1
|
Jones MM, Fletcher R, Potash A, Sibiya M, McCleery R. Prey responses to direct and indirect predation risk cues reveal the importance of multiple information sources. J Anim Ecol 2024. [PMID: 39467075 DOI: 10.1111/1365-2656.14209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 08/08/2024] [Indexed: 10/30/2024]
Abstract
Prey can use several information sources (cues) to assess predation risk and avoid predation with a variety of behavioural responses (e.g., changes in activity, foraging, vigilance, social behaviour, space use, and reproductive behaviour). Direct cues produced by predators and indirect cues from environmental features or conspecific and heterospecific prey generally provide different types of information about predation risk. Despite widespread interest in understanding behavioural antipredator responses to direct and indirect cues, a clear general pattern of relative response strength across taxa and environments has yet to emerge. We conducted a meta-analysis of studies (N = 113 articles and 999 effect sizes taken from a search of over 7500 articles) testing behavioural responses to direct and indirect cues of predation risk, and their combination, across terrestrial and aquatic ecosystems. We further contrasted if effects were moderated by ecosystem type (terrestrial, marine, or freshwater), cue source (predator, conspecific, heterospecific, or environmental feature), or sensory modality (visual, auditory, or chemosensory). Overall, there were strong effects of risk cues on prey behaviour. We found that prey responded more strongly when both types of cues were presented together compared with either cue in isolation, which was driven by changes in prey activity levels but not other behaviours. There was no general pattern in response strength to direct compared with indirect cues. Responses to these cues were moderated by interactions between environment, cue source, and cue sensory modality (e.g., visual cues elicited stronger responses than other modalities, and responses to conspecific chemosensory cues were stronger than those to predator chemosensory cues in aquatic systems). These results suggest that rather than a broad framework of direct and indirect cues, the specific context of the system should be considered in tests and predictions of how prey respond to risk to elucidate general patterns of antipredator responses.
Collapse
Affiliation(s)
- Maggie M Jones
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Robert Fletcher
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Alex Potash
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Muzi Sibiya
- School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA
| | - Robert McCleery
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Gan L, Zhang S, Zeng R, Shen T, Tian L, Yu H, Hua K, Wang Y. Impact of Personality Trait Interactions on Foraging and Growth in Native and Invasive Turtles. Animals (Basel) 2024; 14:2240. [PMID: 39123765 PMCID: PMC11311056 DOI: 10.3390/ani14152240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Animal personalities play a crucial role in invasion dynamics. During the invasion process, the behavioral strategies of native species vary among personalities, just as the invasive species exhibit variations in behavior strategies across personalities. However, the impact of personality interactions between native species and invasive species on behavior and growth are rarely illustrated. The red-eared slider turtle (Trachemys scripta elegans) is one of the worst invasive species in the world, threatening the ecology and fitness of many freshwater turtles globally. The Chinese pond turtle (Mauremys reevesii) is one of the freshwater turtles most threatened by T. scripta elegans in China. In this study, we used T. scripta elegans and M. reevesii to investigate how the personality combinations of native and invasive turtles would impact the foraging strategy and growth of both species during the invasion process. We found that M. reevesii exhibited bolder and more exploratory personalities than T. scripta elegans. The foraging strategy of M. reevesii was mainly affected by the personality of T. scripta elegans, while the foraging strategy of T. scripta elegans was influenced by both their own personality and personalities of M. reevesii. Additionally, we did not find that the personality combination would affect the growth of either T. scripta elegans or M. reevesii. Differences in foraging strategy may be due to the dominance of invasive species and variations in the superficial exploration and thorough exploitation foraging strategies related to personalities. The lack of difference in growth may be due to the energy allocation trade-offs between personalities or be masked by the slow growth rate of turtles. Overall, our results reveal the mechanisms of personality interaction effects on the short-term foraging strategies of both native and invasive species during the invasion process. They provide empirical evidence to understand the effects of personality on invasion dynamics, which is beneficial for enhancing comprehension understanding of the personality effects on ecological interactions and invasion biology.
Collapse
Affiliation(s)
- Lin Gan
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Shufang Zhang
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Ruyi Zeng
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Tianyi Shen
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Liu Tian
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Hao Yu
- Herpetological Research Center, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (L.G.)
| | - Ke Hua
- Center of Reproductive Medicine, Jiaxing Maternity and Child Health Care Hospital, College of Medicine, Jiaxing University, Jiaxing 314000, China
| | - Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Paganelli D, Bellati A, Gazzola A, Bracco F, Pellitteri-Rosa D. Impacts, Potential Benefits and Eradication Feasibility of Aquatic Alien Species in an Integral Natural State Reserve. BIOLOGY 2024; 13:64. [PMID: 38275740 PMCID: PMC10813597 DOI: 10.3390/biology13010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Riverine wetlands are stepping-stone environments for the protection of local biodiversity, but they are particularly vulnerable to biological invasions. In order to take action against biological invasions, it is crucial to assess the impacts of alien species. However, it is also important to assess the potential benefits on ecosystem services that alien species could have. Once it has been verified that negative impacts are higher than potential benefits, it is important to propose feasible actions to contrast them. In this study, we assessed eight freshwater alien species recorded in an integral protected wetland using the Invasive Species Effects Assessment Tool (INSEAT) to quantify their negative impacts and potential benefits on ecosystem services. Moreover, for each species, we evaluated the feasibility of the main eradication techniques currently proposed in the literature using the Non-Native Risk Management scheme (NNRM), with the final aim of suggesting effective actions for their management. The INSEAT results indicated that all the assessed species had more impacts than benefits while NNRM provided useful indications on the best practical conservation actions to use for reducing the density, and therefore, the negative impacts on ecosystem services and the local biodiversity of the assessed alien species.
Collapse
Affiliation(s)
- Daniele Paganelli
- Department of Earth and Environmental Science, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; (D.P.); (A.G.); (F.B.)
| | - Adriana Bellati
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Andrea Gazzola
- Department of Earth and Environmental Science, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; (D.P.); (A.G.); (F.B.)
| | - Francesco Bracco
- Department of Earth and Environmental Science, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; (D.P.); (A.G.); (F.B.)
| | - Daniele Pellitteri-Rosa
- Department of Earth and Environmental Science, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; (D.P.); (A.G.); (F.B.)
| |
Collapse
|
4
|
Rahman MM, Yun J, Lee K, Lee SH, Park SM, Ham CH, Sung HC. Population-level call properties of endangered Dryophytes suweonensissensu lato (Anura: Amphibia) in South Korea. PeerJ 2023; 11:e16492. [PMID: 38054023 PMCID: PMC10695108 DOI: 10.7717/peerj.16492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/30/2023] [Indexed: 12/07/2023] Open
Abstract
Calling is one of the unique amphibian characteristics that facilitates social communication and shows individuality; however, it also makes them vulnerable to predators. Researchers use amphibian call properties to study their population status, ecology, and behavior. This research scope has recently broadened to species identification and taxonomy. Dryophytes flaviventris has been separated from the endangered anuran species, D. suweonensis, based on small variations in genetic, morphometric, and temporal call properties observed in South Korea. The Chilgap Mountain (CM) was considered as the potential geographic barrier for the speciation. However, it initiated taxonomic debates as CM has been hardly used and is considered a potential barrier for other species. The calls of populations from both sides are also apparently similar. Thus, to verify the differences in call properties among populations of D. suweonensis sensu lato (s.l.; both of the species), we sampled and analyzed call data from five localities covering its distribution range, including the southern (S) and northern (N) parts of CM. We found significant differences in many call properties among populations; however, no specific pattern was observed. Some geographically close populations, such as Iksan (S), Wanju (S), and Gunsan (S), had significant differences, whereas many distant populations, such as Pyeongtaek (N) and Wanju (S), had no significant differences. Considering the goal of this study was only to observe the call properties, we cautiously conclude that the differences are at the population level rather than the species level. Our study indicates the necessity of further investigation into the specific status of D. flaviventris using robust integrated taxonomic approaches, including genetic and morphological parameters from a broader array of localities.
Collapse
Affiliation(s)
- Md Mizanur Rahman
- Department of Biological Sciences, Chonnam National University, Gwangju, South Korea
| | - Jiyoung Yun
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - KaHyun Lee
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Seung-Ha Lee
- Department of Biological Sciences, Chonnam National University, Gwangju, South Korea
| | - Seung-Min Park
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Choong-Ho Ham
- Department of Biological Sciences and Biotechnology, Chonnam National University, Gwangju, South Korea
| | - Ha-Cheol Sung
- Department of Biological Sciences, Chonnam National University, Gwangju, South Korea
- Research Center of Ecomimetics, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Macdonald KJ, Driscoll DA, Macdonald KJ, Hradsky B, Doherty TS. Meta-analysis reveals impacts of disturbance on reptile and amphibian body condition. GLOBAL CHANGE BIOLOGY 2023; 29:4949-4965. [PMID: 37401520 DOI: 10.1111/gcb.16852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
Ecosystem disturbance is increasing in extent, severity and frequency across the globe. To date, research has largely focussed on the impacts of disturbance on animal population size, extinction risk and species richness. However, individual responses, such as changes in body condition, can act as more sensitive metrics and may provide early warning signs of reduced fitness and population declines. We conducted the first global systematic review and meta-analysis investigating the impacts of ecosystem disturbance on reptile and amphibian body condition. We collated 384 effect sizes representing 137 species from 133 studies. We tested how disturbance type, species traits, biome and taxon moderate the impacts of disturbance on body condition. We found an overall negative effect of disturbance on herpetofauna body condition (Hedges' g = -0.37, 95% CI: -0.57, -0.18). Disturbance type was an influential predictor of body condition response and all disturbance types had a negative mean effect. Drought, invasive species and agriculture had the largest effects. The impact of disturbance varied in strength and direction across biomes, with the largest negative effects found within Mediterranean and temperate biomes. In contrast, taxon, body size, habitat specialisation and conservation status were not influential predictors of disturbance effects. Our findings reveal the widespread effects of disturbance on herpetofauna body condition and highlight the potential role of individual-level response metrics in enhancing wildlife monitoring. The use of individual response metrics alongside population and community metrics would deepen our understanding of disturbance impacts by revealing both early impacts and chronic effects within affected populations. This could enable early and more informed conservation management.
Collapse
Affiliation(s)
- Kristina J Macdonald
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Don A Driscoll
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Kimberley J Macdonald
- Biodiversity Protection and Information Branch, Biodiversity Division, Department of Energy, Environment and Climate Action, East Melbourne, Victoria, Australia
| | - Bronwyn Hradsky
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Tim S Doherty
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Clarke DA, McGeoch MA. Invasive alien insects represent a clear but variable threat to biodiversity. CURRENT RESEARCH IN INSECT SCIENCE 2023; 4:100065. [PMID: 37564301 PMCID: PMC10410178 DOI: 10.1016/j.cris.2023.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
Invasive alien insects are an important yet understudied component of the general threat that biological invasions pose to biodiversity. We quantified the breadth and level of this threat by performing environmental impact assessments using a modified version of the Environmental Impact Assessment for Alien Taxa (EICAT) framework. This represents the largest effort to date on quantify the environmental impacts of invasive alien insects. Using a relatively large and taxonomically representative set of insect species that have established non-native populations around the globe, we tested hypotheses on: (1) socioeconomic and (2) taxonomic biases, (3) relationship between range size and impact severity and (4) island susceptibility. Socioeconomic pests had marginally more environmental impact information than non-pests and, as expected, impact information was geographically and taxonomically skewed. Species with larger introduced ranges were more likely, on average, to have the most severe local environmental impacts (i.e. a global maximum impact severity of 'Major'). The island susceptibility hypothesis found no support, and both island and mainland systems experience similar numbers of high severity impacts. These results demonstrate the high variability, both within and across species, in the ways and extents to which invasive insects impact biodiversity, even within the highest profile invaders. However, the environmental impact knowledge base requires greater taxonomic and geographic coverage, so that hypotheses about invasion impact can be developed towards identifying generalities in the biogeography of invasion impacts.
Collapse
Affiliation(s)
- David A. Clarke
- Department of Environment and Genetics, La Trobe University, Victoria 3086, Australia
- Securing Antarctica's Environmental Future, La Trobe University, Victoria 3086, Australia
| | - Melodie A. McGeoch
- Department of Environment and Genetics, La Trobe University, Victoria 3086, Australia
- Securing Antarctica's Environmental Future, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
7
|
Terblanche N, Measey J. The conservation value of freshwater habitats for frog communities of lowland fynbos. PeerJ 2023; 11:e15516. [PMID: 37304861 PMCID: PMC10249618 DOI: 10.7717/peerj.15516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibians are more threatened than any other vertebrate class, yet evidence for many threats is missing. The Cape lowland fynbos (endemic scrub biome) is threatened by habitat loss, and natural temporary freshwater habitats are removed in favour of permanent impoundments. In this study, we determine amphibian assemblages across different freshwater habitat types with special attention to the presence of invasive fish. We find that anuran communities differ primarily by habitat type, with permanent water habitats having more widespread taxa, while temporary water bodies have more range restricted taxa. Invasive fish are found to have a significant impact on frogs with toads most tolerant of their presence. Temporary freshwater habitats are a conservation priority in the area, and their amphibian assemblages represent endemic taxa that are intolerant of invasive fish. Conservation of a biodiverse amphibian assemblage in lowland fynbos areas will rely on the creation of temporary freshwater habitats, rather than a northern hemisphere pond based solution.
Collapse
Affiliation(s)
- Naas Terblanche
- Riverglade Retirement Village, Parklands, Unaffiliated, Cape Town, South Africa
| | - John Measey
- Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
8
|
Kortz AR, Moyes F, Pivello VR, Pyšek P, Dornelas M, Visconti P, Magurran AE. Elevated compositional change in plant assemblages linked to invasion. Proc Biol Sci 2023; 290:20222450. [PMID: 37161334 PMCID: PMC10170211 DOI: 10.1098/rspb.2022.2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Alien species are widely linked to biodiversity change, but the extent to which they are associated with the reshaping of ecological communities is not well understood. One possible mechanism is that assemblages where alien species are found exhibit elevated temporal turnover. To test this, we identified assemblages of vascular plants in the BioTIME database for those assemblages in which alien species are either present or absent and used the Jaccard measure to compute compositional dissimilarity between consecutive censuses. We found that, although alien species are typically rare in invaded assemblages, their presence is associated with an increase in the average rate of compositional change. These differences in compositional change between invaded and uninvaded assemblages are not linked to differences in species richness but rather to species replacement (turnover). Rapid compositional restructuring of assemblages is a major contributor to biodiversity change, and as such, our results suggest a role for alien species in bringing this about.
Collapse
Affiliation(s)
- Alessandra R. Kortz
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice CZ-25243, Czech Republic
- Biodiversity and Natural Resources Program, Biodiversity, Ecology and Conservation group, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg 2361, Austria
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
- LEPaC, Ecology Department—IB, Universidade de São Paulo, Rua do Matão, Travessa 14, São Paulo, SP CEP 05508-090, Brazil
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
| | - Vânia R. Pivello
- LEPaC, Ecology Department—IB, Universidade de São Paulo, Rua do Matão, Travessa 14, São Paulo, SP CEP 05508-090, Brazil
| | - Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice CZ-25243, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague CZ-12844, Czech Republic
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
| | - Piero Visconti
- Biodiversity and Natural Resources Program, Biodiversity, Ecology and Conservation group, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg 2361, Austria
| | - Anne E. Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
9
|
Baecher JA, Johnson SA, Roznik EA, Scheffers BR. Experimental evaluation of how biological invasions and climate change interact to alter the vertical assembly of an amphibian community. J Anim Ecol 2023; 92:875-888. [PMID: 36872563 DOI: 10.1111/1365-2656.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/17/2022] [Indexed: 03/07/2023]
Abstract
While biotic-abiotic interactions are increasingly documented in nature, a process-based understanding of how such interactions influence community assembly is lacking in the ecological literature. Perhaps the most emblematic and pervasive example of such interactions is the synergistic threat to biodiversity posed by climate change and invasive species. Invasive species often out-compete or prey on native species. Despite this long-standing and widespread issue, little is known about how abiotic conditions, such as climate change, will influence the frequency and severity of negative biotic interactions that threaten the persistence of native fauna. Treefrogs are a globally diverse group of amphibians that climb to complete life-cycle processes, such as foraging and reproduction, as well as to evade predators and competitors, resulting in frog communities that are vertically partitioned. Furthermore, treefrogs adjust their vertical position to maintain optimal body temperature and hydration in response to environmental change. Here, utilizing this model group, we designed a novel experiment to determine how extrinsic abiotic and biotic factors (changes to water availability and an introduced predator, respectively) interact with intrinsic biological traits, such as individual physiology and behaviour, to influence treefrogs' vertical niche. Our study found that treefrogs adjusted their vertical niche through displacement behaviours in accordance with abiotic resources. However, biotic interactions resulted in native treefrogs distancing themselves from abiotic resources to avoid the non-native species. Importantly, under altered abiotic conditions, both native species avoided the non-native species 33 $$ 33 $$ %- 70 % $$ 70\% $$ more than they avoided their native counterpart. Additionally, exposure to the non-native species resulted in native species altering their tree climbing behaviours by 56 % - 78 % $$ 56\%\hbox{--} 78\% $$ and becoming more vertically dynamic to avoid the non-native antagonist. Our experiment determined that vertical niche selection and community interactions were most accurately represented by a biotic-abiotic interaction model, rather than a model that considers these factors to operate in an isolated (singular) or even additive manner. Our study provides evidence that native species may be resilient to interacting disturbances via physiological adaptations to local climate and plasticity in space-use behaviours that mediate the impact of the introduced predator.
Collapse
Affiliation(s)
- J Alex Baecher
- School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA
| | - Steve A Johnson
- School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA.,Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| | - Elizabeth A Roznik
- Department of Conservation and Research, Memphis Zoo, Memphis, Tennessee, USA.,North Carolina Zoo, Asheboro, North Carolina, USA
| | - Brett R Scheffers
- School of Natural Resources and Environment, University of Florida, Gainesville, Florida, USA.,Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Bernabò I, Iannella M, Cittadino V, Corapi A, Romano A, Andreone F, Biondi M, Gallo Splendore M, Tripepi S. Survived the Glaciations, Will They Survive the Fish? Allochthonous Ichthyofauna and Alpine Endemic Newts: A Road Map for a Conservation Strategy. Animals (Basel) 2023; 13:ani13050871. [PMID: 36899728 PMCID: PMC10000147 DOI: 10.3390/ani13050871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
The Calabrian Alpine newt (Ichthyosaura alpestris inexpectata) is a glacial relict with small and extremely localised populations in the Catena Costiera (Calabria, Southern Italy) and is considered to be "Endangered" by the Italian IUCN assessment. Climate-induced habitat loss and recent fish introductions in three lakes of the Special Area of Conservation (SAC) Laghi di Fagnano threaten the subspecies' survival in the core of its restricted range. Considering these challenges, understanding the distribution and abundance of this newt is crucial. We surveyed the spatially clustered wetlands in the SAC and neighbouring areas. First, we provide the updated distribution of this subspecies, highlighting fish-invaded and fishless sites historically known to host Calabrian Alpine newt populations and two new breeding sites that have been recently colonised. Then, we provide a rough estimate of the abundance, body size and body condition of breeding adults and habitat characteristics in fish-invaded and fishless ponds. We did not detect Calabrian Alpine newts at two historically known sites now invaded by fish. Our results indicate a reduction in occupied sites and small-size populations. These observations highlight the need for future strategies, such as fish removal, the creation of alternative breeding habitats and captive breeding, to preserve this endemic taxon.
Collapse
Affiliation(s)
- Ilaria Bernabò
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, I-87036 Rende, Italy
- Correspondence: (I.B.); (M.I.)
| | - Mattia Iannella
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Via Vetoio—Coppito, I-67100 L’Aquila, Italy
- Correspondence: (I.B.); (M.I.)
| | - Viviana Cittadino
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, I-87036 Rende, Italy
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Via Vetoio—Coppito, I-67100 L’Aquila, Italy
| | - Anna Corapi
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, I-87036 Rende, Italy
| | - Antonio Romano
- Consiglio Nazionale delle Ricerche—Istituto per la BioEconomia, Via dei Taurini 19, I-00100 Roma, Italy
| | - Franco Andreone
- Museo Regionale di Scienze Naturali, Via G. Giolitti 36, I-10123 Torino, Italy
| | - Maurizio Biondi
- Department of Life, Health & Environmental Sciences, University of L’Aquila, Via Vetoio—Coppito, I-67100 L’Aquila, Italy
| | | | - Sandro Tripepi
- Department of Biology, Ecology and Earth Science, University of Calabria, Via P. Bucci 4/B, I-87036 Rende, Italy
| |
Collapse
|
11
|
Angus O, Turner AA, Measey J. In a rough spot: Declines in
Arthroleptella rugosa
calling densities are explained by invasive pine trees. AUSTRAL ECOL 2023. [DOI: 10.1111/aec.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Oliver Angus
- Department of Botany and Zoology, Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| | - Andrew A. Turner
- CapeNature Biodiversity Capabilities Directorate Cape Town South Africa
- Department of Biodiversity and Conservation Biology University of the Western Cape Cape Town South Africa
| | - John Measey
- Department of Botany and Zoology, Centre for Invasion Biology Stellenbosch University Stellenbosch South Africa
| |
Collapse
|
12
|
Coupling phenotypic changes to extinction and survival in an endemic prey community threatened by an invasive snake. Sci Rep 2022; 12:18249. [PMID: 36309562 PMCID: PMC9617863 DOI: 10.1038/s41598-022-22583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
When facing novel invasive predators, native prey can either go extinct or survive through exaptation or phenotypic shifts (either plastic or adaptive). Native prey can also reflect stress-mediated responses against invasive predators, affecting their body condition. Although multiple native prey are likely to present both types of responses against a single invader, community-level studies are infrequent. The invasive California kingsnake (Lampropeltis californiae) a good example to explore invasive predators' effects on morphology and body condition at a community level, as this invader is known to locally extinct the Gran Canaria giant lizard (Gallotia stehlini) and to notably reduce the numbers of the Gran Canaria skink (Chalcides sexlineatus) and the Boettger's gecko (Tarentola boettgeri). By comparing a set of morphological traits and body condition (i.e. body index and ectoparasite load) between invaded and uninvaded areas for the three squamates, we found clear evidence of a link between a lack of phenotypic change and extinction, as G. stehlini was the single native prey that did not show morphological shifts. On the other side, surviving C. sexlineatus and T. boettgeri exhibited phenotypic differences in several morphological traits that could reflect plastic responses that contribute to their capacity to cope with the snake. Body condition responses varied among species, indicating the potential existence of simultaneous consumptive and non-consumptive effects at a community level. Our study further highlights the importance addressing the impact of invasive predators from a community perspective in order to gain a deeper understanding of their effect in native ecosystems.
Collapse
|
13
|
Siddiqui JA, Luo Y, Sheikh UAA, Bamisile BS, Khan MM, Imran M, Hafeez M, Ghani MI, Lei N, Xu Y. Transcriptome analysis reveals differential effects of beta-cypermethrin and fipronil insecticides on detoxification mechanisms in Solenopsis invicta. Front Physiol 2022; 13:1018731. [PMID: 36277215 PMCID: PMC9583148 DOI: 10.3389/fphys.2022.1018731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Insecticide resistance poses many challenges in insect pest control, particularly in the control of destructive pests such as red imported fire ants (Solenopsis invicta). In recent years, beta-cypermethrin and fipronil have been extensively used to manage invasive ants, but their effects on resistance development in S. invicta are still unknown. To investigate resistance development, S. invicta was collected from populations in five different cities in Guangdong, China. The results showed 105.71- and 2.98-fold higher resistance against fipronil and beta-cypermethrin, respectively, in the Guangzhou population. The enzymatic activities of acetylcholinesterase, carboxylases, and glutathione S-transferases significantly increased with increasing beta-cypermethrin and fipronil concentrations. Transcriptomic analysis revealed 117 differentially expressed genes (DEGs) in the BC-ck vs. BC-30 treatments (39 upregulated and 78 downregulated), 109 DEGs in F-ck vs. F-30 (33 upregulated and 76 downregulated), and 499 DEGs in BC-30 vs. F-30 (312 upregulated and 187 downregulated). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEGs associated with insecticide resistance were significantly enriched in metabolic pathways, the AMPK signaling pathway, the insulin signaling pathway, carbon metabolism, peroxisomes, fatty acid metabolism, drug metabolism enzymes and the metabolism of xenobiotics by cytochrome P450. Furthermore, we found that DEGs important for insecticide detoxification pathways were differentially regulated under both insecticide treatments in S. invicta. Comprehensive transcriptomic data confirmed that detoxification enzymes play a significant role in insecticide detoxification and resistance development in S. invicta in Guangdong Province. Numerous identified insecticide-related genes, GO terms, and KEGG pathways indicated the resistance of S. invicta workers to both insecticides. Importantly, this transcriptome profile variability serves as a starting point for future research on insecticide risk evaluation and the molecular mechanism of insecticide detoxification in invasive red imported fire ants.
Collapse
Affiliation(s)
- Junaid Ali Siddiqui
- Department of Entomology, South China Agricultural University, Guangzhou, China
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Yuanyuan Luo
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
- *Correspondence: Yuanyuan Luo, ; Yijuan Xu,
| | | | | | - Muhammad Musa Khan
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Muhammad Imran
- State Key Laboratory for the Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Hafeez
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Imran Ghani
- College of Agriculture, College of Tobacco Science, Guizhou University, Guiyang, China
| | - Nie Lei
- Department of Entomology, South China Agricultural University, Guangzhou, China
| | - Yijuan Xu
- Department of Entomology, South China Agricultural University, Guangzhou, China
- *Correspondence: Yuanyuan Luo, ; Yijuan Xu,
| |
Collapse
|
14
|
Vodrážková M, Šetlíková I, Navrátil J, Berec M. Presence of an alien turtle accelerates hatching of common frog (Rana temporaria) tadpoles. NEOBIOTA 2022. [DOI: 10.3897/neobiota.74.82250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The presence of a predator affects prey populations either by direct predation or by modifying various parts of their life history. We investigated whether the hatching time, developmental stage, and body size at hatching of common frog (Rana temporaria) embryos would alter in the presence of a red-eared slider (Trachemys scripta elegans) as a predator. The presence of a predator affected all factors examined. We found that in the absence of the slider, the embryos hatched in 12 days, while hatching was accelerated by two days in slider treatment. At the same time, the embryos hatched smaller and at a lower stage of development with the slider than without it. Our study extends the range of predators studied, including the effect on different phases of development of potential amphibian prey.
Collapse
|
15
|
Denoël M, Duret C, Lorrain-Soligon L, Padilla P, Pavis J, Pille F, Tendron P, Ficetola GF, Falaschi M. High habitat invasibility unveils the invasiveness potential of water frogs. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
16
|
Tasker BR, Honebein KN, Erickson AM, Misslin JE, Hurst P, Cooney S, Riley S, Griffith SA, Bancroft BA. Effects of elevated temperature, reduced hydroperiod, and invasive bullfrog larvae on pacific chorus frog larvae. PLoS One 2022; 17:e0265345. [PMID: 35290408 PMCID: PMC8923472 DOI: 10.1371/journal.pone.0265345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 11/20/2022] Open
Abstract
Climate change and invasive species threaten many ecosystems, including surface freshwater systems. Increasing temperatures and reduced hydroperiod due to climate change may promote the persistence of invasive species and facilitate new invasions due to potentially higher tolerance to environmental stress in successful invaders. Amphibians demonstrate high levels of plasticity in life history characteristics, particularly those species which inhabit both ephemeral and permanent water bodies. We tested the influence of two projected effects of climate change (increased temperature and reduced hydroperiod) on Pacific chorus frog (Pseudacris regilla) tadpoles alone and in combination with the presence of tadpoles of a wide-spread invasive amphibian, the American bullfrog (Lithobates catesbeianus). Specifically, we explored the effects of projected climate change and invasion on survival, growth, mass at stage 42, and development rate of Pacific chorus frogs. Direct and indirect interactions between the invasive tadpole and the native tadpole were controlled via a cage treatment and were included to account for differences in presence of the bullfrog compared to competition for food resources and other direct effects. Overall, bullfrogs had larger negative effects on Pacific chorus frogs than climate conditions. Under future climate conditions, Pacific chorus frogs developed faster and emerged heavier. Pacific chorus frog tadpoles developing in the presence of American bullfrogs, regardless of cage treatment, emerged lighter. When future climate conditions and presence of invasive American bullfrog tadpoles were combined, tadpoles grew less. However, no interaction was detected between climate conditions and bullfrog presence for mass, suggesting that tadpoles allocated energy towards mass rather than length under the combined stress treatment. The maintenance of overall body condition (smaller but heavier metamorphs) when future climate conditions overlap with bullfrog presence suggests that Pacific chorus frogs may be partially compensating for the negative effects of bullfrogs via increased allocation of energy towards mass. Strong plasticity, as demonstrated by Pacific chorus frog larvae in our study, may allow species to match the demands of new environments, including under future climate change.
Collapse
Affiliation(s)
- Bailey R. Tasker
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
- Department of Environmental Studies and Sciences, Gonzaga University, Spokane, Washington, United States of America
| | - Karli N. Honebein
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
- Department of Environmental Studies and Sciences, Gonzaga University, Spokane, Washington, United States of America
| | - Allie M. Erickson
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
- Department of Environmental Studies and Sciences, Gonzaga University, Spokane, Washington, United States of America
| | - Julia E. Misslin
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Paul Hurst
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
- Department of Environmental Studies and Sciences, Gonzaga University, Spokane, Washington, United States of America
| | - Sarah Cooney
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Skylar Riley
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
| | - Scott A. Griffith
- Department of Mathematics and Computer Science, Whitworth University, Spokane, Washington, United States of America
| | - Betsy A. Bancroft
- Department of Biology, Gonzaga University, Spokane, Washington, United States of America
- Department of Environmental Studies and Sciences, Gonzaga University, Spokane, Washington, United States of America
- * E-mail:
| |
Collapse
|
17
|
Evidence for Negative Impacts on Terrestrial Salamanders following Invasive Plant Removal. J HERPETOL 2022. [DOI: 10.1670/21-018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Marino C, Leclerc C, Bellard C. Profiling insular vertebrates prone to biological invasions: What makes them vulnerable? GLOBAL CHANGE BIOLOGY 2022; 28:1077-1090. [PMID: 34783130 DOI: 10.1111/gcb.15941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Invasive alien species (IAS) are a major threat to insular vertebrates, although the ecological characteristics that make insular communities vulnerable to IAS are poorly understood. After describing the ecological strategies of 6015 insular amphibians, birds, lizards, and mammals, we assessed the functional and ecological features of vertebrates exposed to IAS. We found that at least 50% of insular amphibian functional richness was hosted by IAS-threatened amphibians and up to 29% for birds. Moreover, all IAS-threatened groups except birds harbored a higher functional richness than species groups threatened by other threats. Disentangling the ecological strategies threatened by IAS, compared to those associated with other threats, we showed that birds, lizards, and mammals were more likely to be terrestrial foragers and amphibians to have larval development. By contrast, large-bodied species and habitat specialists were universally threatened. By considering the functional aspect of threatened insular diversity, our work improves our understanding of global IAS impacts. This new dimension proves essential for undertaking relevant and effective conservation actions.
Collapse
Affiliation(s)
- Clara Marino
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Camille Leclerc
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | - Céline Bellard
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
19
|
Native anurans threatened by the alien tree Ligustrum lucidum in a seasonal subtropical forest. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Abstract
Anurans have been introduced in many parts of the world and have often become invasive over large geographic areas. Although predation is involved in the declines of invaded amphibian populations, there is a lack of quantitative assessments evaluating the potential risk posed to native species. This is particularly true for Pelophylax water frogs, which have invaded large parts of western Europe, but no studies to date have examined their predation on other amphibians in their invaded range. Predation of native amphibians by marsh frogs (Pelophylax ridibundus) was assessed by stomach flushing once a month over four months in 21 ponds in southern France. Nine percent of stomachs contained amphibians. Seasonality was a major determinant of amphibian consumption. This effect was mediated by body size, with the largest invaders ingesting bigger natives, such as tree frogs. These results show that invasive marsh frogs represent a threat through their ability to forage on natives, particularly at the adult stage. The results also indicate that large numbers of native amphibians are predated. More broadly, the fact that predation was site- and time-specific highlights the need for repeated samplings across habitats and key periods for a clear understanding of the impact of invaders.
Collapse
|
21
|
Araújo APDC, Rocha TL, E Silva DDM, Malafaia G. Micro(nano)plastics as an emerging risk factor to the health of amphibian: A scientometric and systematic review. CHEMOSPHERE 2021; 283:131090. [PMID: 34153909 DOI: 10.1016/j.chemosphere.2021.131090] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Although the toxicity of microplastics (MPs) and nanoplastics (NPs) is recognized at different trophic levels, our know-how about their effects on amphibians is limited. Thus, we present and discuss the current state on studies involving amphibians and plastic particles, based on a broad approach to studies published in the last 5 years. To search for the articles, the ISI Web of Science, ScienceDirect, and Scopus databases were consulted, using different descriptors related to the topic of study. After the systematic search, we identified 848 publications. Of these, 12 studies addressed the relationship "plastic particles and amphibians" (7 studies developed in the laboratory and 5 field studies). The scientometric analysis points to geographic concentration of studies in Brazil and China; low investment in research in the area, and limited participation of international authors in the studies carried out. In the systematic approach, we confirm the scarcity of available data on the toxicity of plastic particles in amphibians; we observed a concentration of studies in the Anura order, only one study explored the toxicological effects of NPs and polystyrene and polyethylene are the most studied plastic types. Moreover, the laboratory tested concentrations are distant from those of the environmentally relevant; and little is known about the mechanisms of action of NPs/MPs involved in the identified (eco)toxicological effects. Thus, we strongly recommend more investments in this area, given the ubiquitous nature of NPs/MPs in aquatic environments and their possible consequences on the dynamics, reproduction, and survival of species in the natural environment.
Collapse
Affiliation(s)
- Amanda Pereira da Costa Araújo
- Biological Research Laboratory, Goiano Federal Institute, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil.
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Daniela de Melo E Silva
- Post-Graduation Program in Environmental Sciences, Federal University of Goiás, Goiânia, GO, Brazil; Laboratory of Environmental Mutagenesis, Federal University of Goiás, Goiânia, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| |
Collapse
|
22
|
Nascimento ÍF, Guimarães ATB, Ribeiro F, Rodrigues ASDL, Estrela FN, Luz TMD, Malafaia G. Polyethylene glycol acute and sub-lethal toxicity in neotropical Physalaemus cuvieri tadpoles (Anura, Leptodactylidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117054. [PMID: 33848902 DOI: 10.1016/j.envpol.2021.117054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Although many polymers are known by their toxicity, we know nothing about the impact of polyethylene glycol (PEG) on anurofauna. Its presence in different products and disposal in aquatic environments turn assessments about its impact on amphibians an urgent matter. Accordingly, we tested the hypothesis that short-time exposure (72 h) of tadpoles belonging to the species Physalaemus cuvieri (Anura, Leptodactylidae) to PEG induces oxidative stress and neurotoxicity on them. We observed that polymer uptake in P. cuvieri occurred after exposure to 5 and 10 mg/L of PEG without inducing changes in their nitrite levels neither at the levels of substances reactive to thiobarbituric acid. However, hydrogen peroxide and reactive oxygen species production was higher in animals exposed to PEG, whose catalase and superoxide dismutase levels were not enough to counterbalance the production of these reactive species. Therefore, this finding suggests physiological changes altering REDOX homeostasis into oxidative stress. In addition, the increased activity of acetylcholinesterase and butyrylcholinesterase, and reduction in superficial neuromasts, confirmed PEG's neurotoxic potential. To the best of our knowledge, this is the first report on PEG's biological impact on a particular amphibian species. The study has broadened the understanding about ecotoxicological risks associated with water pollution by these polymers, as well as motivated further investigations on its impacts on amphibians' health and on the dynamics of their natural populations.
Collapse
Affiliation(s)
| | - Abraão Tiago Batista Guimarães
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Fabianne Ribeiro
- Department of Biology & CESAM - Center for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | | | - Fernanda Neves Estrela
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thiarlen Marinho da Luz
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Graduate Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology and Natural Resources Conservation, Uberlândia, MG, Brazil.
| |
Collapse
|
23
|
Raised by aliens: constant exposure to an invasive predator triggers morphological but not behavioural plasticity in a threatened species tadpoles. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractDuring biotic invasions, native communities are abruptly exposed to novel and often severe selective pressures. The lack of common evolutionary history with invasive predators can hamper the expression of effective anti-predator responses in native prey, potentially accelerating population declines. Nonetheless, rapid adaptation and phenotypic plasticity may allow native species to cope with the new ecological pressures. We tested the hypothesis that phenotypic plasticity is fostered when facing invasive species and evaluated whether plasticity offers a pool of variability that might help the fixation of adaptive phenotypes. We assessed behavioural and morphological trait variation in tadpoles of the Italian agile frog (Rana latastei) in response to the invasive crayfish predator, Procambarus clarkii, by rearing tadpoles under different predation-risk regimes: non-lethal crayfish presence and crayfish absence. After two-month rearing, crayfish-exposed tadpoles showed a plastic shift in their body shape and increased tail muscle size, while behavioural tests showed no effect of crayfish exposure on tadpole behaviour. Furthermore, multivariate analyses revealed weak divergence in morphology between invaded and uninvaded populations, while plasticity levels were similar between invaded and uninvaded populations. Even if tadpoles displayed multiple plastic responses to the novel predator, none of these shifts underwent fixation after crayfish arrival (10–15 years). Overall, these findings highlight that native prey can finely tune their responses to invasive predators through plasticity, but the adaptive value of these responses in whitstanding the novel selective pressures, and the long-term consequences they can entail remain to be ascertained.
Collapse
|
24
|
da Luz TM, Araújo APDC, Estrela FN, Braz HLB, Jorge RJB, Charlie-Silva I, Malafaia G. Can use of hydroxychloroquine and azithromycin as a treatment of COVID-19 affect aquatic wildlife? A study conducted with neotropical tadpole. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146553. [PMID: 33774288 PMCID: PMC7969824 DOI: 10.1016/j.scitotenv.2021.146553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 05/03/2023]
Abstract
The impacts on human health and the economic and social disruption caused by the pandemic COVID-19 have been devastating. However, its environmental consequences are poorly understood. Thus, to assess whether COVID-19 therapy based on the use of azithromycin (AZT) and hydroxychloroquine (HCQ) during the pandemic affects wild aquatic life, we exposed (for 72 h) neotropical tadpoles of the species Physalaemus cuvieri to the water containing these drugs to 12.5 μg/L. We observed that the increase in superoxide dismutase and catalase in tadpoles exposed to AZT (alone or in combination with HCQ) was predominant to keep the production of NO, ROS, TBARS and H2O2 equitable between the experimental groups. In addition, the uptake of AZT and the strong interaction of AZT with acetylcholinesterase (AChE), predicted by the molecular docking analysis, were associated with the anticholinesterase effect observed in the groups exposed to the antibiotic. However, the unexpected increase in butyrylcholinesterase (BChE) in these same groups suggests its constitutive role in maintaining cholinergic homeostasis. Therefore, taken together, our data provide a pioneering evidence that the exposure of P. cuvieri tadpoles to AZT (alone or in combination with HCQ) in a predictably increased environmental concentration (12.5 μg/L) elicits a compensatory adaptive response that can have, in the short period of exposure, guaranteed the survival of the animals. However, the high energy cost for maintaining physiological homeostasis, can compromise the growth and development of animals and, therefore, in the medium-long term, have a general negative effect on the health of animals. Thus, it is possible that COVID-19 therapy, based on the use of AZT, affects wild aquatic life, which requires greater attention to the impacts that this drug may represent.
Collapse
Affiliation(s)
| | | | - Fernanda Neves Estrela
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano, Urutaí, GO, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Helyson Lucas Bezerra Braz
- Programa de Pós-Graduação em Ciências Morfofuncionais, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | | | - Ives Charlie-Silva
- Programa de Pós-Graduação em Ciências Morfofuncionais, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Institute de Ciências Biológicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Guilherme Malafaia
- Laboratório de Pesquisas Biológicas, Instituto Federal Goiano, Urutaí, GO, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Goiânia, GO, Brazil; Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal Goiano, Urutaí, GO, Brazil.
| |
Collapse
|
25
|
Crystal-Ornelas R, Hudgins EJ, Cuthbert RN, Haubrock PJ, Fantle-Lepczyk J, Angulo E, Kramer AM, Ballesteros-Mejia L, Leroy B, Leung B, López-López E, Diagne C, Courchamp F. Economic costs of biological invasions within North America. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.58038] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Invasive species can have severe impacts on ecosystems, economies, and human health. Though the economic impacts of invasions provide important foundations for management and policy, up-to-date syntheses of these impacts are lacking. To produce the most comprehensive estimate of invasive species costs within North America (including the Greater Antilles) to date, we synthesized economic impact data from the recently published InvaCost database. Here, we report that invasions have cost the North American economy at least US$ 1.26 trillion between 1960 and 2017. Economic costs have climbed over recent decades, averaging US$ 2 billion per year in the early 1960s to over US$ 26 billion per year in the 2010s. Of the countries within North America, the United States (US) had the highest recorded costs, even after controlling for research effort within each country ($5.81 billion per cost source in the US). Of the taxa and habitats that could be classified in our database, invasive vertebrates were associated with the greatest costs, with terrestrial habitats incurring the highest monetary impacts. In particular, invasive species cumulatively (from 1960–2017) cost the agriculture and forestry sectors US$ 527.07 billion and US$ 34.93 billion, respectively. Reporting issues (e.g., data quality or taxonomic granularity) prevented us from synthesizing data from all available studies. Furthermore, very few of the known invasive species in North America had reported economic costs. Therefore, while the costs to the North American economy are massive, our US$ 1.26 trillion estimate is likely very conservative. Accordingly, expanded and more rigorous economic cost reports are necessary to provide more comprehensive invasion impact estimates, and then support data-based management decisions and actions towards species invasions.
Collapse
|
26
|
Liu C, Diagne C, Angulo E, Banerjee AK, Chen Y, Cuthbert RN, Haubrock PJ, Kirichenko N, Pattison Z, Watari Y, Xiong W, Courchamp F. Economic costs of biological invasions in Asia. NEOBIOTA 2021. [DOI: 10.3897/neobiota.67.58147] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Invasive species have caused severe impacts on biodiversity and human society. Although the estimation of environmental impacts caused by invasive species has increased in recent years, economic losses associated with biological invasions are only sporadically estimated in space and time. In this study, we synthesized the losses incurred by invasions in Asia, based on the most comprehensive database of economic costs of invasive species worldwide, including 560 cost records for 88 invasive species in 22 countries. We also assessed the differences in economic costs across taxonomic groups, geographical regions and impacted sectors, and further identified the major gaps of current knowledge in Asia. Reported economic costs of biological invasions were estimated between 1965 and 2017, and reached a total of US$ 432.6 billion (2017 value), with dramatic increases in 2000–2002 and in 2004. The highest costs were recorded for terrestrial ectotherms, for species estimated in South Asia, and for species estimated at the country level, and were related to more than one impacted sector. Two taxonomic groups with the highest reported costs were insects and mammals, and two countries with the highest costs were India and China. Non-English data covered all of 12 taxonomic groups, whereas English data only covered six groups, highlighting the importance of considering data from non-English sources to have a more comprehensive estimation of economic costs associated with biological invasions. However, we found that the estimation of economic costs was lacking for most Asian countries and for more than 96% of introduced species in Asia. Further, the estimation is heavily biased towards insects and mammals and is very limited concerning expenditures on invasion management. To optimize the allocation of limited resources, there is an important need to better and more widely study the economic costs of invasive alien species. In this way, improved cost reporting and more collaborations between scientists and stakeholders are needed across Asia.
Collapse
|
27
|
Cogălniceanu D, Stănescu F, Székely D, Topliceanu TS, Iosif R, Székely P. Age, size and body condition do not equally reflect population response to habitat change in the common spadefoot toad Pelobates fuscus. PeerJ 2021; 9:e11678. [PMID: 34316392 PMCID: PMC8286710 DOI: 10.7717/peerj.11678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Urbanization impacts biodiversity both directly through physical expansion over land, and indirectly due to land use conversion and human behaviors associated with urban areas. We assessed the response of a common spadefoot toad population (Pelobates fuscus) to habitat loss and fragmentation resulting from urban development by studying changes in size, body condition and age parameters. We compared samples collected in the early 2000s (sample A) and later on during 2012-2014 (sample B). The terrestrial habitats in the study area were severely reduced and fragmented due to the expansion of the human settlement. We found no significant differences in the age parameters between the two sampling periods; the median lifespan shortened from 3.5 (sample A) to 3.0 years (sample B), while the other age parameters were similar in both samples. In contrast, snout-vent length, body mass and body condition experienced a significant decrease over time. Our results suggest that changes in body size and body condition, rather than age parameters, better reflect the response of the common spadefoot toad population to declining habitat quality. Therefore, body measurements can provide reliable estimates of the impact of habitat degradation in amphibian populations.
Collapse
Affiliation(s)
- Dan Cogălniceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Asociația Chelonia Romania, Bucharest, Romania
| | - Florina Stănescu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Black Sea Institute for Development and Security Studies, Ovidius University Constanța, Constanța, Romania.,CEDMOG-Center for Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanța, Constanța, Romania
| | - Diana Székely
- Asociația Chelonia Romania, Bucharest, Romania.,Departamento de Ciencias Biológicas y Agropecuarias, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs Lab), Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Theodor-Sebastian Topliceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Black Sea Institute for Development and Security Studies, Ovidius University Constanța, Constanța, Romania.,CEDMOG-Center for Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanța, Constanța, Romania
| | - Ruben Iosif
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Asociația Chelonia Romania, Bucharest, Romania
| | - Paul Székely
- Asociația Chelonia Romania, Bucharest, Romania.,Departamento de Ciencias Biológicas y Agropecuarias, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs Lab), Universidad Técnica Particular de Loja, Loja, Ecuador
| |
Collapse
|
28
|
Abstract
AbstractBiological invasions are increasing worldwide, damaging ecosystems and socioeconomic sectors. Two decades ago, the “100 of the world’s worst” invasive alien species list was established by the IUCN to improve communications , identifying particularly damaging ‘flagship’ invaders globally (hereafter, worst). Whilst this list has bolstered invader awareness, whether worst species are especially economically damaging and how they compare to other invaders (hereafter, other) remain unknown. Here, we quantify invasion costs using the most comprehensive global database compiling them (InvaCost). We compare these costs between worst and other species against sectorial, taxonomic and regional descriptors, and examine temporal cost trends. Only 60 of the 100 worst species had invasion costs considered as highly reliable and actually observed estimates (median: US$ 43 million). On average, these costs were significantly higher than the 463 other invasive species recorded in InvaCost (median: US$ 0.53 million), although some other species had higher costs than most worst species. Damages to the environment from the worst species dominated, whereas other species largely impacted agriculture. Disproportionately highest worst species costs were incurred in North America, whilst costs were more evenly distributed for other species; animal invasions were always costliest. Proportional management expenditures were low for the other species, and surprisingly, over twice as low for the worst species. Temporally, costs increased more for the worst than other taxa; however, management spending has remained very low for both groups. Nonetheless, since 40 species had no robust and/or reported costs, the “true” cost of “some of the world’s worst” 100 invasive species still remains unknown.
Collapse
|
29
|
From the Andes to the Apennines: Rise and Fall of a Free-Ranging Population of Feral Llamas. Animals (Basel) 2021; 11:ani11030857. [PMID: 33803497 PMCID: PMC8003056 DOI: 10.3390/ani11030857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Domestic mammals may become invasive alien species when introduced within natural environments and when they establish reproductive populations. One of the most common pathways of species introduction is represented by intentional or accidental escapes from confined environments, including zoos, farms and enclosures. A feral population of llama Lama glama has been present in Central Italy since 2016 after escaping from a zoological garden. In 2020, only three individuals were confirmed to be still present within a 40-hectare area, following a field survey. We carried out questionnaires with the resident human population to determine the local perception and the acceptance of two possible management actions, i.e., direct killing and surgical sterilization. Llamas are quite docile domestic animals, thus local perception was, in general, very positive and also linked to the exotic origin of the species, making llamas a welcome observation and a pleasant surprise. The observed decline of this population may be due to predation by wolves and poaching, together with the lack of suitability of natural environment, which may have prevented llamas establishing an invasive population. In this context, however, individual removal action should be conducted before the population shows a demographic rebound. Abstract Since 2016, a feral population of llama Lama glama has been present in Central Italy after escaping from a zoological garden and starting to reproduce. We updated demographic status and distribution of this population and investigated societal perception towards the llama presence and management in the area through a standard questionnaire. Field data were collected through direct (transects traveled by car and on foot) and indirect (newspapers, social networks and online platforms) research. The feral population appears to be declining. In July 2020, the population was represented by three individuals (one male and two females), identified also through photoidentification, most likely located within a 40-hectare area. The majority of citizens are aware of the presence of feral llamas and show a positive attitude toward them and a negative one toward management actions. The case of feral llamas in Italy is an evident example of unsafe management of a species which should have kept in a zoo and which, once set free, was able to catalyze the attention of the general public. The decline of this population limits the need of drastic management actions that, given the appreciation expressed by people and press toward these animals, would have been at risk of conflict with the public opinion. Removal action should be rapidly taken, i.e., before any demographic rebound and before the population becomes a stable feature of the local landscape.
Collapse
|
30
|
Bie J, Zheng K, Gao X, Liu B, Ma J, Hayat MA, Xiao J, Wang H. Spatial Risk Analysis of Batrachochytrium dendrobatidis, A Global Emerging Fungal Pathogen. ECOHEALTH 2021; 18:3-12. [PMID: 34212260 DOI: 10.1007/s10393-021-01519-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/21/2021] [Accepted: 03/02/2021] [Indexed: 06/13/2023]
Abstract
Chytridiomycosis, a leading cause for the global decline in the number of amphibians, is caused by the fungal pathogen Batrachochytrium dendrobatidis. In this study, global distribution data of B. dendrobatidis were collected from January 2009 to May 2019. Space-time scan statistics and the maximum entropy (MaxEnt) model were used to analyze the epidemic trends and aggregation of the pathogen, and predict B. dendrobatidis distribution through its relationships with climate factors, wind speed, and solar radiation. The results of space-time scan statistics show seven clusters of data for the distribution of B. dendrobatidis. The time was mainly concentrated in 2009, 2013, 2015, and 2016, and the regions were primarily concentrated in southeastern Canada, southwestern France, Nigeria, Cameroon, eastern Brazil, southeastern Brazil, central Madagascar, and central and eastern Australia. MaxEnt showed that annual precipitation had the largest contribution percentage in the model, and annual mean temperature highly influenced the distribution of B. dendrobatidis. The global high-risk areas of B. dendrobatidis distribution were mainly observed in western Canada, southern Brazil, Chile, the United Kingdom, Japan, the Republic of Korea, eastern South Africa, eastern Madagascar, southeastern Australia, and southern China.
Collapse
Affiliation(s)
- Jia Bie
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Keren Zheng
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Xiang Gao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Boyang Liu
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Jun Ma
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Muhammad Abid Hayat
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Jianhua Xiao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China
| | - Hongbin Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, People's Republic of China.
| |
Collapse
|
31
|
Superior predatory ability and abundance predicts potential ecological impact towards early-stage anurans by invasive 'Killer Shrimp' (Dikerogammarus villosus). Sci Rep 2021; 11:4570. [PMID: 33633148 PMCID: PMC7907340 DOI: 10.1038/s41598-021-82630-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/16/2020] [Indexed: 11/09/2022] Open
Abstract
Invasive alien species negatively impact upon biodiversity and generate significant economic costs worldwide. Globally, amphibians have suffered considerable losses, with a key driver being predation by large invasive invertebrate and vertebrate predators. However, there is no research regarding the potential ecological impact of small invertebrate invaders. The invasive freshwater amphipod Dikerogammarus villosus can act as a top predator capable of displacing native amphipods and preying heavily upon a range of native species. Listed as one of Europe's top 100 worst invaders, D. villosus has significantly restructured freshwater communities across western Europe and is expected to invade North America in the near future. Here we explore the ecological impact of invasive D. villosus upon UK native and invasive amphibians (Rana temporaria and Xenopus laevis respectively) using the "Relative Impact Potential" (RIP) metric. By combining estimations of per capita effects (i.e. functional response; FR) and relative field abundances, we apply the RIP metric to quantify the potential ecological impact of invasive D. villosus upon embryonic and larval amphibian prey, compared to the native amphipod Gammarus pulex. Both native and invasive amphipods consumed early-stage amphibians and exhibited potentially destabilising Type II FRs. However, larger body size in invasive D. villosus translated into a superior FR through significantly lower handling times and subsequently higher maximum feeding rates-up to seven times greater than native G. pulex. Higher invader abundance also drove elevated RIP scores for invasive D. villosus, with potential impact scores predicted up to 15.4 times greater than native G. pulex. Overall, D. villosus is predicted to have a greater predatory impact upon amphibian populations than G. pulex, due primarily to its larger body size and superior field abundance, potentially reducing amphibian recruitment within invaded regions.
Collapse
|
32
|
del Castillo Domínguez SL, González CAM, Fernández EB, Pelea LP, Cézilly F, Bosch RA. Predicting the invasion of the acoustic niche: Potential distribution and call transmission efficiency of a newly introduced frog in Cuba. Perspect Ecol Conserv 2021. [DOI: 10.1016/j.pecon.2020.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Silveira SDS, Guimarães M. The enemy within: consequences of the invasive bullfrog on native anuran populations. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02385-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
Anjos AG, Costa RN, Brito D, Solé M. Is there an association between the ecological characteristics of anurans from the Brazilian Atlantic Forest and their extinction risk? ETHOL ECOL EVOL 2020. [DOI: 10.1080/03949370.2020.1711815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Amanda G. Anjos
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brasil
| | - Renan N. Costa
- Programa de Pós-Graduação em Sistemas Aquáticos Tropicais, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brasil
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brasil
| | - Daniel Brito
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Caixa Postal 131, Goiânia, CEP 74001-970, Brasil
| | - Mirco Solé
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus, CEP 45662-900, Brasil
- Herpetology Section, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, Bonn, D-53113, Germany
| |
Collapse
|
35
|
Affiliation(s)
- Mattia Falaschi
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Andrea Melotto
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, Milano 20133, Italy
| |
Collapse
|
36
|
|
37
|
Chemical cues of an invasive turtle reduce development time and size at metamorphosis in the common frog. Sci Rep 2020; 10:7978. [PMID: 32409709 PMCID: PMC7224366 DOI: 10.1038/s41598-020-64899-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/24/2020] [Indexed: 11/16/2022] Open
Abstract
In aquatic systems, chemical cues are one of the major sources of information through which animals can assess local predation risk. Non-native red-eared sliders (Trachemys scripta elegans) have the potential to disrupt aquatic ecosystems in Central Europe because of their superior competitive abilities and omnivorous diets. In this study, we examined whether continuous predator-borne cues are tied to changes in the developmental rates, growth rates and sizes at metamorphosis of common frog tadpoles (Rana temporaria). Our results show rather rarely documented types of amphibian prey responses to caged predators. The presence of turtles shortened the time at metamorphosis of tadpoles from 110 ± 11.7 days to 93 ± 13.0 days (mean ± S.D.). The first metamorphosed individuals were recorded on the 65th day and on the 80th day from hatching in the predator treatment and in the control group, respectively. The froglets were significantly smaller (12.8 ± 0.99 mm) in the presence of the predator than in the control treatment (15.2 ± 1.27 mm). The growth rate trajectories were similar between the predator treatment and the control. Thus, predator-induced tadpole defences were evident in higher developmental rates and smaller sizes at metamorphosis without significant changes in growth.
Collapse
|
38
|
Pabijan M, Palomar G, Antunes B, Antoł W, Zieliński P, Babik W. Evolutionary principles guiding amphibian conservation. Evol Appl 2020; 13:857-878. [PMID: 32431739 PMCID: PMC7232768 DOI: 10.1111/eva.12940] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The Anthropocene has witnessed catastrophic amphibian declines across the globe. A multitude of new, primarily human-induced drivers of decline may lead to extinction, but can also push species onto novel evolutionary trajectories. If these are recognized by amphibian biologists, they can be engaged in conservation actions. Here, we summarize how principles stemming from evolutionary concepts have been applied for conservation purposes, and address emerging ideas at the vanguard of amphibian conservation science. In particular, we examine the consequences of increased drift and inbreeding in small populations and their implications for practical conservation. We then review studies of connectivity between populations at the landscape level, which have emphasized the limiting influence of anthropogenic structures and degraded habitat on genetic cohesion. The rapid pace of environmental changes leads to the central question of whether amphibian populations can cope either by adapting to new conditions or by shifting their ranges. We gloomily conclude that extinction seems far more likely than adaptation or range shifts for most species. That said, conservation strategies employing evolutionary principles, such as selective breeding, introduction of adaptive variants through translocations, ecosystem interventions aimed at decreasing phenotype-environment mismatch, or genetic engineering, may effectively counter amphibian decline in some areas or for some species. The spread of invasive species and infectious diseases has often had disastrous consequences, but has also provided some premier examples of rapid evolution with conservation implications. Much can be done in terms of setting aside valuable amphibian habitat that should encompass both natural and agricultural areas, as well as designing protected areas to maximize the phylogenetic and functional diversity of the amphibian community. We conclude that an explicit consideration and application of evolutionary principles, although certainly not a silver bullet, should increase effectiveness of amphibian conservation in both the short and long term.
Collapse
Affiliation(s)
- Maciej Pabijan
- Institute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Gemma Palomar
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Bernardo Antunes
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Weronika Antoł
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Zieliński
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Wiesław Babik
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|
39
|
|
40
|
Garcia RA, Clusella-Trullas S. Thermal landscape change as a driver of ectotherm responses to plant invasions. Proc Biol Sci 2019; 286:20191020. [PMID: 31238850 DOI: 10.1098/rspb.2019.1020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A growing body of research demonstrates the impacts of invasive alien plants on native animals, but few studies consider thermal effects as a driver of the responses of native organisms. As invasive alien plants establish and alter the composition and arrangement of plant communities, the thermal landscapes available to ectotherms also change. Our study reviews the research undertaken to date on the thermal effects of alien plant invasions on native reptiles, amphibians, insects and arachnids. The 37 studies published between 1970 and early 2019 portray an overall detrimental effect of invasive plants on thermal landscapes, ectothermic individuals' performance and species abundance, diversity and composition. With a case study of a lizard species, we illustrate the use of thermal ecology tools in plant invasion research and test the generality of alien plant effects: changes in thermoregulation behaviour in invaded landscapes varied depending on the level of invasion and lizard traits. Together, the literature review and case study show that thermal effects of alien plants on ectotherms can be substantial albeit context-dependent. Further research should cover multiple combinations of native/invasive plant growth forms, invasion stages and ectotherm traits. More attention is also needed to test causality along the chain of effects from thermal landscapes to individuals, populations and communities.
Collapse
Affiliation(s)
- Raquel A Garcia
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University , Private Bag X1, Matieland 7602 , South Africa
| | - Susana Clusella-Trullas
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University , Private Bag X1, Matieland 7602 , South Africa
| |
Collapse
|