1
|
de Oliveira Rosa SA, Titon Junior B, de Figueiredo AC, Lima AS, Gomes FR, Titon SCM. Baseline and stress-induced changes in plasma bacterial killing ability against gram-negative bacteria are partially mediated by the complement system in Rhinella diptycha toads. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111701. [PMID: 39029618 DOI: 10.1016/j.cbpa.2024.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/26/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
The plasma bacterial killing ability (BKA) is modulated by the stress response in vertebrates, including amphibians. The complement system is an effector mechanism comprised of a set of proteins present in the plasma that once activated can promote bacterial lysis. Herein, we investigated whether changes in plasma BKA as a result of the acute stress response and an immune challenge are mediated by the complement system in Rhinella diptycha toads. Additionally, we investigated whether the observed changes in plasma BKA are associated with changes in plasma corticosterone levels (CORT). We subjected adult male toads to a restraint or an immune challenge (with three concentrations of Aeromonas hydrophila heat inactivated), and then evaluated the plasma BKA against A. hydrophila, in vitro. We determined the complement system activity on plasma BKA, by treating the plasma (baseline, 1 h and 24 h post-restraint, and after the immune challenge) with ethylenediaminetetraacetic acid, heat, or protease. Our results showed increased CORT 1 h and 24 h after restraint and decreased plasma BKA 24 h post-restraint. The inhibitors of the complement system decreased the plasma BKA compared with untreated plasma at all times (baseline, 1 h, and 24 h after restraint), demonstrating that the plasma BKA activity is partially mediated by the complement system. The immune challenge increased CORT, with the highest values being observed in the highest bacterial concentration, compared with control. The plasma BKA was not affected by the immune challenge but was demonstrated to be partially mediated by the complement system. Our results demonstrated that restraint and the immune challenge activated the hypothalamus-pituitary-interrenal axis, by increasing plasma CORT levels in R. diptycha. Also, our results demonstrated the complement system is participative in the plasma BKA for baseline and post-stress situations in these toads.
Collapse
Affiliation(s)
| | - Braz Titon Junior
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | | - Alan Siqueira Lima
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Fernando Ribeiro Gomes
- Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
Bacigalupe LD, Solano‐Iguaran JJ, Longo AV, Gaitán‐Espitia JD, Valenzuela‐Sánchez A, Alvarado‐Rybak M, Azat C. Nor climate nor human impact factors: Chytrid infection shapes the skin bacterial communities of an endemic amphibian in a biodiversity hotspot. Ecol Evol 2024; 14:e11249. [PMID: 38590552 PMCID: PMC10999949 DOI: 10.1002/ece3.11249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
The bacterial communities of the amphibian skin (i.e., the bacteriome) are critical to the host's innate immune system. However, it is unclear how different drivers can alter this function by modulating the bacteriome's structure. Our aim was to assess the extent to which different host attributes and extrinsic factors influence the structure of the bacterial communities of the skin. Skin bacterial diversity was examined in 148 individuals of the four-eyed frog (Pleurodema thaul) from 16 localities spanning almost 1800 km in latitude. The richness and beta diversity of bacterial families and the richness and abundance of Bd-inhibitory bacterial genera were used to describe their structure. Predictors associated with the host (developmental stage, genetic lineage, individual Batrachochytrium dendrobatidis [Bd] infection status) and the landscape (current climate, degree of anthropogenic disturbance) were used in the statistical modeling in an information theoretical approach. Bd infection and host developmental stage were the only predictors affecting bacteriome richness, with Bd+ individuals and postmetamorphic stages (adults and juveniles) having higher richness than Bd- ones and tadpoles. High diversity in Bd+ individuals is not driven by bacterial genera with known anti-Bd properties. Beta diversity was not affected by Bd infection and was mainly a consequence of bacterial family turnover rather than nestedness. Finally, for those bacterial genera known to have inhibitory effects on chytrid, Bd+ individuals had a slightly higher diversity than Bd- ones. Our study confirms an association between Bd infection and the host developmental stage with the bacterial communities of the skin of P. thaul. Unexpectedly, macroclimate and human impact factors do not seem to play a role in shaping the amphibian skin microbiome. Our study exemplifies that focusing on a single host-parasite system over a large geographic scale can provide essential insights into the factors driving host-parasite-bacteriome interactions.
Collapse
Affiliation(s)
| | - Jaiber J. Solano‐Iguaran
- Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
- Departamento de Salud HidrobiológicaInstituto de Fomento PesqueroPuerto MonttChile
| | - Ana V. Longo
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| | - Juan D. Gaitán‐Espitia
- School of Biological Sciences and the SWIRE Institute of Marine ScienceThe University of Hong KongHong KongSARChina
| | | | - Mario Alvarado‐Rybak
- Núcleo de Ciencias Aplicadas en Ciencias Veterinarias y AgronómicasUniversidad de Las AméricasSantiagoChile
| | - Claudio Azat
- Sustainability Research Centre & PhD in Conservation MedicineUniversidad Andres BelloSantiagoChile
| |
Collapse
|
3
|
Cortazar-Chinarro M, Richter-Boix A, Rödin-Mörch P, Halvarsson P, Logue JB, Laurila A, Höglund J. Association between the skin microbiome and MHC class II diversity in an amphibian. Mol Ecol 2024; 33:e17198. [PMID: 37933583 DOI: 10.1111/mec.17198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Microbiomes play an important role in determining the ecology and behaviour of their hosts. However, questions remain pertaining to how host genetics shape microbiomes, and how microbiome composition influences host fitness. We explored the effects of geography, evolutionary history and host genetics on the skin microbiome diversity and structure in a widespread amphibian. More specifically, we examined the association between bacterial diversity and composition and the major histocompatibility complex class II exon 2 diversity in 12 moor frog (Rana arvalis) populations belonging to two geographical clusters that show signatures of past and ongoing differential selection. We found that while bacterial alpha diversity did not differ between the two clusters, MHC alleles/supertypes and genetic diversity varied considerably depending on geography and evolutionary history. Bacterial alpha diversity was positively correlated with expected MHC heterozygosity and negatively with MHC nucleotide diversity. Furthermore, bacterial community composition showed significant variation between the two geographical clusters and between specific MHC alleles/supertypes. Our findings emphasize the importance of historical demographic events on hologenomic variation and provide new insights into how immunogenetic host variability and microbial diversity may jointly influence host fitness with consequences for disease susceptibility and population persistence.
Collapse
Affiliation(s)
- M Cortazar-Chinarro
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
- MEMEG/Department of Biology, Lund University, Lund, Sweden
- Department of Earth Ocean and Atmospheric Sciences, Faculty of Science 2020-2207, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Richter-Boix
- Department of Political and Social Science, Pompeu Fabra University, Barcelona, Spain
| | - P Rödin-Mörch
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - P Halvarsson
- Parasitology/Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J B Logue
- Aquatic Ecology/Department of Biology, Lund University, Lund, Sweden
- SLU University Library, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Laurila
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - J Höglund
- Animal Ecology/Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
He D, Yao X, Zhang P, Liu W, Huang J, Sun H, Wang N, Zhang X, Wang H, Zhang H, Ao X, Xie F. Effects of continuous cropping on fungal community diversity and soil metabolites in soybean roots. Microbiol Spectr 2023; 11:e0178623. [PMID: 37811990 PMCID: PMC10715103 DOI: 10.1128/spectrum.01786-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/11/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Soybean yield can be affected by soybean soil fungal communities in different tillage patterns. Soybean is an important food crop with great significance worldwide. Continuous cultivation resulted in soil nutrient deficiencies, disordered metabolism of root exudates, fungal pathogen accumulation, and an altered microbial community, which brought a drop in soybean output. In this study, taking the soybean agroecosystem in northeast China, we revealed the microbial ecology and soil metabolites spectrum, especially the diversity and composition of soil fungi and the correlation of pathogenic fungi, and discussed the mechanisms and the measures of alleviating the obstacles.
Collapse
Affiliation(s)
- Dexin He
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xingdong Yao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
- Postdoctoral Station of Agricultural Resources and Environment, Land and Environment College, Shenyang Agricultural University, Shenyang, China
| | - Pengyu Zhang
- Inner Mongolia Agronomy and Animal Husbandry Technology Extension Center, Hohhot, Inner Mongolia, China
| | - Wenbo Liu
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Junxia Huang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Hexiang Sun
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Nan Wang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xuejing Zhang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Haiying Wang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Huijun Zhang
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xue Ao
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Futi Xie
- Soybean Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
5
|
Neely WJ, Martins RA, Mendonça da Silva CM, Ferreira da Silva T, Fleck LE, Whetstone RD, Woodhams DC, Cook WH, Prist PR, Valiati VH, Greenspan SE, Tozetti AM, Earley RL, Becker CG. Linking microbiome and stress hormone responses in wild tropical treefrogs across continuous and fragmented forests. Commun Biol 2023; 6:1261. [PMID: 38087051 PMCID: PMC10716138 DOI: 10.1038/s42003-023-05600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The amphibian skin microbiome is an important component of anti-pathogen defense, but the impact of environmental change on the link between microbiome composition and host stress remains unclear. In this study, we used radiotelemetry and host translocation to track microbiome composition and function, pathogen infection, and host stress over time across natural movement paths for the forest-associated treefrog, Boana faber. We found a negative correlation between cortisol levels and putative microbiome function for frogs translocated to forest fragments, indicating strong integration of host stress response and anti-pathogen potential of the microbiome. Additionally, we observed a capacity for resilience (resistance to structural change and functional loss) in the amphibian skin microbiome, with maintenance of putative pathogen-inhibitory function despite major temporal shifts in microbiome composition. Although microbiome community composition did not return to baseline during the study period, the rate of microbiome change indicated that forest fragmentation had more pronounced effects on microbiome composition than translocation alone. Our findings reveal associations between stress hormones and host microbiome defenses, with implications for resilience of amphibians and their associated microbes facing accelerated tropical deforestation.
Collapse
Affiliation(s)
- Wesley J Neely
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA.
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
| | - Renato A Martins
- Department of Biology, and Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Camila M Mendonça da Silva
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Tainá Ferreira da Silva
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Lucas E Fleck
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Ross D Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - W Harrison Cook
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Paula R Prist
- EcoHealth Alliance, 520 Eight Avenue, Suite 1200, New York, NY, 10018, USA
| | - Victor H Valiati
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Sasha E Greenspan
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Alexandro M Tozetti
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Ryan L Earley
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - C Guilherme Becker
- Department of Biology, and Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
6
|
Kaganer AW, Ossiboff RJ, Keith NI, Schuler KL, Comizzoli P, Hare MP, Fleischer RC, Gratwicke B, Bunting EM. Immune priming prior to pathogen exposure sheds light on the relationship between host, microbiome and pathogen in disease. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220810. [PMID: 36756057 PMCID: PMC9890126 DOI: 10.1098/rsos.220810] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Dynamic interactions between host, pathogen and host-associated microbiome dictate infection outcomes. Pathogens including Batrachochytrium dendrobatidis (Bd) threaten global biodiversity, but conservation efforts are hindered by limited understanding of amphibian host, Bd and microbiome interactions. We conducted a vaccination and infection experiment using Eastern hellbender salamanders (Cryptobranchus alleganiensis alleganiensis) challenged with Bd to observe infection, skin microbial communities and gene expression of host skin, pathogen and microbiome throughout the experiment. Most animals survived high Bd loads regardless of their vaccination status and vaccination did not affect pathogen load, but host gene expression differed based on vaccination. Oral vaccination (exposure to killed Bd) stimulated immune gene upregulation while topically and sham-vaccinated animals did not significantly upregulate immune genes. In early infection, topically vaccinated animals upregulated immune genes but orally and sham-vaccinated animals downregulated immune genes. Bd increased pathogenicity-associated gene expression in late infection when Bd loads were highest. The microbiome was altered by Bd, but there was no correlation between anti-Bd microbe abundance or richness and pathogen burden. Our observations suggest that hellbenders initially generate a vigorous immune response to Bd, which is ineffective at controlling disease and is subsequently modulated. Interactions with antifungal skin microbiota did not influence disease progression.
Collapse
Affiliation(s)
- Alyssa W. Kaganer
- Department of Natural Resources and the Environment, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
| | - Robert J. Ossiboff
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Nicole I. Keith
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Biology Department, Hamilton College, Clinton, NY, 13323, USA
| | - Krysten L. Schuler
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
| | - Matthew P. Hare
- Department of Natural Resources and the Environment, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Robert C. Fleischer
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, 20008, USA
| | - Brian Gratwicke
- Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, 22630, USA
| | - Elizabeth M. Bunting
- Cornell Wildlife Health Laboratory, Animal Health Diagnostic Center, Cornell University, Ithaca, NY, 14853, USA
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Greenspan SE, Peloso P, Fuentes-González JA, Bletz M, Lyra ML, Machado IF, Martins RA, Medina D, Moura-Campos D, Neely WJ, Preuss J, Sturaro MJ, Vaz RI, Navas CA, Toledo LF, Tozetti AM, Vences M, Woodhams DC, Haddad CFB, Pienaar J, Becker CG. Low microbiome diversity in threatened amphibians from two biodiversity hotspots. Anim Microbiome 2022; 4:69. [PMID: 36582011 PMCID: PMC9801548 DOI: 10.1186/s42523-022-00220-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Microbial diversity positively influences community resilience of the host microbiome. However, extinction risk factors such as habitat specialization, narrow environmental tolerances, and exposure to anthropogenic disturbance may homogenize host-associated microbial communities critical for stress responses including disease defense. In a dataset containing 43 threatened and 90 non-threatened amphibian species across two biodiversity hotspots (Brazil's Atlantic Forest and Madagascar), we found that threatened host species carried lower skin bacterial diversity, after accounting for key environmental and host factors. The consistency of our findings across continents suggests the broad scale at which low bacteriome diversity may compromise pathogen defenses in species already burdened with the threat of extinction.
Collapse
Affiliation(s)
- Sasha E. Greenspan
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - Pedro Peloso
- grid.452671.30000 0001 2175 1274Programa de Pós Gradução em Zoologia, Universidade Federal do Pará/Museu Paraense Emílio Goeldi, Belém, Pará 66077-530 Brazil ,Instituto Boitatá de Etnobiologia e Conservação da Fauna, Goiânia, Goiás 74085-480 Brazil
| | - Jesualdo A. Fuentes-González
- grid.65456.340000 0001 2110 1845The Department of Biology and the Institute of Environment, Florida International University, Miami, FL 33199 USA
| | - Molly Bletz
- grid.266685.90000 0004 0386 3207Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
| | - Mariana L. Lyra
- grid.410543.70000 0001 2188 478XDepartment of Biodiversity and Aquaculture Center (CAUNESP), Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900 Brazil
| | - Ibere F. Machado
- Instituto Boitatá de Etnobiologia e Conservação da Fauna, Goiânia, Goiás 74085-480 Brazil
| | - Renato A. Martins
- grid.411247.50000 0001 2163 588XPrograma de Pós-Graduação em Conservação da Fauna, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905 Brazil
| | - Daniel Medina
- Sistema Nacional de Investigación, SENACYT; City of Knowledge, Clayton, Panama, Republic of Panama ,grid.29857.310000 0001 2097 4281Department of Biology, The Pennsylvania State University, University Park, PA 16803 USA
| | - Diego Moura-Campos
- grid.411087.b0000 0001 0723 2494Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862 Brazil ,grid.1001.00000 0001 2180 7477Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Wesley J. Neely
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 USA
| | - Jackson Preuss
- grid.412292.e0000 0004 0417 7532Departamento de Ciências da Vida, Universidade do Oeste de Santa Catarina, São Miguel Do Oeste, Santa Catarina 89900-000 Brazil
| | - Marcelo J. Sturaro
- grid.411249.b0000 0001 0514 7202Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Diadema, São Paulo 09972-270 Brazil
| | - Renata I. Vaz
- grid.11899.380000 0004 1937 0722Departamento de Fisiologia Geral, Instituto de Biociencias, Universidade de São Paulo, São Paulo, São Paulo 05508-090 Brazil
| | - Carlos A. Navas
- grid.11899.380000 0004 1937 0722Departamento de Fisiologia Geral, Instituto de Biociencias, Universidade de São Paulo, São Paulo, São Paulo 05508-090 Brazil
| | - Luís Felipe Toledo
- grid.411087.b0000 0001 0723 2494Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo 13083-862 Brazil
| | - Alexandro M. Tozetti
- grid.412302.60000 0001 1882 7290Programa de Pos-Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, Rio Grande Do Sul 93022-750 Brazil
| | - Miguel Vences
- grid.6738.a0000 0001 1090 0254Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, Brunswick, Germany
| | - Douglas C. Woodhams
- grid.266685.90000 0004 0386 3207Department of Biology, University of Massachusetts Boston, Boston, MA 02125 USA
| | - Célio F. B. Haddad
- grid.410543.70000 0001 2188 478XDepartment of Biodiversity and Aquaculture Center (CAUNESP), Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900 Brazil
| | - Jason Pienaar
- grid.65456.340000 0001 2110 1845The Department of Biology and the Institute of Environment, Florida International University, Miami, FL 33199 USA
| | - C. Guilherme Becker
- grid.29857.310000 0001 2097 4281Department of Biology, The Pennsylvania State University, University Park, PA 16803 USA
| |
Collapse
|
8
|
Bates KA, Friesen J, Loyau A, Butler H, Vredenburg VT, Laufer J, Chatzinotas A, Schmeller DS. Environmental and Anthropogenic Factors Shape the Skin Bacterial Communities of a Semi-Arid Amphibian Species. MICROBIAL ECOLOGY 2022:10.1007/s00248-022-02130-5. [PMID: 36445401 DOI: 10.1007/s00248-022-02130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The amphibian skin microbiome is important in maintaining host health, but is vulnerable to perturbation from changes in biotic and abiotic conditions. Anthropogenic habitat disturbance and emerging infectious diseases are both potential disrupters of the skin microbiome, in addition to being major drivers of amphibian decline globally. We investigated how host environment (hydrology, habitat disturbance), pathogen presence, and host biology (life stage) impact the skin microbiome of wild Dhofar toads (Duttaphrynus dhufarensis) in Oman. We detected ranavirus (but not Batrachochytrium dendrobatidis) across all sampling sites, constituting the first report of this pathogen in Oman, with reduced prevalence in disturbed sites. We show that skin microbiome beta diversity is driven by host life stage, water source, and habitat disturbance, but not ranavirus infection. Finally, although trends in bacterial diversity and differential abundance were evident in disturbed versus undisturbed sites, bacterial co-occurrence patterns determined through network analyses revealed high site specificity. Our results therefore provide support for amphibian skin microbiome diversity and taxa abundance being associated with habitat disturbance, with bacterial co-occurrence (and likely broader aspects of microbial community ecology) being largely site specific.
Collapse
Affiliation(s)
- K A Bates
- Department of Zoology, University of Oxford, Oxford, UK.
| | - J Friesen
- Centre for Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - A Loyau
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France
| | - H Butler
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - V T Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - J Laufer
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - A Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany
| | - D S Schmeller
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France
| |
Collapse
|
9
|
Hulting KA, Mason SD, Story CM, Keller GS. Wetland cohesion is associated with increased probability of infection by the amphibian chytrid fungus Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2022; 151:97-109. [PMID: 36226838 DOI: 10.3354/dao03692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) poses a substantial threat to amphibian populations. Understanding the landscape conditions that facilitate Bd transmission and persistence is crucial for predicting Bd trends in amphibian populations. Here, we investigated the interactions between land use, wetland connectivity, and Bd occurrence and infection intensity. In northeastern Massachusetts, we sampled Pseudacris crucifer, Lithobates sylvaticus, L. clamitans, and L. pipiens from 24 sites. We found an overall 30.6% Bd prevalence at our sites, with prevalence differing among species. Bd occurrence increased with wetland-patch cohesion, potentially due to microclimate shifts from decreased forest or changes in host movement. Bd infection intensity was not mediated by landscape context. Overall, our results highlight the importance of landscape structure for Bd dynamics, suggesting that certain landscapes may facilitate transmission and harbor Bd more than others. To mitigate the impacts of Bd on amphibian populations, conservation efforts should account for interactions between Bd and landscape variables.
Collapse
Affiliation(s)
- Katherine A Hulting
- Landscape Ecology Lab, Department of Life, Health, and Physical Sciences, Gordon College, Wenham, MA 01984, USA
| | | | | | | |
Collapse
|
10
|
Neely WJ, Greenspan SE, Stahl LM, Heraghty SD, Marshall VM, Atkinson CL, Becker CG. Habitat Disturbance Linked with Host Microbiome Dispersion and Bd Dynamics in Temperate Amphibians. MICROBIAL ECOLOGY 2022; 84:901-910. [PMID: 34671826 DOI: 10.1007/s00248-021-01897-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic habitat disturbances can dramatically alter ecological community interactions, including host-pathogen dynamics. Recent work has highlighted the potential for habitat disturbances to alter host-associated microbial communities, but the associations between anthropogenic disturbance, host microbiomes, and pathogens are unresolved. Amphibian skin microbial communities are particularly responsive to factors like temperature, physiochemistry, pathogen infection, and environmental microbial reservoirs. Through a field survey on wild populations of Acris crepitans (Hylidae) and Lithobates catesbeianus (Ranidae), we assessed the effects of habitat disturbance and connectivity on environmental bacterial reservoirs, Batrachochytrium dendrobatidis (Bd) infection, and skin microbiome composition. We found higher measures of microbiome dispersion (a measure of community variability) in A. crepitans from more disturbed ponds, supporting the hypothesis that disturbance increases stochasticity in biological communities. We also found that habitat disturbance limited microbiome similarity between locations for both species, suggesting greater isolation of bacterial assemblages in more disturbed areas. Higher disturbance was associated with lower Bd prevalence for A. crepitans, which could signify suboptimal microclimates for Bd in disturbed habitats. Combined, our findings show that reduced microbiome stability stemming from habitat disturbance could compromise population health, even in the absence of pathogenic infection.
Collapse
Affiliation(s)
- Wesley J Neely
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA.
| | - Sasha E Greenspan
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Leigha M Stahl
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Sam D Heraghty
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Vanessa M Marshall
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - Carla L Atkinson
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| | - C Guilherme Becker
- Department of Biology, The University of Alabama, 1301 Sciences and Engineering Complex, 300 Hackberry Ln, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
11
|
Wuerthner VP, Hua J, Hernández‐Gómez O. Life stage and proximity to roads shape the skin microbiota of eastern newts (Notophthalmus viridescens). Environ Microbiol 2022; 24:3954-3965. [PMID: 35355399 PMCID: PMC9790580 DOI: 10.1111/1462-2920.15986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022]
Abstract
Host-associated microbiomes play an essential role in the health of organisms, including immune system activation, metabolism and energy uptake. It is well established that microbial communities differ depending on the life stage and natural history of the organism. However, the effects of life stage and natural history on microbial communities may also be influenced by human activities. We investigated the effects of amphibian life stage (terrestrial eft vs. aquatic adult) and proximity to roadways on newt skin bacterial communities. We found that the eft and adult life stages differed in bacterial community composition; however, the effects of roads on community composition were more evident in the terrestrial eft stage compared to the aquatic adult stage. Terrestrial efts sampled close to roads possessed richer communities than those living further away from the influence of roads. When accounting for amplicon sequence variants with predicted antifungal capabilities, in the adult life stage, we observed a decrease in anti-fungal bacteria with distance to roads. In contrast, in the eft stage, we found an increase in anti-fungal bacteria with distance to roads. Our results highlight the need to consider the effects of human activities when evaluating how host-associated microbiomes differ across life stages of wildlife.
Collapse
Affiliation(s)
| | - Jessica Hua
- Department of Biological SciencesBinghamton UniversityBinghamtonNY,Department of Forest and Wildlife EcologyUniversity of Wisconsin‐MadisonMadisonWI
| | - Obed Hernández‐Gómez
- Department of Environmental Sciences, Policy, and ManagementUniversity of California‐BerkeleyBerkeleyCA,Department of Natural Sciences and MathematicsDominican University of CaliforniaSan RafaelCA
| |
Collapse
|
12
|
Speer KA, Teixeira TSM, Brown AM, Perkins SL, Dittmar K, Ingala MR, Wultsch C, Krampis K, Dick CW, Galen SC, Simmons NB, Clare EL. Cascading effects of habitat loss on ectoparasite-associated bacterial microbiomes. ISME COMMUNICATIONS 2022; 2:67. [PMID: 37938296 PMCID: PMC9723575 DOI: 10.1038/s43705-022-00153-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2023]
Abstract
Suitable habitat fragment size, isolation, and distance from a source are important variables influencing community composition of plants and animals, but the role of these environmental factors in determining composition and variation of host-associated microbial communities is poorly known. In parasite-associated microbial communities, it is hypothesized that evolution and ecology of an arthropod parasite will influence its microbiome more than broader environmental factors, but this hypothesis has not been extensively tested. To examine the influence of the broader environment on the parasite microbiome, we applied high-throughput sequencing of the V4 region of 16S rRNA to characterize the microbiome of 222 obligate ectoparasitic bat flies (Streblidae and Nycteribiidae) collected from 155 bats (representing six species) from ten habitat fragments in the Atlantic Forest of Brazil. Parasite species identity is the strongest driver of microbiome composition. To a lesser extent, reduction in habitat fragment area, but not isolation, is associated with an increase in connectance and betweenness centrality of bacterial association networks driven by changes in the diversity of the parasite community. Controlling for the parasite community, bacterial network topology covaries with habitat patch area and exhibits parasite-species specific responses to environmental change. Taken together, habitat loss may have cascading consequences for communities of interacting macro- and microorgansims.
Collapse
Affiliation(s)
- Kelly A Speer
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA.
- Center for Conservation Genomics, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, D.C, USA.
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C, USA.
| | | | - Alexis M Brown
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Susan L Perkins
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Division of Science, City College of New York, New York, NY, USA
| | - Katharina Dittmar
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Melissa R Ingala
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
- Center for Conservation Genomics, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, D.C, USA
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ, USA
| | - Claudia Wultsch
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
- Bioinformatics and Computational Genomics Laboratory, Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
| | - Konstantinos Krampis
- Bioinformatics and Computational Genomics Laboratory, Department of Biological Sciences, Hunter College, City University of New York, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Carl W Dick
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
- Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Spencer C Galen
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
- Biology Department, University of Scranton, Scranton, PA, USA
| | - Nancy B Simmons
- Richard Gilder Graduate School, American Museum of Natural History, New York, NY, USA
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY, USA
| | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London, GBR, UK
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
13
|
Longo AV. Metabarcoding approaches in amphibian disease ecology: Disentangling the functional contributions of skin bacteria on disease outcome. Integr Comp Biol 2022; 62:252-261. [PMID: 35640913 DOI: 10.1093/icb/icac062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 01/09/2023] Open
Abstract
Molecular technologies have revolutionized the field of wildlife disease ecology, allowing the detection of outbreaks, novel pathogens, and invasive strains. In particular, metabarcoding approaches, defined here as tools used to amplify and sequence universal barcodes from a single sample (e.g., 16S rRNA for bacteria, ITS for fungi, 18S rRNA for eukaryotes), are expanding our traditional view of host-pathogen dynamics by integrating microbial interactions that modulate disease outcome. Here, I provide an analysis from the perspective of the field of amphibian disease ecology, where the emergence of multi-host pathogens has caused global declines and species extinctions. I re-analyzed an experimental mesocosm dataset to infer the functional profiles of the skin microbiomes of coqui frogs (Eleutherodactylus coqui), an amphibian species that is consistently found infected with the fungal pathogen Batrachochytrium dendrobatidis and has high turnover of skin bacteria driven by seasonal shifts. I found that the metabolic activities of microbiomes operate at different capacities depending on the season. Global enrichment of predicted functions was more prominent during the warm-wet season, indicating that microbiomes during the cool-dry season were either depauperate, resistant to new bacterial colonization, or that their functional space was more saturated. These findings suggest important avenues to investigate how microbes regulate population growth and contribute to host physiological processes. Overall, this study highlights the current challenges and future opportunities in the application of metabarcoding to investigate the causes and consequences of disease in wild systems.
Collapse
Affiliation(s)
- Ana V Longo
- University of Florida, Department of Biology, PO Box 118525, Gainesville, FL
| |
Collapse
|
14
|
Haddad CF, Lopes CM, Becker CG, da Silva FR, Lyra ML. From genes to ecosystems: a synthesis of amphibian biodiversity research in Brazil. BIOTA NEOTROPICA 2022. [DOI: 10.1590/1676-0611-bn-2022-1375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Here, we summarize examples of significant advances in amphibian research supported by the São Paulo Research Foundation (FAPESP), focusing on recent discoveries in the fields of community ecology, habitat change, infection diseases, and multipurpose DNA sequencing. We demonstrated that FAPESP has been fundamental not only by directly funding research projects and scholarships, but also through its science training policy, fostering international collaborations with world-class research institutions, improving and consolidating new lines of research that often depended on a synergetic combination of different knowledge and complex tools. We emphasized that future studies will continue to focus on basic questions, such as description of new species, as well as taxonomic and systematic corrections. Furthermore, we also expect that there will be a strong integration among different disciplines using novel bioinformatics tools and modeling approaches, such as machine learning. These new approaches will be critical to further develop our understanding of foundational questions of amphibian life-history trait variation, disease transmission, community assembly, biogeography, and population forecasts under different global change scenarios such as agricultural expansion, agrochemical use, habitat loss, and climate change.
Collapse
|
15
|
Villamizar-Gomez A, Wang HH, Peterson MR, Grant WE, Forstner MRJ. Environmental determinants of Batrachochytrium dendrobatidis and the likelihood of further dispersion in the face of climate change in Texas, USA. DISEASES OF AQUATIC ORGANISMS 2021; 146:29-39. [PMID: 34498608 DOI: 10.3354/dao03613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the major drivers of amphibian population declines is Batrachochytrium dendrobatidis (Bd). We sought to identify the major environmental drivers of Bd prevalence in Texas, USA, by drawing results from museum specimens. We sampled one of the largest museum collections in Texas, the Biodiversity Research and Teaching Collections at Texas A&M University. Our sampling focused on the 9 amphibian species with the widest geographical distribution within the state, where we sub-sampled 30% of each species per decade from 1930 to present via skin swabs, totaling 1501 independent sampling events, and used quantitative real-time PCR (qPCR) to detect pathogen presence. We analyzed several geo-referenced variables describing climatic conditions to identify potential factors influencing the likelihood of presence of Bd using boosted regression trees. Our final model suggests the most influential variables are mean temperature of driest quarter, annual mean temperature, temperature annual range, and mean diurnal range. The most likely suitable range for Bd is currently found in the Blackland Prairie and Cross Timbers ecoregions. Results of our future (to the year 2040) projections suggest that Bd could expand its current distribution. Our model could play an important role when developing an integrated conservation plan through (1) focusing future field work on locations with a high likelihood of presence, (2) assisting in the choice of locations for restoration, and (3) developing future research plans including those necessary for projecting reactions to climate change. Our model also could integrate new presence data of Bd when they become available to enhance prediction precision.
Collapse
|
16
|
Alvarado-Rybak M, Lepe-Lopez M, Peñafiel-Ricaurte A, Valenzuela-Sánchez A, Valdivia C, Mardones FO, Bacigalupe LD, Puschendorf R, Cunningham AA, Azat C. Bioclimatic and anthropogenic variables shape the occurrence of Batrachochytrium dendrobatidis over a large latitudinal gradient. Sci Rep 2021; 11:17383. [PMID: 34462470 PMCID: PMC8405646 DOI: 10.1038/s41598-021-96535-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Amphibian chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), has caused the greatest known loss of biodiversity due to an infectious disease. We used Bd infection data from quantitative real-time PCR (qPCR) assays of amphibian skin swabs collected across Chile during 2008-2018 to model Bd occurrence with the aim to determine bioclimatic and anthropogenic variables associated with Bd infection. Also, we used Bd presence/absence records to identify geographical Bd high-risk areas and compare Bd prevalence and infection loads between amphibian families, ecoregions, and host ecology. Data comprised 4155 Bd-specific qPCR assays from 162 locations across a latitudinal gradient of 3700 km (18º to 51ºS). Results showed a significant clustering of Bd associated with urban centres and anthropogenically highly disturbed ecosystems in central-south Chile. Both Bd prevalence and Bd infection loads were higher in aquatic than terrestrial amphibian species. Our model indicated positive associations of Bd prevalence with altitude, temperature, precipitation and human-modified landscapes. Also, we found that macroscale drivers, such as land use change and climate, shape the occurrence of Bd at the landscape level. Our study provides with new evidence that can improve the effectiveness of strategies to mitigate biodiversity loss due to amphibian chytridiomycosis.
Collapse
Affiliation(s)
- Mario Alvarado-Rybak
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
- Núcleo de Ciencias Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de las Américas, Echaurren 140, Santiago, Chile
| | - Manuel Lepe-Lopez
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
| | - Alexandra Peñafiel-Ricaurte
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Andrés Valenzuela-Sánchez
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
- ONG Ranita de Darwin, Nataniel Cox 152, Santiago, Chile
- Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, 5110566, Valdivia, Chile
| | - Catalina Valdivia
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile
| | - Fernando O Mardones
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas y Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo D Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Robert Puschendorf
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Claudio Azat
- Sustainability Research Centre & PhD Programme in Conservation Medicine, Life Sciences Faculty, Universidad Andres Bello, Republica 252, Santiago, Chile.
| |
Collapse
|
17
|
Santos B, Bletz MC, Sabino-Pinto J, Cocca W, Fidy JFS, Freeman KL, Kuenzel S, Ndriantsoa S, Noel J, Rakotonanahary T, Vences M, Crottini A. Characterization of the microbiome of the invasive Asian toad in Madagascar across the expansion range and comparison with a native co-occurring species. PeerJ 2021; 9:e11532. [PMID: 34249488 PMCID: PMC8247705 DOI: 10.7717/peerj.11532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 12/19/2022] Open
Abstract
Biological invasions are on the rise, with each invader carrying a plethora of associated microbes. These microbes play important, yet poorly understood, ecological roles that can include assisting the hosts in colonization and adaptation processes or as possible pathogens. Understanding how these communities differ in an invasion scenario may help to understand the host's resilience and adaptability. The Asian common toad, Duttaphrynus melanostictus is an invasive amphibian, which has recently established in Madagascar and is expected to pose numerous threats to the native ecosystems. We characterized the skin and gut bacterial communities of D. melanostictus in Toamasina (Eastern Madagascar), and compared them to those of a co-occurring native frog species, Ptychadena mascareniensis, at three sites where the toad arrived in different years. Microbial composition did not vary among sites, showing that D. melanostictus keeps a stable community across its expansion but significant differences were observed between these two amphibians. Moreover, D. melanostictus had richer and more diverse communities and also harboured a high percentage of total unique taxa (skin: 80%; gut: 52%). These differences may reflect the combination of multiple host-associated factors including microhabitat selection, skin features and dietary preferences.
Collapse
Affiliation(s)
- Bárbara Santos
- Cibio, Research Centre in Biodiversity and Genetic Resources, InBio, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Portugal, Porto, Portugal
| | - Molly C Bletz
- Department of Biology, University of Massachussetts Boston, Boston, MA, USA
| | - Joana Sabino-Pinto
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, Germany, Braunschweig, Germany
| | - Walter Cocca
- Cibio, Research Centre in Biodiversity and Genetic Resources, InBio, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Portugal, Porto, Portugal
| | | | - Karen Lm Freeman
- Madagascar Fauna and Flora Group, BP 442, 501 Toamasina, Madagascar, Toamasina, Madagascar
| | - Sven Kuenzel
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Germany, Plön, Germany
| | - Serge Ndriantsoa
- Amphibian Survival Alliance c/o Durrell Wildlife Conservation Trust, Madagascar Programme, Lot II Y 49 J 12 Ampasanimalo, BP 8511 101 Antananarivo, Madagascar, Antananarivo, Madagascar
| | - Jean Noel
- Madagascar Fauna and Flora Group, BP 442, 501 Toamasina, Madagascar, Toamasina, Madagascar
| | - Tsanta Rakotonanahary
- Amphibian Survival Alliance c/o Durrell Wildlife Conservation Trust, Madagascar Programme, Lot II Y 49 J 12 Ampasanimalo, BP 8511 101 Antananarivo, Madagascar, Antananarivo, Madagascar
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Mendelssohnstr. 4, Germany, Braunschweig, Germany
| | - Angelica Crottini
- Cibio, Research Centre in Biodiversity and Genetic Resources, InBio, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Portugal, Porto, Portugal
| |
Collapse
|
18
|
Delazeri F, Ernetti JR, De Bastiani VIM, Lingnau R, Toledo LF, Lucas EM. Forest cover influences chytrid infections in populations of Boana curupi, a threatened treefrog of south Brazil. DISEASES OF AQUATIC ORGANISMS 2021; 144:133-142. [PMID: 33955851 DOI: 10.3354/dao03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Complex interactions among hosts, pathogens, and the environment affect the vulnerability of amphibians to the emergence of infectious diseases such as chytridiomycosis, caused by Batrachochytrium dendrobatidis (Bd). Boana curupi is a forest-dwelling amphibian endemic to the southern Atlantic Forest of South America, a severely fragmented region. Here, we evaluated whether abiotic factors (including air and water temperature, relative air humidity, and landscape) are correlated with chytrid infection intensity and prevalence in B. curupi. We found individuals infected with Bd in all populations sampled. Prevalence ranged from 25-86%, and the infection burden ranged from 1 to over 130000 zoospore genomic equivalents (g.e.) (mean ± SD: 4913 ± 18081 g.e.). The infection load differed among populations and was influenced by forest cover at scales of 100, 500, and 1000 m, with the highest infection rates recorded in areas with a higher proportion of forest cover. Our results suggest that the fungus is widely distributed in the populations of B. curupi in southern Brazil. Population and disease monitoring are necessary to better understand the relationships between host, pathogen, and environment, especially when, as in the case of B. curupi, threatened species are involved.
Collapse
Affiliation(s)
- Francieli Delazeri
- Programa de Pós-graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, Santa Catarina 89809-900, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Titon SCM, Assis VR. Introduction to the special issue: Ecoimmunology in ectotherms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 333:697-705. [PMID: 33450144 DOI: 10.1002/jez.2437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Stefanny C M Titon
- Laboratório de Comportamento e Fisiologia Evolutiva, Rua do Matão, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vania R Assis
- Laboratório de Comportamento e Fisiologia Evolutiva, Rua do Matão, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Bie J, Zheng K, Gao X, Liu B, Ma J, Hayat MA, Xiao J, Wang H. Spatial Risk Analysis of Batrachochytrium dendrobatidis, A Global Emerging Fungal Pathogen. ECOHEALTH 2021; 18:3-12. [PMID: 34212260 DOI: 10.1007/s10393-021-01519-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 06/13/2023]
Abstract
Chytridiomycosis, a leading cause for the global decline in the number of amphibians, is caused by the fungal pathogen Batrachochytrium dendrobatidis. In this study, global distribution data of B. dendrobatidis were collected from January 2009 to May 2019. Space-time scan statistics and the maximum entropy (MaxEnt) model were used to analyze the epidemic trends and aggregation of the pathogen, and predict B. dendrobatidis distribution through its relationships with climate factors, wind speed, and solar radiation. The results of space-time scan statistics show seven clusters of data for the distribution of B. dendrobatidis. The time was mainly concentrated in 2009, 2013, 2015, and 2016, and the regions were primarily concentrated in southeastern Canada, southwestern France, Nigeria, Cameroon, eastern Brazil, southeastern Brazil, central Madagascar, and central and eastern Australia. MaxEnt showed that annual precipitation had the largest contribution percentage in the model, and annual mean temperature highly influenced the distribution of B. dendrobatidis. The global high-risk areas of B. dendrobatidis distribution were mainly observed in western Canada, southern Brazil, Chile, the United Kingdom, Japan, the Republic of Korea, eastern South Africa, eastern Madagascar, southeastern Australia, and southern China.
Collapse
Affiliation(s)
- Jia Bie
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Keren Zheng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Xiang Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Boyang Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Jun Ma
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Muhammad Abid Hayat
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Jianhua Xiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Hongbin Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China.
| |
Collapse
|
21
|
Kuthyar S, Kowalewski MM, Roellig DM, Mallott EK, Zeng Y, Gillespie TR, Amato KR. Effects of anthropogenic habitat disturbance and Giardia duodenalis infection on a sentinel species' gut bacteria. Ecol Evol 2021; 11:45-57. [PMID: 33437414 PMCID: PMC7790644 DOI: 10.1002/ece3.6910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/27/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
Habitat disturbance, a common consequence of anthropogenic land use practices, creates human-animal interfaces where humans, wildlife, and domestic species can interact. These altered habitats can influence host-microbe dynamics, leading to potential downstream effects on host physiology and health. Here, we explored the effect of ecological overlap with humans and domestic species and infection with the protozoan parasite Giardia duodenalis on the bacteria of black and gold howler monkeys (Alouatta caraya), a key sentinel species, in northeastern Argentina. Fecal samples were screened for Giardia duodenalis infection using a nested PCR reaction, and the gut bacterial community was characterized using 16S rRNA gene amplicon sequencing. Habitat type was correlated with variation in A. caraya gut bacterial community composition but did not affect gut bacterial diversity. Giardia presence did not have a universal effect on A. caraya gut bacteria across habitats, perhaps due to the high infection prevalence across all habitats. However, some bacterial taxa were found to vary with Giardia infection. While A. caraya's behavioral plasticity and dietary flexibility allow them to exploit a range of habitat conditions, habitats are generally becoming more anthropogenically disturbed and, thus, less hospitable. Alterations in gut bacterial community dynamics are one possible indicator of negative health outcomes for A. caraya in these environments, since changes in host-microbe relationships due to stressors from habitat disturbance may lead to negative repercussions for host health. These dynamics are likely relevant for understanding organism responses to environmental change in other mammals.
Collapse
Affiliation(s)
- Sahana Kuthyar
- Department of AnthropologyNorthwestern UniversityEvanstonILUSA
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
| | - Martin M. Kowalewski
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
- Estación Biológica CorrientesMuseo Argentino de Ciencias Naturales “Bernardino Rivadavia” (MACN‐CONICET)CorrientesArgentina
| | - Dawn M. Roellig
- National Center for Emerging and Zoonotic Infectious DiseasesCenters for Disease Control and Prevention (CDC)AtlantaGAUSA
| | | | - Yan Zeng
- Department of AnthropologyNorthwestern UniversityEvanstonILUSA
| | - Thomas R. Gillespie
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Ecology, and Evolutionary BiologyEmory UniversityAtlantaGAUSA
| | | |
Collapse
|
22
|
Ruthsatz K, Lyra ML, Lambertini C, Belasen AM, Jenkinson TS, da Silva Leite D, Becker CG, Haddad CFB, James TY, Zamudio KR, Toledo LF, Vences M. Skin microbiome correlates with bioclimate and Batrachochytrium dendrobatidis infection intensity in Brazil's Atlantic Forest treefrogs. Sci Rep 2020; 10:22311. [PMID: 33339839 PMCID: PMC7749163 DOI: 10.1038/s41598-020-79130-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
In Brazil’s Atlantic Forest (AF) biodiversity conservation is of key importance since the fungal pathogen Batrachochytrium dendrobatidis (Bd) has led to the rapid loss of amphibian populations here and worldwide. The impact of Bd on amphibians is determined by the host's immune system, of which the skin microbiome is a critical component. The richness and diversity of such cutaneous bacterial communities are known to be shaped by abiotic factors which thus may indirectly modulate host susceptibility to Bd. This study aimed to contribute to understanding the environment-host–pathogen interaction determining skin bacterial communities in 819 treefrogs (Anura: Hylidae and Phyllomedusidae) from 71 species sampled across the AF. We investigated whether abiotic factors influence the bacterial community richness and structure on the amphibian skin. We further tested for an association between skin bacterial community structure and Bd co-occurrence. Our data revealed that temperature, precipitation, and elevation consistently correlate with richness and diversity of the skin microbiome and also predict Bd infection status. Surprisingly, our data suggest a weak but significant positive correlation of Bd infection intensity and bacterial richness. We highlight the prospect of future experimental studies on the impact of changing environmental conditions associated with global change on environment-host–pathogen interactions in the AF.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Institute of Zoology, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany. .,Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Brunswick, Germany.
| | - Mariana L Lyra
- Laboratório de Herpetologia, Depto de Biodiversidade, Instituto de Biociências and Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista - UNESP, Rio Claro, São Paulo, Brazil
| | - Carolina Lambertini
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Anat M Belasen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853-2701, USA
| | - Thomas S Jenkinson
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Domingos da Silva Leite
- Laboratório de Antígenos Bacterianos II, Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, Campinas, São Paulo, CEP 13083-862, Brazil
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35847, USA
| | - Célio F B Haddad
- Laboratório de Herpetologia, Depto de Biodiversidade, Instituto de Biociências and Centro de Aquicultura (CAUNESP), Universidade Estadual Paulista - UNESP, Rio Claro, São Paulo, Brazil
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853-2701, USA
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Brunswick, Germany
| |
Collapse
|
23
|
An altered microbiome in urban coyotes mediates relationships between anthropogenic diet and poor health. Sci Rep 2020; 10:22207. [PMID: 33335116 PMCID: PMC7746695 DOI: 10.1038/s41598-020-78891-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Generalist species able to exploit anthropogenic food sources are becoming increasingly common in urban environments. Coyotes (Canis latrans) are one such urban generalist that now resides in cities across North America, where diseased or unhealthy coyotes are frequently reported in cases of human-wildlife conflict. Coyote health and fitness may be related to habitat use and diet via the gut microbiome, which has far-reaching effects on animal nutrition and physiology. In this study, we used stomach contents, stable isotope analysis, 16S rRNA gene amplicon sequencing, and measures of body condition to identify relationships among habitat use, diet, fecal microbiome composition, and health in urban and rural coyotes. Three distinct relationships emerged: (1) Urban coyotes consumed more anthropogenic food, which was associated with increased microbiome diversity, higher abundances of Streptococcus and Enterococcus, and poorer average body condition. (2) Conversely, rural coyotes harbored microbiomes rich in Fusobacteria, Sutterella, and Anaerobiospirillum, which were associated with protein-rich diets and improved body condition. (3) Diets rich in anthropogenic food were associated with increased abundances of Erysipelotrichiaceae, Lachnospiraceae, and Coriobacteriaceae, which correlated with larger spleens in urban coyotes. Urban coyotes also had an increased prevalence of the zoonotic parasite Echinococcus multilocularis, but there were no detectable connections between parasite infection and microbiome composition. Our results demonstrate how the consumption of carbohydrate-rich anthropogenic food by urban coyotes alters the microbiome to negatively affect body condition, with potential relationships to parasite susceptibility and conflict-prone behavior.
Collapse
|
24
|
Preuss JF, Greenspan SE, Rossi EM, Lucas Gonsales EM, Neely WJ, Valiati VH, Woodhams DC, Becker CG, Tozetti AM. Widespread Pig Farming Practice Linked to Shifts in Skin Microbiomes and Disease in Pond-Breeding Amphibians. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11301-11312. [PMID: 32845628 DOI: 10.1021/acs.est.0c03219] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Farming practices may reshape the structure of watersheds, water quality, and the health of aquatic organisms. Nutrient enrichment from agricultural pollution increases disease pressure in many host-pathogen systems, but the mechanisms underlying this pattern are not always resolved. For example, nutrient enrichment should strongly influence pools of aquatic environmental bacteria, which has the potential to alter microbiome composition of aquatic animals and their vulnerability to disease. However, shifts in the host microbiome have received little attention as a link between nutrient enrichment and diseases of aquatic organisms. We examined nutrient enrichment through the widespread practice of integrated pig-fish farming and its effects on microbiome composition of Brazilian amphibians and prevalence of the globally distributed amphibian skin pathogen Batrachochytrium dendrobatidis (Bd). This farming system drove surges in fecal coliform bacteria, disturbing amphibian skin bacterial communities such that hosts recruited higher proportions of Bd-facilitative bacteria and carried higher Bd prevalence. Our results highlight previously overlooked connections between global trends in land use change, microbiome dysbiosis, and wildlife disease. These interactions may be particularly important for disease management in the tropics, a region with both high biodiversity and continually intensifying anthropogenic pressures on aquatic wildlife habitats.
Collapse
Affiliation(s)
- Jackson F Preuss
- Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 93022-750, Brazil
- Departamento de Ciências da Vida, Universidade do Oeste de Santa Catarina, São Miguel do Oeste, SC 89900-000, Brazil
| | - Sasha E Greenspan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Eliandra M Rossi
- Departamento de Ciências da Vida, Universidade do Oeste de Santa Catarina, São Miguel do Oeste, SC 89900-000, Brazil
| | - Elaine M Lucas Gonsales
- Departamento de Zootecnia e Ciências Biológicas, Universidade Federal de Santa Maria, RS 98300-000, Brazil
| | - Wesley J Neely
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Victor Hugo Valiati
- Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 93022-750, Brazil
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Alexandro M Tozetti
- Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS 93022-750, Brazil
| |
Collapse
|
25
|
Kruger A. Frog Skin Microbiota Vary With Host Species and Environment but Not Chytrid Infection. Front Microbiol 2020; 11:1330. [PMID: 32670233 PMCID: PMC7328345 DOI: 10.3389/fmicb.2020.01330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023] Open
Abstract
Describing the structure and function of the amphibian cutaneous microbiome has gained importance with the spread of Batrachochytrium dendrobatidis (Bd), the fungal pathogen that can cause the skin disease chytridiomycosis. Sampling amphibian skin microbiota is needed to characterize current infection status and to help predict future susceptibility to Bd based on microbial composition since some skin microbes have antifungal capabilities that may confer disease resistance. Here, I use 16S rRNA sequencing to describe the composition and structure of the cutaneous microbiota of six species of amphibians. Frog skin samples were also tested for Bd, and I found 11.8% Bd prevalence among all individuals sampled (n = 76). Frog skin microbiota varied by host species and sampling site, but did not differ among Bd-positive and Bd-negative individuals. These results suggest that bacterial composition reflects host species and the environment, but does not reflect Bd infection among the species sampled here. Of the bacterial OTUs identified using an indicator species analysis as strongly associated with amphibians, significantly more indicator OTUs were putative anti-Bd taxa than would be expected based on the proportion of anti-Bd OTUs among all frog OTUs, suggesting strong associations between host species and anti-Bd OTUs. This relationship may partially explain why some of these frogs are asymptomatic carriers of Bd, but more work is needed to determine the other factors that contribute to interspecific variation in Bd susceptibility. This work provides important insights on inter- and intra-specific variation in microbial community composition, putative function, and disease dynamics in populations of amphibians that appear to be coexisting with Bd.
Collapse
Affiliation(s)
- Ariel Kruger
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
26
|
Ribeiro JW, Siqueira T, DiRenzo GV, Lambertini C, Lyra ML, Toledo LF, Haddad CFB, Becker CG. Assessing amphibian disease risk across tropical streams while accounting for imperfect pathogen detection. Oecologia 2020; 193:237-248. [DOI: 10.1007/s00442-020-04646-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 04/07/2020] [Indexed: 12/23/2022]
|
27
|
B. Assis A, R. Bevier C, Chaves Barreto C, Arturo Navas C. Environmental influences on and antimicrobial activity of the skin microbiota of Proceratophrys boiei (Amphibia, Anura) across forest fragments. Ecol Evol 2020; 10:901-913. [PMID: 32015853 PMCID: PMC6988551 DOI: 10.1002/ece3.5949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 01/07/2023] Open
Abstract
The composition of the skin microbiota of amphibians is related to the biology of host species and environmental microbial communities. In this system, the environment serves as a microbial source and can modulate the hosted community. When habitats are fragmented and the environment disturbed, changes in the structure of this microbial community are expected. One important potential consequence of fragmentation is a compromised protective function of the microbiota against pathogenic microorganisms. In this study, the skin microbiota of the amphibian Proceratophrys boiei was characterized, evaluated for relationships with environmental variables and environmental sources of microbial communities, and its diversity evaluated for frog populations from fragmented and continuous forests. In addition, the antimicrobial activity of this skin community was studied in frogs from both forest types. Culture methods and 16S rRNA high-throughput gene sequencing were used to characterize the microbial community and demonstrated that the skin microbiota of P. boiei is more closely related to the soil microbial communities than those inhabiting water bodies or fragment matrix, the unforested area around the forested fragment. The microbial diversity and abundance of P. boiei skin microbiota are different between continuous forests and fragments. This community is correlated with environmental variables, especially with temperature of microhabitat and distance to human dwelling. All individuals of P. boiei harbored bacteria capable of inhibiting the growth of pathogenic bacteria and different strains of the pathogenic fungus Batrachochytrium dendrobatidis, and a total of 27 bacterial genera were detected. The results of this study indicate that the persistence of populations of this species will need balanced and sustained interactions among host, microorganisms, and environment.
Collapse
Affiliation(s)
- Ananda B. Assis
- Department of PhysiologyInstitute of BioscienceUniversity of São PauloSão PauloBrazil
| | | | - Cristine Chaves Barreto
- Graduate Program in Genomic Sciences and BiotechnologyCatholic University of BrasíliaBrasíliaBrazil
| | - Carlos Arturo Navas
- Department of PhysiologyInstitute of BioscienceUniversity of São PauloSão PauloBrazil
| |
Collapse
|
28
|
Harrison XA, Price SJ, Hopkins K, Leung WTM, Sergeant C, Garner TWJ. Diversity-Stability Dynamics of the Amphibian Skin Microbiome and Susceptibility to a Lethal Viral Pathogen. Front Microbiol 2019; 10:2883. [PMID: 31956320 PMCID: PMC6951417 DOI: 10.3389/fmicb.2019.02883] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022] Open
Abstract
Variation among animals in their host-associated microbial communities is increasingly recognized as a key determinant of important life history traits including growth, metabolism, and resistance to disease. Quantitative estimates of the factors shaping the stability of host microbiomes over time at the individual level in non-model organisms are scarce. Addressing this gap in our knowledge is important, as variation among individuals in microbiome stability may represent temporal gain or loss of key microbial species and functions linked to host health and/or fitness. Here we use controlled experiments to investigate how both heterogeneity in microbial species richness of the environment and exposure to the emerging pathogen Ranavirus influence the structure and temporal dynamics of the skin microbiome in a vertebrate host, the European common frog (Rana temporaria). Our evidence suggests that altering the bacterial species richness of the environment drives divergent temporal microbiome dynamics of the amphibian skin. Exposure to ranavirus effects changes in skin microbiome structure irrespective of total microbial diversity, but individuals with higher pre-exposure skin microbiome diversity appeared to exhibit higher survival. Higher diversity skin microbiomes also appear less stable over time compared to lower diversity microbiomes, but stability of the 100 most abundant ("core") community members was similar irrespective of microbiome richness. Our study highlights the importance of extrinsic factors in determining the stability of host microbiomes over time, which may in turn have important consequences for the stability of host-microbe interactions and microbiome-fitness correlations.
Collapse
Affiliation(s)
- Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,Centre for Ecology and Conservation, University of Exeter, Exeter, United Kingdom
| | - Stephen J Price
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,UCL Genetics Institute, University College London, London, United Kingdom
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - William T M Leung
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Chris Sergeant
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| |
Collapse
|
29
|
Hughey MC, Sokol ER, Walke JB, Becker MH, Belden LK. Ecological Correlates of Large-Scale Turnover in the Dominant Members of Pseudacris crucifer Skin Bacterial Communities. MICROBIAL ECOLOGY 2019; 78:832-842. [PMID: 30949751 DOI: 10.1007/s00248-019-01372-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Animals host a wide diversity of symbiotic microorganisms that contribute important functions to host health, and our knowledge of what drives variation in the composition of these complex communities continues to grow. Microbiome studies at larger spatial scales present opportunities to evaluate the contribution of large-scale factors to variation in the microbiome. We conducted a large-scale field study to assess variation in the bacterial symbiont communities on adult frog skin (Pseudacris crucifer), characterized using 16S rRNA gene amplicon sequencing. We found that skin bacterial communities on frogs were less diverse than, and structurally distinct from, the surrounding habitat. Frog skin was typically dominated by one of two bacterial OTUs: at western sites, a Proteobacteria dominated the community, whereas eastern sites were dominated by an Actinobacteria. Using a metacommunity framework, we then sought to identify factors explaining small- and large-scale variation in community structure-that is, among hosts within a pond, and among ponds spanning the study transect. We focused on the presence of a fungal skin pathogen, Batrachochytrium dendrobatidis (Bd) as one potential driver of variation. We found no direct link between skin bacterial community structure and Bd infection status of individual frog hosts. Differences in pond-level community structure, however, were explained by Bd infection prevalence. Importantly, Bd infection prevalence itself was correlated with numerous other environmental factors; thus, skin bacterial diversity may be influenced by a complex suite of extrinsic factors. Our findings indicate that large-scale factors and processes merit consideration when seeking to understand microbiome diversity.
Collapse
Affiliation(s)
- Myra C Hughey
- Biology Department, Vassar College, Poughkeepsie, NY, USA.
- Department of Biological Sciences, Virginia Tech, 4088 Derring Hall, 926 West Campus Drive, Blacksburg, VA, USA.
| | - Eric R Sokol
- Department of Biological Sciences, Virginia Tech, 4088 Derring Hall, 926 West Campus Drive, Blacksburg, VA, USA
- Battelle, National Ecological Observatory Network (NEON), Boulder, CO, USA
- Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, CO, USA
| | - Jenifer B Walke
- Department of Biological Sciences, Virginia Tech, 4088 Derring Hall, 926 West Campus Drive, Blacksburg, VA, USA
- Department of Biology, Eastern Washington University, Cheney, WA, USA
| | - Matthew H Becker
- Department of Biological Sciences, Virginia Tech, 4088 Derring Hall, 926 West Campus Drive, Blacksburg, VA, USA
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, USA
| | - Lisa K Belden
- Department of Biological Sciences, Virginia Tech, 4088 Derring Hall, 926 West Campus Drive, Blacksburg, VA, USA
| |
Collapse
|
30
|
Bueno-Hernández N, Vázquez-Frías R, Abreu y Abreu A, Almeda-Valdés P, Barajas-Nava L, Carmona-Sánchez R, Chávez-Sáenz J, Consuelo-Sánchez A, Espinosa-Flores A, Hernández-Rosiles V, Hernández-Vez G, Icaza-Chávez M, Noble-Lugo A, Romo-Romo A, Ruiz-Margaín A, Valdovinos-Díaz M, Zárate-Mondragón F. Review of the scientific evidence and technical opinion on noncaloric sweetener consumption in gastrointestinal diseases. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2019. [DOI: 10.1016/j.rgmxen.2019.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
31
|
Bueno-Hernández N, Vázquez-Frías R, Abreu Y Abreu AT, Almeda-Valdés P, Barajas-Nava LA, Carmona-Sánchez RI, Chávez-Sáenz J, Consuelo-Sánchez A, Espinosa-Flores AJ, Hernández-Rosiles V, Hernández-Vez G, Icaza-Chávez ME, Noble-Lugo A, Romo-Romo A, Ruiz-Margaín A, Valdovinos-Díaz MA, Zárate-Mondragón FE. Review of the scientific evidence and technical opinion on noncaloric sweetener consumption in gastrointestinal diseases. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2019; 84:492-510. [PMID: 31564473 DOI: 10.1016/j.rgmx.2019.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/03/2019] [Accepted: 08/20/2019] [Indexed: 01/16/2023]
Abstract
The present review of noncaloric sweeteners (NCSs) by the Asociación Mexicana de Gastroenterología was carried out to analyze and answer some of the most frequent questions and concerns about NCS consumption in patients with gastrointestinal disorders, through a thorough review of the medical literature. A group of gastroenterologists and experts on nutrition, toxicology, microbiology, and endocrinology reviewed and analyzed the published literature on the topic. The working group formulated conclusions, based on the scientific evidence published, to give an opinion with respect to NCS ingestion. Current evidence does not confirm the carcinogenic potential of NCSs. However, the studies analyzed showed that saccharin could have a proinflammatory effect and that polyols can cause gastrointestinal symptoms and manifestations, depending on the dose and type of compound. The ingestion of xylitol, erythritol, sucralose, aspartame, acesulfame K, and saccharin could increase the secretion of the gastrointestinal hormones that regulate intestinal motility, and stevia and its derivatives could have a favorable effect on the percentage of liver fat. Caution should be taken in recommending aspartame consumption in patients with chronic liver disease because it reduces the ratio of branched-chain amino acids to aromatic amino acids. In addition, NCS ingestion could modify the composition of the intestinal microbiota, having an effect on gastrointestinal symptoms and manifestations. It is important to continue conducting causality studies on humans to be able to establish recommendations on NSC consumption.
Collapse
Affiliation(s)
- N Bueno-Hernández
- Dirección de Investigación, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México.
| | - R Vázquez-Frías
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - A T Abreu Y Abreu
- Gastroenterología, Hospital Ángeles Pedregal, Ciudad de México, México
| | - P Almeda-Valdés
- Departamento de Endocrinología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - L A Barajas-Nava
- Unidad de Investigación de Medicina Basada en Evidencia, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | | | - J Chávez-Sáenz
- Consulta privada de Gastroenterología Pediátrica, Hospital Puerta de Hierro Andares, Zapopan, Jalisco, México
| | - A Consuelo-Sánchez
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - A J Espinosa-Flores
- Dirección de Investigación, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México
| | - V Hernández-Rosiles
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - G Hernández-Vez
- Departamento de Gastroenterología y Nutrición, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - M E Icaza-Chávez
- Consulta privada de Gastroenterología, Hospital Star Médica, Mérida, Yucatán, México
| | - A Noble-Lugo
- Departamento de Enseñanza e Investigación, Hospital Español de México, Ciudad de México, México
| | - A Romo-Romo
- Departamento de Endocrinología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - A Ruiz-Margaín
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - M A Valdovinos-Díaz
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - F E Zárate-Mondragón
- Servicio de Gastroenterología y Nutrición, Instituto Nacional de Pediatría, Ciudad de México, México
| |
Collapse
|
32
|
Becker CG, Bletz MC, Greenspan SE, Rodriguez D, Lambertini C, Jenkinson TS, Guimarães PR, Assis APA, Geffers R, Jarek M, Toledo LF, Vences M, Haddad CFB. Low-load pathogen spillover predicts shifts in skin microbiome and survival of a terrestrial-breeding amphibian. Proc Biol Sci 2019; 286:20191114. [PMID: 31409249 DOI: 10.1098/rspb.2019.1114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Wildlife disease dynamics are strongly influenced by the structure of host communities and their symbiotic microbiota. Conspicuous amphibian declines associated with the waterborne fungal pathogen Batrachochytrium dendrobatidis (Bd) have been observed in aquatic-breeding frogs globally. However, less attention has been given to cryptic terrestrial-breeding amphibians that have also been declining in tropical regions. By experimentally manipulating multiple tropical amphibian assemblages harbouring natural microbial communities, we tested whether Bd spillover from naturally infected aquatic-breeding frogs could lead to Bd amplification and mortality in our focal terrestrial-breeding host: the pumpkin toadlet Brachycephalus pitanga. We also tested whether the strength of spillover could vary depending on skin bacterial transmission within host assemblages. Terrestrial-breeding toadlets acquired lethal spillover infections from neighbouring aquatic hosts and experienced dramatic but generally non-protective shifts in skin bacterial composition primarily attributable to their Bd infections. By contrast, aquatic-breeding amphibians maintained mild Bd infections and higher survival, with shifts in bacterial microbiomes that were unrelated to Bd infections. Our results indicate that Bd spillover from even mildly infected aquatic-breeding hosts may lead to dysbiosis and mortality in terrestrial-breeding species, underscoring the need to further investigate recent population declines of terrestrial-breeding amphibians in the tropics.
Collapse
Affiliation(s)
- C Guilherme Becker
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35847, USA
| | - Molly C Bletz
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Sasha E Greenspan
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35847, USA
| | - David Rodriguez
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Carolina Lambertini
- Department of Animal Biology, Universidade Estadual de Campinas, Campinas, SP 13083-865, Brazil
| | - Thomas S Jenkinson
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, CA 94720, USA
| | - Paulo R Guimarães
- Departamento de Ecologia, Universidade de Sao Paulo, Sao Paulo, SP 05508-090, Brazil
| | - Ana Paula A Assis
- Departamento de Ecologia, Universidade de Sao Paulo, Sao Paulo, SP 05508-090, Brazil
| | - Robert Geffers
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, LS 38124, Germany
| | - Michael Jarek
- Department of Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, LS 38124, Germany
| | - Luís Felipe Toledo
- Department of Animal Biology, Universidade Estadual de Campinas, Campinas, SP 13083-865, Brazil
| | - Miguel Vences
- Division of Evolutionary Biology, Zoological Institute, Braunschweig University of Technology, Braunschweig, LS 38106, Germany
| | - Célio F B Haddad
- Department of Zoology and Aquaculture Center (CAUNESP), Universidade Estadual Paulista, Rio Claro, SP 13506-900, Brazil
| |
Collapse
|
33
|
Greenspan SE, Lyra ML, Migliorini GH, Kersch-Becker MF, Bletz MC, Lisboa CS, Pontes MR, Ribeiro LP, Neely WJ, Rezende F, Romero GQ, Woodhams DC, Haddad CFB, Toledo LF, Becker CG. Arthropod-bacteria interactions influence assembly of aquatic host microbiome and pathogen defense. Proc Biol Sci 2019; 286:20190924. [PMID: 31238845 DOI: 10.1098/rspb.2019.0924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The host-associated microbiome is vital to host immunity and pathogen defense. In aquatic ecosystems, organisms may interact with environmental bacteria to influence the pool of potential symbionts, but the effects of these interactions on host microbiome assembly and pathogen resistance are unresolved. We used replicated bromeliad microecosystems to test for indirect effects of arthropod-bacteria interactions on host microbiome assembly and pathogen burden, using tadpoles and the fungal amphibian pathogen Batrachochytrium dendrobatidis as a model host-pathogen system. Arthropods influenced host microbiome assembly by altering the pool of environmental bacteria, with arthropod-bacteria interactions specifically reducing host colonization by transient bacteria and promoting antimicrobial components of aquatic bacterial communities. Arthropods also reduced fungal zoospores in the environment, but fungal infection burdens in tadpoles corresponded most closely with arthropod-mediated patterns in microbiome assembly. This result indicates that the cascading effects of arthropods on the maintenance of a protective host microbiome may be more strongly linked to host health than negative effects of arthropods on pools of pathogenic zoospores. Our work reveals tight links between healthy ecosystem dynamics and the functioning of host microbiomes, suggesting that ecosystem disturbances such as loss of arthropods may have downstream effects on host-associated microbial pathogen defenses and host fitness.
Collapse
Affiliation(s)
- Sasha E Greenspan
- 1 Department of Biological Sciences, The University of Alabama , Tuscaloosa, AL 35487 , USA
| | - Mariana L Lyra
- 2 Department of Zoology and Aquaculture Center (CAUNESP), Universidade Estadual Paulista , Rio Claro , SP 13506-900 , Brazil
| | - Gustavo H Migliorini
- 3 Programa de Pós-graduação em Biologia Animal, Universidade Estadual Paulista 'Júlio de Mesquita Filho' , São José do Rio Preto SP 15054-000 , Brazil
| | - Mônica F Kersch-Becker
- 1 Department of Biological Sciences, The University of Alabama , Tuscaloosa, AL 35487 , USA
| | - Molly C Bletz
- 4 Department of Biology, University of Massachusetts Boston , Boston, MA 02125 , USA
| | | | - Mariana R Pontes
- 6 Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, SP 13083-862 , Brazil.,8 Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Universidade Estadual de Campinas , Campinas, SP 13083-862 , Brazil
| | - Luisa P Ribeiro
- 6 Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, SP 13083-862 , Brazil.,8 Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Universidade Estadual de Campinas , Campinas, SP 13083-862 , Brazil
| | - Wesley J Neely
- 1 Department of Biological Sciences, The University of Alabama , Tuscaloosa, AL 35487 , USA
| | - Felipe Rezende
- 6 Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, SP 13083-862 , Brazil
| | - Gustavo Q Romero
- 7 Departamento de Biologia Animal, Universidade Estadual de Campinas , Campinas SP 13083-862 , Brazil
| | - Douglas C Woodhams
- 4 Department of Biology, University of Massachusetts Boston , Boston, MA 02125 , USA
| | - Célio F B Haddad
- 2 Department of Zoology and Aquaculture Center (CAUNESP), Universidade Estadual Paulista , Rio Claro , SP 13506-900 , Brazil
| | - Luís Felipe Toledo
- 8 Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Universidade Estadual de Campinas , Campinas, SP 13083-862 , Brazil
| | - C Guilherme Becker
- 1 Department of Biological Sciences, The University of Alabama , Tuscaloosa, AL 35487 , USA
| |
Collapse
|
34
|
Muletz-Wolz CR, Fleischer RC, Lips KR. Fungal disease and temperature alter skin microbiome structure in an experimental salamander system. Mol Ecol 2019; 28:2917-2931. [PMID: 31066947 DOI: 10.1111/mec.15122] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/27/2019] [Accepted: 04/25/2019] [Indexed: 12/29/2022]
Abstract
Pathogens compete with host microbiomes for space and resources. Their shared environment impacts pathogen-microbiome-host interactions, which can lead to variation in disease outcome. The skin microbiome of red-backed salamanders (Plethodon cinereus) can reduce infection by the pathogen Batrachochytrium dendrobatidis (Bd) at moderate infection loads, with high species richness and high abundance of competitors as putative mechanisms. However, it is unclear if the skin microbiome can reduce epizootic Bd loads across temperatures. We conducted a laboratory experiment to quantify skin microbiome and host responses (P. cinereus: n = 87) to Bd at mimicked epizootic loads across temperatures (13, 17 and 21°C). We quantified skin microbiomes using 16S rRNA gene metabarcoding and identified operational taxonomic units (OTUs) taxonomically similar to culturable bacteria known to kill Bd (anti-Bd OTUs). Prior to pathogen exposure, temperature changed the microbiome (OTU richness decreased by 12% and the abundance of anti-Bd OTUs increased by 18% per degree increase in temperature), but these changes were not predictive of disease outcome. After exposure, Bd changed the microbiome (OTU richness decreased by 0.1% and the abundance of anti-Bd OTUs increased by 0.2% per 1% increase in Bd load) and caused high host mortality across temperatures (35/45: 78%). Temperature indirectly impacted microbiome change and mortality through its direct effect on pathogen load. We did not find support for the microbiome impacting Bd load or host survival. Our research reveals complex host, pathogen, microbiome and environmental interactions to demonstrate that during epizootic events the microbiome will be unlikely to reduce pathogen invasion, even for putatively Bd-resistant species.
Collapse
Affiliation(s)
- Carly R Muletz-Wolz
- Department of Biology, University of Maryland, College Park, Maryland.,Center for Conservation Genomics, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, District of Columbia
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian National Zoological Park and Conservation Biology Institute, Washington, District of Columbia
| | - Karen R Lips
- Department of Biology, University of Maryland, College Park, Maryland
| |
Collapse
|
35
|
Ingala MR, Becker DJ, Bak Holm J, Kristiansen K, Simmons NB. Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecol Evol 2019; 9:6508-6523. [PMID: 31236240 PMCID: PMC6580296 DOI: 10.1002/ece3.5228] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/28/2022] Open
Abstract
Host ecological factors and external environmental factors are known to influence the structure of gut microbial communities, but few studies have examined the impacts of environmental changes on microbiotas in free-ranging animals. Rapid land-use change has the potential to shift gut microbial communities in wildlife through exposure to novel bacteria and/or by changing the availability or quality of local food resources. The consequences of such changes to host health and fitness remain unknown and may have important implications for pathogen spillover between humans and wildlife. To better understand the consequences of land-use change on wildlife microbiotas, we analyzed long-term dietary trends, gut microbiota composition, and innate immune function in common vampire bats (Desmodus rotundus) in two nearby sites in Belize that vary in landscape structure. We found that vampire bats living in a small forest fragment had more homogenous diets indicative of feeding on livestock and shifts in microbiota heterogeneity, but not overall composition, compared to those living in an intact forest reserve. We also found that irrespective of sampling site, vampire bats which consumed relatively more livestock showed shifts in some core bacteria compared with vampire bats which consumed relatively less livestock. The relative abundance of some core microbiota members was associated with innate immune function, suggesting that future research should consider the role of the host microbiota in immune defense and its relationship to zoonotic infection dynamics. We suggest that subsequent homogenization of diet and habitat loss through livestock rearing in the Neotropics may lead to disruption to the microbiota that could have downstream impacts on host immunity and cross-species pathogen transmission.
Collapse
Affiliation(s)
- Melissa R. Ingala
- Richard Gilder Graduate SchoolAmerican Museum of Natural HistoryNew YorkNew York
- Division of Vertebrate Zoology, Department of MammalogyAmerican Museum of Natural HistoryNew YorkNew York
| | - Daniel J. Becker
- Odum School of EcologyUniversity of GeorgiaAthensGeorgia
- Center for the Ecology of Infectious DiseaseUniversity of GeorgiaAthensGeorgia
- Department of BiologyIndiana UniversityBloomingtonIndiana
| | - Jacob Bak Holm
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- Clinical‐MicrobiomicsCopenhagenDenmark
| | - Karsten Kristiansen
- Department of BiologyUniversity of CopenhagenCopenhagenDenmark
- BGIShenzhenChina
| | - Nancy B. Simmons
- Division of Vertebrate Zoology, Department of MammalogyAmerican Museum of Natural HistoryNew YorkNew York
| |
Collapse
|
36
|
Kueneman JG, Bletz MC, McKenzie VJ, Becker CG, Joseph MB, Abarca JG, Archer H, Arellano AL, Bataille A, Becker M, Belden LK, Crottini A, Geffers R, Haddad CFB, Harris RN, Holden WM, Hughey M, Jarek M, Kearns PJ, Kerby JL, Kielgast J, Kurabayashi A, Longo AV, Loudon A, Medina D, Nuñez JJ, Perl RGB, Pinto-Tomás A, Rabemananjara FCE, Rebollar EA, Rodríguez A, Rollins-Smith L, Stevenson R, Tebbe CC, Vargas Asensio G, Waldman B, Walke JB, Whitfield SM, Zamudio KR, Zúñiga Chaves I, Woodhams DC, Vences M. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat Ecol Evol 2019; 3:381-389. [DOI: 10.1038/s41559-019-0798-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022]
|
37
|
|
38
|
Trevelline BK, Fontaine SS, Hartup BK, Kohl KD. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc Biol Sci 2019; 286:20182448. [PMID: 30963956 PMCID: PMC6364583 DOI: 10.1098/rspb.2018.2448] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
The central aim of conservation biology is to understand and mitigate the effects of human activities on biodiversity. To successfully achieve this objective, researchers must take an interdisciplinary approach that fully considers the effects, both direct and indirect, of anthropogenic disturbances on wildlife physiology and health. A recent surge in research has revealed that host-associated microbiota-the archaeal, bacterial, fungal and viral communities residing on and inside organisms-profoundly influence animal health, and that these microbial communities can be drastically altered by anthropogenic activities. Therefore, conservation practitioners should consider the disruption of host-associated microbial diversity as a serious threat to wildlife populations. Despite the tremendous potential for microbiome research to improve conservation outcomes, few efforts have been made to truly integrate these fields. In this review, we call for the microbial renaissance of conservation biology, where biodiversity of host-associated microbiota is recognized as an essential component of wildlife management practices. Using evidence from the existing literature, we will examine the known effects of anthropogenic activities on the diversity of host-associated microbial communities and integrate approaches for maintaining microbial diversity to successfully achieve conservation objectives.
Collapse
Affiliation(s)
- Brian K. Trevelline
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samantha S. Fontaine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Barry K. Hartup
- Department of Conservation Medicine, International Crane Foundation, Baraboo, WI, USA
- School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Kevin D. Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
39
|
Bletz MC, Kelly M, Sabino-Pinto J, Bales E, Van Praet S, Bert W, Boyen F, Vences M, Steinfartz S, Pasmans F, Martel A. Disruption of skin microbiota contributes to salamander disease. Proc Biol Sci 2018; 285:rspb.2018.0758. [PMID: 30135150 DOI: 10.1098/rspb.2018.0758] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022] Open
Abstract
Escalating occurrences of emerging infectious diseases underscore the importance of understanding microbiome-pathogen interactions. The amphibian cutaneous microbiome is widely studied for its potential to mitigate disease-mediated amphibian declines. Other microbial interactions in this system, however, have been largely neglected in the context of disease outbreaks. European fire salamanders have suffered dramatic population crashes as a result of the newly emerged Batrachochytrium salamandrivorans (Bsal). In this paper, we investigate microbial interactions on multiple fronts within this system. We show that wild, healthy fire salamanders maintain complex skin microbiotas containing Bsal-inhibitory members, but these community are present at a remarkably low abundance. Through experimentation, we show that increasing bacterial densities of Bsal-inhibiting bacteria via daily addition slowed disease progression in fire salamanders. Additionally, we find that experimental-Bsal infection elicited subtle changes in the skin microbiome, with selected opportunistic bacteria increasing in relative abundance resulting in septicemic events that coincide with extensive destruction of the epidermis. These results suggest that fire salamander skin, in natural settings, maintains bacterial communities at numbers too low to confer sufficient protection against Bsal, and, in fact, the native skin microbiota can constitute a source of opportunistic bacterial pathogens that contribute to pathogenesis. By shedding light on the complex interaction between the microbiome and a lethal pathogen, these data put the interplay between skin microbiomes and a wildlife disease into a new perspective.
Collapse
Affiliation(s)
- Molly C Bletz
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA .,Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Moira Kelly
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Joana Sabino-Pinto
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Emma Bales
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Sarah Van Praet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Wim Bert
- Department of Biology, Nematology Research Unit, Faculty of Science, Ghent University, 9000 Ghent, Belgium
| | - Filip Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - Miguel Vences
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Sebastian Steinfartz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig 38106, Germany
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
40
|
Lilley TM, Anttila J, Ruokolainen L. Landscape structure and ecology influence the spread of a bat fungal disease. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13183] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Thomas M. Lilley
- Institute of Integrative BiologyUniversity of Liverpool Liverpool UK
- Finnish Museum of Natural HistoryUniversity of Helsinki Helsinki Finland
| | - Jani Anttila
- Department of BiosciencesUniversity of Helsinki Helsinki Finland
| | | |
Collapse
|
41
|
Hybrids of amphibian chytrid show high virulence in native hosts. Sci Rep 2018; 8:9600. [PMID: 29941894 PMCID: PMC6018099 DOI: 10.1038/s41598-018-27828-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023] Open
Abstract
Hybridization of parasites can generate new genotypes with high virulence. The fungal amphibian parasite Batrachochytrium dendrobatidis (Bd) hybridizes in Brazil’s Atlantic Forest, a biodiversity hotspot where amphibian declines have been linked to Bd, but the virulence of hybrid genotypes in native hosts has never been tested. We compared the virulence (measured as host mortality and infection burden) of hybrid Bd genotypes to the parental lineages, the putatively hypovirulent lineage Bd-Brazil and the hypervirulent Global Pandemic Lineage (Bd-GPL), in a panel of native Brazilian hosts. In Brachycephalus ephippium, the hybrid exceeded the virulence (host mortality) of both parents, suggesting that novelty arising from hybridization of Bd is a conservation concern. In Ischnocnema parva, host mortality in the hybrid treatment was intermediate between the parent treatments, suggesting that this species is more vulnerable to the aggressive phenotypes associated with Bd-GPL. Dendropsophus minutus showed low overall mortality, but infection burdens were higher in frogs treated with hybrid and Bd-GPL genotypes than with Bd-Brazil genotypes. Our experiment suggests that Bd hybrids have the potential to increase disease risk in native hosts. Continued surveillance is needed to track potential spread of hybrid genotypes and detect future genomic shifts in this dynamic disease system.
Collapse
|
42
|
Becker CG, Longo AV, Haddad CFB, Zamudio KR. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc Biol Sci 2018; 284:rspb.2017.0582. [PMID: 28835551 DOI: 10.1098/rspb.2017.0582] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Deforestation has detrimental consequences on biodiversity, affecting species interactions at multiple scales. The associations among vertebrates, pathogens and their commensal/symbiotic microbial communities (i.e. microbiomes) have important downstream effects for biodiversity conservation, yet we know little about how deforestation contributes to changes in host microbial diversity and pathogen abundance. Here, we tested the effects of landcover, forest connectivity and infection by the chytrid fungus Batrachochytrium dendrobatidis (Bd) on amphibian skin bacterial diversity along deforestation gradients in Brazilian landscapes. If disturbance to natural habitat alters skin microbiomes as it does in vertebrate host communities, then we would expect higher host bacterial diversity in natural forest habitats. Bd infection loads are also often higher in these closed-canopy forests, which may in turn impact skin-associated bacterial communities. We found that forest corridors shaped composition of host skin microbiomes; high forest connectivity predicted greater similarity of skin bacterial communities among host populations. In addition, we found that host skin bacterial diversity and Bd loads increased towards natural vegetation. Because symbiotic bacteria can potentially buffer hosts from Bd infection, we also evaluated the bi-directional microbiome-Bd link but failed to find a significant effect of skin bacterial diversity reducing Bd infections. Although weak, we found support for Bd increasing bacterial diversity and/or for core bacteria dominance reducing Bd loads. Our research incorporates a critical element in the study of host microbiomes by linking environmental heterogeneity of landscapes to the host-pathogen-microbiome triangle.
Collapse
Affiliation(s)
- C G Becker
- Universidade Estadual Paulista, Instituto de Biociências, Departamento de Zoologia and Centro de Aquicultura (CAUNESP), 13506-900 Rio Claro, SP, Brazil
| | - A V Longo
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - C F B Haddad
- Universidade Estadual Paulista, Instituto de Biociências, Departamento de Zoologia and Centro de Aquicultura (CAUNESP), 13506-900 Rio Claro, SP, Brazil
| | - K R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|