1
|
Xu Z, Yang Z, Bao L, Lu B, Li X, Zhan X, Huang X, Liu Y. Coenzyme Q10 Improves the Post-Thaw Sperm Quality in Dwarf Surfclam Mulinia lateralis. Antioxidants (Basel) 2024; 13:1085. [PMID: 39334744 PMCID: PMC11429170 DOI: 10.3390/antiox13091085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Previous studies have shown that post-thaw sperm performance is affected by multiple stressors during cryopreservation, such as those induced by physical, chemical, mechanical and physiological changes. One of these is the balance disturbance between the antioxidant defense system and reactive oxygen species (ROS) production. This study investigated whether this disturbance could be alleviated by the addition of different antioxidants to cryoprotective solution [8% dimethyl sulfoxide (DMSO) in 1 µm filtered seawater] optimized for the sperm in dwarf surf clam Mulinia lateralis, the model bivalve species used in many different types of studies. Results showed that the addition of 20 μM coenzyme Q10 (Q10) to 8% DMSO achieved a D-stage larval rate similar to that of the fresh control at a sperm-to-egg ratio at least 50% less than the 8% DMSO treatment alone. The addition of other antioxidants (glycine, melatonin and polyvinylpyrrolidone) did not have any positive effects. The improvement in post-thaw sperm quality by Q10 could be due to its ability to significantly decrease ROS production and lipid peroxidation and significantly increase the motility, plasma membrane integrity, mitochondrial membrane potential, acrosome integrity, DNA integrity and activities of catalase and glutatione. In this study, 37 fatty acids (FAs) were quantified in dwarf surf clam sperm, with 21 FAs being significantly impacted by the cryopreservation with 8% DMSO. Thirteen of these 21 FAs were changed due to the addition of 20 μM Q10 to 8% DMSO, with approximately half of them being improved significantly toward the levels of fresh control, while the remaining half extended further from the trends shown with 8% DMSO treatment. However, no significant difference was found in the percentage of each FA category sum and the ratio of unsaturated/saturated FAs between the two treated groups. In conclusion, the antioxidant Q10 has shown the potential to further improve the sperm cryopreservation technique in bivalves.
Collapse
Affiliation(s)
- Zhen Xu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zujing Yang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Bei Lu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Fang Zongxi Center for Marine EvoDevo, Ocean University of China, Qingdao 266100, China
| | - Xiaoxu Li
- Aquatic Sciences Centre, South Australian Research and Development Institute, Adelaide 5024, Australia
| | - Xin Zhan
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Xiaoting Huang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yibing Liu
- Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Bylemans J, Marques da Cunha L, Wilkins LGE, Nusbaumer D, Uppal A, Wedekind C. Growth of brown trout in the wild predicted by embryo stress reaction in the laboratory. Ecology 2024; 105:e4303. [PMID: 38754864 DOI: 10.1002/ecy.4303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 02/07/2024] [Indexed: 05/18/2024]
Abstract
Laboratory studies on embryos of salmonids, such as the brown trout (Salmo trutta), have been extensively used to study environmental stress and how responses vary within and between natural populations. These studies are based on the implicit assumption that early life-history traits are relevant for stress tolerance in the wild. Here we test this assumption by combining two data sets from studies on the same 60 families. These families had been experimentally produced from wild breeders to determine, in separate samples, (1) stress tolerances of singly kept embryos in the laboratory and (2) growth of juveniles during 6 months in the wild. We found that growth in the wild was well predicted by the larval size of their full sibs in the laboratory, especially if these siblings had been experimentally exposed to a pathogen. Exposure to the pathogen had not caused elevated mortality among the embryos but induced early hatching. The strength of this stress-induced change of life history was a significant predictor of juvenile growth in the wild: the stronger the response in the laboratory, the slower the growth in the wild. We conclude that embryo performance in controlled environments can be a useful predictor of juvenile performance in the wild.
Collapse
Affiliation(s)
- Jonas Bylemans
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- University of Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| | - Lucas Marques da Cunha
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Laetitia G E Wilkins
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
| | - David Nusbaumer
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Anshu Uppal
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Panda A, Judycka S, Palińska-Żarska K, Debernardis R, Jarmołowicz S, Jastrzębski JP, Rocha de Almeida T, Błażejewski M, Hliwa P, Krejszeff S, Żarski D. Paternal-effect-genes revealed through sperm cryopreservation in Perca fluviatilis. Sci Rep 2024; 14:6396. [PMID: 38493223 PMCID: PMC10944473 DOI: 10.1038/s41598-024-56971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Knowledge about paternal-effect-genes (PEGs) (genes whose expression in the progeny is influenced by paternal factors present in the sperm) in fish is very limited. To explore this issue, we used milt cryopreservation as a specific challenge test for sperm cells, thus enabling selection amidst cryo-sensitivity. We created two groups of Eurasian perch (Perca fluviatilis) as a model - eggs fertilized either with fresh (Fresh group) or cryopreserved (Cryo group) milt from the same male followed by phenotypic-transcriptomic examination of consequences of cryopreservation in obtained progeny (at larval stages). Most of the phenotypical observations were similar in both groups, except the final weight which was higher in the Cryo group. Milt cryopreservation appeared to act as a "positive selection" factor, upregulating most PEGs in the Cryo group. Transcriptomic profile of freshly hatched larvae sourced genes involved in the development of visual perception and we identified them as PEGs. Consequently, larvae from the Cryo group exhibited enhanced eyesight, potentially contributing to more efficient foraging and weight gain compared to the Fresh group. This study unveils, for the first time, the significant influence of the paternal genome on the development of the visual system in fish, highlighting pde6g, opn1lw1, and rbp4l as novel PEGs.
Collapse
Affiliation(s)
- Abhipsa Panda
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Judycka
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Katarzyna Palińska-Żarska
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, National Inland Fisheries Research Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland
| | - Rossella Debernardis
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Jarmołowicz
- Department of Ichthyology, Hydrobiology and Aquatic Ecology, National Inland Fisheries Research Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics, and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Taina Rocha de Almeida
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Maciej Błażejewski
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Piotr Hliwa
- Department of Ichthyology and Aquaculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Sławomir Krejszeff
- Department of Aquaculture, National Inland Fisheries Research Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland
| | - Daniel Żarski
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
4
|
Bylemans J, Marques da Cunha L, Sarmiento Cabello S, Nusbaumer D, Uppal A, Wedekind C. Sex-specific effects of inbreeding in juvenile brown trout. Mol Ecol 2024; 33:e17298. [PMID: 38361438 DOI: 10.1111/mec.17298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Inbreeding depression, that is, the reduction of health and vigour in individuals with high inbreeding coefficients, is expected to increase with environmental, social, or physiological stress. It has therefore been predicted that sexual selection and the associated stress usually lead to higher inbreeding depression in males than in females. However, sex-specific differences in life history may reverse that pattern during certain developmental stages. In some salmonids, for example, female juveniles start developing their gonads earlier than males who instead grow faster. We tested whether the sexes are differently affected by inbreeding during that time. To study the effects of inbreeding coefficients that may be typical for natural populations of brown trout (Salmo trutta), and also to control for potentially confounding maternal or paternal effects, we sampled males and females from the wild, used their gametes in a block-wise full-factorial breeding design to produce 60 full-sib families, released the offspring as yolk-sac larvae into the wild, sampled them 6 months later, identified their genetic sex, and used microsatellites to assign them to their parents. We used whole-genome resequencing to calculate the kinship coefficients for each breeding pair and hence the expected average inbreeding coefficient per family. Juvenile growth could be predicted from these expected inbreeding coefficients and the genetic sex: Females reached lower body sizes with increasing inbreeding coefficient, while no such link could be found in males. This sex-specific inbreeding depression led to the overall pattern that females were on average smaller than males by the end of their first summer.
Collapse
Affiliation(s)
- Jonas Bylemans
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- University of Savoie Mont Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| | - Lucas Marques da Cunha
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Sonia Sarmiento Cabello
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - David Nusbaumer
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Anshu Uppal
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Claus Wedekind
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
El Kamouh M, Brionne A, Sayyari A, Laurent A, Labbé C. Cryopreservation effect on DNA methylation profile in rainbow trout spermatozoa. Sci Rep 2023; 13:19029. [PMID: 37923780 PMCID: PMC10624875 DOI: 10.1038/s41598-023-44803-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023] Open
Abstract
Spermatozoa are the cells that are most commonly used for cryopreservation of valuable genetic resources in aquaculture. It is known that fish spermatozoa transmit to the embryo not only their genetic but also their epigenetic profile, especially DNA methylation. Therefore, any alteration of the DNA methylation profile in spermatozoa induces the risk of transmitting epigenetic alterations to the offspring. The aim of this study was to assess the effect of cryopreservation on DNA methylation in rainbow trout spermatozoa. To trigger variable cellular response after freezing-thawing, spermatozoa from mature males were cryopreserved with dimethyl sulfoxide, methanol or glycerol as cryoprotectant. We observed that dimethyl sulfoxide was the best to preserve thawed spermatozoa functions. Methanol only slightly preserved all the cellular parameters, while glycerol failed to protect motility and fertilization ability. The consequences on DNA methylation were assessed using Reduced Representation Bisulfite Sequencing (RRBS). Sperm cryopreservation did not thoroughly impact DNA methylation, although 335-564 differentially methylated cytosines were characterized depending on the cryoprotectant. Very few of them were shared between cryoprotectants, and no correlation with the extent of cellular damage was found. Our study showed that DNA methylation was only slightly altered after sperm cryopreservation, and this may render further analysis of the risk for the progeny very challenging.
Collapse
Affiliation(s)
| | | | - Amin Sayyari
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Audrey Laurent
- INRAE, Fish Physiology and Genomics, UR 1037, Rennes, France.
| | - Catherine Labbé
- INRAE, Fish Physiology and Genomics, UR 1037, Rennes, France.
| |
Collapse
|
6
|
Holt WV. Biobanks, offspring fitness and the influence of developmental plasticity in conservation biology. Anim Reprod 2023; 20:e20230026. [PMID: 37700907 PMCID: PMC10494884 DOI: 10.1590/1984-3143-ar2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
Mitigation of the widely known threats to the world's biodiversity is difficult, despite the strategies and actions proposed by international agreements such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Convention on Biological Diversity (CBD). Nevertheless, many scientists devote their time and effort to finding and implementing various solutions to the problem. One potential way forward that is gaining popularity involves the establishment of biobank programs aimed at preserving and storing germplasm from threatened species, and then using it to support the future viability and health of threatened populations. This involves developing and using assisted reproductive technologies to achieve their goals. Despite considerable advances in the effectiveness of reproductive technologies, differences between the reproductive behavior and physiology of widely differing taxonomic groups mean that this approach cannot be applied with equal success to many species. Moreover, evidence that epigenetic influences and developmental plasticity, whereby it is now understood that embryonic development, and subsequent health in later life, can be affected by peri-conceptional environmental conditions, is raising the possibility that cryopreservation methods themselves may have to be reviewed and revised when planning the biobanks. Here, I describe the benefits and problems associated with germplasm biobanking across various species, but also offer some realistic assessments of current progress and applications.
Collapse
Affiliation(s)
- William Vincent Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
7
|
Anastas ZM, Byrne PG, O'Brien JK, Hobbs RJ, Upton R, Silla AJ. The Increasing Role of Short-Term Sperm Storage and Cryopreservation in Conserving Threatened Amphibian Species. Animals (Basel) 2023; 13:2094. [PMID: 37443891 DOI: 10.3390/ani13132094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Multidisciplinary approaches to conserve threatened species are required to curb biodiversity loss. Globally, amphibians are facing the most severe declines of any vertebrate class. In response, conservation breeding programs have been established in a growing number of amphibian species as a safeguard against further extinction. One of the main challenges to the long-term success of conservation breeding programs is the maintenance of genetic diversity, which, if lost, poses threats to the viability and adaptive potential of at-risk populations. Integrating reproductive technologies into conservation breeding programs can greatly assist genetic management and facilitate genetic exchange between captive and wild populations, as well as reinvigorate genetic diversity from expired genotypes. The generation of offspring produced via assisted fertilisation using frozen-thawed sperm has been achieved in a small but growing number of amphibian species and is poised to be a valuable tool for the genetic management of many more threatened species globally. This review discusses the role of sperm storage in amphibian conservation, presents the state of current technologies for the short-term cold storage and cryopreservation of amphibian sperm, and discusses the generation of cryo-derived offspring.
Collapse
Affiliation(s)
- Zara M Anastas
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Justine K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Rebecca J Hobbs
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Rose Upton
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
8
|
Holt WV, Comizzoli P. Conservation Biology and Reproduction in a Time of Developmental Plasticity. Biomolecules 2022; 12:1297. [PMID: 36139136 PMCID: PMC9496186 DOI: 10.3390/biom12091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this review is to ask whether, and how, principles in conservation biology may need to be revisited in light of new knowledge about the power of epigenetics to alter developmental pathways. Importantly, conservation breeding programmes, used widely by zoological parks and aquariums, may appear in some cases to reduce fitness by decreasing animals' abilities to cope when confronted with the 'wild side' of their natural habitats. Would less comfortable captive conditions lead to the selection of individuals that, despite being adapted to life in a captive environment, be better able to thrive if relocated to a more natural environment? While threatened populations may benefit from advanced reproductive technologies, these may actually induce undesirable epigenetic changes. Thus, there may be inherent risks to the health and welfare of offspring (as is suspected in humans). Advanced breeding technologies, especially those that aim to regenerate the rarest species using stem cell reprogramming and artificial gametes, may also lead to unwanted epigenetic modifications. Current knowledge is still incomplete, and therefore ethical decisions about novel breeding methods remain controversial and difficult to resolve.
Collapse
Affiliation(s)
- William V. Holt
- Department of Oncology & Metabolism, The Medical School Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
9
|
Khosravizadeh Z, Khodamoradi K, Rashidi Z, Jahromi M, Shiri E, Salehi E, Talebi A. Sperm cryopreservation and DNA methylation: possible implications for ART success and the health of offspring. J Assist Reprod Genet 2022; 39:1815-1824. [PMID: 35713751 PMCID: PMC9428082 DOI: 10.1007/s10815-022-02545-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/09/2022] [Indexed: 01/19/2023] Open
Abstract
Despite the beneficial effects of sperm cryopreservation, increased reactive oxygen species (ROS) production during this process can affect spermatozoon structure and function. Moreover, ROS production is associated with elevated DNA damage and alterations in DNA methylation. There is little information about the effects of cryopreservation on epigenetic modulation in sperm and the health of children born with frozen spermatozoa. Considering the potential consequences of cryopreservation in ART-conceived children, it is necessary to assure that cryopreservation does not modify sperm DNA methylation status. This review summarizes reports on epigenetic modifications of spermatozoa during cryopreservation and the probable effects of this process on offspring health. Contradictory results have reported the influence of sperm cryopreservation on DNA methylation in imprinted genes. Multiclinical studies with larger sample sizes under the same conditions of cryopreservation and DNA methylation analysis are needed to make any definitive conclusion about the effect of the cryopreservation process on sperm DNA methylation.
Collapse
Affiliation(s)
- Zahra Khosravizadeh
- grid.468130.80000 0001 1218 604XClinical Research Development Unit, Amiralmomenin Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Kajal Khodamoradi
- grid.26790.3a0000 0004 1936 8606Department of Urology, University of Miami, Miller School of Medicine, Miami, FL USA
| | - Zahra Rashidi
- grid.412112.50000 0001 2012 5829Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran ,grid.412112.50000 0001 2012 5829Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Malihe Jahromi
- grid.411757.10000 0004 1755 5416Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Elham Shiri
- grid.411950.80000 0004 0611 9280Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ensieh Salehi
- grid.412237.10000 0004 0385 452XFertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ali Talebi
- grid.444858.10000 0004 0384 8816School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran ,grid.444858.10000 0004 0384 8816Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
10
|
Crean AJ, Immler S. Evolutionary consequences of environmental effects on gamete performance. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200122. [PMID: 33866815 DOI: 10.1098/rstb.2020.0122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Variation in pre- and post-release gamete environments can influence evolutionary processes by altering fertilization outcomes and offspring traits. It is now widely accepted that offspring inherit epigenetic information from both their mothers and fathers. Genetic and epigenetic alterations to eggs and sperm-acquired post-release may also persist post-fertilization with consequences for offspring developmental success and later-life fitness. In externally fertilizing species, gametes are directly exposed to anthropogenically induced environmental impacts including pollution, ocean acidification and climate change. When fertilization occurs within the female reproductive tract, although gametes are at least partially protected from external environmental variation, the selective environment is likely to vary among females. In both scenarios, gamete traits and selection on gametes can be influenced by environmental conditions such as temperature and pollution as well as intrinsic factors such as male and female reproductive fluids, which may be altered by changes in male and female health and physiology. Here, we highlight some of the pathways through which changes in gamete environments can affect fertilization dynamics, gamete interactions and ultimately offspring fitness. We hope that by drawing attention to this important yet often overlooked source of variation, we will inspire future research into the evolutionary implications of anthropogenic interference of gamete environments including the use of assisted reproductive technologies. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Angela J Crean
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
11
|
Lee S, Bang WY, Yang HS, Lee DS, Song HY. Production of juvenile masu salmon (Oncorhynchus masou) from spermatogonia-derived sperm and oogonia-derived eggs via intraperitoneal transplantation of immature germ cells. Biochem Biophys Res Commun 2020; 535:6-11. [PMID: 33340766 DOI: 10.1016/j.bbrc.2020.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
No effective cryopreservation technique exists for fish eggs and embryos; thus, the cryopreservation of germ cells (spermatogonia or oogonia) and subsequent generation of eggs and sperm would be an alternative solution for the long-term preservation of piscine genetic resources. Nevertheless, in our previous study using rainbow trout, we showed that recipients transplanted with XY spermatogonia or XX oogonia produced unnatural sex-biased F1 offspring. To overcome these obstacles, we transplanted immature germ cells (XX oogonia or XY spermatogonia; frozen for 33 days) into the body cavities of triploid hatchlings, and the transplanted germ cells possessed a high capacity for differentiating into eggs and sperm in the ovaries and testes of recipients. Approximately 30% of triploid recipients receiving frozen germ cells generated normal salmon that displayed the donor-derived black body color phenotype, although all triploid salmon not receiving transplants were functionally sterile. Furthermore, F1 offspring obtained from insemination of the oogonia-derived eggs and spermatogonia-derived sperm show a normal sex ratio of 1:1 (female:male). Thus, this method presented a critical technique for practical conservation projects for other teleost fish species and masu salmon.
Collapse
Affiliation(s)
- Seungki Lee
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Woo Young Bang
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Hee-Sun Yang
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea.
| | - Dae-Sung Lee
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon-gun, 33662, Republic of Korea.
| | - Ha Yeun Song
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon-gun, 33662, Republic of Korea.
| |
Collapse
|
12
|
Garcia-Dominguez X, Marco-Jiménez F, Peñaranda DS, Diretto G, García-Carpintero V, Cañizares J, Vicente JS. Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Sci Rep 2020; 10:11313. [PMID: 32647175 PMCID: PMC7347584 DOI: 10.1038/s41598-020-68195-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
The advent of assisted reproductive technologies (ART) in mammals involved an extraordinary change in the environment where the beginning of a new organism takes place. Under in vitro conditions, in which ART is currently being performed, it likely fails to mimic optimal in vivo conditions. This suboptimal environment could mediate in the natural developmental trajectory of the embryo, inducing lasting effects until later life stages that may be inherited by subsequent generations (transgenerational effects). Therefore, we evaluated the potential transgenerational effects of embryo exposure to the cryopreservation-transfer procedure in a rabbit model on the offspring phenotype, molecular physiology of the liver (transcriptome and metabolome) and reproductive performance during three generations (F1, F2 and F3). The results showed that, compared to naturally-conceived animals (NC group), progeny generated after embryo exposure to the cryopreservation-transfer procedure (VT group) exhibited lower body growth, which incurred lower adult body weight in the F1 (direct effects), F2 (intergenerational effects) and F3 (transgenerational effects) generations. Furthermore, VT animals showed intergenerational effects on heart weight and transgenerational effects on liver weight. The RNA-seq data of liver tissue revealed 642 differentially expressed transcripts (DETs) in VT animals from the F1 generation. Of those, 133 were inherited from the F2 and 120 from the F3 generation. Accordingly, 151, 190 and 159 differentially accumulated metabolites (DAMs) were detected from the F1, F2 and F3, respectively. Moreover, targeted metabolomics analysis demonstrated that transgenerational effects were mostly presented in the non-polar fraction. Functional analysis of molecular data suggests weakened zinc and fatty acid metabolism across the generations, associated with alterations in a complex molecular network affecting global hepatic metabolism that could be associated with the phenotype of VT animals. However, these VT animals showed proper reproductive performance, which verified a functional health status. In conclusion, our results establish the long-term transgenerational effects following a vitrified embryo transfer procedure. We showed that the VT phenotype could be the result of the manifestation of embryonic developmental plasticity in response to the stressful conditions during ART procedures.
Collapse
Affiliation(s)
- Ximo Garcia-Dominguez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Francisco Marco-Jiménez
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - David S Peñaranda
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Gianfranco Diretto
- National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, 00123, Rome, Italy
| | - Víctor García-Carpintero
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, 46022, Valencia, Spain
| | - Joaquín Cañizares
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, 46022, Valencia, Spain
| | - José S Vicente
- Laboratory of Biotechnology of Reproduction, Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
13
|
Nusbaumer D, Marques da Cunha L, Wedekind C. Sperm cryopreservation reduces offspring growth. Proc Biol Sci 2019; 286:20191644. [PMID: 31551057 PMCID: PMC6784727 DOI: 10.1098/rspb.2019.1644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
Sperm cryopreservation is routinely used in reproductive medicine, livestock production and wildlife management. Its effect on offspring performance is often assumed to be negligible, but this still remains to be confirmed in well-controlled within-subject experiments. We use a vertebrate model that allows us to experimentally separate parental and environmental effects to test whether sperm cryopreservation influences offspring phenotype under stress and non-stress conditions, and whether such effects are male-specific. Wild brown trout (Salmo trutta) were stripped for their gametes, and a portion of each male's milt was cryopreserved. Then, 960 eggs were simultaneously fertilized with either non-cryopreserved or frozen-thawed semen and raised singly in the presence or absence of a pathogen. We found no significant effects of cryopreservation on fertilization rates, and no effects on growth, survival nor pathogen resistance during the embryo stage. However, fertilization by cryopreserved sperm led to significantly reduced larval growth after hatching. Males varied in genetic quality as determined from offspring performance, but effects of cryopreservation on larval growth were not male-specific. We conclude that cryopreservation causes a reduction in offspring growth that is easily overlooked because it only manifests itself at later developmental stages, when many other factors affect growth and survival too.
Collapse
Affiliation(s)
| | | | - Claus Wedekind
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|