1
|
Youngsteadt E, Prado SG, Duran Aquino AK, Peña Valdeiglesias J, Gonzales Ojeda T, Garate Quispe JS. Urbanization drives partner switching and loss of mutualism in an ant-plant symbiosis. Ecology 2024; 105:e4449. [PMID: 39400307 DOI: 10.1002/ecy.4449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 10/15/2024]
Abstract
Mutualistic interactions between species underpin biodiversity and ecosystem function, but may be lost when partners respond differently to abiotic conditions. Except for a few prominent examples, effects of global anthropogenic change on mutualisms are poorly understood. Here we assess the effects of urbanization on a symbiosis in which the plant Cordia nodosa house ants in hollow structures (domatia) in exchange for defense against herbivores. We expected to find that mutualist ants would be replaced in the city by heat-tolerant opportunists, leaving urban plants vulnerable to herbivory. In five protected forest sites and five urban forest fragments in southeast Perú, we recorded the identity and heat tolerance (CTmax) of ant residents of C. nodosa. We also assayed their plant-defensive behaviors and their effects on herbivory. We characterized the urban heat-island effect in ambient temperatures and within domatia. Forest plants housed a consistent ant community dominated by three specialized plant ants, whereas urban plants housed a suite of 10 opportunistic taxa that were, collectively, about 13 times less likely than forest ants to respond defensively to plant disturbance. In the forest, ant exclusion had the expected effect of increasing herbivory, but in urban sites, exclusion reduced herbivory. Despite poor ant defense in urban sites, we detected no difference in total standing herbivory, perhaps because herbivores themselves also declined in the city. Urban sites were warmer than forest sites (daily maxima in urban domatia averaged 1.6°C hotter), and the urban ant community as a whole was slightly more heat tolerant. These results illustrate a case of mutualism loss associated with anthropogenic disturbance. If urbanization is representative of increasing anthropogenic stressors more broadly, we might expect to see destabilization of myrmecophytic mutualisms in forest ecosystems in the future.
Collapse
Affiliation(s)
- Elsa Youngsteadt
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
- Center for Geospatial Analytics, North Carolina State University, Raleigh, North Carolina, USA
| | - Sara Guiti Prado
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Alexandra Karlyz Duran Aquino
- Departamento Académico de Ingeniería Forestal y Medio Ambiente, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
| | - Joel Peña Valdeiglesias
- Departamento Académico de Ingeniería Forestal y Medio Ambiente, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
- Earth Sciences and Dynamics of Ecology and Landscape Research Group, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
| | | | - Jorge Santiago Garate Quispe
- Departamento Académico de Ingeniería Forestal y Medio Ambiente, Facultad de Ingeniería, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
- Earth Sciences and Dynamics of Ecology and Landscape Research Group, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
- Ecology and Restoration of Tropical Ecosystems Research Group, Universidad Nacional Amazónica de Madre de Dios, Puerto Maldonado, Peru
| |
Collapse
|
2
|
Wang Y, Mao J, Brelsford CM, Ricciuto DM, Yuan F, Shi X, Rastogi D, Mayes MM, Kao SC, Warren JM, Griffiths NA, Cheng X, Weston DJ, Zhou Y, Gu L, Thornton PE. Thermal, water, and land cover factors led to contrasting urban and rural vegetation resilience to extreme hot months. PNAS NEXUS 2024; 3:pgae147. [PMID: 38638834 PMCID: PMC11026108 DOI: 10.1093/pnasnexus/pgae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
With continuing global warming and urbanization, it is increasingly important to understand the resilience of urban vegetation to extreme high temperatures, but few studies have examined urban vegetation at large scale or both concurrent and delayed responses. In this study, we performed an urban-rural comparison using the Enhanced Vegetation Index and months that exceed the historical 90th percentile in mean temperature (referred to as "hot months") across 85 major cities in the contiguous United States. We found that hot months initially enhanced vegetation greenness but could cause a decline afterwards, especially for persistent (≥4 months) and intense (≥+2 °C) episodes in summer. The urban responses were more positive than rural in the western United States or in winter, but more negative during spring-autumn in the eastern United States. The east-west difference can be attributed to the higher optimal growth temperatures and lower water stress levels of the western urban vegetation than the rural. The urban responses also had smaller magnitudes than the rural responses, especially in deciduous forest biomes, and least in evergreen forest biomes. Within each biome, analysis at 1 km pixel level showed that impervious fraction and vegetation cover, local urban heat island intensity, and water stress were the key drivers of urban-rural differences. These findings advance our understanding of how prolonged exposure to warm extremes, particularly within urban environments, affects vegetation greenness and vitality. Urban planners and ecosystem managers should prioritize the long and intense events and the key drivers in fostering urban vegetation resilience to heat waves.
Collapse
Affiliation(s)
- Yaoping Wang
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jiafu Mao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Christa M Brelsford
- Geospatial Science and Human Security Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Analytics, Intelligence and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Daniel M Ricciuto
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Fengming Yuan
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Xiaoying Shi
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Deeksha Rastogi
- Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Melanie M Mayes
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Shih-Chieh Kao
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Natalie A Griffiths
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Xinghua Cheng
- Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT 06269, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Yuyu Zhou
- Department of Geography, The University of Hong Kong, Hong Kong, 999077, China
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Peter E Thornton
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
3
|
Romanelli JP, Piana MR, Klaus VH, Brancalion PHS, Murcia C, Cardou F, Wallace KJ, Adams C, Martin PA, Burton PJ, Diefenderfer HL, Gornish ES, Stanturf J, Beyene M, Santos JPB, Rodrigues RR, Cadotte MW. Convergence and divergence in science and practice of urban and rural forest restoration. Biol Rev Camb Philos Soc 2024; 99:295-312. [PMID: 37813383 DOI: 10.1111/brv.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Forest restoration has never been higher on policymakers' agendas. Complex and multi-dimensional arrangements across the urban-rural continuum challenge restorationists and require integrative approaches to strengthen environmental protection and increase restoration outcomes. It remains unclear if urban and rural forest restoration are moving towards or away from each other in practice and research, and whether comparing research outcomes can help stakeholders to gain a clearer understanding of the interconnectedness between the two fields. This study aims to identify the challenges and opportunities for enhancing forest restoration in both urban and rural systems by reviewing the scientific evidence, engaging with key stakeholders and using an urban-rural forest restoration framework. Using the Society for Ecological Restoration's International Principles as discussion topics, we highlight aspects of convergence and divergence between the two fields to broaden our understanding of forest restoration and promote integrative management approaches to address future forest conditions. Our findings reveal that urban and rural forest restoration have convergent and divergent aspects. We emphasise the importance of tailoring goals and objectives to specific contexts and the need to design different institutions and incentives based on the social and ecological needs and goals of stakeholders in different regions. Additionally, we discuss the challenges of achieving high levels of ecological restoration and the need to go beyond traditional ecology to plan, implement, monitor, and adaptively manage restored forests. We suggest that rivers and watersheds could serve as a common ground linking rural and urban landscapes and that forest restoration could interact with other environmental protection measures. We note the potential for expanding the creative vision associated with increasing tree-containing environments in cities to generate more diverse and resilient forest restoration outcomes in rural settings. This study underscores the value of integrative management approaches in addressing future forest conditions across the urban-rural continuum. Our framework provides valuable insights for policymakers, researchers, and decision-makers to advance the field of forest restoration and address the challenges of restoration across the urban-rural continuum. The rural-urban interface serves as a convergence point for forest restoration, and both urban and rural fields can benefit from each other's expertise.
Collapse
Affiliation(s)
- João P Romanelli
- Laboratory of Ecology and Forest Restoration (LERF), Department of Biological Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Max R Piana
- Northern Research Station, USDA Forest Service, 160 Holdsworth Way, Amherst, MA, 01003, USA
| | - Valentin H Klaus
- ETH Zurich, Institute of Agricultural Sciences, Universitätstr. 2, Zurich, 8092, Switzerland
| | - Pedro H S Brancalion
- Department of Forest Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Carolina Murcia
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Françoise Cardou
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Kiri Joy Wallace
- Te Tumu Whakaora Taiao - Environmental Research Institute, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| | - Cristina Adams
- Forest Governance Research Group (GGF), Institute of Energy and Environment (IEE), University of São Paulo, Av. Prof. Luciano Gualberto, 1289, São Paulo, SP, 05508-010, Brazil
| | - Philip A Martin
- Basque Centre for Climate Change (BC3), Edificio sede no 1, planta 1, Parque científico UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain
| | - Philip J Burton
- Department of Ecosystem Science & Management, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
- Symbios Research & Restoration, Smithers, BC, V0J 2N4, Canada
| | - Heida L Diefenderfer
- University of Washington and Pacific Northwest National Laboratory, 1529 West Sequim Bay Road, Sequim, WA, 98382, USA
| | - Elise S Gornish
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
| | - John Stanturf
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu, 51014, Estonia
| | - Menilek Beyene
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - João Paulo Bispo Santos
- Laboratory of Ecology and Forest Restoration (LERF), Department of Biological Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Ricardo R Rodrigues
- Laboratory of Ecology and Forest Restoration (LERF), Department of Biological Sciences, 'Luiz de Queiroz' College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| |
Collapse
|
4
|
Merckx T, Nielsen ME, Kankaanpää T, Kadlec T, Yazdanian M, Kivelä SM. Continent-wide parallel urban evolution of increased heat tolerance in a common moth. Evol Appl 2024; 17:e13636. [PMID: 38283598 PMCID: PMC10810253 DOI: 10.1111/eva.13636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 01/30/2024] Open
Abstract
Urbanization and its urban-heat-island effect (UHI) have expanding footprints worldwide. The UHI means that urban habitats experience a higher mean and more frequent extreme high temperatures than rural habitats, impacting the ontogeny and resilience of urban biodiversity. However, many organisms occupy different microhabitats during different life stages and thus may experience the UHI differently across their development. While evolutionary changes in heat tolerance in line with the UHI have been demonstrated, it is unknown whether such evolutionary responses can vary across development. Here, using common-garden-reared Chiasmia clathrata moths from urban and rural populations from three European countries, we tested for urban evolution of heat shock tolerance in two life stages: larvae and adults. Our results indicate widespread urban evolution of increased heat tolerance in the adult stage only, suggesting that the UHI may be a stronger selective agent in adults. We also found that the difference in heat tolerance between urban and rural populations was similar to the difference between Mid- and North-European regions, suggesting similarity between adaptation to the UHI and natural, latitudinal temperature variation. Our observations incentivize further research to quantify the impact of these UHI adaptations on fitness during urbanization and climate change, and to check whether life-stage-specific adaptations in heat tolerance are typical of other ectothermic species that manage to survive in urbanized settings.
Collapse
Affiliation(s)
- Thomas Merckx
- WILD, Biology DepartmentVrije Universiteit BrusselBrusselsBelgium
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| | - Matthew E. Nielsen
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
- Faculty 2 Biology/ChemistryUniversity of BremenBremenGermany
| | | | - Tomáš Kadlec
- Department of EcologyCzech University of Life Sciences PraguePragueCzech Republic
| | | | - Sami M. Kivelä
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
5
|
Lovell RSL, Collins S, Martin SH, Pigot AL, Phillimore AB. Space-for-time substitutions in climate change ecology and evolution. Biol Rev Camb Philos Soc 2023; 98:2243-2270. [PMID: 37558208 DOI: 10.1111/brv.13004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.
Collapse
Affiliation(s)
- Rebecca S L Lovell
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Sinead Collins
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Simon H Martin
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Albert B Phillimore
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
6
|
Lokatis S, Jeschke JM, Bernard-Verdier M, Buchholz S, Grossart HP, Havemann F, Hölker F, Itescu Y, Kowarik I, Kramer-Schadt S, Mietchen D, Musseau CL, Planillo A, Schittko C, Straka TM, Heger T. Hypotheses in urban ecology: building a common knowledge base. Biol Rev Camb Philos Soc 2023; 98:1530-1547. [PMID: 37072921 DOI: 10.1111/brv.12964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/20/2023]
Abstract
Urban ecology is a rapidly growing research field that has to keep pace with the pressing need to tackle the sustainability crisis. As an inherently multi-disciplinary field with close ties to practitioners and administrators, research synthesis and knowledge transfer between those different stakeholders is crucial. Knowledge maps can enhance knowledge transfer and provide orientation to researchers as well as practitioners. A promising option for developing such knowledge maps is to create hypothesis networks, which structure existing hypotheses and aggregate them according to topics and research aims. Combining expert knowledge with information from the literature, we here identify 62 research hypotheses used in urban ecology and link them in such a network. Our network clusters hypotheses into four distinct themes: (i) Urban species traits & evolution, (ii) Urban biotic communities, (iii) Urban habitats and (iv) Urban ecosystems. We discuss the potentials and limitations of this approach. All information is openly provided as part of an extendable Wikidata project, and we invite researchers, practitioners and others interested in urban ecology to contribute additional hypotheses, as well as comment and add to the existing ones. The hypothesis network and Wikidata project form a first step towards a knowledge base for urban ecology, which can be expanded and curated to benefit both practitioners and researchers.
Collapse
Affiliation(s)
- Sophie Lokatis
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, Leipzig, 04103, Germany
| | - Jonathan M Jeschke
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Maud Bernard-Verdier
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Sascha Buchholz
- Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, Münster, 48149, Germany
| | - Hans-Peter Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Institute of Biochemistry and Biology, Potsdam University, Maulbeerallee 2, Potsdam, 14469, Germany
| | - Frank Havemann
- Institut für Bibliotheks- und Informationswissenschaft, Humboldt-Universität zu Berlin, Dorotheenstraße 26, Berlin, 10117, Germany
| | - Franz Hölker
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Yuval Itescu
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Ingo Kowarik
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
| | - Stephanie Kramer-Schadt
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, 10315, Germany
| | - Daniel Mietchen
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute for Globally Distributed Open Research and Education (IGDORE), Gothenburg, Sweden
| | - Camille L Musseau
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
| | - Aimara Planillo
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str. 17, Berlin, 10315, Germany
| | - Conrad Schittko
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
| | - Tanja M Straka
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Institute of Ecology, Technische Universität Berlin, Rothenburgstr. 12, Berlin, 12165, Germany
| | - Tina Heger
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, Berlin, 14195, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, Berlin, 12587, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, Berlin, 14195, Germany
- Technical University of Munich, Restoration Ecology, Emil-Ramann-Str. 6, Freising, 85350, Germany
| |
Collapse
|
7
|
Yang L, Zhao S, Liu S. Urban environments provide new perspectives for forecasting vegetation phenology responses under climate warming. GLOBAL CHANGE BIOLOGY 2023; 29:4383-4396. [PMID: 37249105 DOI: 10.1111/gcb.16761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023]
Abstract
Given that already-observed temperature increase within cities far exceeds the projected global temperature rise by the end of the century, urban environments often offer a unique opportunity for studying ecosystem response to future warming. However, the validity of thermal gradients in space serving as a substitute for those in time is rarely tested. Here, we investigated vegetation phenology dynamics in China's 343 cities and empirically test whether phenological responses to spatial temperature rise in urban settings can substitute for those to temporal temperature rise in their natural counterparts based on satellite-derived vegetation phenology and land surface temperature from 2003 to 2018. We found prevalent advancing spring phenology with "high confidence" and delaying autumn phenology with "medium confidence" under the context of widespread urban warming. Furthermore, we showed that space cannot substitute for time in predicting phenological shifts under climate warming at the national scale and for most cities. The thresholds of ~11°C mean annual temperature and ~600 mm annual precipitation differentiated the magnitude of phenological sensitivity to temperature across space and through time. Below those thresholds, there existed stronger advanced spring phenology and delayed autumn phenology across the spatial urbanization gradients than through time, and vice versa. Despite the complex and diverse relationships between phenological sensitivities across space and through time, we found that the directions of the temperature changes across spatial gradients were converged (i.e., mostly increased), but divergent through temporal gradients (i.e., increased or decreased without a predominant direction). Similarly, vegetation phenology changes more uniformly over space than through time. These results suggested that the urban environments provide a real-world condition to understand vegetation phenology response under future warming.
Collapse
Affiliation(s)
- Lu Yang
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Shuqing Zhao
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- College of Ecology and the Environment, Hainan University, Hainan, China
| | - Shuguang Liu
- College of Ecology and the Environment, Hainan University, Hainan, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, and College of Biological Science and Technology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
8
|
Su Y, Wang X, Gong C, Chen L, Cui B, Huang B, Wang X. Advances in spring leaf phenology are mainly triggered by elevated temperature along the rural-urban gradient in Beijing, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:777-791. [PMID: 36943496 DOI: 10.1007/s00484-023-02454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 05/25/2023]
Abstract
Urbanization-induced phenological changes have received considerable attention owing to their implications for determining urban ecosystem productivity and predicting the response of plants and ecosystem carbon cycles to future climate change. However, inconsistent rural-urban gradients in plant phenology remain, and phenological drivers other than temperature are poorly understood. In this study, we simultaneously observed the micro-climate and spring leaf phenology of seven woody plant species at 13 parks along a rural-urban gradient in Beijing, China. The minimum (Tmin) and mean (Tmean) air temperature and the minimum (VPDmin) and mean (VPDmean) vapor pressure deficit increased significantly along the rural-urban gradient, but the maximum air temperature (Tmax) and maximum vapor pressure deficit (VPDmax) did not. All observed leaf phenological phases for the seven species were significantly advanced along the rural-urban gradient by 0.20 to 1.02 days/km. Advances in the occurrence of leaf phenological events were significantly correlated with increases in Tmean (accounting for 57-59% variation), Tmin (21-26%), VPDmin (12-16%), and VPDmean (3-5%), but not with changes in Tmax or VPDmax. Advances in spring leaf phenology along the rural-urban gradient differed between non-native species and native species and between shrubs and trees. The reason may be mainly that the sensitivities of spring leaf phenology to micro-climate differ with species origin and growth form. This study highlights that urbanization-induced increases in Tmean and Tmin are the major contributors to advances in spring leaf phenology along the rural-urban gradient, exerting less influence on native species than on non-native species.
Collapse
Affiliation(s)
- Yuebo Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China
- Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, China
| | - Xuming Wang
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Science, Fujian Normal University, Fuzhou, 350007, China
| | - Cheng Gong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Chen
- Torch High Technology Industry Development Center, Ministry of Science & Technology, Beijing, 100045, China
| | - Bowen Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binbin Huang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoke Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Ibsen PC, Santiago LS, Shiflett SA, Chandler M, Jenerette GD. Irrigated urban trees exhibit greater functional trait plasticity compared to natural stands. Biol Lett 2023; 19:20220448. [PMID: 36596464 PMCID: PMC9810417 DOI: 10.1098/rsbl.2022.0448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Urbanization creates novel ecosystems comprised of species assemblages and environments with no natural analogue. Moreover, irrigation can alter plant function compared to non-irrigated systems. However, the capacity of irrigation to alter functional trait patterns across multiple species is unknown but may be important for the dynamics of urban ecosystems. We evaluated the hypothesis that urban irrigation influences plasticity in functional traits by measuring carbon-gain and water-use traits of 30 tree species planted in Southern California, USA spanning a coastal-to-desert gradient. Tree species respond to irrigation through increasing the carbon-gain trait relationship of leaf nitrogen per specific leaf area compared to their native habitat. Moreover, most species shift to a water-use strategy of greater water loss through stomata when planted in irrigated desert-like environments compared to coastal environments, implying that irrigated species capitalize on increased water availability to cool their leaves in extreme heat and high evaporative demand conditions. Therefore, irrigated urban environments increase the plasticity of trait responses compared to native ecosystems, allowing for novel response to climatic variation. Our results indicate that trees grown in water-resource-rich urban ecosystems can alter their functional traits plasticity beyond those measured in native ecosystems, which can lead to plant trait dynamics with no natural analogue.
Collapse
Affiliation(s)
- Peter C. Ibsen
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA,Geosciences and Environmental Change Science Center, United States Geological Survey, Denver, CO 80225, USA
| | - Louis S. Santiago
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Sheri A. Shiflett
- Department of Environmental Sciences, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | | | - G. Darrel Jenerette
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
10
|
Dung beetles prefer used land over natural greenspace in urban landscape. Sci Rep 2022; 12:22179. [PMID: 36564513 PMCID: PMC9789146 DOI: 10.1038/s41598-022-26841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Urbanization drives land-use and patterns of biodiversity. Yet, very little is known about how biodiversity of structurally different habitats is responded to urbanization. We surveyed coprophagous dung beetles and their ecological functional groups-tunnellers, dwellers, and rollers-in shaded natural semi-evergreen forests of sacred groves and the neighbouring relatively open home gardens of sites that represent three levels of urbanization to address the following questions: (1) Do sacred groves have higher abundance, richness, and diversity of dung beetles than home gardens? (2) Is urbanization a key driver of dung beetle abundance, richness, diversity, and community? (3) Is dung beetle assemblage of sacred groves immune to urbanization? and (4) Which ecological functional groups of dung beetles are affected by urbanization? We hypothesized that the sacred groves have a distinct community, resulting in higher abundance, richness, and diversity of dung beetles than home gardens, and the dung beetle assemblage of sacred groves may be immune to urbanization. We sampled the beetles during wet and dry periods using cow dung as a bait. Against our predictions, dung beetle abundance, richness, and diversity were higher in used lands than sacred groves, particularly in urban landscapes. The two habitats had distinct compositions of dung beetles. Tunnellers and rollers were affected by urbanization, but not dwellers. Heliophilic and synanthropic species characterized by smaller species dominated overall catches in the used lands of urban areas. Results downplay sacred grove as a potential refuge for dung beetles and suggest that the biodiversity of native forests may be affected more by urbanization than the manipulated anthropogenic habitats.
Collapse
|
11
|
Kullberg AT, Feeley KJ. Limited acclimation of leaf traits and leaf temperatures in a subtropical urban heat island. TREE PHYSIOLOGY 2022; 42:2266-2281. [PMID: 35708568 DOI: 10.1093/treephys/tpac066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
The consequences of rising temperatures for trees will vary between species based on their abilities to acclimate their leaf thermoregulatory traits and photosynthetic thermal tolerances. We tested the hypotheses that adult trees in warmer growing conditions (i) acclimate their thermoregulatory traits to regulate leaf temperatures, (ii) acclimate their thermal tolerances such that tolerances are positively correlated with leaf temperature and (iii) that species with broader thermal niche breadths have greater acclimatory abilities. To test these hypotheses, we measured leaf traits and thermal tolerances of seven focal tree species across steep thermal gradients in Miami's urban heat island. We found that some functional traits varied significantly across air temperatures within species. For example, leaf thickness increased with maximum air temperature in three species, and leaf mass per area and leaf reflectance both increased with air temperature in one species. Only one species was marginally more homeothermic than expected by chance due to acclimation of its thermoregulatory traits, but this acclimation was insufficient to offset elevated air temperatures. Thermal tolerances acclimated to higher maximum air temperatures in two species. As a result of limited acclimation, leaf thermal safety margins (TSMs) were narrower for trees in hotter areas. We found some support for our hypothesis that species with broader thermal niches are better at acclimating to maintain more stable TSMs across the temperature gradients. These findings suggest that trees have limited abilities to acclimate to high temperatures and that thermal niche specialists may be at a heightened risk of thermal stress as global temperatures continue to rise.
Collapse
Affiliation(s)
- Alyssa T Kullberg
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Kenneth J Feeley
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
- Fairchild Tropical Botanic Garden, Coral Gables, FL 33156, USA
| |
Collapse
|
12
|
Phenology of grassland plants responds to urbanization. Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractUnderstanding phenological responses of plants to changing temperatures is important because of multiple associated ecological consequences. Cities with their urban heat island can be used as laboratories to study phenological adaptation to climate change. However, previous phenology studies focused on trees and did not disentangle the role of micro-climate and urban structures.We studied reproductive phenology of dry grassland species in response to micro-climate and urbanization in Berlin, Germany. Phenological stages were recorded weekly at the individual plant level for five native grassland species across 30 dry grassland sites along an urbanization and temperature gradient. We estimated 50% onset probabilities for flowering and seed maturation of populations, and analysed variation in onset dates using regression models.Early flowering species significantly advanced flowering phenology with increasing mean air temperature but were little influenced by urbanization. By contrast, late-flowering species showed significant phenological responses to both air temperature and urbanization, possibly because micro-climate was most affected by urbanization in late summer. Surprisingly, not all grassland species showed an advanced phenology with increasing intensity of urbanization.This contradicts observed patterns for urban trees, indicating that phenological shifts in urban areas cannot be generalized from the observation of one growth form or taxonomic group. Growth form appears as a possible determinant of phenological responses. Results suggest that the phenology of dry grassland species may directly respond to the urban heat island, albeit with variable direction and magnitude. This has implications for ecosystem services, shifted allergy seasons, changes of biogeochemical cycles and potential ecological mismatches.
Collapse
|
13
|
Winchell KM, Aviles‐Rodriguez KJ, Carlen EJ, Miles LS, Charmantier A, De León LF, Gotanda KM, Rivkin LR, Szulkin M, Verrelli BC. Moving past the challenges and misconceptions in urban adaptation research. Ecol Evol 2022; 12:e9552. [PMID: 36425909 PMCID: PMC9679025 DOI: 10.1002/ece3.9552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 10/14/2023] Open
Abstract
Although the field of urban evolutionary ecology has recently expanded, much progress has been made in identifying adaptations that arise as a result of selective pressures within these unique environments. However, as studies within urban environments have rapidly increased, researchers have recognized that there are challenges and opportunities in characterizing urban adaptation. Some of these challenges are a consequence of increased direct and indirect human influence, which compounds long-recognized issues with research on adaptive evolution more generally. In this perspective, we discuss several common research challenges to urban adaptation related to (1) methodological approaches, (2) trait-environment relationships and the natural history of organisms, (3) agents and targets of selection, and (4) habitat heterogeneity. Ignoring these challenges may lead to misconceptions and further impede our ability to draw conclusions regarding evolutionary and ecological processes in urban environments. Our goal is to first shed light on the conceptual challenges of conducting urban adaptation research to help avoid the propagation of these misconceptions. We further summarize potential strategies to move forward productively to construct a more comprehensive picture of urban adaptation, and discuss how urban environments also offer unique opportunities and applications for adaptation research.
Collapse
Affiliation(s)
- Kristin M. Winchell
- Department of BiologyNew York UniversityNew YorkNYUSA
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Kevin J. Aviles‐Rodriguez
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
- Department of BiologyFordham UniversityBronxNew YorkUSA
| | - Elizabeth J. Carlen
- Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of BiologyFordham UniversityBronxNew YorkUSA
- Living Earth CollaborativeWashington University in St. LouisSt. LouisMissouriUSA
| | - Lindsay S. Miles
- Center for Biological Data ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Anne Charmantier
- Centre d'Ecologie Fonctionnelle et EvolutiveUniversité de Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Luis F. De León
- Department of BiologyUniversity of Massachusetts BostonBostonMassachusettsUSA
| | - Kiyoko M. Gotanda
- Department of BiologyUniversité de SherbrookeSherbrookeQuebecCanada
- Department of Biological SciencesBrock UniversitySt. Catharine'sOntarioCanada
| | - L. Ruth Rivkin
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioCanada
- Centre for Urban EnvironmentsUniversity of Toronto MississaugaMississaugaOntarioCanada
| | - Marta Szulkin
- Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | - Brian C. Verrelli
- Center for Biological Data ScienceVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
14
|
Miles LS, Murray‐Stoker D, Nhan VJ, Johnson MTJ. Effects of urbanization on specialist insect communities of milkweed are mediated by spatial and temporal variation. Ecosphere 2022. [DOI: 10.1002/ecs2.4222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Lindsay S. Miles
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
| | - David Murray‐Stoker
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| | - Vanessa J. Nhan
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
| | - Marc T. J. Johnson
- Department of Biology University of Toronto Mississauga Mississauga Ontario Canada
- Centre for Urban Environments, University of Toronto Mississauga Mississauga Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
15
|
Verrelli BC, Alberti M, Des Roches S, Harris NC, Hendry AP, Johnson MTJ, Savage AM, Charmantier A, Gotanda KM, Govaert L, Miles LS, Rivkin LR, Winchell KM, Brans KI, Correa C, Diamond SE, Fitzhugh B, Grimm NB, Hughes S, Marzluff JM, Munshi-South J, Rojas C, Santangelo JS, Schell CJ, Schweitzer JA, Szulkin M, Urban MC, Zhou Y, Ziter C. A global horizon scan for urban evolutionary ecology. Trends Ecol Evol 2022; 37:1006-1019. [PMID: 35995606 DOI: 10.1016/j.tree.2022.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 10/31/2022]
Abstract
Research on the evolutionary ecology of urban areas reveals how human-induced evolutionary changes affect biodiversity and essential ecosystem services. In a rapidly urbanizing world imposing many selective pressures, a time-sensitive goal is to identify the emergent issues and research priorities that affect the ecology and evolution of species within cities. Here, we report the results of a horizon scan of research questions in urban evolutionary ecology submitted by 100 interdisciplinary scholars. We identified 30 top questions organized into six themes that highlight priorities for future research. These research questions will require methodological advances and interdisciplinary collaborations, with continued revision as the field of urban evolutionary ecology expands with the rapid growth of cities.
Collapse
Affiliation(s)
- Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
| | - Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, WA 98195, USA
| | - Simone Des Roches
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nyeema C Harris
- Applied Wildlife Ecology Lab, Yale School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Andrew P Hendry
- Department of Biology, Redpath Museum, McGill University, Montreal, QC H3A 0C4, Canada
| | - Marc T J Johnson
- Department of Biology, Centre for Urban Environments, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Amy M Savage
- Department of Biology and Center for Computational & Integrative Biology, Rutgers University-Camden, Camden, NJ 08103, USA
| | | | - Kiyoko M Gotanda
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada; Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Lynn Govaert
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Lindsay S Miles
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - L Ruth Rivkin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON L5L 1C6, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Kristin M Winchell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kristien I Brans
- Department of Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Cristian Correa
- Instituto de Conservación Biodiversidad y Territorio, Centro de Humedales Río Cruces, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Ben Fitzhugh
- Department of Anthropology, University of Washington, Seattle, WA 98195, USA
| | - Nancy B Grimm
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Sara Hughes
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI 48109, USA
| | - John M Marzluff
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jason Munshi-South
- Louis Calder Center & Department of Biological Sciences, Fordham University, Armonk, NY 10504, USA
| | - Carolina Rojas
- Instituto de Estudios Urbanos y Territoriales, Centro de Desarrollo Sustentable CEDEUS, Pontificia Universidad Católica de Chile, El Comendador 1916, Providencia, 7500000, Santiago, Chile
| | - James S Santangelo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON L5L 1C6, Canada
| | - Christopher J Schell
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Schweitzer
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37917, USA
| | - Marta Szulkin
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Mark C Urban
- Department of Ecology and Evolutionary Biology & Center of Biological Risk, University of Connecticut, Storrs, CT 06269, USA
| | - Yuyu Zhou
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA
| | - Carly Ziter
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
16
|
Rajesh TP, Manoj K, Prashanth Ballullaya U, Shibil VK, Asha G, Varma S, Mohan P, Sinu PA. Urban tropical forest islets as hotspots of ants in general and invasive ants in particular. Sci Rep 2022; 12:12003. [PMID: 35835929 PMCID: PMC9283449 DOI: 10.1038/s41598-022-16243-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
Urbanization is a crucial driver of environmental and biodiversity change. It is suggested that urbanization favours generalist and invasive species and might harm specialists of natural and semi-natural habitats. In this study, we examined how an urbanization gradient and environmental gradients in the habitat area, habitat diversity, elevation, and proportion of built-up area influenced the abundance and richness of ants within tropical forest islet habitat in south India. We used abundance (proportional trap incidence) of overall ants, native ants, invasive ants, and Anoplolepis gracilipes—a globally notorious invasive ant of possible south Asian origin—and rarefied richness as the response variables. We found that native ant abundance was greater and A. gracilipes abundance was lesser in less-urbanized landscape compared to moderately-urbanized and highly-urbanized landscape. The richness of ants and abundance of overall and invasive ants were unaffected by the urbanization. We also found that none of the measured environmental gradients but habitat diversity influenced abundance of overall ants, native ants, overall invasive ants, and richness of ants; however, A. gracilipes abundance was negatively correlated with habitat diversity. Ant species composition of less-urbanized landscape was distinct from that of higher urbanization levels. The richness and abundance of native ants and abundance of non-A. gracilipes invasive ants decreased with the abundance of A. gracilipes. Because the forest islets of all three urbanization levels supported similar richness of native ants, the urbanization seems not to have an adverse effect for the native ants of native forest islets. The increasing population of A. gracilipes in urban green islets, however, is a concern. Future studies might investigate its effect on other invertebrates of epigeal and soil strata.
Collapse
Affiliation(s)
- T P Rajesh
- Central University of Kerala, Periya, Kerala, 671316, India
| | - K Manoj
- Central University of Kerala, Periya, Kerala, 671316, India
| | | | - V K Shibil
- Central University of Kerala, Periya, Kerala, 671316, India
| | - G Asha
- Central University of Kerala, Periya, Kerala, 671316, India
| | | | - Prabitha Mohan
- Central University of Kerala, Periya, Kerala, 671316, India
| | | |
Collapse
|
17
|
Sonti NF, Groffman PM, Nowak DJ, Henning JG, Avolio ML, Rosi EJ. Urban net primary production: Concepts, field methods, and Baltimore, Maryland, USA case study. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2562. [PMID: 35138007 DOI: 10.1002/eap.2562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Given the large and increasing amount of urban, suburban, and exurban land use on Earth, there is a need to accurately assess net primary productivity (NPP) of urban ecosystems. However, the heterogeneous and dynamic urban mosaic presents challenges to the measurement of NPP, creating landscapes that may appear more similar to a savanna than to the native landscape replaced. Studies of urban biomass have tended to focus on one type of vegetation (e.g., lawns or trees). Yet a focus on the ecology of the city should include the entire urban ecosystem rather than the separate investigation of its parts. Furthermore, few studies have attempted to measure urban aboveground NPP (ANPP) using field-based methods. Most studies project growth rates from measurements of tree diameter to estimate annual ANPP or use remote sensing approaches. In addition, field-based methods for measuring NPP do not address any special considerations for adapting such field methods to urban landscapes. Frequent planting and partial or complete removal of herbaceous and woody plants can make it difficult to accurately quantify increments and losses of plant biomass throughout an urban landscape. In this study, we review how ANPP of urban landscapes can be estimated based on field measurements, highlighting the challenges specific to urban areas. We then estimated ANPP of woody and herbaceous vegetation over a 15-year period for Baltimore, MD, USA using a combination of plot-based field data and published values from the literature. Baltimore's citywide ANPP was estimated to be 355.8 g m-2 , a result that we then put into context through comparison with other North American Long-Term Ecological Research (LTER) sites and mean annual precipitation. We found our estimate of Baltimore citywide ANPP to be only approximately half as much (or less) than ANPP at forested LTER sites of the eastern United States, and more comparable to grassland, oldfield, desert, or boreal forest ANPP. We also found that Baltimore had low productivity for its level of precipitation. We conclude with a discussion of the significance of accurate assessment of primary productivity of urban ecosystems and critical future research needs.
Collapse
Affiliation(s)
- Nancy F Sonti
- USDA Forest Service Northern Research Station, Baltimore, Maryland, USA
| | - Peter M Groffman
- Advanced Science Research Center at the Graduate Center, City University of New York, New York, New York, USA
- Cary Institute of Ecosystem Studies, Millbrook, New York, USA
| | - David J Nowak
- USDA Forest Service Northern Research Station, Syracuse, New York, USA
| | - Jason G Henning
- The Davey Institute and USDA Forest Service, Philadelphia, Pennsylvania, USA
| | - Meghan L Avolio
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, Maryland, USA
| | - Emma J Rosi
- Cary Institute of Ecosystem Studies, Millbrook, New York, USA
| |
Collapse
|
18
|
Qu J, Bonte D, Vandegehuchte ML. Phenotypic and genotypic divergence of plant‐herbivore interactions along an urbanization gradient. Evol Appl 2022; 15:865-877. [PMID: 35603025 PMCID: PMC9108311 DOI: 10.1111/eva.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022] Open
Abstract
Urban environments provide challenging conditions for species survival, including increased temperatures, drought and pollution. Species can deal with these conditions through evolution across generations or the immediate expression of phenotypic plasticity. The resulting phenotypic changes are key to the performance of species and their interactions with other species in the community. We here document patterns of herbivory in Arabidopsis thaliana along a rural–urban gradient, and tested the genetic background and ecological consequences of traits related to herbivore resistance. Aphid densities increased with urbanization levels along the gradient while plant size did not change. Offspring of urban mothers, raised under common garden conditions, were larger and had a decreased trichome density and seed set but a higher caterpillar (Pieris brassicae) tolerance. In contrast, no urban evolution was detected for defences against aphids (Myzus persicae). Aphids reduced seed set more strongly in urban offspring, but this effect disappeared in second‐generation plants. In general, urban adaptations as expressed in size and caterpillar tolerance were found, but these adaptations were associated with smaller inflorescences. The maternal effect on the response of seed set to aphid feeding demonstrates the relevance of intergenerational plasticity as a direct ecological consequence of herbivory. Our study demonstrates that the urban environment interacts with the plant's genotype and the extended phenotype as determined by ecological interactions.
Collapse
Affiliation(s)
- Jiao Qu
- Lushan Botanical Garden Chinese Academy of Sciences Jiujiang 332900 Jiangxi China
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
| | - Martijn L. Vandegehuchte
- Terrestrial Ecology Unit Department of Biology Ghent University Karel Lodewijk Ledeganckstraat 35 9000 Ghent Belgium
- Department of Biology Norwegian University of Science and Technology Høgskoleringen 5 7491 Trondheim Norway
| |
Collapse
|
19
|
Medina I, M Perez D, Silva ACA, Cally J, León C, Maliet O, Quintero I. Nest architecture is linked with ecological success in songbirds. Ecol Lett 2022; 25:1365-1375. [PMID: 35343052 PMCID: PMC9311449 DOI: 10.1111/ele.13998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 12/01/2022]
Abstract
Nests are essential constructions that determine fitness, yet their structure can vary substantially across bird species. While there is evidence supporting a link between nest architecture and the habitat a species occupies, we still ignore what ecological and evolutionary processes are linked to different nest types. Using information on 3175 species of songbirds, we show that-after controlling for latitude and body size-species that build domed nests (i.e. nests with a roof) have smaller ranges, are less likely to colonise urban environments and have potentially higher extinction rates compared to species with open and cavity nests. Domed nests could be a costly specialisation, and we show that these nests take more time to be built, which could restrict breeding opportunities. These diverse strands of evidence suggest that the transition from domed to open nests in passerines could represent an important evolutionary innovation behind the success of the largest bird radiation.
Collapse
Affiliation(s)
- Iliana Medina
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Daniela M Perez
- Graduate Program in Ecology and Conservation, Universidade Federal do Paraná, Curitiba, State of Paraná, Brazil
| | | | - Justin Cally
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Constanza León
- Division of Ecology and Evolution, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Odile Maliet
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSLResearch University, Paris, France
| | - Ignacio Quintero
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSLResearch University, Paris, France
| |
Collapse
|
20
|
Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera. Proc Natl Acad Sci U S A 2021; 118:2106006118. [PMID: 34580222 PMCID: PMC8501875 DOI: 10.1073/pnas.2106006118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/05/2022] Open
Abstract
Cities represent novel environments with altered seasonality; they are warmer, which may accelerate growth, but light pollution can also lengthen days, misleading organisms that use daylength to predict seasonal change. Using long-term observational data, we show that urban populations of a butterfly and a moth have longer flight seasons than neighboring rural populations for six Nordic city regions. Next, using laboratory experiments, we show that the induction of diapause by daylength has evolved in urban populations in the direction predicted by urban warming. We thus show that the altered seasonality of urban environments can lead to corresponding evolutionary changes in the seasonal responses of urban populations, a pattern that may be repeated in other species. Urbanization is gaining force globally, which challenges biodiversity, and it has recently also emerged as an agent of evolutionary change. Seasonal phenology and life cycle regulation are essential processes that urbanization is likely to alter through both the urban heat island effect (UHI) and artificial light at night (ALAN). However, how UHI and ALAN affect the evolution of seasonal adaptations has received little attention. Here, we test for the urban evolution of seasonal life-history plasticity, specifically changes in the photoperiodic induction of diapause in two lepidopterans, Pieris napi (Pieridae) and Chiasmia clathrata (Geometridae). We used long-term data from standardized monitoring and citizen science observation schemes to compare yearly phenological flight curves in six cities in Finland and Sweden to those of adjacent rural populations. This analysis showed for both species that flight seasons are longer and end later in most cities, suggesting a difference in the timing of diapause induction. Then, we used common garden experiments to test whether the evolution of the photoperiodic reaction norm for diapause could explain these phenological changes for a subset of these cities. These experiments demonstrated a genetic shift for both species in urban areas toward a lower daylength threshold for direct development, consistent with predictions based on the UHI but not ALAN. The correspondence of this genetic change to the results of our larger-scale observational analysis of in situ flight phenology indicates that it may be widespread. These findings suggest that seasonal life cycle regulation evolves in urban ectotherms and may contribute to ecoevolutionary dynamics in cities.
Collapse
|
21
|
Langen TA, Cannon CH, Blackburn DC, Morgan EL, Mera PE. Discovering and Applying the Urban Rules of Life to Design Sustainable and Healthy Cities. Integr Comp Biol 2021; 61:1237-1252. [PMID: 33956145 DOI: 10.1093/icb/icab065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The city and its urban biome provides an extreme laboratory for studying fundamental biological questions and developing best practices for sustaining biodiverse and well-functioning ecological communities within anthropogenic built environments. We propose by studying urban organisms, urban biotic communities, the urban biome, and the interactions between the urban biome and peri-urban built and natural environments, we can (1) discover new 'rules of life' for the structure, function, interaction, and evolution of organisms;(2) use these discoveries to understand how novel emerging biotic communities affect and are affected by anthropogenic environmental changes in climate and other environmental factors; and (3) apply what we have learned to engage residents of the urban biome, and design cities that are more biologically diverse, are provided with more and better ecosystem services, and are more equitable and healthier places to live. The built environment of the urban biome is a place that reflects history, economics, technology, governance, culture, and values of the human residents; research on and applications of the rules of life in the urban biome can be used by all residents in making choices about the design of the cities where they live. Because inhabitants are directly invested in the environmental quality of their neighborhoods, research conducted in and about the urban environment provides a great opportunity to engage wide and diverse communities of people. Given the opportunity to engage a broad constituency - from basic researchers to teachers, civil engineers, landscape planners, and concerned citizens - studying the translation of the rules of life onto the urban environment will result in an integrative and cross-cutting set of questions and hypotheses, and will foster a dialogue among citizens about the focus of urban biome research and its application toward making more equitable, healthy, livable, sustainable, and biodiverse cities.
Collapse
Affiliation(s)
| | | | | | - Eric L Morgan
- Agricultural Leadership, Education, and Communications, University of Illinois at Urbana-Champaign
| | - Paola E Mera
- Department of Microbiology, University of Illinois at Urbana-Champaign
| |
Collapse
|
22
|
Abstract
Cities and towns are complex ecosystems with features that can vary dramatically in space and time. Our knowledge of the spatial structure of urban land and ecological systems is expanding. These systems have been investigated across spatial scales, urban to rural gradients, networks of urban macrosystems, and global megalopolises. However, the temporal dimensions of urban ecosystems – such as those related to ecological cycles and historical legacies – are far less understood and investigated. Here, we outline the main dimensions of time that can shape how events in urban ecosystems unfold, which we categorize as: (i) time flows and duration, (ii) synchrony, lags, and delays, (iii) trends and transitions, (iv) cycles and hysteresis, (v) legacies and priming, (vi) temporal hotspots and hot moments, and (vii) stochastic vs. deterministic processes affecting our ability to forecast the future of cities and the species that live in them. First, we demonstrate the roles of these understudied dimensions by discussing exemplary studies. We then propose key future research directions for investigating how processes over time may regulate the structure and functioning of urban land and biodiversity, as well as its effects on and implications for urban ecology. Our analysis and conceptual framework highlights that several temporal dimensions of urban ecosystems – like those related to temporal hotspots/moments and stochastic vs. deterministic processes – are understudied. This offers important research opportunities to further urban ecology and a comprehensive research agenda valuing the “Urban Chronos” – the change of urban ecosystems through time.
Collapse
|
23
|
Sonti NF, Hallett RA, Griffin KL, Trammell TLE, Sullivan JH. Chlorophyll fluorescence parameters, leaf traits and foliar chemistry of white oak and red maple trees in urban forest patches. TREE PHYSIOLOGY 2021; 41:269-279. [PMID: 33313756 DOI: 10.1093/treephys/tpaa121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
The provisioning of critical ecosystem services to cities of the eastern USA depends on the health and physiological function of trees in urban areas. Although we know that the urban environment may be stressful for trees planted in highly developed areas, it is not clear that trees in urban forest patches experience the same stressful environmental impacts. In this study, we examine chlorophyll fluorescence parameters, leaf traits, foliar nutrients and stable isotope signatures of urban forest patch trees compared with trees growing at reference forest sites, in order to characterize physiological response of these native tree species to the urban environment of three major cities arranged along a latitudinal gradient (New York, NY; Philadelphia, PA; Baltimore, MD). Overall, white oaks (Quercus alba L.) show more differences in chlorophyll fluorescence parameters and leaf traits by city and site type (urban vs reference) than red maples (Acer rubrum L.). The exceptions were δ13C and δ15N, which did not vary in white oak foliage but were significantly depleted (δ13C) and enriched (δ15N) in urban red maple foliage. Across all sites, red maples had higher thermal tolerance of photosynthesis (Tcrit) than white oaks, suggesting a greater ability to withstand temperature stress from the urban heat island effect and climate change. However, the highest average values of Tcrit were found in the Baltimore urban white oaks, suggesting that species suitability and response to the urban environment varies across a latitudinal gradient. Stomatal pore index (SPI) showed inter-specific differences, with red maple SPI being higher in urban trees, whereas white oak SPI was lower in urban trees. These results demonstrate that differences in native tree physiology occur between urban and reference forest patches, but they are site- and species-specific. Data on local site characteristics and tree species performance over time remain necessary to gain insight about urban woodland ecosystem function.
Collapse
Affiliation(s)
- Nancy F Sonti
- USDA Forest Service Northern Research Station, 5523 Research Park Drive, Suite 350, Baltimore, MD 21228, USA
| | - Richard A Hallett
- USDA Forest Service Northern Research Station, 431 Walter Reed Road, Bayside, NY 11359, USA
| | - Kevin L Griffin
- Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
| | - Tara L E Trammell
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Joe H Sullivan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
24
|
Shultz AJ, Adams BJ, Bell KC, Ludt WB, Pauly GB, Vendetti JE. Natural history collections are critical resources for contemporary and future studies of urban evolution. Evol Appl 2021; 14:233-247. [PMID: 33519967 PMCID: PMC7819571 DOI: 10.1111/eva.13045] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
Urban environments are among the fastest changing habitats on the planet, and this change has evolutionary implications for the organisms inhabiting them. Herein, we demonstrate that natural history collections are critical resources for urban evolution studies. The specimens housed in these collections provide great potential for diverse types of urban evolution research, and strategic deposition of specimens and other materials from contemporary studies will determine the resources and research questions available to future urban evolutionary biologists. As natural history collections are windows into the past, they provide a crucial historical timescale for urban evolution research. While the importance of museum collections for research is generally appreciated, their utility in the study of urban evolution has not been explicitly evaluated. Here, we: (a) demonstrate that museum collections can greatly enhance urban evolution studies, (b) review patterns of specimen use and deposition in the urban evolution literature, (c) analyze how urban versus rural and native versus nonnative vertebrate species are being deposited in museum collections, and (d) make recommendations to researchers, museum professionals, scientific journal editors, funding agencies, permitting agencies, and professional societies to improve archiving policies. Our analyses of recent urban evolution studies reveal that museum specimens can be used for diverse research questions, but they are used infrequently. Further, although nearly all studies we analyzed generated resources that could be deposited in natural history collections (e.g., collected specimens), a minority (12%) of studies actually did so. Depositing such resources in collections is crucial to allow the scientific community to verify, replicate, and/or re-visit prior research. Therefore, to ensure that adequate museum resources are available for future urban evolutionary biology research, the research community-from practicing biologists to funding agencies and professional societies-must make adjustments that prioritize the collection and deposition of urban specimens.
Collapse
Affiliation(s)
- Allison J. Shultz
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Ornithology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - Benjamin J. Adams
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Entomology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Department of Biological SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Kayce C. Bell
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Mammalogy DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - William B. Ludt
- Ichthyology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - Gregory B. Pauly
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Herpetology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| | - Jann E. Vendetti
- Urban Nature Research CenterNatural History Museum of Los Angeles CountyLos AngelesCAUSA
- Malacology DepartmentNatural History Museum of Los Angeles CountyLos AngelesCAUSA
| |
Collapse
|
25
|
Potgieter LJ, Cadotte MW. The application of selected invasion frameworks to urban ecosystems. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.50661] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Urbanization is a major driver of global change. Profound human-mediated changes to urban environments have provided increased opportunities for species to invade. The desire to understand and manage biological invasions has led to an upsurge in frameworks describing the mechanisms underpinning the invasion process and the ecological and socio-economic impacts of invading taxa. This paper assesses the applicability of three commonly used invasion frameworks to urban ecosystems. The first framework describes the mechanisms leading to invasion; the second and third frameworks assess individual species, and their associated environmental and socio-economic impacts, respectively.
In urban areas, the relative effectiveness of the barriers to invasion is diminished (to varying degrees) allowing a greater proportion of species to move through each subsequent invasion stage, i.e. “the urban effect” on invasion. Impact classification schemes inadequately circumscribe the full suite of impacts (negative and positive) associated with invasions in urban areas. We suggest ways of modifying these frameworks to improve their applicability to understanding and managing urban invasions.
Collapse
|
26
|
Schell CJ, Dyson K, Fuentes TL, Des Roches S, Harris NC, Miller DS, Woelfle-Erskine CA, Lambert MR. The ecological and evolutionary consequences of systemic racism in urban environments. Science 2020; 369:science.aay4497. [DOI: 10.1126/science.aay4497] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Urban areas are dynamic ecological systems defined by interdependent biological, physical, and social components. The emergent structure and heterogeneity of urban landscapes drives biotic outcomes in these areas, and such spatial patterns are often attributed to the unequal stratification of wealth and power in human societies. Despite these patterns, few studies have effectively considered structural inequalities as drivers of ecological and evolutionary outcomes and have instead focused on indicator variables such as neighborhood wealth. In this analysis, we explicitly integrate ecology, evolution, and social processes to emphasize the relationships that bind social inequities—specifically racism—and biological change in urbanized landscapes. We draw on existing research to link racist practices, including residential segregation, to the heterogeneous patterns of flora and fauna observed by urban ecologists. In the future, urban ecology and evolution researchers must consider how systems of racial oppression affect the environmental factors that drive biological change in cities. Conceptual integration of the social and ecological sciences has amassed considerable scholarship in urban ecology over the past few decades, providing a solid foundation for incorporating environmental justice scholarship into urban ecological and evolutionary research. Such an undertaking is necessary to deconstruct urbanization’s biophysical patterns and processes, inform equitable and anti-racist initiatives promoting justice in urban conservation, and strengthen community resilience to global environmental change.
Collapse
Affiliation(s)
- Christopher J. Schell
- School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA
| | - Karen Dyson
- College of Built Environments, University of Washington, Seattle, WA 98195, USA
- Dendrolytics, Seattle, WA 98195, USA
| | - Tracy L. Fuentes
- College of Built Environments, University of Washington, Seattle, WA 98195, USA
| | - Simone Des Roches
- College of Built Environments, University of Washington, Seattle, WA 98195, USA
- School of Aquatic and Fisheries Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nyeema C. Harris
- Applied Wildlife Ecology Lab, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danica Sterud Miller
- School of Interdisciplinary Arts and Sciences, University of Washington, Tacoma, WA 98402, USA
| | - Cleo A. Woelfle-Erskine
- School of Marine and Environmental Affairs, College of the Environment, University of Washington, Seattle, WA 98195, USA
| | - Max R. Lambert
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
27
|
Feoktistova NY, Meschersky IG, Bogomolov PL, Meschersky SI, Katzman EA, Pelgunova LA, Potashnikova EV, Surov AV. An Unintentional Experiment: Settlement of a Sinurbic Species, the Common Hamster (Cricetus cricetus L., 1758), in a Newly Established City Park. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020020028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Frank SD, Just MG. Can Cities Activate Sleeper Species and Predict Future Forest Pests? A Case Study of Scale Insects. INSECTS 2020; 11:E142. [PMID: 32106554 PMCID: PMC7142728 DOI: 10.3390/insects11030142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 11/16/2022]
Abstract
Sleeper species are innocuous native or naturalized species that exhibit invasive characteristics and become pests in response to environmental change. Climate warming is expected to increase arthropod damage in forests, in part, by transforming innocuous herbivores into severe pests: awakening sleeper species. Urban areas are warmer than natural areas due to the urban heat island effect and so the trees and pests in cities already experience temperatures predicted to occur in 50-100 years. We posit that arthropod species that become pests of urban trees are those that benefit from warming and thus should be monitored as potential sleeper species in forests. We illustrate this with two case studies of scale insects that are important pests of urban trees in parts of the US. Melanaspis tenebricosa and Parthenolecanium quercifex are geographically native to the US but take on invasive characteristics such as higher survival and reproduction and become disconnected from natural enemies on urban trees due to the urban heat island effect. This allows them to reach high densities and damage their host trees. Parthenolecanium quercifex density increases up to 12 times on urban willow oaks with just 2 °C of warming due to higher survival and adaptation to warmer temperatures. The urban heat island effect also creates a phenological mismatch between P. quercifex and its parasitoid complex, and so egg production is higher. Melanaspis tenebricosa density can increase 300 times on urban red maples with 2.5 °C of warming. This too is due to direct effects of warmer temperatures on survival and fecundity but M. tenebricosa also benefits from the drought stress incurred by warmer urban trees. These effects combine to increase M. tenebricosa density in forests as well as on urban trees at latitudes higher than its native range. We illustrate how cities provide a unique opportunity to study the complex effects of warming on insect herbivores. Studying pestilent urban species could be a pragmatic approach for identifying and preparing for sleeper species.
Collapse
Affiliation(s)
- Steven D. Frank
- Department of Entomology and Plant Pathology, Campus Box 7613, North Carolina State University, Raleigh, NC 27695, USA;
| | | |
Collapse
|
29
|
Just MG, Frank SD. Thermal Tolerance of Gloomy Scale (Hemiptera: Diaspididae) in the Eastern United States. ENVIRONMENTAL ENTOMOLOGY 2020; 49:104-114. [PMID: 31904081 DOI: 10.1093/ee/nvz154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 06/10/2023]
Abstract
An insect species' geographic distribution is probably delimited in part by physiological tolerances of environmental temperatures. Gloomy scale (Melanaspis tenebricosa (Comstock)) is a native insect herbivore in eastern U.S. forests. In eastern U.S. cities, where temperatures are warmer than nearby natural areas, M. tenebricosa is a primary pest of red maple (Acer rubrum L.; Sapindales: Sapindaceae) With warming, M. tenebricosa may spread to new cities or become pestilent in forests. To better understand current and future M. tenebricosa distribution boundaries, we examined M. tenebricosa thermal tolerance under laboratory conditions. We selected five hot and five cold experimental temperatures representative of locations in the known M. tenebricosa distribution. We built models to predict scale mortality based on duration of exposure to warm or cold experimental temperatures. We then used these models to estimate upper and lower lethal durations, i.e., temperature exposure durations that result in 50% mortality. We tested the thermal tolerance for M. tenebricosa populations from northern, mid, and southern locations of the species' known distribution. Scales were more heat and cold tolerant of temperatures representative of the midlatitudes of their distribution where their densities are the greatest. Moreover, the scale population from the northern distribution boundary could tolerate cold temperatures from the northern boundary for twice as long as the population collected near the southern boundary. Our results suggest that as the climate warms the M. tenebricosa distribution may expand poleward, but experience a contraction at its southern boundary.
Collapse
Affiliation(s)
- Michael G Just
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Steven D Frank
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| |
Collapse
|
30
|
The effects of urbanization on bee communities depends on floral resource availability and bee functional traits. PLoS One 2019; 14:e0225852. [PMID: 31790482 PMCID: PMC6886752 DOI: 10.1371/journal.pone.0225852] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022] Open
Abstract
Wild bees are important pollinators in many ecosystems threatened by anthropogenic disturbance. Urban development can reduce and degrade natural habitat for bees and other pollinators. However, some researchers suggest that cities could also provide refuge for bees, given that agricultural intensification may pose a greater risk. In this study, we surveyed bee communities at 15 farms and gardens across an urban-rural gradient in southeastern Michigan, USA to evaluate the effect of urbanization on bees. We examined how floral resources, bee functional traits, temperature, farm size, and the spatial scale of analysis influence bee response to urbanization. We found that urbanization positively affected bee diversity and evenness but had no effect on total abundance or species richness. Additionally, urbanization altered bee community composition via differential effects on bee species and functional groups. More urbanized sites supported a greater number of exotic, above-ground nesting, and solitary bees, but fewer eusocial bees. Blooming plant species richness positively influenced bee species diversity and richness. Furthermore, the amount of available floral resources was positively associated with exotic and eusocial bee abundances. Across sites, nearly 70% of floral resources were provided by exotic plants, most of which are characterized as weedy but not invasive. Our study demonstrates that urbanization can benefit some bee species and negatively impact others. Notably, Bombus and Lasioglossum (Dialictus), were two important pollinator groups negatively affected by urbanization. Our study supports the idea that urban environments can provide valuable habitat for diverse bee communities, but demonstrates that some bees are vulnerable to urbanization. Finally, while our results indicate that increasing the abundance and richness of floral resources could partially compensate for negative effects of urbanization on bees, the effectiveness of such measures may be limited by other factors, such as urban warming.
Collapse
|
31
|
Urban Areas and Urban–Rural Contrasts under Climate Change: What Does the EURO-CORDEX Ensemble Tell Us?—Investigating near Surface Humidity in Berlin and Its Surroundings. ATMOSPHERE 2019. [DOI: 10.3390/atmos10120730] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Climate change will impact urban areas. Decision makers need useful climate information to adapt adequately. This research aims to improve understanding of changes in moisture and temperature projected under climate change in Berlin compared to its surroundings. Simulations for the Representative Concentration Pathway (RCP) 8.5 scenario from the European Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX) 0.11° are analyzed, showing a difference in moisture and temperature variables between Berlin and its surroundings. The running mean over 30 years shows a divergence throughout the twenty-first century for relative humidity between Berlin and its surroundings. Under this scenario, Berlin gets drier over time. The Mann-Kendall test quantifies a robust decreasing trend in relative humidity for the multi-model ensemble throughout the twenty-first century. The Mann-Whitney-Wilcoxon test for relative humidity indicates a robust climate change signal in Berlin. It is drier and warmer in Berlin compared to its surroundings for all months with the largest difference existing in summer. Additionally, the change in humidity for the period 2070–2099 compared to 1971–2000 is larger in the summer months. This study presents results to better understand near surface moisture change and related variables under long-term climate change in urban areas compared to their rural surroundings using a regional climate multi-model ensemble.
Collapse
|
32
|
McGlynn TP, Meineke EK, Bahlai CA, Li E, Hartop EA, Adams BJ, Brown BV. Temperature accounts for the biodiversity of a hyperdiverse group of insects in urban Los Angeles. Proc Biol Sci 2019; 286:20191818. [PMID: 31575368 PMCID: PMC6790764 DOI: 10.1098/rspb.2019.1818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The urban heat island effect is a worldwide phenomenon that has been linked to species distributions and abundances in cities. However, effects of urban heat on biotic communities are nearly impossible to disentangle from effects of land cover in most cases because hotter urban sites also have less vegetation and more impervious surfaces than cooler sites within cities. We sampled phorid flies, one of the largest, most biologically diverse families of true flies (Insecta: Diptera: Phoridae), at 30 sites distributed within the central Los Angeles Basin, where we found that temperature and the density of urban land cover are decoupled. Abundance, richness, and community composition of phorids inside urban Los Angeles were most parsimoniously accounted for by mean air temperature in the week preceding sampling. Sites with intermediate mean temperatures had more phorid fly individuals and higher richness. Communities were more even at urban sites with lower minimum temperatures and sites located further away from natural areas, suggesting that communities separated from natural source populations may be more homogenized. Species composition was best explained by minimum temperature. Inasmuch as warmer areas within cities can predict future effects of climate change, phorid fly communities are likely to shift nonlinearly under future climates in more natural areas. Exhaustive surveys of biotic communities within cities, such as the one we describe here, can provide baselines for determining the effects of urban and global climate warming as they intensify.
Collapse
Affiliation(s)
- Terrence P McGlynn
- Department of Biology, California State University Dominguez Hills, Carson, CA 90747, USA.,Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Emily K Meineke
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christie A Bahlai
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Enjie Li
- Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Emily A Hartop
- Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA.,Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Benjamin J Adams
- Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | - Brian V Brown
- Urban Nature Research Center, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| |
Collapse
|
33
|
Verheyen J, Tüzün N, Stoks R. Using natural laboratories to study evolution to global warming: contrasting altitudinal, latitudinal, and urbanization gradients. CURRENT OPINION IN INSECT SCIENCE 2019; 35:10-19. [PMID: 31301449 DOI: 10.1016/j.cois.2019.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Demonstrating the likelihood of evolution in response to global warming is important, yet challenging. We discuss how three spatial thermal gradients (latitudinal, altitudinal, and urbanization) can be used as natural laboratories to inform about the gradual thermal evolution of populations by applying a space-for-time substitution (SFTS) approach. We compare thermal variables and confounding non-thermal abiotic variables, methodological approaches and evolutionary aspects associated with each type of gradient. On the basis of an overview of recent insect studies, we show that a key assumption of SFTS, local thermal adaptation along these gradients, is often but not always met, requiring explicit validation. To increase realism when applying SFTS, we highlight the importance of integrating daily temperature fluctuations, multiple stressors and multiple interacting species. Finally, comparative studies, especially across gradient types, are important to provide more robust inferences of evolution under gradual global warming. Integrating these research directions will further strengthen the still underused, yet powerful SFTS approach to infer gradual evolution under global warming.
Collapse
Affiliation(s)
- Julie Verheyen
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium.
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Deberiotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
34
|
Creating the Urban Farmer's Almanac with Citizen Science Data. INSECTS 2019; 10:insects10090294. [PMID: 31514459 PMCID: PMC6780957 DOI: 10.3390/insects10090294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/02/2022]
Abstract
Agriculture has long been a part of the urban landscape, from gardens to small scale farms. In recent decades, interest in producing food in cities has grown dramatically, with an estimated 30% of the global urban population engaged in some form of food production. Identifying and managing the insect biodiversity found on city farms is a complex task often requiring years of study and specialization, especially in urban landscapes which have a complicated tapestry of fragmentation, diversity, pollution, and introduced species. Supporting urban growers with relevant data informs insect management decision-making for both growers and their neighbors, yet this information can be difficult to come by. In this study, we introduced several web-based citizen science programs that can connect growers with useful data products and people to help with the who, what, where, and when of urban insects. Combining the power of citizen science volunteers with the efforts of urban farmers can result in a clearer picture of the diversity and ecosystem services in play, limited insecticide use, and enhanced non-chemical alternatives. Connecting urban farming practices with citizen science programs also demonstrates the ecosystem value of urban agriculture and engages more citizens with the topics of food production, security, and justice in their communities.
Collapse
|
35
|
Johnson JC, Urcuyo J, Moen C, Stevens DR. Urban heat island conditions experienced by the Western black widow spider (Latrodectus hesperus): Extreme heat slows development but results in behavioral accommodations. PLoS One 2019; 14:e0220153. [PMID: 31490963 PMCID: PMC6730917 DOI: 10.1371/journal.pone.0220153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022] Open
Abstract
While shifts in organismal biology stemming from climate change are receiving increased attention, we know relatively little about how organisms respond to other forms of anthropogenic disturbance. The urban heat island (UHI) effect describes the capture of heat by built structures (e.g. asphalt), resulting in elevated urban temperatures. The UHI is a well-studied phenomenon, but only a handful of studies have investigated trait-based shifts resulting from the UHI, and even fewer have attempted to quantify the magnitude of the UHI experienced at the microclimate scale. Here, using a common urban exploiter, the Western black widow spider (Latrodectus hesperus), we show that the UHI experienced by spiders in July in their urban Phoenix, AZ refuges is 6°C hotter (33°C) than conditions in the refuges of spiders from Sonoran Desert habitat outside of Phoenix’s development (27°C). We then use this field microclimate UHI estimate to compare the development speed, mass gain and mortality of replicate siblings from 36 urban lineages reared at ‘urban’ and ‘desert’ temperatures. We show that extreme heat is slowing the growth of spiderlings and increasing mortality. In contrast, we show that development of male spiders to their penultimate moult is accelerated by 2 weeks. Lastly, in terms of behavioral shifts, UHI temperatures caused late-stage juvenile male spiders to heighten their foraging voracity and late-stage juvenile female spiders to curtail their web-building behavior. Trait-based approaches like the one presented herein help us better understand the mechanisms that lead to the explosive population growth of urban (sometimes invasive) species, possibly at the expense of urban biodiversity. Studies of organismal responses to the present day UHI can be used as informative surrogates that help us grasp the impact that projected climate change will have on biodiversity.
Collapse
Affiliation(s)
- J. Chadwick Johnson
- School of Mathematics and Natural Sciences, Arizona State University at the West Campus, Glendale, AZ, United States of America
- * E-mail:
| | - Javier Urcuyo
- School of Mathematics and Natural Sciences, Arizona State University at the West Campus, Glendale, AZ, United States of America
| | - Claire Moen
- School of Mathematics and Natural Sciences, Arizona State University at the West Campus, Glendale, AZ, United States of America
| | - Dale R. Stevens
- Department of Biology, Lasry Center for Bioscience, Worcester, MA, United States of America
| |
Collapse
|
36
|
Miles LS, Breitbart ST, Wagner HH, Johnson MTJ. Urbanization Shapes the Ecology and Evolution of Plant-Arthropod Herbivore Interactions. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00310] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Surov AV, Zaytseva EA, Kuptsov AV, Katzman EA, Bogomolov PL, Sayan AS, Potashnikova EV, Tovpinetz NN, Kuznetsova EV, Tsellarius AY, Feoktistova NY. Circle of life: the common hamster (Cricetus cricetus) adaptations to the urban environment. Integr Zool 2019; 14:383-395. [PMID: 30983146 DOI: 10.1111/1749-4877.12394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditionally, urbanization has been seen as a negative phenomenon for biota. However, changes in the environmental parameters induced by urbanization might be favorable for some species. Over the past half-century, the common hamster has actively populated cities, establishing populations in some European, Russian and Kazakhstan cities. Based on integrative methods, we investigated free-range common hamsters inhabiting Simferopol from 2015 to 2018 to reveal possible adaptations to the urbanized environment across several parameters, including lifespan, hibernation period, reproductive activity and body mass. Results show that in urban areas, the common hamster demonstrates an extremely short hibernation period compared to other localities, possibly due to enhanced food resources from urban forestry (walnuts, locus and hazelnut), allowing the species to start breeding very early (February) and finish as late as October. We present the first evidence of polyandry for this species: mating of receptive females with several males and subsequent confirmation of multiple paternity. Despite high reproductive potential, the lifespan of the common hamster in urban conditions is generally very short (less than 1 year). We speculate that in the process of synurbization, the common hamster's innate plasticity across many life history traits permits it to successfully colonize throughout a wide range of habitats, with the ability to form novel adaptations to urban environments.
Collapse
Affiliation(s)
- Alexey V Surov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Elena A Zaytseva
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Alexandr V Kuptsov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Elena A Katzman
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Pavel L Bogomolov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra S Sayan
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | | - Nikolay N Tovpinetz
- Centre of Hygiene and Epidemiology in Crimea and in the Municipal City Sevastopol, Simferopol, Russia
| | - Ekaterina V Kuznetsova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Alexey Y Tsellarius
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Natalia Y Feoktistova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
38
|
Just MG, Dale AG, Long LC, Frank SD. Urbanization drives unique latitudinal patterns of insect herbivory and tree condition. OIKOS 2019. [DOI: 10.1111/oik.05874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael G. Just
- Dept of Entomology and Plant Pathology, North Carolina State University Raleigh NC 27695 USA
| | - Adam G. Dale
- Entomology and Nematology Dept, Univ. of Florida Gainesville FL USA
| | - Lawrence C. Long
- Dept of Entomology and Plant Pathology, North Carolina State University Raleigh NC 27695 USA
| | - Steven D. Frank
- Dept of Entomology and Plant Pathology, North Carolina State University Raleigh NC 27695 USA
| |
Collapse
|
39
|
Meineke EK, Davies TJ. Museum specimens provide novel insights into changing plant-herbivore interactions. Philos Trans R Soc Lond B Biol Sci 2018; 374:20170393. [PMID: 30455211 PMCID: PMC6282078 DOI: 10.1098/rstb.2017.0393] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 12/16/2022] Open
Abstract
Mounting evidence shows that species interactions may mediate how individual species respond to climate change. However, long-term anthropogenic effects on species interactions are poorly characterized owing to a lack of data. Insect herbivory is a major ecological process that represents the interaction between insect herbivores and their host plants, but historical data on insect damage to plants is particularly sparse. Here, we suggest that museum collections of insects and plants can fill key gaps in our knowledge on changing trophic interactions, including proximate mechanisms and the net outcomes of multiple global change drivers across diverse insect herbivore-plant associations. We outline theory on how global change may affect herbivores and their host plants and highlight the unique data that could be extracted from museum specimens to explore their shifting interactions. We aim to provide a framework for using museum specimens to explore how some of the most diverse co-evolved relationships are responding to climate and land use change.This article is part of the theme issue 'Biological collections for understanding biodiversity in the Anthropocene'.
Collapse
Affiliation(s)
- Emily K Meineke
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - T Jonathan Davies
- Departments of Botany, Forest, and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
- African Centre for DNA Barcoding, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|