1
|
Abstract
Neuroglia represent a diverse population of non-neuronal cells in the nervous systems, be that peripheral, central, enteric or autonomic nervous system. Arguably, these cells represent about half of the volume of the human brain. This volumetric ratio, and by extension glia to neurone ratio, not only widely differ depending on the size of the animal species brain and its positioning on the phylogenetic tree, but also vary between the regions of an individual brain. Neuroglia derived from a dual origin (ectoderm and mesodermal) and in an assorted morphology, yet their functional traits can be mainly classified into being keepers of homeostasis (water, ions, neurotransmitters, metabolites, fuels, etc.) and defenders (e.g., against microbial organisms, etc.) of the nervous system. As these capabilities go awry, neuroglia ultimately define their fundamental role in most, if not, all neuropathologies. This concept presented in this chapter serves as a general introduction into the world of neuroglia and subsequent topics covered by this book.
Collapse
|
2
|
Abstract
As the nervous system evolved from the diffused to centralised form, the neurones were joined by the appearance of the supportive cells, the neuroglia. Arguably, these non-neuronal cells evolve into a more diversified cell family than the neurones are. The first ancestral neuroglia appeared in flatworms being mesenchymal in origin. In the nematode C. elegans proto-astrocytes/supportive glia of ectodermal origin emerged, albeit the ensheathment of axons by glial cells occurred later in prawns. The multilayered myelin occurred by convergent evolution of oligodendrocytes and Schwann cells in vertebrates above the jawless fishes. Nutritive partitioning of the brain from the rest of the body appeared in insects when the hemolymph-brain barrier, a predecessor of the blood-brain barrier was formed. The defensive cellular mechanism required specialisation of bona fide immune cells, microglia, a process that occurred in the nervous system of leeches, bivalves, snails, insects and above. In ascending phylogeny, new type of glial cells, such as scaffolding radial glia, appeared and as the bran sizes enlarged, the glia to neurone ratio increased. Humans possess some unique glial cells not seen in other animals.
Collapse
|
3
|
Abstract
In the field of neuroscience and, more specifically glial cell biology, one of the most fundamentally intriguing and enduring questions has been “how many neuronal cells—neurones and glia—are there in the human brain?”. From the outset, the driving force behind this question was undoubtedly the scientific quest for knowledge of why humans are more intelligent than even our nearest relatives; the ‘neuronal doctrine’ dictated we must have more neurones than other animals. The early histological studies indicated a vast space between neurones that was filled by ‘nervenkitt’, later identified as neuroglia; arguably, this was the origin of the myth that glia massively outnumber neurones in the human brain. The myth eventually became embedded in ideology when later studies seemed to confirm that glia outnumber neurones in the human cortex—the seat of humanity—and that there was an inevitable rise in the glia-to-neurone ratio (GNR) as we climbed the evolutionary tree. This could be described as the ‘glial doctrine’—that the rise of intelligence and the rise of glia go hand-in-hand. In many ways, the GNR became a mantra for working on glial cells at a time when the neuronal doctrine ruled the world. However, the work of Suzana Herculano-Houzel which she reviews in this first volume of Neuroglia has led the way in demonstrating that neurones and glia are almost equal in number in the human cortex and there is no inexorable phylogenetic rise in the GNR. In this commentary we chart the fall and decline of the mythology of the GNR.
Collapse
|
4
|
Brandon C, Britton M, Fan D, Ferrier AR, Hill ES, Perez A, Wang J, Wang N, Frost WN. Serial-section atlas of the Tritonia pedal ganglion. J Neurophysiol 2018; 120:1461-1471. [PMID: 29873611 DOI: 10.1152/jn.00670.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pedal ganglion of the nudibranch gastropod Tritonia diomedea has been the focus of neurophysiological studies for more than 50 yr. These investigations have examined the neural basis of behaviors as diverse as swimming, crawling, reflex withdrawals, orientation to water flow, orientation to the earth's magnetic field, and learning. Despite this sustained research focus, most studies have confined themselves to the layer of neurons that are visible on the ganglion surface, leaving many neurons, which reside in deeper layers, largely unknown and thus unstudied. To facilitate work on such neurons, the present study used serial-section light microscopy to generate a detailed pictorial atlas of the pedal ganglion. One pedal ganglion was sectioned horizontally at 2-µm intervals and another vertically at 5-µm intervals. The resulting images were examined separately or combined into stacks to generate movie tours through the ganglion. These were also used to generate 3D reconstructions of individual neurons and rotating movies of digitally desheathed whole ganglia to reveal all surface neurons. A complete neuron count of the horizontally sectioned ganglion yielded 1,885 neurons. Real and virtual sections from the image stacks were used to reveal the morphology of individual neurons, as well as the major axon bundles traveling within the ganglion to and between its several nerves and connectives. Extensive supplemental data are provided, as well as a link to the Dryad Data Repository site, where the complete sets of high-resolution serial-section images can be downloaded. NEW & NOTEWORTHY Because of the large size and relatively low numbers of their neurons, gastropod mollusks are widely used for investigations of the neural basis of behavior. Most studies, however, focus on the neurons visible on the ganglion surface, leaving the majority, located out of sight below the surface, unexamined. The present light microscopy study generates the first detailed visual atlas of all neurons of the highly studied Tritonia pedal ganglion.
Collapse
Affiliation(s)
- Christopher Brandon
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Matthew Britton
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - David Fan
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | - Evan S Hill
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | - Jean Wang
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | - William N Frost
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
5
|
Verkhratsky A, Nedergaard M. The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0428. [PMID: 27377722 DOI: 10.1098/rstb.2015.0428] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/15/2022] Open
Abstract
Evolution of the nervous system progressed through cellular diversification and specialization of functions. Conceptually, the nervous system is composed from electrically excitable neuronal networks connected with chemical synapses and non-excitable glial cells that provide for homeostasis and defence. Astrocytes are integrated into neural networks through multipartite synapses; astroglial perisynaptic processes closely enwrap synaptic contacts and control homeostasis of the synaptic cleft, supply neurons with glutamate and GABA obligatory precursor glutamine and contribute to synaptic plasticity, learning and memory. In neuropathology, astrocytes may undergo reactive remodelling or degeneration; to a large extent, astroglial reactions define progression of the pathology and neurological outcome.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain University of Nizhny Novgorod, Nizhny, Novgorod 603022, Russia
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| |
Collapse
|
6
|
Verkhratsky A, Zorec R, Parpura V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol 2017; 27:629-644. [PMID: 28805002 PMCID: PMC5599174 DOI: 10.1111/bpa.12537] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Astrocytes, a subtype of glial cells, come in variety of forms and functions. However, overarching role of these cell is in the homeostasis of the brain, be that regulation of ions, neurotransmitters, metabolism or neuronal synaptic networks. Loss of homeostasis represents the underlying cause of all brain disorders. Thus, astrocytes are likely involved in most if not all of the brain pathologies. We tabulate astroglial homeostatic functions along with pathological condition that arise from dysfunction of these glial cells. Classification of astrocytes is presented with the emphasis on evolutionary trails, morphological appearance and numerical preponderance. We note that, even though astrocytes from a variety of mammalian species share some common features, human astrocytes appear to be the largest and most complex of all astrocytes studied thus far. It is then an imperative to develop humanized models to study the role of astrocytes in brain pathologies, which is perhaps most abundantly clear in the case of glioblastoma multiforme.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUnited Kingdom
- Achúcarro Basque Center for NeuroscienceIKERBASQUE, Basque Foundation for Science48011 BilbaoSpain
- Department of NeuroscienceUniversity of the Basque Country UPV/EHU and CIBERNED48940 LeioaSpain
| | - Robert Zorec
- Laboratory of Cell EngineeringCelica BIOMEDICAL, Tehnološki park 24, Ljubljana 1000SloveniaEurope
- Laboratory of Neuroendocrinology‐Molecular Cell PhysiologyInstitute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana 1000SloveniaEurope
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429University of Alabama at BirminghamBirminghamAL 35294‐0021
| |
Collapse
|
7
|
Hatakeyama D, Mita K, Kobayashi S, Sadamoto H, Fujito Y, Hiripi L, Elekes K, Ito E. Glutamate transporters in the central nervous system of a pond snail. J Neurosci Res 2010; 88:1374-86. [PMID: 19937812 DOI: 10.1002/jnr.22296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies on glutamate (GLU) and its receptors in the pond snail Lymnaea stagnalis have suggested that GLU functions as a neurotransmitter in various behaviors, particularly for generation of feeding rhythm. The uptake mechanism of GLU is not yet known in Lymnaea. In the present study, we characterized the GLU transporters and examined their functions in the feeding circuits of the central nervous system (CNS) in Lymnaea. First, measurement of the accumulation of (3)H-labeled GLU revealed the presence of GLU transport systems in the Lymnaea CNS. The highest accumulation rate was observed in the buccal ganglia, supporting the involvement of GLU transport systems in feeding behavior. Second, we cloned two types of GLU transporters from the Lymnaea CNS, the excitatory amino acid transporter (LymEAAT) and the vesicular GLU transporter (LymVGLUT). When we compared their amino acid sequences with those of mammalian EAATs and VGLUTs, we found that the functional domains of both types are well conserved. Third, in situ hybridization revealed that the mRNAs of LymEAAT and LymVGLUT are localized in large populations of nerve cells, including the major feeding motoneurons in the buccal ganglia. Finally, we inhibited LymEAAT and found that changes in the firing patterns of the feeding motoneurons that have GLUergic input were similar to those obtained following stimulation with GLU. Our results confirmed the presence of GLU uptake systems in the Lymnaea CNS and showed that LymEAAT is required for proper rhythm generation, particularly for generation of the feeding rhythm.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Dos Santos PC, Gehlen G, Faccioni-Heuser MC, Achaval M. Detection of glial fibrillary acidic protein (GFAP) and vimentin (Vim) by immunoelectron microscopy of the glial cells in the central nervous system of the snail Megalobulimus abbreviatus. ACTA ZOOL-STOCKHOLM 2005. [DOI: 10.1111/j.1463-6395.2005.00195.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Sonetti D, Peruzzi E. Neuron-microglia communication in the CNS of the freshwater snail Planorbarius corneus. ACTA BIOLOGICA HUNGARICA 2005; 55:273-85. [PMID: 15270244 DOI: 10.1556/abiol.55.2004.1-4.33] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to identify molecules that may be involved in neuron-microglia communication in the CNS of freshwater snail Planorbarius corneus. Messenger molecules are exchanged in normal and pathological conditions and we tried to identify some of them by immunocytochemistry on whole ganglia and cell cultures. In particular, we examined neurons and microglia for the expression of some cytokines, IL-1alpha, IL-1beta, IL-6 and TNF-alpha and the neurotransmitter glutamate. These substances may be released by suffering or injured neurons and communicate to microglia the damaging event. Even microglia, on own turn, once activated, express and released the same or other substances in order to reestablish the system homeostasis, depending on modalities and times of activation. We discuss the possibility that hyperactivated microglia can shift from neuroprotective to neurodegenerative. Moreover, we examined in neuron-microglia co-coltures the direct interaction effects in terms of neuronal survival and improved neurite regeneration.
Collapse
Affiliation(s)
- D Sonetti
- Dipartimento di Biologia Animale, Università di Modena e Reggio Emilia, Modena, Italy.
| | | |
Collapse
|
10
|
Cuoghi B, Blasiol L, Sabatini MA. ACTH occurrence in teleosts supramedullary neuron clusters: a neuron-glial common language? Gen Comp Endocrinol 2003; 132:88-95. [PMID: 12765647 DOI: 10.1016/s0016-6480(03)00057-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The cross-talk between neurons and glia is receiving increased attention because of its potential role in information processing in the nervous system. We choose the cluster of supramedullary neurons (SN) and glial cells of pufferfish as a suitable model for studying neuron-glial interactions, identifying the implicated cell types and the signalling involved. In particular, among proopiomelanocortin (POMC)-derived peptides, adrenocorticotrope hormone (ACTH)-immunopositivity was found both in SN and in microglial cells. The present results for the first time show the presence of ACTH in microglia of a vertebrate. The role of ACTH is discussed, including its possible neuroprotective function. Moreover, SN immunoreactivity supports the idea that ACTH participates in neurotransmission and/or neuromodulation. In addition to these possible functions, the hypothesis is put forward that ACTH represents a common language by which neurons and glial cells communicate with each other.
Collapse
Affiliation(s)
- Barbara Cuoghi
- Department of Animal Biology, University of Modena and Reggio Emilia, Via Campi 213/D, I-41100 Modena, Italy
| | | | | |
Collapse
|
11
|
Santos PD, Gehlen G, Faccioni-Heuser MC, Zancan DM, Achaval M. Distribution of glial cells in the central nervous system of the pulmonate snail Megalobulimus oblongus identified by means of a glial fibrillary acidic protein marker. ACTA ZOOL-STOCKHOLM 2002. [DOI: 10.1046/j.1463-6395.2002.00126.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Murphy AD. The neuronal basis of feeding in the snail, Helisoma, with comparisons to selected gastropods. Prog Neurobiol 2001; 63:383-408. [PMID: 11163684 DOI: 10.1016/s0301-0082(00)00049-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research on identified neurons during the last quarter century was forecast at a conference in 1973 that discussed "neuronal mechanisms of coordination in simple systems." The focus of the conference was on the neuronal control of simple stereotyped behavioral acts. Participants discussing the future of such research called for a comparative approach; emphasis on structure-function interactions; attention to environmental and behavioral context; and the development of new techniques. Significantly, in some cases amazing progress has been made in these areas. Major conclusions of the last quarter century are that so-called simple behaviors and the neural circuitry underlying them tend to be less simple, more flexible, and more highly modulated than originally imagined. However, the comparative approach has, as yet, failed to reach its potential. Molluscan preparations, along with arthropods and annelids, have always been at the forefront of neuroethological studies. Circuitry underlying feeding has been studied in a handful of species of gastropod molluscs. These studies have contributed substantially to our understanding of sensorimotor organization, the hierarchical control of behavior and coordination of multiple behaviors, and the organization and modulation of central pattern generators. However, direct interspecific comparisons of feeding circuitry and potentially homologous neurons have been lacking. This is unfortunate because much of the vast radiation of the class Gastropoda is associated with variations in feeding behaviors and feeding apparatuses, providing ample substrates for comparative studies including the evolution of defined circuitry. Here, the neural organization of feeding in the snail, Helisoma, is examined critically. Possible direct interspecific comparisons of neural circuitry and potentially homologous neurons are made. A universal model for central pattern generators underlying rasping feeding is proposed. Future comparative studies can be expected to combine behavioral, morphological, electrophysiological, molecular and genetic techniques to identify neurons and define neural circuitry. Digital resources will undoubtedly be exploited to organize and interface databases allowing illumination of the evolution of homologous identified neurons and defined neural circuitry in the context of behavioral change.
Collapse
Affiliation(s)
- A D Murphy
- Department of Biological Sciences and Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
13
|
Kojima S, Ogawa H, Kouuchi T, Nidaira T, Hosono T, Ito E. Neuron-independent Ca(2+) signaling in glial cells of snail's brain. Neuroscience 2001; 100:893-900. [PMID: 11036223 DOI: 10.1016/s0306-4522(00)00338-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To directly monitor the glial activity in the CNS of the pond snail, Lymnaea stagnalis, we optically measured the electrical responses in the cerebral ganglion and median lip nerve to electrical stimulation of the distal end of the median lip nerve. Using a voltage-sensitive dye, RH155, we detected a composite depolarizing response in the cerebral ganglion, which consisted of a fast transient depolarizing response corresponding to a compound action potential and a slow depolarizing response. The slow depolarizing response was observed more clearly in an isolated median lip nerve and also detected by extracellular recording. In the median lip nerve preparation, the slow depolarizing response was suppressed by an L-type Ca(2+) channel blocker, nifedipine, and was resistant to tetrodotoxin and Na(+)-free conditions. Together with the fact that a delay from the compound action potential to the slow depolarizing response was not constant, these results suggested that the slow depolarizing response was not a postsynaptic response. Because the signals of the action potentials appeared on the saturated slow depolarizing responses during repetitive stimulation, the slow depolarizing response was suggested to originate from glial cells. The contribution of the L-type Ca(2+) current to the slow depolarizing response was confirmed by optical recording in the presence of Ba(2+) and also supported by intracellular Ca(2+) measurement. Our results suggested that electrical stimulation directly triggers glial Ca(2+) entry through L-type Ca(2+) channels, providing evidence for the generation of glial depolarization independent of neuronal activity in invertebrates.
Collapse
Affiliation(s)
- S Kojima
- Laboratory of Animal Behavior and Intelligence, Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, 060-0810, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Croll RP. Insights into early molluscan neuronal development through studies of transmitter phenotypes in embryonic pond snails. Microsc Res Tech 2000; 49:570-8. [PMID: 10862113 DOI: 10.1002/1097-0029(20000615)49:6<570::aid-jemt7>3.0.co;2-q] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pond snails have long been the subject of intense scrutiny by researchers interested in general principles of development and also cellular and molecular neurobiology. Recent work has exploited both these fields of study by examining the ontogeny of the nervous system in these animals. Much of this work has focussed upon the development of specific transmitter phenotypes to provide vignettes of neuronal subpopulations that can be traced from early embryonic life through to adulthood. While such studies have generally confirmed previous explanations of gangliogenesis in gastropods, they have also indicated the presence of several neurons that appear earlier and in positions inconsistent with classical views of gastropods neurogenesis. The earliest of these cells contain FMRFamide-related peptides and have anteriorly projections that mark the future locations of ganglia and interconnecting pathways that will comprise the postembryonic central nervous system. These posterior, peptidergic cells, as well as certain, apical, monoaminergic neurons, disappear and apparently die near the end of embryonic life. Finally, populations of what appear to be peripheral sensory neurons begin to express catecholamines by around midway through embryonic life. Like several of the neurons expressing a variety of transmitters in the developing central ganglia, the catecholaminergic peripheral cells persist into postembryonic life. Transmitter phenotypes, cell shapes and locations, and neuritic morphologies all suggest that many of the neurons observed in early embryonic pond snails have recognizable homologues across the molluscs. Such observations have profoundly altered our views of neurogenesis in gastropods over the last few years. They also suggest the promise for pond snails as fruitful models for studying the roles and mechanisms for pioneering fibres, cues triggering apoptosis, and contrasting origins and mechanisms employed for generating central vs. peripheral neurons within a single organism.
Collapse
Affiliation(s)
- R P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| |
Collapse
|
15
|
Sonetti D, Ottaviani E, Stefano GB. Opiate signaling regulates microglia activities in the invertebrate nervous system. GENERAL PHARMACOLOGY 1997; 29:39-47. [PMID: 9195191 DOI: 10.1016/s0306-3623(96)00523-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Evidence supporting the presence in the invertebrate nervous system of a class of glial cells resembling vertebrate microglia was obtained in the freshwater snail Planorbarius corneus. These cells are easily identified by their immunopositivity to anti-pro-opiomelanocortin (POMC)-derived peptide antibodies. 2. Invertebrate microglia, as in vertebrates, exhibit macrophage-like activity in vivo and in cell cultures. These cells respond to the trauma of ganglionic excision and their organotypic culture by leaving their location around neurons and moving to the lesion site from which they migrate in the culture dish. 3. In vitro, these microglia undergo conformational changes and show phagocytic properties in the presence of bacteria or lipopolysaccharide. The activated cells also express tumor necrosis factor-alpha-like material and an increase in nitric oxide synthase, as shown by immunocytochemistry. 4. The inhibitory effect of morphine on the mobility and phagocytic activity of invertebrate microglia provide additional functional evidence for a possible role of opiate-like compounds in downregulating immunoregulatory processes, as also observed in the circulating immunocytes.
Collapse
Affiliation(s)
- D Sonetti
- Dipartimento di Biologia Animale, Università di Modena, Italy.
| | | | | |
Collapse
|
16
|
Abstract
Conventional kinetic models of brain glucose uptake and metabolism that visualize brain glucose as being in a single pool in equilibrium with plasma, are unable to account for some recently described experimental findings. These include microdialysis demonstrations of a brain extracellular fluid glucose concentration that is both low, and significantly affected by changes in neuronal activity; and observations of transient glucose export (transient negative whole-brain arteriovenous differences) in certain neuro-intensive care settings. A kinetic model that treats brain glucose as divided into more than one, kinetically distinct, compartment, implying the presence of a glucose "reservoir" behind the blood-brain barrier, and with plasma glucose initially entering a compartment other than the brain extracellular fluid, is more consistent with these experimental observations. Neuroanatomical considerations suggest that plasma glucose may initially exchange with an intracellular astrocytic glucose pool, rather than the brain extracellular fluid. Astrocyte glycogen, mobilized at times of increased neuronal activity, could form the reservoir whose presence is inferred from demonstrations of transient glucose export, but only if glycogenolytic products can be exported from astrocytes as glucose. This hypothesis is considered in the light of the frequently suggested concept of a "nutritional" role for perivascular astrocytes and invertebrate glia, taking up blood-borne glucose and passing on metabolic substrates to neurons. The implications of this model for 2-deoxyglucose-based methods for regional cerebral metabolic rate estimation are discussed. In general, errors due to the approximations inherent in the conventional three compartment kinetic model, may be expected to become less significant as metabolism is averaged over space and time. Thus the three-compartment model is probably acceptable for the description of metabolism at the relatively low spatial and temporal resolution of these techniques.
Collapse
Affiliation(s)
- R J Forsyth
- Department of Child Health, Sir James Spence Institute of Child Health, Royal Victoria Infirmary, Newcastle upon Tyne, U.K
| |
Collapse
|
17
|
Janse C, van der Roest M, Jansen RF, Montagne-Wajer C, Boer HH. Atrophy and degeneration of peptidergic neurons and cessation of egg laying in the aging pond snail Lymnaea stagnalis. JOURNAL OF NEUROBIOLOGY 1996; 29:202-12. [PMID: 8821177 DOI: 10.1002/(sici)1097-4695(199602)29:2<202::aid-neu6>3.0.co;2-e] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The morphology of the neuroendocrine caudodorsal cells (CDCs), which are involved in the regulation of female reproduction in the pond snail Lymnaea stagnalis, was studied in young (200 to 234 days of age) and old (400 to 500 days) animals. Lucifer Yellow fills of ventral CDCs showed that in young animals ventral CDCs branch ipsilaterally as well as contralaterally in the cerebral commissure. In old animals these branches were reduced at different degrees and in some cases even lacking completely, leaving only an axon crossing the commissure. Immunocytochemical stainings with antibodies against CDC peptides (CDCH-I and alpha CDCP) corroborated the finding that ventral CDCs degenerate. Among the other types of CDCs (dorsal, lateral), degeneration was found as well. The immunocytochemical findings showed that in old animals the axon terminals of the CDCs were strongly stained, indicating that they are packed with secretory vesicles containing peptides. It was also found that these darkly stained, peptide-containing axon terminals protruded into the perineurium. These findings suggest that accumulation of peptides in the terminals of the CDCs of old animals may be due to the impaired release. The relationship between atrophy and degeneration of CDCs and cessation of egg-laying activity in Lymnaea is discussed.
Collapse
Affiliation(s)
- C Janse
- Graduate School Neurosciences Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
18
|
|
19
|
De Jong-Brink M. How schistosomes profit from the stress responses they elicit in their hosts. ADVANCES IN PARASITOLOGY 1995; 35:177-256. [PMID: 7709853 DOI: 10.1016/s0065-308x(08)60072-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Results obtained with the model Trichobilharzia ocellata-Lymnaea stagnalis have confirmed the hypothesis that the physiological effects evoked by schistosomes in their snail host--castration and giant growth--are brought about by them interfering with the neuroendocrine systems (NES) regulating the physiological processes concerned. As soon as differentiating cercariae are present in the daughter sporocysts a factor can be detected in the haemolymph of the snail host, called schistosomin, which acts both at the central and the peripheral parts of the NES involved in regulation of reproduction and growth. Schistosomin appears to be a host-derived factor, which is probably released by cells of the internal defence system, the haemocytes, and by connective tissue cells, the telo-glial cells. It meets the criteria of having a cytokine-like function although its molecular structure does not show sequence homology with any of the vertebrate-type cytokines identified to date. Its cytokine nature explains why schistosomin can interfere with different neuroendocrine regulatory systems both at the central and peripheral--target--level, namely after binding to its own receptor. Schistosomin is probably not only responsible for the effects exerted by the parasite on female reproduction but also for those on male reproduction and on growth so that energy and space become available for the continuous production of cercariae. The nature of the humoral cercarial factor, which induces schistosomin release, is as yet unknown. Based on its hydrophobic character and on the fact that it can pass through the wall of the daughter sporocyst, it is supposed to be a diffusible molecule or a protonephridial excretion product. It does not seem to be a vertebrate-type steroid, an ecdysteroid or an eicosanoid. Results obtained in vitro have indicated that schistosomin might have a suppressive effect on haemocyte activity. Plasma from snails 5-6 weeks post-exposure showed a tendency to inhibit phagocytic activity of haemocytes from non-infected snails, that is preparatory to the escape and migration of cercariae. Once shedding has started this effect of schistosomin is overrruled by a strong activation of haemocyte activity coinciding with the tissue damage that the cercariae cause in the host. The cercariae escape from being attacked by masking their surface coat with host molecules. As the physiological effects caused by schistosomes resemble those observed during stress in mammals, experiments were carried out to find out whether schistosomin is also released in non-parasitized snails during stress resulting in an inhibiting effect on reproduction.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M De Jong-Brink
- Graduate School of Neurosciences Amsterdam, Faculty of Biology, Vrije Universiteit, The Netherlands
| |
Collapse
|
20
|
Keicher E, Maggio K, Hernandez-Nicaise ML, Nicaise G. The abundance of Aplysia gliagrana depends on Ca2+ and/or Na+ concentrations in sea water. Glia 1992; 5:131-8. [PMID: 1533611 DOI: 10.1002/glia.440050207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The glial cells surrounding the identified giant nerve cell bodies R2 or LP1 of Aplysia punctata were studied by quantitative electron microscopy. They contain specific, electron-dense but non-osmiophilic membrane-bound granules, approximately 0.3 microns in diameter, called gliagrana. Similar glial granules are more often found in marine than in freshwater molluscs, possibly because they represent a calcium store used to compensate excess Na+ in the extracellular milieu of marine species and to regulate perineuronal calcium concentration. In agreement with this hypothesis, the abundance of gliagrana (= number of glial granules per microns 2) is found to be higher in animals adapted to low Ca2+ artificial sea water than in animals kept in high Ca2+ (or low Na+) conditions. This finding is not observed after 1 week but after 2 weeks of adaptation.
Collapse
Affiliation(s)
- E Keicher
- Cytologie Expérimentale, Université de Nice-Sophia Antipolis, France
| | | | | | | |
Collapse
|
21
|
Keicher E, Maggio K, Hernandez-Nicaise ML, Nicaise G. The lacunar glial zone at the periphery of Aplysia giant neuron: volume of extracellular space and total calcium content of gliagrana. Neuroscience 1991; 42:593-601. [PMID: 1896135 DOI: 10.1016/0306-4522(91)90401-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The relative volume of perineuronal extracellular space, the number of gliagrana and their total calcium content have been measured in Aplysia punctata and A. californica, at the periphery of giant neurons R2 and LP1. After chemical fixation, the extracellular space amounts to 26% of the periganglionic glial zone, but this increases to 36% after quick freezing and freeze-substitution. The glial cytoplasm contains gliagrana, membrane-bound granules approximately 0.3 micron in diameter. The number of gliagrana per micron 2 of section, defined as "abundance", was counted in electron micrographs of chemically fixed tissues. The abundance of gliagrana appears to be directly proportional to the volume of the extracellular space when the values are averaged per individual Aplysia. The total calcium concentration of the gliagrana is measured by X-ray microanalysis on sections of ganglia processed by rapid freezing and freeze-substitution in the presence of oxalic acid: it was found to be very high. An individual granule may contain 100 mM Ca in A. californica and 50 mM in A. punctata but in both species the calcium concentration varies along a wide range as if there were different functional states of the granules with respect to this concentration. The total calcium stored in the specific granules of the glial zone was estimated. It was calculated that should the glial calcium store be entirely diluted in the extracellular space of the glial zone, it would raise the calcium concentration of this space by approximately 1 mM (0.1-2.7 mM). These findings are discussed with regard to the hypothesis of glial cells regulating the perineuronal calcium concentration.
Collapse
Affiliation(s)
- E Keicher
- Laboratoire de Cytologie Expérimentale, Université de Nice-Sophia Antipolis, France
| | | | | | | |
Collapse
|
22
|
Croll RP, Chiasson BJ. Postembryonic development of serotoninlike immunoreactivity in the central nervous system of the snail, Lymnaea stagnalis. J Comp Neurol 1989; 280:122-42. [PMID: 2918092 DOI: 10.1002/cne.902800109] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Posthatching growth in the pond snail Lymnaea stagnalis involves approximately a 20-fold increase in the linear dimensions of the ganglia composing the central nervous system. Developmental change within the population of neurons exhibiting serotoninlike immunoreactivity (SLIR) was examined in order to explain this growth in cellular terms. The study indicates that at least two factors contribute to the growth of the nervous system. First, SLIR cells approximately double in number from the 200-250 cells in hatchlings to the complement found in animals approaching sexual maturity. Much of this increase in cell number occurred within identifiable discrete clusters of neurons with different clusters adding cells at different rates and at different times. The number of SLIR cells also increased in more diffuse populations, particularly along the medial aspects of the paired pedal and the right parietal ganglion. No identified cells were added postembryonically. In addition to the increases in neuron numbers, posthatching development in Lymnaea also involves the growth of individual cells. All cells examined showed continuous somatic growth during posthatching development, but different identified cells and different cell clusters were characterized by different rates of relative growth. Together, the results highlight the complexity of postembryonic development in the snail by indicating the temporal and spatial specificity for both cell addition and cell growth within the nervous system.
Collapse
Affiliation(s)
- R P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
23
|
|
24
|
Berdan RC, Shivers RR, Bulloch AG. Chemical synapses, particle arrays, pseudo-gap junctions and gap junctions of neurons and glia in the buccal ganglion of Helisoma. Synapse 1987; 1:304-23. [PMID: 3455559 DOI: 10.1002/syn.890010404] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The nervous system of the snail, Helisoma trivolvis, has been utilized for a wide range of studies of neuronal plasticity; however, the ultrastructural features of this tissue were previously unknown. The present study examined the nature of synaptic interactions of neurons and glia and considered several plasma membrane specializations of these cells. The symmetrical pair of buccal ganglia consisted of a ring of unipolar neurons surrounding a central neuropil. The neurons were separated by two morphologically distinct types of glia: type I were most numerous and possessed an electron-dense homogeneous cytoplasm, whereas type II glia were of lower electron density, possessed a heterogeneous cytoplasm, and appeared to be phagocytic. Gap junctions were abundant between glia and were occasionally found between neuronal processes, including those of neurons 19 injected with horseradish peroxidase (HRP). Comparison of neuron and glial gap junction widths (16.4 and 17.6 nm, respectively) in thin sections and their intramembrane particle diameters (13.1 and 13.7 nm, respectively) by freeze fracture, did not elucidate significant differences. A heterogeneous population of putative chemical synapses, similar to those reported in other molluscs, was also observed between axonal collaterals in the neuropil. Additionally, examination of freeze-fractured neuropil revealed rhombic arrays of particles localized on neuronal membranes; these arrays do not appear to form intercellular junctions but may represent postsynaptic receptor sites. Freeze fracture also revealed small, square arrays consisting of 7-9 nm diameter particles on glial membranes which may correspond to pentalaminar membrane contacts (pseudo-gap junctions) seen in thin sections between glia situated around dilated extracellular spaces (lacunae).
Collapse
Affiliation(s)
- R C Berdan
- Neuroscience Research Group, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
25
|
Seal L, Pentreath V. Modulation of glial glycogen metabolism by 5-hydroxytryptamine in leech segmental ganglia. Neurochem Int 1985; 7:1037-45. [DOI: 10.1016/0197-0186(85)90153-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/1985] [Accepted: 03/01/1985] [Indexed: 11/29/2022]
|