Expectancy in Marine Mammals Is Unrelated to Telomere Length but Is Associated With Body Size. Front Genet 2021; 12:737860. [PMID: 34630527 PMCID: PMC8498114 DOI: 10.3389/fgene.2021.737860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022] Open
Abstract
Marine mammals vary greatly in size and lifespan across species. This study determined whether measures of adult body weight, length and relative telomere length were related to lifespan. Skin tissue samples (n = 338) were obtained from 23 marine mammal species, including four Mysticeti, 19 Odontoceti and one dugong species, and the DNA extracted to measure relative telomere length using real-time PCR. Life span, adult body weight, and adult body length of each species were retrieved from existing databases. The phylogenetic signal analysis revealed that body length might be a significant factor for shaping evolutionary processes of cetacean species through time, especially for genus Balaenoptera that have an enormous size. Further, our study found correlations between lifespan and adult body weight (R2 = 0.6465, p < 0.001) and adult body length (R2 = 0.6142, p ≤0.001), but no correlations with relative telomere length (R2 = −0.0476, p = 0.9826). While data support our hypothesis that larger marine mammals live longer, relative telomere length is not a good predictor of species longevity.
Collapse
Affiliation(s)
- Kittisak Buddhachat
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand.,Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand
| | - Janine L Brown
- Smithsonian Conservation Biology Institute, Center for Species Survival, Front Royal, VA, United States
| | - Manthanee Kaewkool
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anocha Poommouang
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Korakot Nganvongpanit
- Excellence Center in Veterinary Bioscience, Chiang Mai University, Chiang Mai, Thailand.,Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
35
|
Tan M, Redmond AK, Dooley H, Nozu R, Sato K, Kuraku S, Koren S, Phillippy AM, Dove ADM, Read T. The whale shark genome reveals patterns of vertebrate gene family evolution. eLife 2021; 10:e65394. [PMID: 34409936 PMCID: PMC8455134 DOI: 10.7554/elife.65394] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Chondrichthyes (cartilaginous fishes) are fundamental for understanding vertebrate evolution, yet their genomes are understudied. We report long-read sequencing of the whale shark genome to generate the best gapless chondrichthyan genome assembly yet with higher contig contiguity than all other cartilaginous fish genomes, and studied vertebrate genomic evolution of ancestral gene families, immunity, and gigantism. We found a major increase in gene families at the origin of gnathostomes (jawed vertebrates) independent of their genome duplication. We studied vertebrate pathogen recognition receptors (PRRs), which are key in initiating innate immune defense, and found diverse patterns of gene family evolution, demonstrating that adaptive immunity in gnathostomes did not fully displace germline-encoded PRR innovation. We also discovered a new toll-like receptor (TLR29) and three NOD1 copies in the whale shark. We found chondrichthyan and giant vertebrate genomes had decreased substitution rates compared to other vertebrates, but gene family expansion rates varied among vertebrate giants, suggesting substitution and expansion rates of gene families are decoupled in vertebrate genomes. Finally, we found gene families that shifted in expansion rate in vertebrate giants were enriched for human cancer-related genes, consistent with gigantism requiring adaptations to suppress cancer.
Collapse
Affiliation(s)
- Milton Tan
- Illinois Natural History Survey at University of Illinois Urbana-ChampaignChampaignUnited States
| | | | - Helen Dooley
- University of Maryland School of Medicine, Institute of Marine & Environmental TechnologyBaltimoreUnited States
| | - Ryo Nozu
- Okinawa Churashima Research Center, Okinawa Churashima FoundationOkinawaJapan
| | - Keiichi Sato
- Okinawa Churashima Research Center, Okinawa Churashima FoundationOkinawaJapan
- Okinawa Churaumi Aquarium, MotobuOkinawaJapan
| | - Shigehiro Kuraku
- RIKEN Center for Biosystems Dynamics Research (BDR), RIKENKobeJapan
| | - Sergey Koren
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | - Adam M Phillippy
- National Human Genome Research Institute, National Institutes of HealthBethesdaUnited States
| | | | - Timothy Read
- Department of Infectious Diseases, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
36
|
Peredo CM, Pyenson ND. Morphological variation of the relictual alveolar structures in the mandibles of baleen whales. PeerJ 2021; 9:e11890. [PMID: 34395101 PMCID: PMC8327965 DOI: 10.7717/peerj.11890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 12/17/2022] Open
Abstract
Living baleen whales (mysticetes) are bulk filter feeders that use keratinous baleen plates to filter food from prey laden water. Extant mysticetes are born entirely edentulous, though they possess tooth buds early in ontogeny, a trait inherited from toothed ancestors. The mandibles of extant baleen whales have neither teeth nor baleen; teeth are resorbed in utero and baleen grows only on the palate. The mandibles of extant baleen whales also preserve a series of foramina and associated sulci that collectively form an elongated trough, called the alveolar groove. Despite this name, it remains unclear if the alveolar groove of edentulous mysticetes and the dental structures of toothed mammals are homologous. Here, we describe and quantify the anatomical diversity of these structures across extant mysticetes and compare their variable morphologies across living taxonomic groups (i.e., Balaenidae, Neobalaenidae, Eschrichtiidae, and Balaenopteridae). Although we found broad variability across taxonomic groups for the alveolar groove length, occupying approximately 60–80 percent of the mandible’s total curvilinear length (CLL) across all taxa, the relictual alveolar foramen showed distinct patterns, ranging between 15–25% CLL in balaenids, while ranging between 3–12% CLL in balaenopterids. This variability and the morphological patterning along the body of the mandible is consistent with the hypothesis that the foramina underlying the alveolar groove reflect relictual alveoli. These findings also lay the groundwork for future histological studies to examine the contents of these foramina and clarify their potential role in the feeding process.
Collapse
Affiliation(s)
- Carlos Mauricio Peredo
- Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington D.C., United States of America.,Earth and Environmental Science, University of Michigan - Ann Arbor, Ann Arbor, MI, United States of America.,Marine Biology, Texas A&M University - Galveston, Galveston, TX, United States of America
| | - Nicholas D Pyenson
- Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington D.C., United States of America.,Paleontology and Geology, Burke Museum of Natural History and Culture, Seattle, WA, United States of America
| |
Collapse
|
37
|
Bisconti M, Pellegrino L, Carnevale G. Evolution of gigantism in right and bowhead whales (Cetacea: Mysticeti: Balaenidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The evolution of gigantic body size represents a key to understand the ecological role of baleen whales in oceanic ecosystems. Many efforts have been devoted to the formulation of equations relating different body parts to total body length and mass in living and fossil mysticetes, mainly focusing on balaenopterid and balaenopterid-like mysticetes. Right whales (family Balaenidae) have a unique head-to-body length ratio, suggesting that their body proportions cannot be predicted effectively using equations based primarily on non-balaenid mysticetes. A new morphometric dataset of living and fossil balaenids is provided herein, and new regression equations allow one to predict the body length and mass of extinct species based on the expected head-to-body length ratio of extant balaenids. The reconstructed values are mapped on a new phylogenetic analysis of the Balaenidae, inferring body size and mass at ancestral nodes. The variations of body size and mass in Balaenidae since the early Miocene are reconstructed, revealing that: (1) a reduction in total body length occurred in the early Pliocene; (2) the origin of the gigantic body size in the bowhead whale (Balaena mysticetus) is probably related to invasion of the Arctic Ocean in the last 3 Myr; and (3) the origin of the gigantic body size in the right whales (genus Eubalaena) occurred since the latest Miocene, probably concomitant with pulses of nutrients sustaining large zooplankton populations. We suggest that the evolution of gigantism in Balaenidae occurred independently in two lineages and, probably, in response to different palaeoenvironmental drivers.
Collapse
Affiliation(s)
- Michelangelo Bisconti
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10125, Torino, Italy
- San Diego Natural History Museum, 1788 El Prado, San Diego, CA 92101, USA
| | - Luca Pellegrino
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10125, Torino, Italy
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10125, Torino, Italy
| |
Collapse
|
38
|
Gough WT, Smith HJ, Savoca MS, Czapanskiy MF, Fish FE, Potvin J, Bierlich KC, Cade DE, Di Clemente J, Kennedy J, Segre P, Stanworth A, Weir C, Goldbogen JA. Scaling of oscillatory kinematics and Froude efficiency in baleen whales. J Exp Biol 2021; 224:jeb237586. [PMID: 34109418 PMCID: PMC8317509 DOI: 10.1242/jeb.237586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/03/2021] [Indexed: 11/20/2022]
Abstract
High efficiency lunate-tail swimming with high-aspect-ratio lifting surfaces has evolved in many vertebrate lineages, from fish to cetaceans. Baleen whales (Mysticeti) are the largest swimming animals that exhibit this locomotor strategy, and present an ideal study system to examine how morphology and the kinematics of swimming scale to the largest body sizes. We used data from whale-borne inertial sensors coupled with morphometric measurements from aerial drones to calculate the hydrodynamic performance of oscillatory swimming in six baleen whale species ranging in body length from 5 to 25 m (fin whale, Balaenoptera physalus; Bryde's whale, Balaenoptera edeni; sei whale, Balaenoptera borealis; Antarctic minke whale, Balaenoptera bonaerensis; humpback whale, Megaptera novaeangliae; and blue whale, Balaenoptera musculus). We found that mass-specific thrust increased with both swimming speed and body size. Froude efficiency, defined as the ratio of useful power output to the rate of energy input ( Sloop, 1978), generally increased with swimming speed but decreased on average with increasing body size. This finding is contrary to previous results in smaller animals, where Froude efficiency increased with body size. Although our empirically parameterized estimates for swimming baleen whale drag were higher than those of a simple gliding model, oscillatory locomotion at this scale exhibits generally high Froude efficiency as in other adept swimmers. Our results quantify the fine-scale kinematics and estimate the hydrodynamics of routine and energetically expensive swimming modes at the largest scale.
Collapse
Affiliation(s)
- William T. Gough
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Hayden J. Smith
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Department of Physics, Southwestern University, Georgetown, TX 78626, USA
| | - Matthew S. Savoca
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Max F. Czapanskiy
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Frank E. Fish
- Department of Biology, West Chester University, West Chester, PA 19383, USA
| | - Jean Potvin
- Department of Physics, Saint Louis University, Saint Louis, MO 63103, USA
| | - K. C. Bierlich
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - David E. Cade
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Long Marine Laboratory, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - John Kennedy
- Department of Physics, Saint Louis University, Saint Louis, MO 63103, USA
| | - Paolo Segre
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | | | - Caroline Weir
- Falklands Conservation, Stanley FIQQ 1ZZ, Falkland Islands
| | | |
Collapse
|
39
|
Pimiento C, Pyenson ND. When sharks nearly disappeared. Science 2021; 372:1036-1037. [PMID: 34083472 DOI: 10.1126/science.abj2088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Catalina Pimiento
- Paleontological Institute and Museum, University of Zurich, CH-8006 Zurich, Switzerland. .,Department of Biosciences, Swansea University, Swansea, UK.,Smithsonian Tropical Research Institute, Panama
| | - Nicholas D Pyenson
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA. .,Department of Paleontology, Burke Museum of Natural History, Seattle, WA, USA
| |
Collapse
|
40
|
Segre PS, Weir CR, Stanworth A, Cartwright S, Friedlaender AS, Goldbogen JA. Biomechanically distinct filter-feeding behaviors distinguish sei whales as a functional intermediate and ecologically flexible species. J Exp Biol 2021. [DOI: 10.1242/jeb.238873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
With their ability to facultatively switch between filter-feeding modes, sei whales represent a functional and ecological intermediate in the transition between intermittent and continuous filter feeding. Morphologically resembling their lunge-feeding, rorqual relatives, sei whales have convergently evolved the ability to skim prey near the surface of the water, like the more distantly related balaenids. Because of their intermediate nature, understanding how sei whales switch between feeding behaviors may shed light on the rapid evolution and flexibility of filter-feeding strategies. We deployed multi-sensor bio-logging tags on two sei whales and measured the kinematics of feeding behaviors in this poorly understood and endangered species. To forage at the surface, sei whales used a unique combination of surface lunges and skim-feeding behaviors. The surface lunges were slow and stereotyped, and were unlike lunges performed by other rorqual species. The skim-feeding events featured a different filtration mechanism from the lunges and were kinematically different from the continuous filter feeding used by balaenids. While foraging below the surface, sei whales used faster and more variable lunges. The morphological characteristics that allow sei whales to effectively perform different feeding behaviors suggest that sei whales rapidly evolved their functionally intermediate and ecologically flexible form to compete with larger and more efficient rorqual species.
Collapse
Affiliation(s)
- Paolo S. Segre
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | | | | | | | - Ari S. Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
41
|
Herrera-Álvarez S, Karlsson E, Ryder OA, Lindblad-Toh K, Crawford AJ. How to Make a Rodent Giant: Genomic Basis and Tradeoffs of Gigantism in the Capybara, the World's Largest Rodent. Mol Biol Evol 2021; 38:1715-1730. [PMID: 33169792 PMCID: PMC8097284 DOI: 10.1093/molbev/msaa285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world's largest living rodent. We found that the genome-wide ratio of nonsynonymous to synonymous mutations (ω) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling postnatal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T-cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer.
Collapse
Affiliation(s)
| | - Elinor Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
42
|
Mongiardino Koch N. Exploring adaptive landscapes across deep time: A case study using echinoid body size. Evolution 2021; 75:1567-1581. [PMID: 33782962 DOI: 10.1111/evo.14219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
Adaptive landscapes are a common way of conceptualizing the phenotypic evolution of lineages across deep time. Although multiple approaches exist to implement this concept into operational models of trait evolution, inferring adaptive landscapes from comparative datasets remains challenging. Here, I explore the macroevolutionary dynamics of echinoid body size using data from over 5000 specimens and a phylogenetic framework incorporating a dense fossil sampling and spanning approximately 270 million years. Furthermore, I implement a novel approach of exploring alternative parameterizations of adaptive landscapes that succeeds in finding simpler, yet better-fitting models. Echinoid body size has been constrained to evolve within a single adaptive optimum for much of the clade's history. However, most of the morphological disparity of echinoids was generated by multiple regime shifts that drove the repeated evolution of miniaturized and gigantic forms. Events of body size innovation occurred predominantly in the Late Cretaceous and were followed by a drastic slowdown following the Cretaceous-Paleogene mass extinction. The discovery of these patterns is contingent upon directly sampling fossil taxa. The macroevolution of echinoid body size is therefore characterized by a late increase in disparity (likely linked to an expansion of ecospace), generated by active processes driving lineages toward extreme morphologies.
Collapse
|
43
|
Cade DE, Seakamela SM, Findlay KP, Fukunaga J, Kahane‐Rapport SR, Warren JD, Calambokidis J, Fahlbusch JA, Friedlaender AS, Hazen EL, Kotze D, McCue S, Meÿer M, Oestreich WK, Oudejans MG, Wilke C, Goldbogen JA. Predator‐scale spatial analysis of intra‐patch prey distribution reveals the energetic drivers of rorqual whale super‐group formation. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13763] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David E. Cade
- Hopkins Marine Station Stanford University Pacific Grove CA USA
- Institute of Marine Science University of California, Santa Cruz Santa Cruz CA USA
| | - S. Mduduzi Seakamela
- Department of Environment, Forestry and Fisheries, Branch: Oceans and Coasts, Victoria & Alfred Waterfront Cape Town South Africa
| | - Ken P. Findlay
- Oceans Economy Cape Peninsula University of Technology Cape Town South Africa
- MRI Whale Unit Department of Zoology and Entomology University of Pretoria Hatfield South Africa
| | - Julie Fukunaga
- Hopkins Marine Station Stanford University Pacific Grove CA USA
| | | | - Joseph D. Warren
- School of Marine and Atmospheric Sciences Stony Brook University Southampton NY USA
| | | | - James A. Fahlbusch
- Hopkins Marine Station Stanford University Pacific Grove CA USA
- Cascadia Research Collective Olympia WA USA
| | - Ari S. Friedlaender
- Institute of Marine Science University of California, Santa Cruz Santa Cruz CA USA
| | - Elliott L. Hazen
- Environmental Research Division/Southwest Fisheries Science Center/National Marine Fisheries Service/National Oceanic and Atmospheric Administration Monterey CA USA
| | - Deon Kotze
- Department of Environment, Forestry and Fisheries, Branch: Oceans and Coasts, Victoria & Alfred Waterfront Cape Town South Africa
| | - Steven McCue
- Department of Environment, Forestry and Fisheries, Branch: Oceans and Coasts, Victoria & Alfred Waterfront Cape Town South Africa
| | - Michael Meÿer
- Department of Environment, Forestry and Fisheries, Branch: Oceans and Coasts, Victoria & Alfred Waterfront Cape Town South Africa
| | | | | | - Christopher Wilke
- Department of Environment, Forestry and Fisheries, Branch: Fisheries Management Cape Town South Africa
| | | |
Collapse
|
44
|
Groves SL, Peredo CM, Pyenson ND. What are the limits on whale ear bone size? Non-isometric scaling of the cetacean bulla. PeerJ 2021; 9:e10882. [PMID: 33604200 PMCID: PMC7869665 DOI: 10.7717/peerj.10882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/11/2021] [Indexed: 02/02/2023] Open
Abstract
The history of cetaceans demonstrates dramatic macroevolutionary changes that have aided their transformation from terrestrial to obligate aquatic mammals. Their fossil record shows extensive anatomical modifications that facilitate life in a marine environment. To better understand the constraints on this transition, we examined the physical dimensions of the bony auditory complex, in relation to body size, for both living and extinct cetaceans. We compared the dimensions of the tympanic bulla, a conch-shaped ear bone unique to cetaceans, with bizygomatic width—a proxy for cetacean body size. Our results demonstrate that cetacean ears scale non-isometrically with body size, with about 70% of variation explained by increases in bizygomatic width. Our results, which encompass the breadth of the whale fossil record, size diversity, and taxonomic distribution, suggest that functional auditory capacity is constrained by congruent factors related to cranial morphology, as opposed to allometrically scaling with body size.
Collapse
Affiliation(s)
- Sabrina L Groves
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA.,Department of Biological Sciences, Mount Holyoke College, South Hadley, MA, USA
| | - Carlos Mauricio Peredo
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA.,Department of Earth and Environmental Science, University of Michigan - Ann Arbor, Ann Arbor, MI, USA.,Department of Marine Biology, Texas A&M University - Galveston, Galveston, TX, USA
| | - Nicholas D Pyenson
- Department of Paleobiology, National Museum of Natural History, Washington, DC, USA.,Department of Paleontology and Geology, Burke Museum of Natural History and Culture, Seattle, WA, USA
| |
Collapse
|
45
|
Paillard A, Shimada K, Pimiento C. The fossil record of extant elasmobranchs. JOURNAL OF FISH BIOLOGY 2021; 98:445-455. [PMID: 33058250 DOI: 10.1111/jfb.14588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Sharks and their relatives (Elasmobranchii) are highly threatened with extinction due to various anthropogenic pressures. The abundant fossil record of fossil taxa has allowed the tracing of the evolutionary history of modern elasmobranchs to at least 250 MYA; nonetheless, exactly how far back the fossil record of living taxa goes has never been collectively surveyed. In this study, the authors assess the representation and extent of the fossil record of elasmobranchs currently living in our oceans by collecting their oldest records and quantifying first appearance dates at different taxonomic levels (i.e., orders, families, genera and species), ecological traits (e.g., body size, habitat and feeding mechanism) and extinction risks (i.e., threatened, not threatened and data deficient). The results of this study confirm the robust representation of higher taxonomic ranks, with all orders, most of the families and over half of the extant genera having a fossil record. Further, they reveal that 10% of the current global species diversity is represented in the geological past. Sharks are better represented and extend deeper in time than rays and skates. While the fossil record of extant genera (e.g., the six gill sharks, Hexanchus) goes as far back as c. 190 MYA, the fossil record of extant species (e.g., the sand shark, Carcharias taurus Rafinesque 1810) extends c. 66 MYA. Although no significant differences were found in the extent of the fossil record between ecological traits, it was found that the currently threatened species have a significantly older fossil record than the not threatened species. This study demonstrate that the fossil record of extant elasmobranchs extends deep into the geologic time, especially in the case of threatened sharks. As such, the elasmobranch geological history has great potential to advance the understanding of how species currently facing extinction have responded to different stressors in the past, thereby providing a deep-time perspective to conservation.
Collapse
Affiliation(s)
- Adele Paillard
- Department of Biosciences, Swansea University, Swansea, UK
| | - Kenshu Shimada
- Department of Environmental Science and Studies and Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
- Sternberg Museum of Natural History, Fort Hays State University, Hays, Kansas, USA
| | - Catalina Pimiento
- Department of Biosciences, Swansea University, Swansea, UK
- Paleontological Institute and Museum, University of Zurich, Zurich, Switzerland
- Smithsonian Tropical Research Institute, Balboa, Panama
| |
Collapse
|
46
|
Goldbogen J. Blue whales. Curr Biol 2020; 30:R1399-R1400. [PMID: 33290699 DOI: 10.1016/j.cub.2020.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Jeremy Goldbogen introduces blue whales, the largest animals to ever inhabit earth.
Collapse
Affiliation(s)
- Jeremy Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, 120 Ocean View Blvd., Pacific Grove, CA 93950, USA.
| |
Collapse
|
47
|
Czekanski‐Moir JE, Rundell RJ. Endless forms most stupid, icky, and small: The preponderance of noncharismatic invertebrates as integral to a biologically sound view of life. Ecol Evol 2020; 10:12638-12649. [PMID: 33304481 PMCID: PMC7713927 DOI: 10.1002/ece3.6892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 01/02/2023] Open
Abstract
Big, beautiful organisms are useful for biological education, increasing evolution literacy, and biodiversity conservation. But if educators gloss over the ubiquity of streamlined and miniaturized organisms, they unwittingly leave students and the public vulnerable to the idea that the primary evolutionary plot of every metazoan lineage is "progressive" and "favors" complexity. We show that simple, small, and intriguingly repulsive invertebrate animals provide a counterpoint to misconceptions about evolution. Our examples can be immediately deployed in biology courses and outreach. This context emphasizes that chordates are not the pinnacle of evolution. Rather, in the evolution of animals, miniaturization, trait loss, and lack of perfection are at least as frequent as their opposites. Teaching about invertebrate animals in a "tree thinking" context uproots evolution misconceptions (for students and the public alike), provides a mental scaffold for understanding all animals, and helps to cultivate future ambassadors and experts on these little-known, weird, and fascinating taxa.
Collapse
Affiliation(s)
- Jesse E. Czekanski‐Moir
- Department of Environmental and Forest BiologyState University of New York College of Environmental Science and ForestrySyracuseNYUSA
| | - Rebecca J. Rundell
- Department of Environmental and Forest BiologyState University of New York College of Environmental Science and ForestrySyracuseNYUSA
| |
Collapse
|
48
|
Bisconti M, Damarco P, Pavia M, Sorce B, Carnevale G. Marzanoptera tersillae, a new balaenopterid genus and species from the Pliocene of Piedmont, north-west Italy. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Marzanoptera tersillae gen. & sp. nov., a new balaenopterid from the Pliocene of the Piedmont in north-west Italy, is described based on a partial skeleton and compared with other living and fossil baleen whales. Marzanoptera tersillae shares characters, such as the shape of the supraoccipital, glenoid fossa of the squamosal and zygomatic process of the squamosal, with ‘Balaenoptera’ bertae. We used a computed tomography scan to view parts of the skull that were otherwise impossible to observe, such as the periotic. A phylogenetic analysis based on 355 character states scored from 87 taxa revealed a well-resolved hypothesis of relationships for Balaenopteridae and a general phylogenetic hypothesis for chaeomysticetes. The monophyly of all superfamily- and family-rank clades and of crown balaenopterid species was confirmed. In addition, a monophyletic group including most basal thalassotherian taxa was recovered. The mollusc fauna associated with the specimen was autochtonous and constituted a residual fossil assemblage indicative of an environmental context located below the base of the storm wave, characterized by a low-energy hydrodynamic regimen. Many shark teeth have been found in close association or embedded within the bones, suggesting a possible scavenging action by two shark species on the whale carcass.
Collapse
Affiliation(s)
- Michelangelo Bisconti
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10135 Torino, Italia
- San Diego Natural History Museum, El Prado 1788, San Diego, CA, USA
| | - Piero Damarco
- Ente di Gestione del Parco Paleontologico Astigiano, Museo Paleontologico Territoriale dell’Astigiano, Corso Vittorio Alfieri 381, 14100, Asti, Italia
| | - Marco Pavia
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10135 Torino, Italia
| | - Barbara Sorce
- Unitre Cecina-Livorno, via Cecchini 3, Cecina, Italia
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, via Valperga Caluso 35, 10135 Torino, Italia
| |
Collapse
|
49
|
Kahane-Rapport SR, Savoca MS, Cade DE, Segre PS, Bierlich KC, Calambokidis J, Dale J, Fahlbusch JA, Friedlaender AS, Johnston DW, Werth AJ, Goldbogen JA. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J Exp Biol 2020; 223:jeb224196. [PMID: 32820028 DOI: 10.1242/jeb.224196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
Fundamental scaling relationships influence the physiology of vital rates, which in turn shape the ecology and evolution of organisms. For diving mammals, benefits conferred by large body size include reduced transport costs and enhanced breath-holding capacity, thereby increasing overall foraging efficiency. Rorqual whales feed by engulfing a large mass of prey-laden water at high speed and filtering it through baleen plates. However, as engulfment capacity increases with body length (engulfment volume∝body length3.57), the surface area of the baleen filter does not increase proportionally (baleen area∝body length1.82), and thus the filtration time of larger rorquals predictably increases as the baleen surface area must filter a disproportionally large amount of water. We predicted that filtration time should scale with body length to the power of 1.75 (filter time∝body length1.75). We tested this hypothesis on four rorqual species using multi-sensor tags with corresponding unoccupied aircraft systems-based body length estimates. We found that filter time scales with body length to the power of 1.79 (95% CI: 1.61-1.97). This result highlights a scale-dependent trade-off between engulfment capacity and baleen area that creates a biomechanical constraint to foraging through increased filtration time. Consequently, larger whales must target high-density prey patches commensurate to the gulp size to meet their increased energetic demands. If these optimal patches are absent, larger rorquals may experience reduced foraging efficiency compared with smaller whales if they do not match their engulfment capacity to the size of targeted prey aggregations.
Collapse
Affiliation(s)
- S R Kahane-Rapport
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - M S Savoca
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - D E Cade
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - P S Segre
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - K C Bierlich
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 27710, USA
| | - J Calambokidis
- Cascadia Research Collective, 218 W. 4th Ave., Olympia, WA 98501, USA
| | - J Dale
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 27710, USA
| | - J A Fahlbusch
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - A S Friedlaender
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - D W Johnston
- Nicholas School of the Environment, Duke University Marine Laboratory, Beaufort, NC 27710, USA
| | - A J Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA
| | - J A Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
50
|
Bisconti M, Damarco P, Tartarelli G, Pavia M, Carnevale G. A natural endocast of an early Miocene odontocete and its implications in cetacean brain evolution. J Comp Neurol 2020; 529:1198-1227. [PMID: 32840887 DOI: 10.1002/cne.25015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
The natural endocast Museo di Geologia e Paleontologia of the Università degli Studi di Torino (MGPT)-PU 13873 is described and analyzed in order to interpret its taxonomic affinities and its potential significance on our understanding of cetacean brain evolution. The endocast is from the early Miocene of Piedmont (between ca. 19 and 16 million years ago), Northwestern Italy, and shows a number of plesiomorphic characters. These include: scarcely rounded cerebral hemispheres, cerebellum exposed in dorsal view with little superimposition by the cerebral hemispheres, short temporal lobe, and long sylvian fissure. The distance between the hypophysis and the rostral pons is particularly high, as it was determined by the calculus of the hypothalamus quotient, suggesting that the development of a deep interpeduncular fossa was not as advanced as in living odontocetes. The encephalization quotient (EQ) of MGPT-PU 13873 is ~1.81; therefore, this specimen shows an EQ in line with other fossil whales of the same geological age (early Miocene). Comparative analysis shows that there is a critical lack of data from the late Miocene and Pliocene that prevents us to fully understand the recent evolution of the EQ diversity in whales. Moreover, the past diversity of brain size and shape in mysticetes is virtually unknown. All these observations point to the need of additional efforts to uncover evolutionary patterns and processes on cetacean brain evolution.
Collapse
Affiliation(s)
- Michelangelo Bisconti
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy.,San Diego Natural History Museum, San Diego, California, USA
| | - Piero Damarco
- Ente di Gestione del Parco Paleontologico Astigiano, Museo Paleontologico Territoriale dell'Astigiano, Asti, Italy
| | | | - Marco Pavia
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy.,Museo di Geologia e Paleontologia, Università degli Studi di Torino, Torino, Italy
| | - Giorgio Carnevale
- Dipartimento di Scienze della Terra, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|