1
|
Johansson A. Theory of spin and orbital Edelstein effects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:423002. [PMID: 38955339 DOI: 10.1088/1361-648x/ad5e2b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
In systems with broken spatial inversion symmetry, such as surfaces, interfaces, or bulk systems lacking an inversion center, the application of a charge current can generate finite spin and orbital densities associated with a nonequilibrium magnetization, which is known as spin and orbital Edelstein effect (SEE and OEE), respectively. Early reports on this current-induced magnetization focus on two-dimensional Rashba systems, in which an in-plane nonequilibrium spin density is generated perpendicular to the applied charge current. However, until today, a large variety of materials have been theoretically predicted and experimentally demonstrated to exhibit a sizeable Edelstein effect, which comprises contributions from the spin as well as the orbital degrees of freedom, and whose associated magnetization may be out of plane, nonorthogonal, and even parallel to the applied charge current, depending on the system's particular symmetries. In this review, we give an overview on the most commonly used theoretical approaches for the discussion and prediction of the SEE and OEE. Further, we introduce a selection of the most intensely discussed materials exhibiting a finite Edelstein effect, and give a brief summary of common experimental techniques.
Collapse
Affiliation(s)
- Annika Johansson
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Abdelwahab I, Kumar D, Bian T, Zheng H, Gao H, Hu F, McClelland A, Leng K, Wilson WL, Yin J, Yang H, Loh KP. Two-dimensional chiral perovskites with large spin Hall angle and collinear spin Hall conductivity. Science 2024; 385:311-317. [PMID: 39024425 DOI: 10.1126/science.adq0967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Two-dimensional hybrid organic-inorganic perovskites with chiral spin texture are emergent spin-optoelectronic materials. Despite the wealth of chiro-optical studies on these materials, their charge-to-spin conversion efficiency is unknown. We demonstrate highly efficient electrically driven charge-to-spin conversion in enantiopure chiral perovskites (R/S-MB)2(MA)3Pb4I13 (〈n〉 = 4), where MB is 2-methylbutylamine, MA is methylamine, Pb is lead, and I is iodine. Using scanning photovoltage microscopy, we measured a spin Hall angle θsh of 5% and a spin lifetime of ~75 picoseconds at room temperature in 〈n〉 = 4 chiral perovskites, which is much larger than its racemic counterpart as well as the lower 〈n〉 homologs. In addition to current-induced transverse spin current, the presence of a coexisting out-of-plane spin current confirms that both conventional and collinear spin Hall conductivities exist in these low-dimensional crystals.
Collapse
Affiliation(s)
- Ibrahim Abdelwahab
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138, USA
| | - Dushyant Kumar
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
- Department of Physics, Netaji Subhas University of Technology (NSUT), Dwarka, New Delhi 110078, India
| | - Tieyuan Bian
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Haining Zheng
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Heng Gao
- Department of Physics, Shanghai University, Shanghai 200444, China
| | - Fanrui Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Arthur McClelland
- Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138, USA
| | - Kai Leng
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - William L Wilson
- Center for Nanoscale Systems, Harvard University, Cambridge, MA 02138, USA
| | - Jun Yin
- Department of Applied Physics, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
3
|
Mondal AK, Mukhopadhyay S, Heinig P, Salikhov R, Hellwig O, Barman A. Femtosecond Laser-Induced Transient Magnetization Enhancement and Ultrafast Demagnetization Mediated by Domain Wall Origami. ACS NANO 2024; 18:16914-16922. [PMID: 38905311 DOI: 10.1021/acsnano.4c02910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Femtosecond laser-induced ultrafast magnetization dynamics are all-optically probed for different remanent magnetic domain states of a [Co/Pt]22 multilayer sample, thus revealing the tunability of the direct transport of spin angular momentum across domain walls. A variety of different magnetic domain configurations (domain wall origami) at remanence achieved by applying different magnetic field histories are investigated by time-resolved magneto-optical Kerr effect magnetometry to probe the ultrafast magnetization dynamics. Depending on the underlying domain landscape, the spin-transport-driven magnetization dynamics show a transition from typical ultrafast demagnetization to being fully dominated by an anomalous transient magnetization enhancement (TME) via a state in which both TME and demagnetization coexist in the system. Thereby, the study reveals an extrinsic channel for the modulation of spin transport, which introduces a route for the development of magnetic spin-texture-driven ultrafast spintronic devices.
Collapse
Affiliation(s)
- Amrit Kumar Mondal
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Suchetana Mukhopadhyay
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741252, India
| | - Peter Heinig
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institute of Physics, Chemnitz University of Technology, Reichenhainer Strasse 70, 09107 Chemnitz, Germany
| | - Ruslan Salikhov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Olav Hellwig
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
- Institute of Physics, Chemnitz University of Technology, Reichenhainer Strasse 70, 09107 Chemnitz, Germany
| | - Anjan Barman
- Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
4
|
Liu T, Li X, An H, Chen S, Zhao Y, Yang S, Xu X, Zhou C, Zhang H, Zhou Y. Reconfigurable spintronic logic gate utilizing precessional magnetization switching. Sci Rep 2024; 14:14796. [PMID: 38926523 PMCID: PMC11208557 DOI: 10.1038/s41598-024-65634-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
In traditional von Neumann computing architecture, the efficiency of the system is often hindered by the data transmission bottleneck between the processor and memory. A prevalent approach to mitigate this limitation is the use of non-volatile memory for in-memory computing, with spin-orbit torque (SOT) magnetic random-access memory (MRAM) being a leading area of research. In this study, we numerically demonstrate that a precise combination of damping-like and field-like spin-orbit torques can facilitate precessional magnetization switching. This mechanism enables the binary memristivity of magnetic tunnel junctions (MTJs) through the modulation of the amplitude and width of input current pulses. Building on this foundation, we have developed a scheme for a reconfigurable spintronic logic gate capable of directly implementing Boolean functions such as AND, OR, and XOR. This work is anticipated to leverage the sub-nanosecond dynamics of SOT-MRAM cells, potentially catalyzing further experimental developments in spintronic devices for in-memory computing.
Collapse
Grants
- 12104322,12375237,52001215,12374123,11974298 National Natural Science Foundation of China
- 12104322,12375237,52001215,12374123,11974298 National Natural Science Foundation of China
- 12104322,12375237,52001215,12374123,11974298 National Natural Science Foundation of China
- 2021B1515120047,2021A1515012055 Guangdong Basic and Applied Basic Research Foundation
- 2021B1515120047,2021A1515012055 Guangdong Basic and Applied Basic Research Foundation
- ZDSYS20200811143600001 Shenzhen Science and Technology Program
- 2022YFA1603200, 2022YFA1603202 National Key R&D Program of China
- KQTD20180413181702403 Shenzhen Peacock Group Plan
- JCYJ20210324120213037 The Shenzhen Fundamental Research Fund
- National Key R&D Program of China
Collapse
Affiliation(s)
- Ting Liu
- College of Engineering Physics, and Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xiaoguang Li
- College of Engineering Physics, and Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Hongyu An
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Shi Chen
- College of Engineering Physics, and Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yuelei Zhao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Sheng Yang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Xiaohong Xu
- Research Institute of Materials Science of Shanxi Normal University & Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and Technology, Linfen, 041004, China
- School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Linfen, 041004, China
| | - Cangtao Zhou
- College of Engineering Physics, and Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Shenzhen Technology University, Shenzhen, 518118, China
| | - Hua Zhang
- College of Engineering Physics, and Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
5
|
Xiong J, Xie J, Cheng B, Dai Y, Cui X, Wang L, Liu Z, Zhou J, Wang N, Xu X, Chen X, Cheong SW, Liang SJ, Miao F. Electrical switching of Ising-superconducting nonreciprocity for quantum neuronal transistor. Nat Commun 2024; 15:4953. [PMID: 38858363 PMCID: PMC11164936 DOI: 10.1038/s41467-024-48882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Nonreciprocal quantum transport effect is mainly governed by the symmetry breaking of the material systems and is gaining extensive attention in condensed matter physics. Realizing electrical switching of the polarity of the nonreciprocal transport without external magnetic field is essential to the development of nonreciprocal quantum devices. However, electrical switching of superconducting nonreciprocity remains yet to be achieved. Here, we report the observation of field-free electrical switching of nonreciprocal Ising superconductivity in Fe3GeTe2/NbSe2 van der Waals (vdW) heterostructure. By taking advantage of this electrically switchable superconducting nonreciprocity, we demonstrate a proof-of-concept nonreciprocal quantum neuronal transistor, which allows for implementing the XOR logic gate and faithfully emulating biological functionality of a cortical neuron in the brain. Our work provides a promising pathway to realize field-free and electrically switchable nonreciprocity of quantum transport and demonstrate its potential in exploring neuromorphic quantum devices with both functionality and performance beyond the traditional devices.
Collapse
Affiliation(s)
- Junlin Xiong
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Jiao Xie
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Bin Cheng
- Institute of Interdisciplinary Physical Sciences, School of Science, Nanjing University of Science and Technology, 210094, Nanjing, China.
| | - Yudi Dai
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Xinyu Cui
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Lizheng Wang
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Zenglin Liu
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Ji Zhou
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Naizhou Wang
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics and Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Xianghan Xu
- Center for Quantum Materials Synthesis and Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Xianhui Chen
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics and Key Laboratory of Strongly Coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Sang-Wook Cheong
- Center for Quantum Materials Synthesis and Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Shi-Jun Liang
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| | - Feng Miao
- Institute of Brain-Inspired Intelligence, National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| |
Collapse
|
6
|
Camarasa-Gómez M, Hernangómez-Pérez D, Evers F. Spin-Orbit Torque in Single-Molecule Junctions from ab Initio. J Phys Chem Lett 2024; 15:5747-5753. [PMID: 38775633 PMCID: PMC11145651 DOI: 10.1021/acs.jpclett.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
The use of electric fields applied across magnetic heterojunctions that lack spatial inversion symmetry has been previously proposed as a nonmagnetic means of controlling localized magnetic moments through spin-orbit torques (SOT). The implementation of this concept at the single-molecule level has remained a challenge, however. Here, we present first-principles calculations of SOT in a single-molecule junction under bias and beyond linear response. Employing a self-consistency scheme invoking density functional theory and nonequilibrium Green's function theory including spin-orbit interaction, we compute the change of the magnetization with the bias voltage and the associated current-induced SOT. Within the linear regime our quantitative estimates for the SOT in single-molecule junctions yield values similar to those known for magnetic interfaces. Our findings contribute to an improved microscopic understanding of SOT in single molecules.
Collapse
Affiliation(s)
- María Camarasa-Gómez
- Institute
of Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Daniel Hernangómez-Pérez
- Institute
of Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
- CIC
nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain
| | - Ferdinand Evers
- Institute
of Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
7
|
Behera N, Chaurasiya AK, González VH, Litvinenko A, Bainsla L, Kumar A, Khymyn R, Awad AA, Fulara H, Åkerman J. Ultra-Low Current 10 nm Spin Hall Nano-Oscillators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305002. [PMID: 37990141 DOI: 10.1002/adma.202305002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/19/2023] [Indexed: 11/23/2023]
Abstract
Nano-constriction based spin Hall nano-oscillators (SHNOs) are at the forefront of spintronics research for emerging technological applications, such as oscillator-based neuromorphic computing and Ising Machines. However, their miniaturization to the sub-50 nm width regime results in poor scaling of the threshold current. Here, it shows that current shunting through the Si substrate is the origin of this problem and studies how different seed layers can mitigate it. It finds that an ultra-thin Al2 O3 seed layer and SiN (200 nm) coated p-Si substrates provide the best improvement, enabling us to scale down the SHNO width to a truly nanoscopic dimension of 10 nm, operating at threshold currents below 30 μ $\umu$ A. In addition, the combination of electrical insulation and high thermal conductivity of the Al2 O3 seed will offer the best conditions for large SHNO arrays, avoiding any significant temperature gradients within the array. The state-of-the-art ultra-low operational current SHNOs hence pave an energy-efficient route to scale oscillator-based computing to large dynamical neural networks of linear chains or 2D arrays.
Collapse
Affiliation(s)
- Nilamani Behera
- Physics Department, University of Gothenburg, Gothenburg, 412 96, Sweden
| | | | - Victor H González
- Physics Department, University of Gothenburg, Gothenburg, 412 96, Sweden
| | - Artem Litvinenko
- Physics Department, University of Gothenburg, Gothenburg, 412 96, Sweden
| | - Lakhan Bainsla
- Physics Department, University of Gothenburg, Gothenburg, 412 96, Sweden
- Department of Physics, Indian Institute of Technology Ropar, Roopnagar, 140001, India
| | - Akash Kumar
- Physics Department, University of Gothenburg, Gothenburg, 412 96, Sweden
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Center for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Roman Khymyn
- Physics Department, University of Gothenburg, Gothenburg, 412 96, Sweden
| | - Ahmad A Awad
- Physics Department, University of Gothenburg, Gothenburg, 412 96, Sweden
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Center for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Himanshu Fulara
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Johan Åkerman
- Physics Department, University of Gothenburg, Gothenburg, 412 96, Sweden
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
- Center for Science and Innovation in Spintronics, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
8
|
Senapati T, Karnad AK, Senapati K. Phase biasing of a Josephson junction using Rashba-Edelstein effect. Nat Commun 2023; 14:7415. [PMID: 37973986 PMCID: PMC10654735 DOI: 10.1038/s41467-023-42987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
A charge-current-induced shift in the spin-locked Fermi surface leads to a non-equilibrium spin density at a Rashba interface, commonly known as the Rashba-Edelstein effect. Since this is an intrinsically interfacial property, direct detection of the spin moment is difficult. Here we demonstrate that a planar Josephson Junction, realized by placing two closely spaced superconducting electrodes over a Rashba interface, allows for a direct detection of the spin moment as an additional phase in the junction. Asymmetric Fraunhofer patterns obtained for Nb-(Pt/Cu)-Nb nano-junctions, due to the locking of Rashba-Edelstein spin moment to the flux quantum in the junction, provide clear signatures of this effect. This simple experiment offers a fresh perspective on direct detection of spin polarization induced by various spin-orbit effects. In addition, this platform also offers a magnetic-field-controlled phase biasing mechanism in conjunction with the Rashba-Edelstein spin-orbit effect for superconducting quantum circuits.
Collapse
Affiliation(s)
- Tapas Senapati
- School of Physical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, Jatni, 752050, Odisha, India
| | - Ashwin Kumar Karnad
- Department of Physics, Birla Institute of Technology & Science Pilani - K K Birla Goa Campus, Zuarinagar, 403726, Goa, India
| | - Kartik Senapati
- School of Physical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, Jatni, 752050, Odisha, India.
| |
Collapse
|
9
|
Victor RT, Marroquin JFR, Safeer SH, Dugato DA, Archanjo BS, Sampaio LC, Garcia F, Felix JF. Automated mechanical exfoliation technique: a spin pumping study in YIG/TMD heterostructures. NANOSCALE HORIZONS 2023; 8:1568-1576. [PMID: 37671742 DOI: 10.1039/d3nh00137g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Spintronics devices rely on the generation and manipulation of spin currents. Two-dimensional transition-metal dichalcogenides (TMDs) are among the most promising materials for a spin current generation due to a lack of inversion symmetry at the interface with the magnetic material. Here, we report on the fabrication of Yttrium Iron Garnet(YIG)/TMD heterostructures by means of a crude and fast method. While the magnetic insulator single-crystalline YIG thin films were grown by magnetron sputtering, the TMDs, namely MoS2 and MoSe2, were directly deposited onto YIG films using an automated mechanical abrasion method. Despite the brute force aspect of the method, it produces high-quality interfaces, which are suitable for spintronic device applications. The spin current density and the effective spin mixing conductance were measured by ferromagnetic resonance, whose values found are among the highest reported in the literature. Our method can be scaled to produce ferromagnetic materials/TMD heterostructures on a large scale, further advancing their potential for practical applications.
Collapse
Affiliation(s)
- Rodrigo Torrão Victor
- Centro Brasileiro de Pesquisas Físicas, rua Dr Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ, 22.290-180, Brazil.
| | | | - Syed Hamza Safeer
- Centro Brasileiro de Pesquisas Físicas, rua Dr Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ, 22.290-180, Brazil.
| | - Danian Alexandre Dugato
- Centro Brasileiro de Pesquisas Físicas, rua Dr Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ, 22.290-180, Brazil.
| | - Braulio Soares Archanjo
- Materials Metrology Division, National Institute of Metrology, Quality, and Technology (INMETRO), Duque de Caxias, Rio de Janeiro, 25.250-020, Brazil
| | - Luiz Carlos Sampaio
- Centro Brasileiro de Pesquisas Físicas, rua Dr Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ, 22.290-180, Brazil.
| | - Flavio Garcia
- Centro Brasileiro de Pesquisas Físicas, rua Dr Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ, 22.290-180, Brazil.
| | - Jorlandio Francisco Felix
- Nucleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
10
|
Ashoka A, Nagane S, Strkalj N, Sharma A, Roose B, Sneyd AJ, Sung J, MacManus-Driscoll JL, Stranks SD, Feldmann S, Rao A. Local symmetry breaking drives picosecond spin domain formation in polycrystalline halide perovskite films. NATURE MATERIALS 2023; 22:977-984. [PMID: 37308547 DOI: 10.1038/s41563-023-01550-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/06/2023] [Indexed: 06/14/2023]
Abstract
Photoinduced spin-charge interconversion in semiconductors with spin-orbit coupling could provide a route to optically addressable spintronics without the use of external magnetic fields. However, in structurally disordered polycrystalline semiconductors, which are being widely explored for device applications, the presence and role of spin-associated charge currents remains unclear. Here, using femtosecond circular-polarization-resolved pump-probe microscopy on polycrystalline halide perovskite thin films, we observe the photoinduced ultrafast formation of spin domains on the micrometre scale formed through lateral spin currents. Micrometre-scale variations in the intensity of optical second-harmonic generation and vertical piezoresponse suggest that the spin-domain formation is driven by the presence of strong local inversion symmetry breaking via structural disorder. We propose that this leads to spatially varying Rashba-like spin textures that drive spin-momentum-locked currents, leading to local spin accumulation. Ultrafast spin-domain formation in polycrystalline halide perovskite films provides an optically addressable platform for nanoscale spin-device physics.
Collapse
Affiliation(s)
- Arjun Ashoka
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Satyawan Nagane
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nives Strkalj
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Ashish Sharma
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Bart Roose
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Jooyoung Sung
- Department of Emerging Materials Science, DGIST, Daegu, Republic of Korea
| | | | - Samuel D Stranks
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | | | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
11
|
Tan Z, Ma Z, Fuentes L, Liedke MO, Butterling M, Attallah AG, Hirschmann E, Wagner A, Abad L, Casañ-Pastor N, Lopeandia AF, Menéndez E, Sort J. Regulating Oxygen Ion Transport at the Nanoscale to Enable Highly Cyclable Magneto-Ionic Control of Magnetism. ACS NANO 2023; 17:6973-6984. [PMID: 36972329 PMCID: PMC10100572 DOI: 10.1021/acsnano.3c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
Magneto-ionics refers to the control of magnetic properties of materials through voltage-driven ion motion. To generate effective electric fields, either solid or liquid electrolytes are utilized, which also serve as ion reservoirs. Thin solid electrolytes have difficulties in (i) withstanding high electric fields without electric pinholes and (ii) maintaining stable ion transport during long-term actuation. In turn, the use of liquid electrolytes can result in poor cyclability, thus limiting their applicability. Here we propose a nanoscale-engineered magneto-ionic architecture (comprising a thin solid electrolyte in contact with a liquid electrolyte) that drastically enhances cyclability while preserving sufficiently high electric fields to trigger ion motion. Specifically, we show that the insertion of a highly nanostructured (amorphous-like) Ta layer (with suitable thickness and electric resistivity) between a magneto-ionic target material (i.e., Co3O4) and the liquid electrolyte increases magneto-ionic cyclability from <30 cycles (when no Ta is inserted) to more than 800 cycles. Transmission electron microscopy together with variable energy positron annihilation spectroscopy reveals the crucial role of the generated TaOx interlayer as a solid electrolyte (i.e., ionic conductor) that improves magneto-ionic endurance by proper tuning of the types of voltage-driven structural defects. The Ta layer is very effective in trapping oxygen and hindering O2- ions from moving into the liquid electrolyte, thus keeping O2- motion mainly restricted between Co3O4 and Ta when voltage of alternating polarity is applied. We demonstrate that this approach provides a suitable strategy to boost magneto-ionics by combining the benefits of solid and liquid electrolytes in a synergetic manner.
Collapse
Affiliation(s)
- Zhengwei Tan
- Departament
de Física, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Zheng Ma
- Departament
de Física, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Laura Fuentes
- Institut
de Ciència de Materials de Barcelona, CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Centre Nacional
de Microelectrònica, Institut de
Microelectrònica de Barcelona-CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Maciej Oskar Liedke
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden - Rossendorf, Dresden 01328, Germany
| | - Maik Butterling
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden - Rossendorf, Dresden 01328, Germany
| | - Ahmed G. Attallah
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden - Rossendorf, Dresden 01328, Germany
| | - Eric Hirschmann
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden - Rossendorf, Dresden 01328, Germany
| | - Andreas Wagner
- Institute
of Radiation Physics, Helmholtz-Zentrum
Dresden - Rossendorf, Dresden 01328, Germany
| | - Llibertat Abad
- Centre Nacional
de Microelectrònica, Institut de
Microelectrònica de Barcelona-CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Nieves Casañ-Pastor
- Institut
de Ciència de Materials de Barcelona, CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Aitor F. Lopeandia
- Departament
de Física, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Enric Menéndez
- Departament
de Física, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Jordi Sort
- Departament
de Física, Universitat Autònoma
de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, E-08010 Barcelona, Spain
| |
Collapse
|
12
|
Liang L, Yang Y, Wang X, Li X. Tunable Valley and Spin Splittings in VSi 2N 4 Bilayers. NANO LETTERS 2023; 23:858-862. [PMID: 36656919 DOI: 10.1021/acs.nanolett.2c03963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The control and manipulation of the valley and spin degrees of freedom have received great interest in fundamental studies and advanced information technologies. Compared with magnetic means, it is highly desirable to realize more energy-efficient electric control of valley and spin. Using the first-principles calculations, we demonstrate tunable valley and spin degeneracy splittings in VSi2N4 bilayers, with the aid of the layered structure and associated electric control. Depending on different interlayer magnetic couplings and stacking orders, the VSi2N4 bilayers exhibit a variety of combinations of valley and spin degeneracies. Under the action of a vertical electric field, the degeneracy splittings become highly tunable for both the sign and the magnitude. As a result, a series of anomalous Hall currents can be selectively realized with varied indices of valley and spin. These intriguing features offer a practical way for designing energy-efficient devices based on the couplings between multiple electronic degrees of freedom.
Collapse
Affiliation(s)
- Li Liang
- Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing210023, China
| | - Ying Yang
- Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing210023, China
| | - Xiaohui Wang
- Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing210023, China
| | - Xiao Li
- Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing210023, China
| |
Collapse
|
13
|
Janda T, Ostatnický T, Němec P, Schmoranzerová E, Campion R, Hills V, Novák V, Šobáň Z, Wunderlich J. Ultrashort spin-orbit torque generated by femtosecond laser pulses. Sci Rep 2022; 12:21550. [PMID: 36513672 DOI: 10.1038/s41598-022-24808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
To realize the very objective of spintronics, namely the development of ultra-high frequency and energy-efficient electronic devices, an ultrafast and scalable approach to switch magnetic bits is required. Magnetization switching with spin currents generated by the spin-orbit interaction at ferromagnetic/non-magnetic interfaces is one of such scalable approaches, where the ultimate switching speed is limited by the Larmor precession frequency. Understanding the magnetization precession dynamics induced by spin-orbit torques (SOTs) is therefore of great importance. Here we demonstrate generation of ultrashort SOT pulses that excite Larmor precession at an epitaxial Fe/GaAs interface by converting femtosecond laser pulses into high-amplitude current pulses in an electrically biased p-i-n photodiode. We control the polarity, amplitude, and duration of the current pulses and, most importantly, also their propagation direction with respect to the crystal orientation. The SOT origin of the excited Larmor precession was revealed by a detailed analysis of the precession phase and amplitude at different experimental conditions.
Collapse
Affiliation(s)
- T Janda
- Institute for Experimental and Applied Physics, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany. .,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic.
| | - T Ostatnický
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - P Němec
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - E Schmoranzerová
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16, Prague 2, Czech Republic
| | - R Campion
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - V Hills
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - V Novák
- Institute of Physics ASCR, v.v.i., Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| | - Z Šobáň
- Institute of Physics ASCR, v.v.i., Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| | - J Wunderlich
- Institute for Experimental and Applied Physics, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.,Institute of Physics ASCR, v.v.i., Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| |
Collapse
|
14
|
Chen J, Wu K, Hu W, Yang J. High-Throughput Inverse Design for 2D Ferroelectric Rashba Semiconductors. J Am Chem Soc 2022; 144:20035-20046. [DOI: 10.1021/jacs.2c08827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jiajia Chen
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, Anhui Center for Applied Mathematics, and School of Data Science, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Kai Wu
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, Anhui Center for Applied Mathematics, and School of Data Science, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Wei Hu
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, Anhui Center for Applied Mathematics, and School of Data Science, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Jinlong Yang
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, Synergetic Innovation Center of Quantum Information and Quantum Physics, Anhui Center for Applied Mathematics, and School of Data Science, University of Science and Technology of China, Hefei, Anhui230026, China
| |
Collapse
|
15
|
Kaneta-Takada S, Kitamura M, Arai S, Arai T, Okano R, Anh LD, Endo T, Horiba K, Kumigashira H, Kobayashi M, Seki M, Tabata H, Tanaka M, Ohya S. Giant spin-to-charge conversion at an all-epitaxial single-crystal-oxide Rashba interface with a strongly correlated metal interlayer. Nat Commun 2022; 13:5631. [PMID: 36163469 PMCID: PMC9512910 DOI: 10.1038/s41467-022-33350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
The two-dimensional electron gas (2DEG) formed at interfaces between SrTiO3 (STO) and other oxide insulating layers is promising for use in efficient spin-charge conversion due to the large Rashba spin-orbit interaction (RSOI). However, these insulating layers on STO prevent the propagation of a spin current injected from an adjacent ferromagnetic layer. Moreover, the mechanism of the spin-current flow in these insulating layers is still unexplored. Here, using a strongly correlated polar-metal LaTiO3+δ (LTO) interlayer and the 2DEG formed at the LTO/STO interface in an all-epitaxial heterostructure, we demonstrate giant spin-to-charge current conversion efficiencies, up to ~190 nm, using spin-pumping ferromagnetic-resonance voltage measurements. This value is the highest among those reported for all materials, including spin Hall systems. Our results suggest that the strong on-site Coulomb repulsion in LTO and the giant RSOI of LTO/STO may be the key to efficient spin-charge conversion with suppressed spin-flip scattering. Our findings highlight the hidden inherent possibilities of oxide interfaces for spin-orbitronics applications. The interface between perovskite-oxide SrTiO3 and other oxides realizes efficient spin-to-charge current conversion; however, the typically insulating oxides hinder the propagation of spin-currents. Here the authors achieve a record efficiency by replacing an oxide insulator with a strongly-correlated polar metal.
Collapse
Affiliation(s)
- Shingo Kaneta-Takada
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Miho Kitamura
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Shoma Arai
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takuma Arai
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Ryo Okano
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Le Duc Anh
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Tatsuro Endo
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Koji Horiba
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Hiroshi Kumigashira
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Masaki Kobayashi
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Munetoshi Seki
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hitoshi Tabata
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masaaki Tanaka
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. .,Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Shinobu Ohya
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. .,Center for Spintronics Research Network (CSRN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
16
|
Bangar H, Kumar A, Chowdhury N, Mudgal R, Gupta P, Yadav RS, Das S, Muduli PK. Large Spin-To-Charge Conversion at the Two-Dimensional Interface of Transition-Metal Dichalcogenides and Permalloy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41598-41604. [PMID: 36052925 DOI: 10.1021/acsami.2c11162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spin-to-charge conversion is an essential requirement for the implementation of spintronic devices. Recently, monolayers (MLs) of semiconducting transition-metal dichalcogenides (TMDs) have attracted considerable interest for spin-to-charge conversion due to their high spin-orbit coupling and lack of inversion symmetry in their crystal structure. However, reports of direct measurement of spin-to-charge conversion at TMD-based interfaces are very much limited. Here, we report on the room-temperature observation of a large spin-to-charge conversion arising from the interface of Ni80Fe20 (Py) and four distinct large-area (∼5 × 2 mm2) ML TMDs, namely, MoS2, MoSe2, WS2, and WSe2. We show that both spin mixing conductance and the Rashba efficiency parameter (λIREE) scale with the spin-orbit coupling strength of the ML TMD layers. The λIREE parameter is found to range between -0.54 and -0.76 nm for the four ML TMDs, demonstrating a large spin-to-charge conversion. Our findings reveal that the TMD/ferromagnet interface can be used for efficient generation and detection of spin current, opening new opportunities for novel spintronic devices.
Collapse
Affiliation(s)
- Himanshu Bangar
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akash Kumar
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Physics, University of Gothenburg, Gothenburg 412 96, Sweden
| | - Niru Chowdhury
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Richa Mudgal
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pankhuri Gupta
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ram Singh Yadav
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Samaresh Das
- Center for Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pranaba Kishor Muduli
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
17
|
Bobkova IV, Bobkov AM, Silaev MA. Magnetoelectric effects in Josephson junctions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:353001. [PMID: 35709718 DOI: 10.1088/1361-648x/ac7994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The review is devoted to the fundamental aspects and characteristic features of the magnetoelectric effects, reported in the literature on Josephson junctions (JJs). The main focus of the review is on the manifestations of the direct and inverse magnetoelectric effects in various types of Josephson systems. They provide a coupling of the magnetization in superconductor/ferromagnet/superconductor JJs to the Josephson current. The direct magnetoelectric effect is a driving force of spin torques acting on the ferromagnet inside the JJ. Therefore it is of key importance for the electrical control of the magnetization. The inverse magnetoelectric effect accounts for the back action of the magnetization dynamics on the Josephson subsystem, in particular, making the JJ to be in the resistive state in the presence of the magnetization dynamics of any origin. The perspectives of the coupling of the magnetization in JJs with ferromagnetic interlayers to the Josephson current via the magnetoelectric effects are discussed.
Collapse
Affiliation(s)
- I V Bobkova
- Institute of Solid State Physics, Chernogolovka, Moscow Region 142432, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
- National Research University Higher School of Economics, Moscow 101000, Russia
| | - A M Bobkov
- Institute of Solid State Physics, Chernogolovka, Moscow Region 142432, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | | |
Collapse
|
18
|
Ghosh S, Manchon A, Železný J. Unconventional Robust Spin-Transfer Torque in Noncollinear Antiferromagnetic Junctions. PHYSICAL REVIEW LETTERS 2022; 128:097702. [PMID: 35302787 DOI: 10.1103/physrevlett.128.097702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/25/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Ferromagnetic spin valves and tunneling junctions are crucial for spintronics applications and are one of the most fundamental spintronics devices. Motivated by the potential unique advantages of antiferromagnets for spintronics, we theoretically study here junctions built out of noncollinear antiferromagnets. We demonstrate a large and robust magnetoresistance and spin-transfer torque capable of ultrafast switching between parallel and antiparallel states of the junction. In addition, we show that a new type of self-generated torque appears in the noncollinear junctions.
Collapse
Affiliation(s)
- Srikrishna Ghosh
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| | | | - Jakub Železný
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, 162 00 Praha 6, Czech Republic
| |
Collapse
|
19
|
Kumar A, Rajabali M, González VH, Zahedinejad M, Houshang A, Åkerman J. Fabrication of voltage-gated spin Hall nano-oscillators. NANOSCALE 2022; 14:1432-1439. [PMID: 35018936 DOI: 10.1039/d1nr07505e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate an optimized fabrication process for electric field (voltage gate) controlled nano-constriction spin Hall nano-oscillators (SHNOs), achieving feature sizes of <30 nm with easy to handle ma-N 2401 e-beam lithography negative tone resist. For the nanoscopic voltage gates, we utilize a two-step tilted ion beam etching approach and through-hole encapsulation using 30 nm HfOx. The optimized tilted etching process reduces sidewalls by 75% compared to no tilting. Moreover, the HfOx encapsulation avoids any sidewall shunting and improves gate breakdown. Our experimental results on W/CoFeB/MgO/SiO2 SHNOs show significant frequency tunability (6 MHz V-1) even for moderate perpendicular magnetic anisotropy. Circular patterns with diameter of 45 nm are achieved with an aspect ratio better than 0.85 for 80% of the population. The optimized fabrication process allows incorporating a large number of individual gates to interface to SHNO arrays for unconventional computing and densely packed spintronic neural networks.
Collapse
Affiliation(s)
- Akash Kumar
- Applied Spintronics Group, Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| | - Mona Rajabali
- Applied Spintronics Group, Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| | - Victor Hugo González
- Applied Spintronics Group, Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| | | | - Afshin Houshang
- Applied Spintronics Group, Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| | - Johan Åkerman
- Applied Spintronics Group, Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
20
|
Huang X, Sayed S, Mittelstaedt J, Susarla S, Karimeddiny S, Caretta L, Zhang H, Stoica VA, Gosavi T, Mahfouzi F, Sun Q, Ercius P, Kioussis N, Salahuddin S, Ralph DC, Ramesh R. Novel Spin-Orbit Torque Generation at Room Temperature in an All-Oxide Epitaxial La 0.7 Sr 0.3 MnO 3 /SrIrO 3 System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008269. [PMID: 33960025 DOI: 10.1002/adma.202008269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Spin-orbit torques (SOTs) that arise from materials with large spin-orbit coupling offer a new pathway for energy-efficient and fast magnetic information storage. SOTs in conventional heavy metals and topological insulators are explored extensively, while 5d transition metal oxides, which also host ions with strong spin-orbit coupling, are a relatively new territory in the field of spintronics. An all-oxide, SrTiO3 (STO)//La0.7 Sr0.3 MnO3 (LSMO)/SrIrO3 (SIO) heterostructure with lattice-matched crystal structure is synthesized, exhibiting an epitaxial and atomically sharp interface between the ferromagnetic LSMO and the high spin-orbit-coupled metal SIO. Spin-torque ferromagnetic resonance (ST-FMR) is used to probe the effective magnetization and the SOT efficiency in LSMO/SIO heterostructures grown on STO substrates. Remarkably, epitaxial LSMO/SIO exhibits a large SOT efficiency, ξ|| = 1, while retaining a reasonably low shunting factor and increasing the effective magnetization of LSMO by ≈50%. The findings highlight the significance of epitaxy as a powerful tool to achieve a high SOT efficiency, explore the rich physics at the epitaxial interface, and open up a new pathway for designing next-generation energy-efficient spintronic devices.
Collapse
Affiliation(s)
- Xiaoxi Huang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Shehrin Sayed
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA
| | | | - Sandhya Susarla
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Saba Karimeddiny
- Department of Physics, Cornell University, Ithaca, NY, 14853, USA
| | - Lucas Caretta
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Hongrui Zhang
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Vladimir A Stoica
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Tanay Gosavi
- Components Research, Intel Corporation, Hillsboro, OR, 97124, USA
| | - Farzad Mahfouzi
- Department of Physics, California State University Northridge, Northridge, CA, 91330, USA
| | - Qilong Sun
- Department of Physics, California State University Northridge, Northridge, CA, 91330, USA
| | - Peter Ercius
- National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Nicholas Kioussis
- Department of Physics, California State University Northridge, Northridge, CA, 91330, USA
| | - Sayeef Salahuddin
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA
| | - Daniel C Ralph
- Department of Physics, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| | - Ramamoorthy Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
21
|
Wu S, Zhang Y, Tian C, Zhang J, Wu M, Wang Y, Gao P, Yu H, Jiang Y, Wang J, Meng K, Zhang J. Prototype Design of a Domain-Wall-Based Magnetic Memory Using a Single Layer La 0.67Sr 0.33MnO 3 Thin Film. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23945-23950. [PMID: 33974387 DOI: 10.1021/acsami.1c04724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic field-free, nonvolatile magnetic memory with low power consumption is highly desired in information technology. In this work, we report a current-controllable alignment of magnetic domain walls in a single layer La0.67Sr0.33MnO3 thin film with the threshold current density of 2 × 105 A/cm2 at room temperature. The vector relationship between current directions and domain-wall orientations indicates the dominant role of spin-orbit torque without an assistance of external magnetic field. Meanwhile, significant planar Hall resistances can be readout in a nonvolatile way before and after the domain-wall reorientation. A domain-wall-based magnetic random-access memory (DW-MRAM) prototype device has been proposed.
Collapse
Affiliation(s)
- Shizhe Wu
- Department of Physics, Beijing Normal University, Beijing, China
| | - Yuelin Zhang
- Department of Physics, Beijing Normal University, Beijing, China
| | - Chengfeng Tian
- Department of Physics, Beijing Normal University, Beijing, China
| | - Jianyu Zhang
- Fert Beijing Institute, BDBC, School of Microelectronics, Beihang University, Beijing 100875, China
| | - Mei Wu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Yu Wang
- Department of Engineering Mechanics & Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310012, China
| | - Peng Gao
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Haiming Yu
- Fert Beijing Institute, BDBC, School of Microelectronics, Beihang University, Beijing 100875, China
| | - Yong Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Wang
- Department of Engineering Mechanics & Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310012, China
| | - Kangkang Meng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinxing Zhang
- Department of Physics, Beijing Normal University, Beijing, China
| |
Collapse
|
22
|
Electronic spin separation induced by nuclear motion near conical intersections. Nat Commun 2021; 12:700. [PMID: 33514700 PMCID: PMC7846775 DOI: 10.1038/s41467-020-20831-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022] Open
Abstract
Though the concept of Berry force was proposed thirty years ago, little is known about the practical consequences of this force as far as chemical dynamics are concerned. Here, we report that when molecular dynamics pass near a conical intersection, a massive Berry force can appear as a result of even a small amount of spin-orbit coupling (<10−3 eV), and this Berry force can in turn dramatically change pathway selection. In particular, for a simple radical reaction with two outgoing reaction channels, an exact quantum scattering solution in two dimensions shows that the presence of a significant Berry force can sometimes lead to spin selectivity as large as 100%. Thus, this article opens the door for organic chemists to start designing spintronic devices that use nuclear motion and conical intersections (combined with standard spin-orbit coupling) in order to achieve spin selection. Vice versa, for physical chemists, this article also emphasizes that future semiclassical simulations of intersystem crossing (which have heretofore ignored Berry force) should be corrected to account for the spin polarization that inevitably arises when dynamics pass near conical intersections. Spin polarization is at the basis of quantum information and underlies some natural processes, but many aspects still need to be explored. Here, the authors, by quantum mechanical computations, show that even a weak spin-orbit coupling near a conical intersection can induce large spin selection, with consequences for spin manipulation in photochemical or electrochemical reactions.
Collapse
|
23
|
Dunne P, Fowley C, Hlawacek G, Kurian J, Atcheson G, Colis S, Teichert N, Kundys B, Venkatesan M, Lindner J, Deac AM, Hermans TM, Coey JMD, Doudin B. Helium Ion Microscopy for Reduced Spin Orbit Torque Switching Currents. NANO LETTERS 2020; 20:7036-7042. [PMID: 32931289 DOI: 10.1021/acs.nanolett.0c02060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spin orbit torque driven switching is a favorable way to manipulate nanoscale magnetic objects for both memory and wireless communication devices. The critical current required to switch from one magnetic state to another depends on the geometry and the intrinsic properties of the materials used, which are difficult to control locally. Here, we demonstrate how focused helium ion beam irradiation can modulate the local magnetic anisotropy of a Co thin film at the microscopic scale. Real-time in situ characterization using the anomalous Hall effect showed up to an order of magnitude reduction of the magnetic anisotropy under irradiation, with multilevel switching demonstrated. The result is that spin-switching current densities, down to 800 kA cm-2, can be achieved on predetermined areas of the film, without the need for lithography. The ability to vary critical currents spatially has implications not only for storage elements but also neuromorphic and probabilistic computing.
Collapse
Affiliation(s)
- Peter Dunne
- Université de Strasbourg, CNRS, IPCMS UMR 7504, 23 rue du Loess, F-67034 Strasbourg, France
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Ciaran Fowley
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Gregor Hlawacek
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Jinu Kurian
- Université de Strasbourg, CNRS, IPCMS UMR 7504, 23 rue du Loess, F-67034 Strasbourg, France
| | | | - Silviu Colis
- Université de Strasbourg, CNRS, IPCMS UMR 7504, 23 rue du Loess, F-67034 Strasbourg, France
| | - Niclas Teichert
- AMBER and School of Physics, Trinity College, Dublin 2, Ireland
| | - Bohdan Kundys
- Université de Strasbourg, CNRS, IPCMS UMR 7504, 23 rue du Loess, F-67034 Strasbourg, France
| | | | - Jürgen Lindner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Alina Maria Deac
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thomas M Hermans
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - J M D Coey
- AMBER and School of Physics, Trinity College, Dublin 2, Ireland
| | - Bernard Doudin
- Université de Strasbourg, CNRS, IPCMS UMR 7504, 23 rue du Loess, F-67034 Strasbourg, France
| |
Collapse
|
24
|
Nan T, Quintela CX, Irwin J, Gurung G, Shao DF, Gibbons J, Campbell N, Song K, Choi SY, Guo L, Johnson RD, Manuel P, Chopdekar RV, Hallsteinsen I, Tybell T, Ryan PJ, Kim JW, Choi Y, Radaelli PG, Ralph DC, Tsymbal EY, Rzchowski MS, Eom CB. Controlling spin current polarization through non-collinear antiferromagnetism. Nat Commun 2020; 11:4671. [PMID: 32938910 PMCID: PMC7494910 DOI: 10.1038/s41467-020-17999-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/22/2020] [Indexed: 11/09/2022] Open
Abstract
The interconversion of charge and spin currents via spin-Hall effect is essential for spintronics. Energy-efficient and deterministic switching of magnetization can be achieved when spin polarizations of these spin currents are collinear with the magnetization. However, symmetry conditions generally restrict spin polarizations to be orthogonal to both the charge and spin flows. Spin polarizations can deviate from such direction in nonmagnetic materials only when the crystalline symmetry is reduced. Here, we show control of the spin polarization direction by using a non-collinear antiferromagnet Mn3GaN, in which the triangular spin structure creates a low magnetic symmetry while maintaining a high crystalline symmetry. We demonstrate that epitaxial Mn3GaN/permalloy heterostructures can generate unconventional spin-orbit torques at room temperature corresponding to out-of-plane and Dresselhaus-like spin polarizations which are forbidden in any sample with two-fold rotational symmetry. Our results demonstrate an approach based on spin-structure design for controlling spin-orbit torque, enabling high-efficient antiferromagnetic spintronics. In the typical spin-hall effect, spin-current, charge current, and spin polarisation are all mutually perpendicular, a feature enforced by symmetry. Here, using an anti-ferromagnet with a triangular spin structure, the authors demonstrate a spin-hall effect without a perpendicular spin alignment.
Collapse
Affiliation(s)
- T Nan
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - C X Quintela
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - J Irwin
- Department of Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - G Gurung
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, 68588, USA
| | - D F Shao
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, 68588, USA
| | - J Gibbons
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, 14853, USA
| | - N Campbell
- Department of Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - K Song
- Department of Materials Modeling and Characterization, KIMS, Changwon, 51508, South Korea
| | - S -Y Choi
- Department of Materials Science and Engineering, POSTECH, Pohang, 37673, South Korea
| | - L Guo
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - R D Johnson
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK.,ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK.,Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - P Manuel
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - R V Chopdekar
- Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - I Hallsteinsen
- Advanced Light Source, Lawrence Berkeley National Laboratory (LBNL), 1 Cyclotron Road, Berkeley, CA, 94720, USA.,Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - T Tybell
- Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - P J Ryan
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA.,School of Physical Sciences, Dublin City University, Dublin, 11, Ireland
| | - J -W Kim
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Y Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - P G Radaelli
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - D C Ralph
- Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, 14853, USA.,Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| | - E Y Tsymbal
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, 68588, USA
| | - M S Rzchowski
- Department of Physics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - C B Eom
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
25
|
Wu Y, Miao G, Subotnik JE. Chemical Reaction Rates for Systems with Spin-Orbit Coupling and an Odd Number of Electrons: Does Berry's Phase Lead to Meaningful Spin-Dependent Nuclear Dynamics for a Two State Crossing? J Phys Chem A 2020; 124:7355-7372. [PMID: 32869999 DOI: 10.1021/acs.jpca.0c04562] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Within the context of a simple avoided crossing, we investigate the effect of a complex-valued diabatic coupling in determining spin-dependent rate constants and scattering states. We find that, if the molecular geometry is not linear and the Berry force is not zero, one can find significant spin polarization of the products. This study emphasizes that, when analyzing nonadiabatic reactions with spin orbit coupling (and a complex-valued Hamiltonian), one must consider how Berry force affects nuclear motion-at least in the context of gas phase reactions. Work is currently ongoing as far as extrapolating these conclusions to the condensed phase, where interesting spin selection has been observed in recent years.
Collapse
Affiliation(s)
- Yanze Wu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gaohan Miao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
26
|
Out-of-plane carrier spin in transition-metal dichalcogenides under electric current. Proc Natl Acad Sci U S A 2020; 117:16749-16755. [PMID: 32636257 DOI: 10.1073/pnas.1912472117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Absence of spatial inversion symmetry allows a nonequilibrium spin polarization to be induced by electric currents, which, in two-dimensional systems, is conventionally analyzed using the Rashba model, leading to in-plane spin polarization. Given that the material realizations of out-of-plane current-induced spin polarization (CISP) are relatively fewer than that of in-plane CISP, but important for perpendicular-magnetization switching and electronic structure evolution, it is highly desirable to search for new prototypical materials and mechanisms to generate the out-of-plane carrier spin and promote the study of CISP. Here, we propose that an out-of-plane CISP can emerge in ferromagnetic transition-metal dichalcogenide monolayers. Taking monolayer [Formula: see text] and [Formula: see text] as examples, we calculate the out-of-plane CISP based on linear-response theory and first-principles methods. We deduce a general low-energy model for easy-plane ferromagnetic transition-metal dichalcogenide monolayers and find that the out-of-plane CISP is due to an in-plane magnetization together with intrinsic spin-orbit coupling inducing an anisotropic out-of-plane spin splitting in the momentum space. The CISP paves the way for magnetization rotation and electric control of the valley quantum number.
Collapse
|
27
|
Pathak S, Youm C, Hong J. Impact of Spin-Orbit Torque on Spin-Transfer Torque Switching in Magnetic Tunnel Junctions. Sci Rep 2020; 10:2799. [PMID: 32071322 PMCID: PMC7029010 DOI: 10.1038/s41598-020-59533-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
The paper presents our simulated results showing the substantial improvement of both switching speed and energy consumption in a perpendicular magnetic tunnel junction (p-MTJ), a core unit of Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM), by the help of additional Spin-Orbit-Torque (SOT) write pulse current (WPSOT). An STT-SOT hybrid torque module for OOMMF simulation is implemented to investigate the switching behavior of a 20 nm cell in the p-MTJ. We found that the assistance of WPSOT to STT write pulse current (WPSTT) have a huge influence on the switching behavior of the free layer in the p-MTJ. For example, we could dramatically reduce the switching time (tSW) by 80% and thereby reduce the write energy over 70% as compared to those in the absence of the WPSOT. Even a very tiny amplitude of WPSOT (JSOT of the order of 102 A/m2) substantially assists to reduce the critical current density for switching of the free layer and thereby decreases the energy consumption as well. It is worth to be pointed out that the energy can be saved further by tuning the WPSOT parameters, i.e., amplitude and duration along at the threshold WPSTT. Our findings show that the proposed STT-SOT hybrid switching scheme has a great impact on the MRAM technology seeking the high speed and low energy consumption.
Collapse
Affiliation(s)
- Sachin Pathak
- Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
- Physics, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Chanyoung Youm
- Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea
| | - Jongill Hong
- Materials Science and Engineering, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
28
|
Chen W. Edelstein and inverse Edelstein effects caused by the pristine surface states of topological insulators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:035809. [PMID: 31546243 DOI: 10.1088/1361-648x/ab46c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Edelstein effect caused by the pristine surface states of three-dimensional topological insulators is investigated by means of a semiclassical approach. The combined effect of random impurity scattering and the spin-momentum locking of the gapless Dirac cone yields a current-induced surface spin accumulation that depends on the surface cleanliness, but is independent from chemical potential and temperature. Through combing the semiclassical approach with the Bloch equation, the inverse Edelstein effect that converts the spin pumping spin current into a charge current is well explained, and the conversion efficiency [Formula: see text] is revealed to be independent from the disorder. Consistency of these results with various experiments is elaborated in detail.
Collapse
Affiliation(s)
- Wei Chen
- Department of Physics, PUC-Rio, Rio de Janeiro 22451-900, Brazil
| |
Collapse
|
29
|
Go D, Freimuth F, Hanke JP, Xue F, Gomonay O, Lee KJ, Blügel S, Haney PM, Lee HW, Mokrousov Y. Theory of Current-Induced Angular Momentum Transfer Dynamics in Spin-Orbit Coupled Systems. PHYSICAL REVIEW RESEARCH 2020; 2:10.1103/physrevresearch.2.033401. [PMID: 33655217 PMCID: PMC7919697 DOI: 10.1103/physrevresearch.2.033401] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Motivated by the importance of understanding various competing mechanisms to the current-induced spin-orbit torque on magnetization in complex magnets, we develop a theory of current-induced spin-orbital coupled dynamics in magnetic heterostructures. The theory describes angular momentum transfer between different degrees of freedom in solids, e.g., the electron orbital and spin, the crystal lattice, and the magnetic order parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum between different degrees of freedom, achieved in a steady state under an applied external electric field. We then propose a classification scheme for the mechanisms of the current-induced torque in magnetic bilayers. We evaluate the sources of torque using density functional theory, effectively capturing the impact of the electronic structure on these quantities. We apply our formalism to two different magnetic bilayers, Fe/W(110) and Ni/W(110), which are chosen such that the orbital and spin Hall effects in W have opposite sign and the resulting spin- and orbital-mediated torques can compete with each other. We find that while the spin torque arising from the spin Hall effect of W is the dominant mechanism of the current-induced torque in Fe/W(110), the dominant mechanism in Ni/W(110) is the orbital torque originating in the orbital Hall effect of the non-magnetic substrate. Thus the effective spin Hall angles for the total torque are negative and positive in the two systems. Our prediction can be experimentally identified in moderately clean samples, where intrinsic contributions dominate. This clearly demonstrates that our formalism is ideal for studying the angular momentum transfer dynamics in spin-orbit coupled systems as it goes beyond the "spin current picture" by naturally incorporating the spin and orbital degrees of freedom on an equal footing. Our calculations reveal that, in addition to the spin and orbital torque, other contributions such as the interfacial torque and self-induced anomalous torque within the ferromagnet are not negligible in both material systems.
Collapse
Affiliation(s)
- Dongwook Go
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
- Basic Science Research Institute, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Frank Freimuth
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Jan-Philipp Hanke
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Fei Xue
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics & Maryland Nanocenter, University of Maryland, College Park, MD 20742
| | - Olena Gomonay
- Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Kyung-Jin Lee
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Stefan Blügel
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - Paul M. Haney
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Hyun-Woo Lee
- Department of Physics, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Yuriy Mokrousov
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- Institute of Physics, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| |
Collapse
|
30
|
Rabinovich DS, Bobkova IV, Bobkov AM, Silaev MA. Resistive State of Superconductor-Ferromagnet-Superconductor Josephson Junctions in the Presence of Moving Domain Walls. PHYSICAL REVIEW LETTERS 2019; 123:207001. [PMID: 31809065 DOI: 10.1103/physrevlett.123.207001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/28/2019] [Indexed: 06/10/2023]
Abstract
We describe resistive states of the system combining two types of orderings-a superconducting and a ferromagnetic one. It is shown that in the presence of magnetization dynamics such systems become inherently dissipative and in principle cannot sustain any amount of the superconducting current because of the voltage generated by the magnetization dynamics. We calculate generic current-voltage characteristics of a superconductor-ferromagnet-superconductor Josephson junction with an unpinned domain wall and find the low-current resistance associated with the domain wall motion. We suggest the finite slope of Shapiro steps as the characteristic feature of the regime with domain wall oscillations driven by the ac external current flowing through the junction.
Collapse
Affiliation(s)
- D S Rabinovich
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Russia
- Skolkovo Institute of Science and Technology, Skolkovo 143026, Russia
- Institute of Solid State Physics, Chernogolovka, Moscow reg., 142432 Russia
| | - I V Bobkova
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Russia
- Institute of Solid State Physics, Chernogolovka, Moscow reg., 142432 Russia
| | - A M Bobkov
- Institute of Solid State Physics, Chernogolovka, Moscow reg., 142432 Russia
| | - M A Silaev
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700 Russia
- Department of Physics and Nanoscience Center, University of Jyväskylä, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland
| |
Collapse
|
31
|
Anisotropic spin-orbit torque generation in epitaxial SrIrO 3 by symmetry design. Proc Natl Acad Sci U S A 2019; 116:16186-16191. [PMID: 31350347 DOI: 10.1073/pnas.1812822116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spin-orbit coupling (SOC), the interaction between the electron spin and the orbital angular momentum, can unlock rich phenomena at interfaces, in particular interconverting spin and charge currents. Conventional heavy metals have been extensively explored due to their strong SOC of conduction electrons. However, spin-orbit effects in classes of materials such as epitaxial 5d-electron transition-metal complex oxides, which also host strong SOC, remain largely unreported. In addition to strong SOC, these complex oxides can also provide the additional tuning knob of epitaxy to control the electronic structure and the engineering of spin-to-charge conversion by crystalline symmetry. Here, we demonstrate room-temperature generation of spin-orbit torque on a ferromagnet with extremely high efficiency via the spin-Hall effect in epitaxial metastable perovskite SrIrO3 We first predict a large intrinsic spin-Hall conductivity in orthorhombic bulk SrIrO3 arising from the Berry curvature in the electronic band structure. By manipulating the intricate interplay between SOC and crystalline symmetry, we control the spin-Hall torque ratio by engineering the tilt of the corner-sharing oxygen octahedra in perovskite SrIrO3 through epitaxial strain. This allows the presence of an anisotropic spin-Hall effect due to a characteristic structural anisotropy in SrIrO3 with orthorhombic symmetry. Our experimental findings demonstrate the heteroepitaxial symmetry design approach to engineer spin-orbit effects. We therefore anticipate that these epitaxial 5d transition-metal oxide thin films can be an ideal building block for low-power spintronics.
Collapse
|
32
|
Ren Z, Liu S, Jin L, Wen T, Liao Y, Tang X, Zhang H, Zhong Z. Reconfigurable nanoscale spin-wave directional coupler using spin-orbit torque. Sci Rep 2019; 9:7093. [PMID: 31068649 PMCID: PMC6506528 DOI: 10.1038/s41598-019-43597-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/26/2019] [Indexed: 11/24/2022] Open
Abstract
We present a reconfigurable nanoscale spin-wave directional coupler based on spin-orbit torque (SOT). By micromagnetic simulations, it is demonstrated that the functionality and operating frequency of proposed device can be dynamically switched by inverting the whole or part of the relative magnetic configuration of the dipolar-coupled waveguides using SOT. Utilizing the effect of sudden change in coupling length, the functionality of power divider can be realized. The proposed reconfigurable spin-wave directional coupler opens a way for two-dimensional planar magnonic integrated circuits.
Collapse
Affiliation(s)
- Zhiwei Ren
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shuang Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lichuan Jin
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Tianlong Wen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yulong Liao
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaoli Tang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Huaiwu Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhiyong Zhong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
33
|
Shao DF, Gurung G, Zhang SH, Tsymbal EY. Dirac Nodal Line Metal for Topological Antiferromagnetic Spintronics. PHYSICAL REVIEW LETTERS 2019; 122:077203. [PMID: 30848649 DOI: 10.1103/physrevlett.122.077203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which exploits the Néel vector to control the topological electronic states and the associated spin-dependent transport properties. A recently discovered Néel spin-orbit torque has been proposed to electrically manipulate Dirac band crossings in antiferromagnets; however, a reliable AFM material to realize these properties in practice is missing. In this Letter, we predict that room-temperature AFM metal MnPd_{2} allows the electrical control of the Dirac nodal line by the Néel spin-orbit torque. Based on first-principles density functional theory calculations, we show that reorientation of the Néel vector leads to switching between the symmetry-protected degenerate state and the gapped state associated with the dispersive Dirac nodal line at the Fermi energy. The calculated spin Hall conductivity strongly depends on the Néel vector orientation and can be used to experimentally detect the predicted effect using a proposed spin-orbit torque device. Our results indicate that AFM Dirac nodal line metal MnPd_{2} represents a promising material for topological AFM spintronics.
Collapse
Affiliation(s)
- Ding-Fu Shao
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, USA
| | - Gautam Gurung
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, USA
| | - Shu-Hui Zhang
- College of Science, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, USA
| |
Collapse
|
34
|
Finizio S, Wintz S, Zeissler K, Sadovnikov AV, Mayr S, Nikitov SA, Marrows CH, Raabe J. Dynamic Imaging of the Delay- and Tilt-Free Motion of Néel Domain Walls in Perpendicularly Magnetized Superlattices. NANO LETTERS 2019; 19:375-380. [PMID: 30517003 DOI: 10.1021/acs.nanolett.8b04091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report on the time-resolved investigation of current- and field-induced domain wall motion in the flow regime in perpendicularly magnetized microwires exhibiting antisymmetric exchange interaction by means of scanning transmission X-ray microscopy with a 200 ps time step. The sub-ns time step of the dynamical images allowed us to observe the absence of incubation times for the motion of the domain wall within an uncertainty of 200 ps, together with indications for a negligible inertia of the domain wall. Furthermore, we observed that, for short current and magnetic field pulses, the magnetic domain walls do not exhibit a tilting during their motion, providing a mechanism for the fast, tilt-free, current-induced motion of magnetic domain walls.
Collapse
Affiliation(s)
- Simone Finizio
- Swiss Light Source , Paul Scherrer Institut , 5232 Villigen PSI , Switzerland
| | - Sebastian Wintz
- Swiss Light Source , Paul Scherrer Institut , 5232 Villigen PSI , Switzerland
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , 01328 Dresden , Germany
| | - Katharina Zeissler
- School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Alexandr V Sadovnikov
- Laboratory Metamaterials , Saratov State University , Saratov 410012 , Russia
- Kotel'nikov Institute of Radioengineering and Electronics , Russian Academy of Sciences , Moscow 125009 , Russia
| | - Sina Mayr
- Swiss Light Source , Paul Scherrer Institut , 5232 Villigen PSI , Switzerland
- Department of Materials, Laboratory for Mesoscopic Systems , ETH Zürich , 8093 Zürich , Switzerland
| | - Sergey A Nikitov
- Laboratory Metamaterials , Saratov State University , Saratov 410012 , Russia
- Kotel'nikov Institute of Radioengineering and Electronics , Russian Academy of Sciences , Moscow 125009 , Russia
| | - Christopher H Marrows
- School of Physics and Astronomy , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Jörg Raabe
- Swiss Light Source , Paul Scherrer Institut , 5232 Villigen PSI , Switzerland
| |
Collapse
|
35
|
All-optical generation and ultrafast tuning of non-linear spin Hall current. Sci Rep 2018; 8:17102. [PMID: 30459404 PMCID: PMC6243999 DOI: 10.1038/s41598-018-35378-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/05/2018] [Indexed: 11/22/2022] Open
Abstract
Spin Hall effect, one of the cornerstones in spintronics refers to the emergence of an imbalance in the spin density transverse to a charge flow in a sample under voltage bias. This study points to a novel way for an ultrafast generation and tuning of a unidirectional nonlinear spin Hall current by means of subpicosecond laser pulses of optical vortices. When interacting with matter, the optical orbital angular momentum (OAM) carried by the vortex and quantified by its topological charge is transferred to the charge carriers. The residual spin-orbital coupling in the sample together with confinement effects allow exploiting the absorbed optical OAM for spatio-temporally controlling the spin channels. Both the non-linear spin Hall current and the dynamical spin Hall angle increase for a higher optical topological charge. The reason is the transfer of a higher amount of OAM and the enhancement of the effective spin-orbit interaction strength. No bias voltage is needed. We demonstrate that the spin Hall current can be all-optically generated in an open circuit geometry for ring-structured samples. These results follow from a full-fledged propagation of the spin-dependent quantum dynamics on a time-space grid coupled to the phononic environment. The findings point to a versatile and controllable tool for the ultrafast generation of spin accumulations with a variety of applications such as a source for ultrafast spin transfer torque and charge and spin current pulse emitter.
Collapse
|
36
|
Schönke D, Oelsner A, Krautscheid P, Reeve RM, Kläui M. Development of a scanning electron microscopy with polarization analysis system for magnetic imaging with ns time resolution and phase-sensitive detection. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:083703. [PMID: 30184713 DOI: 10.1063/1.5037528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
Scanning electron microscopy with polarization analysis is a powerful lab-based magnetic imaging technique offering simultaneous imaging of multiple magnetization components and a very high spatial resolution. However, one drawback of the technique is the long required acquisition time resulting from the low inherent efficiency of spin detection, which has limited the applicability of the technique to certain quasi-static measurement schemes and materials with high magnetic contrast. Here we demonstrate the ability to improve the signal-to-noise ratio for particular classes of measurements involving periodic excitation of the magnetic structure via the implementation of a digital phase-sensitive detection scheme facilitated by the integration of a time-to-digital converter to the system. The modified setup provides dynamic imaging capabilities using selected time windows and finally full time-resolved imaging with a demonstrated time resolution of better than 2 ns.
Collapse
Affiliation(s)
- Daniel Schönke
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany
| | | | - Pascal Krautscheid
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany
| | - Robert M Reeve
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany
| | - Mathias Kläui
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany
| |
Collapse
|
37
|
Tao LL, Tsymbal EY. Persistent spin texture enforced by symmetry. Nat Commun 2018; 9:2763. [PMID: 30018283 PMCID: PMC6050308 DOI: 10.1038/s41467-018-05137-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/14/2018] [Indexed: 12/03/2022] Open
Abstract
Persistent spin texture (PST) is the property of some materials to maintain a uniform spin configuration in the momentum space. This property has been predicted to support an extraordinarily long spin lifetime of carriers promising for spintronics applications. Here, we predict that there exists a class of noncentrosymmetric bulk materials, where the PST is enforced by the nonsymmorphic space group symmetry of the crystal. Around certain high symmetry points in the Brillouin zone, the sublattice degrees of freedom impose a constraint on the effective spin-orbit field, which orientation remains independent of the momentum and thus maintains the PST. We illustrate this behavior using density-functional theory calculations for a handful of promising candidates accessible experimentally. Among them is the ferroelectric oxide BiInO3-a wide band gap semiconductor which sustains a PST around the conduction band minimum. Our results broaden the range of materials that can be employed in spintronics.
Collapse
Affiliation(s)
- L L Tao
- Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, 68588, USA
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE, 68588, USA.
| |
Collapse
|
38
|
Sakanashi K, Sigrist M, Chen W. Theory of in-plane current induced spin torque in metal/ferromagnet bilayers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:205803. [PMID: 29595526 DOI: 10.1088/1361-648x/aababc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Using a semiclassical approach that simultaneously incorporates the spin Hall effect (SHE), spin diffusion, quantum well states, and interface spin-orbit coupling (SOC), we address the interplay of these mechanisms as the origin of the spin-orbit torque (SOT) induced by in-plane currents, as observed in the normal metal/ferromagnetic metal bilayer thin films. Focusing on the bilayers with a ferromagnet much thinner than its spin diffusion length, such as Pt/Co with ∼10 nm thickness, our approach addresses simultaneously the two contributions to the SOT, namely the spin-transfer torque (SHE-STT) due to SHE-induced spin injection, and the inverse spin Galvanic effect spin-orbit torque (ISGE-SOT) due to SOC-induced spin accumulation. The SOC produces an effective magnetic field at the interface, hence it modifies the angular momentum conservation expected for the SHE-STT. The SHE-induced spin voltage and the interface spin current are mutually dependent and, hence, are solved in a self-consistent manner. The result suggests that the SHE-STT and ISGE-SOT are of the same order of magnitude, and the spin transport mediated by the quantum well states may be an important mechanism for the experimentally observed rapid variation of the SOT with respect to the thickness of the ferromagnet.
Collapse
Affiliation(s)
- Kohei Sakanashi
- Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
39
|
Ferromagnetic domain walls as spin wave filters and the interplay between domain walls and spin waves. Sci Rep 2018; 8:3910. [PMID: 29500388 PMCID: PMC5834505 DOI: 10.1038/s41598-018-22272-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/20/2018] [Indexed: 11/08/2022] Open
Abstract
Spin waves (SW) are low energy excitations of magnetization in magnetic materials. In the promising field of magnonics, fundamental SW modes, magnons, are accessible in magnetic nanostructure waveguides and carry information. The SW propagates in both metals and insulators via magnetization dynamics. Energy dissipation through damping can be low compared to the Joule heating in conventional circuits. We performed simulations in a quasi-one-dimensional ferromagnetic strip and found that the transmission of the propagating SW across the domain wall (DW) depends strongly on the tilt angle of the magnetization at low frequencies. When the SW amplitude is large, the magnetization tilt angle inside the DW changes due to the effective fields. The SW transmission, the DW motion, and the magnetization tilt angle couple to each other, which results in complex DW motion and SW transmission. Both SW filtering and DW motions are key ingredients in magnonics.
Collapse
|
40
|
Wang G, Xu H, Lai YC. Emergence, evolution, and control of multistability in a hybrid topological quantum/classical system. CHAOS (WOODBURY, N.Y.) 2018; 28:033601. [PMID: 29604629 DOI: 10.1063/1.4998244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a novel class of nonlinear dynamical systems-a hybrid of relativistic quantum and classical systems and demonstrate that multistability is ubiquitous. A representative setting is coupled systems of a topological insulator and an insulating ferromagnet, where the former possesses an insulating bulk with topologically protected, dissipationless, and conducting surface electronic states governed by the relativistic quantum Dirac Hamiltonian and the latter is described by the nonlinear classical evolution of its magnetization vector. The interactions between the two are essentially the spin transfer torque from the topological insulator to the ferromagnet and the local proximity induced exchange coupling in the opposite direction. The hybrid system exhibits a rich variety of nonlinear dynamical phenomena besides multistability such as bifurcations, chaos, and phase synchronization. The degree of multistability can be controlled by an external voltage. In the case of two coexisting states, the system is effectively binary, opening a door to exploitation for developing spintronic memory devices. Because of the dissipationless and spin-momentum locking nature of the surface currents of the topological insulator, little power is needed for generating a significant current, making the system appealing for potential applications in next generation of low power memory devices.
Collapse
Affiliation(s)
- Guanglei Wang
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Hongya Xu
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Ying-Cheng Lai
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
41
|
Bodnar SY, Šmejkal L, Turek I, Jungwirth T, Gomonay O, Sinova J, Sapozhnik AA, Elmers HJ, Kläui M, Jourdan M. Writing and reading antiferromagnetic Mn 2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat Commun 2018; 9:348. [PMID: 29367633 PMCID: PMC5783935 DOI: 10.1038/s41467-017-02780-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 12/26/2017] [Indexed: 11/17/2022] Open
Abstract
Using antiferromagnets as active elements in spintronics requires the ability to manipulate and read-out the Néel vector orientation. Here we demonstrate for Mn2Au, a good conductor with a high ordering temperature suitable for applications, reproducible switching using current pulse generated bulk spin-orbit torques and read-out by magnetoresistance measurements. Reversible and consistent changes of the longitudinal resistance and planar Hall voltage of star-patterned epitaxial Mn2Au(001) thin films were generated by pulse current densities of ≃107 A/cm2. The symmetry of the torques agrees with theoretical predictions and a large read-out magnetoresistance effect of more than ≃6% is reproduced by ab initio transport calculations. The zero net moment of antiferromagnets makes them insensitive to magnetic fields and enables ultrafast dynamics promising for novel spintronics. Here the authors achieved pulse current induced Néel vector switching in Mn2Au(001) epitaxial thin films, which is associated with a large magnetoresistive effect allowing simple read-out.
Collapse
Affiliation(s)
- S Yu Bodnar
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128, Mainz, Germany
| | - L Šmejkal
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128, Mainz, Germany.,Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 00, Praha 6, Czech Republic.,Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Praha 2, Czech Republic
| | - I Turek
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Praha 2, Czech Republic
| | - T Jungwirth
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 00, Praha 6, Czech Republic.,School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - O Gomonay
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128, Mainz, Germany
| | - J Sinova
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128, Mainz, Germany
| | - A A Sapozhnik
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128, Mainz, Germany
| | - H-J Elmers
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128, Mainz, Germany
| | - M Kläui
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128, Mainz, Germany
| | - M Jourdan
- Institut für Physik, Johannes Gutenberg-Universität, Staudinger Weg 7, 55128, Mainz, Germany.
| |
Collapse
|
42
|
Thoss M, Evers F. Perspective: Theory of quantum transport in molecular junctions. J Chem Phys 2018; 148:030901. [DOI: 10.1063/1.5003306] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Thoss
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany
| | - Ferdinand Evers
- Institute of Theoretical Physics, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
43
|
Garcia JH, Vila M, Cummings AW, Roche S. Spin transport in graphene/transition metal dichalcogenide heterostructures. Chem Soc Rev 2018; 47:3359-3379. [DOI: 10.1039/c7cs00864c] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the theoretical and experimental studies of spin transport in graphene interfaced with transition metal dichalcogenides, and assesses its potential for future spintronic applications.
Collapse
Affiliation(s)
- Jose H. Garcia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and BIST
- 08193 Barcelona
- Spain
| | - Marc Vila
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and BIST
- 08193 Barcelona
- Spain
- Department of Physics
| | - Aron W. Cummings
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and BIST
- 08193 Barcelona
- Spain
| | - Stephan Roche
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and BIST
- 08193 Barcelona
- Spain
- ICREA – Institució Catalana de Recerca i Estudis Avançats
| |
Collapse
|
44
|
Hals KMD, Everschor-Sitte K. New Boundary-Driven Twist States in Systems with Broken Spatial Inversion Symmetry. PHYSICAL REVIEW LETTERS 2017; 119:127203. [PMID: 29341659 DOI: 10.1103/physrevlett.119.127203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 06/07/2023]
Abstract
A full description of a magnetic sample includes a correct treatment of the boundary conditions (BCs). This is in particular important in thin film systems, where even bulk properties might be modified by the properties of the boundary of the sample. We study generic ferromagnets with broken spatial inversion symmetry and derive the general micromagnetic BCs of a system with Dzyaloshinskii-Moriya interaction (DMI). We demonstrate that the BCs require the full tensorial structure of the third-rank DMI tensor and not just the antisymmetric part, which is usually taken into account. Specifically, we study systems with C_{∞v} symmetry and explore the consequences of the DMI. Interestingly, we find that the DMI already in the simplest case of a ferromagnetic thin film leads to a purely boundary-driven magnetic twist state at the edges of the sample. The twist state represents a new type of DMI-induced spin structure, which is completely independent of the internal DMI field. We estimate the size of the texture-induced magnetoresistance effect being in the range of that of domain walls.
Collapse
Affiliation(s)
- Kjetil M D Hals
- Institute of Physics, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, No-6803 Førde, Norway
| | | |
Collapse
|
45
|
Deterministic Spin-Orbit Torque Induced Magnetization Reversal In Pt/[Co/Ni] n /Co/Ta Multilayer Hall Bars. Sci Rep 2017; 7:972. [PMID: 28428617 PMCID: PMC5430536 DOI: 10.1038/s41598-017-01079-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/27/2017] [Indexed: 11/26/2022] Open
Abstract
Spin-orbit torque (SOT) induced by electric current has attracted extensive attention as an efficient method of controlling the magnetization in nanomagnetic structures. SOT-induced magnetization reversal is usually achieved with the aid of an in-plane bias magnetic field. In this paper, we show that by selecting a film stack with weak out-of-plane magnetic anisotropy, field-free SOT-induced switching can be achieved in micron sized multilayers. Using direct current, deterministic bipolar magnetization reversal is obtained in Pt/[Co/Ni]2/Co/Ta structures. Kerr imaging reveals that the SOT-induced magnetization switching process is completed via the nucleation of reverse domain and propagation of domain wall in the system.
Collapse
|
46
|
Ok S, Chen W, Sigrist M, Manske D. Effect of quantum tunneling on spin Hall magnetoresistance. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:075802. [PMID: 28032615 DOI: 10.1088/1361-648x/aa50da] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.
Collapse
Affiliation(s)
- Seulgi Ok
- Institut für Theoretische Physik, ETH-Zürich, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
47
|
Jia YZ, Ji WX, Zhang CW, Zhang SF, Li P, Wang PJ. Films based on group IV–V–VI elements for the design of a large-gap quantum spin Hall insulator with tunable Rashba splitting. RSC Adv 2017. [DOI: 10.1039/c6ra28838c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rashba spin–orbit coupling (SOC) in topological insulators (TIs) has recently attracted significant interest due to its potential applications in spintronics.
Collapse
Affiliation(s)
- Yi-zhen Jia
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| | - Wei-xiao Ji
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| | - Chang-wen Zhang
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| | - Shu-feng Zhang
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| | - Ping Li
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| | - Pei-ji Wang
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| |
Collapse
|
48
|
Oyarzún S, Nandy AK, Rortais F, Rojas-Sánchez JC, Dau MT, Noël P, Laczkowski P, Pouget S, Okuno H, Vila L, Vergnaud C, Beigné C, Marty A, Attané JP, Gambarelli S, George JM, Jaffrès H, Blügel S, Jamet M. Evidence for spin-to-charge conversion by Rashba coupling in metallic states at the Fe/Ge(111) interface. Nat Commun 2016; 7:13857. [PMID: 27976747 PMCID: PMC5171917 DOI: 10.1038/ncomms13857] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022] Open
Abstract
The spin-orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect transistor. However, the spin Hall effect in bulk germanium is too weak to produce spin currents, whereas large Rashba effect at Ge(111) surfaces covered with heavy metals could generate spin-polarized currents. The Rashba spin splitting can actually be as large as hundreds of meV. Here we show a giant spin-to-charge conversion in metallic states at the Fe/Ge(111) interface due to the Rashba coupling. We generate very large charge currents by direct spin pumping into the interface states from 20 K to room temperature. The presence of these metallic states at the Fe/Ge(111) interface is demonstrated by first-principles electronic structure calculations. By this, we demonstrate how to take advantage of the spin-orbit coupling for the development of the spin field-effect transistor.
Collapse
Affiliation(s)
- S Oyarzún
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
- Departamento de Fisica, CEDENNA, Universidad de Santiago de Chile (USACH), 9170124 Santiago, Chile
| | - A K Nandy
- Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - F Rortais
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
| | - J-C Rojas-Sánchez
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767, Palaiseau, France
| | - M-T Dau
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
| | - P Noël
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
| | - P Laczkowski
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767, Palaiseau, France
| | - S Pouget
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
| | - H Okuno
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
| | - L Vila
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
| | - C Vergnaud
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
| | - C Beigné
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
| | - A Marty
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
| | - J-P Attané
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
| | - S Gambarelli
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
| | - J-M George
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767, Palaiseau, France
| | - H Jaffrès
- Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767, Palaiseau, France
| | - S Blügel
- Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | - M Jamet
- Institut des Nanosciences et l'Energie Atomique et Cryogénie, INAC, Commissariat á aux Energies Alternatives-Univ. Grenoble Alpes, 17 rue des Martyrs, F-38000 Grenoble, France
- CEA, INAC, F-38000 Grenoble, France
| |
Collapse
|
49
|
Spin-torque generator engineered by natural oxidation of Cu. Nat Commun 2016; 7:13069. [PMID: 27725654 PMCID: PMC5062613 DOI: 10.1038/ncomms13069] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/31/2016] [Indexed: 11/08/2022] Open
Abstract
The spin Hall effect is a spin–orbit coupling phenomenon, which enables electric generation and detection of spin currents. This relativistic effect provides a way for realizing efficient spintronic devices based on electric manipulation of magnetization through spin torque. However, it has been believed that heavy metals are indispensable for the spin–torque generation. Here we show that the spin Hall effect in Cu, a light metal with weak spin–orbit coupling, is significantly enhanced through natural oxidation. We demonstrate that the spin–torque generation efficiency of a Cu/Ni81Fe19 bilayer is enhanced by over two orders of magnitude by tuning the surface oxidation, reaching the efficiency of Pt/ferromagnetic metal bilayers. This finding illustrates a crucial role of oxidation in the spin Hall effect, opening a route for engineering the spin–torque generator by oxygen control and manipulating magnetization without using heavy metals. In thin film spintronic devices, heavy metals with strong spin-orbit coupling are required to achieve a sizeable spin Hall effect. Here, the authors demonstrate an enhancement of the spin Hall effect in Cu, a material with weak spin-orbit coupling, via natural oxidation.
Collapse
|
50
|
Nakayama H, Kanno Y, An H, Tashiro T, Haku S, Nomura A, Ando K. Rashba-Edelstein Magnetoresistance in Metallic Heterostructures. PHYSICAL REVIEW LETTERS 2016; 117:116602. [PMID: 27661708 DOI: 10.1103/physrevlett.117.116602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 06/06/2023]
Abstract
We report the observation of magnetoresistance originating from Rashba spin-orbit coupling (SOC) in a metallic heterostructure: the Rashba-Edelstein (RE) magnetoresistance. We show that the simultaneous action of the direct and inverse RE effects in a Bi/Ag/CoFeB trilayer couples current-induced spin accumulation to the electric resistance. The electric resistance changes with the magnetic-field angle, reminiscent of the spin Hall magnetoresistance, despite the fact that bulk SOC is not responsible for the magnetoresistance. We further found that, even when the magnetization is saturated, the resistance increases with increasing the magnetic-field strength, which is attributed to the Hanle magnetoresistance in this system.
Collapse
Affiliation(s)
- Hiroyasu Nakayama
- Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan
| | - Yusuke Kanno
- Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan
| | - Hongyu An
- Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan
| | - Takaharu Tashiro
- Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan
| | - Satoshi Haku
- Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan
| | - Akiyo Nomura
- Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan
| | - Kazuya Ando
- Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|