1
|
Liu A, Mohr MA, Hope JM, Wang J, Chen X, Cui B. Light-Inducible Activation of TrkA for Probing Chronic Pain in Mice. ACS Chem Biol 2024; 19:1626-1637. [PMID: 39026469 DOI: 10.1021/acschembio.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Chronic pain is a prevalent problem that plagues modern society, and better understanding its mechanisms is critical for developing effective therapeutics. Nerve growth factor (NGF) and its primary receptor, Tropomyosin receptor kinase A (TrkA), are known to be potent mediators of chronic pain, but there is a lack of established methods for precisely perturbing the NGF/TrkA signaling pathway in the study of pain and nociception. Optobiological tools that leverage light-induced protein-protein interactions allow for precise spatial and temporal control of receptor signaling. Previously, our lab reported a blue light-activated version of TrkA generated using light-induced dimerization of the intracellular TrkA domain, opto-iTrkA. In this work, we show that opto-iTrkA activation is able to activate endogenous ERK and Akt signaling pathways and causes the retrograde transduction of phospho-ERK signals in dorsal root ganglion (DRG) neurons. Opto-iTrkA activation also sensitizes the transient receptor potential vanilloid 1 (TRPV1) channel in cellular models, further corroborating the physiological relevance of the optobiological stimulus. Finally, we show that opto-iTrkA enables light-inducible potentiation of mechanical sensitization in mice. Light illumination enables nontraumatic and reversible (<2 days) sensitization of mechanical pain in mice transduced with opto-iTrkA, which provides a platform for dissecting TrkA pathways for nociception in vitro and in vivo.
Collapse
Affiliation(s)
- Aofei Liu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Manuel A Mohr
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Jen M Hope
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jennifer Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Andoh T, Kikukawa T, Kotani A, Kurokawa Y, Asakura W, Houmoto K, Fukutomi D, Uta D, Okai H, Koike K. Combined effect of Neurotropin® and methylcobalamin on postherpetic neuralgia in mice infected with herpes simplex virus type-1. J Dermatol Sci 2024; 113:138-147. [PMID: 38429137 DOI: 10.1016/j.jdermsci.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Postherpetic pain (PHP) is difficult to control. Although Neurotropin® (NTP) and methylcobalamin (MCB) are often prescribed to treat the pain, the efficacy of combined treatment for PHP remains imcompletely understood. OBJECTIVE In this study, we investigate the combined effects of NTP and MCB on PHP in mice. METHODS NTP and MCB were administered from day 10-29 after herpes simplex virus type-1 (HSV-1) infection. The pain-related responses were evaluated using a paint brush. The expression of neuropathy-related factor (ATF3) and nerve repair factors (GAP-43 and SPRR1A) in the dorsal root ganglion (DRG) and neurons in the skin were evaluated by immunohistochemical staining. Nerve growth factor (NGF) and neurotrophin-3 (NT3) mRNA expression levels were evaluated using real-time PCR. RESULTS Repeated treatment with NTP and MCB after the acute phase inhibited PHP. Combined treatment with these drugs inhibited PHP at an earlier stage than either treatment alone. In the DRG of HSV-1-infected mice, MCB, but not NTP, decreased the number of cells expressing ATF3 and increased the number of cells expressing GAP-43- and SPRR1A. In addition, MCB, but not NTP, also increased and recovered non-myelinated neurons decreased in the lesional skin. NTP increased the mRNA levels of NTF3 in keratinocytes, while MCB increased that of NGF in Schwann cells. CONCLUSION These results suggest that combined treatment with NTP and MCB is useful for the treatment of PHP. The combined effect may be attributed to the different analgesic mechanisms of these drugs.
Collapse
Affiliation(s)
- Tsugunobu Andoh
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan; Department of Pharmacology and Pathophysiology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan.
| | - Takashi Kikukawa
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Atsushi Kotani
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yoko Kurokawa
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Wakana Asakura
- Department of Pharmacology and Pathophysiology, College of Pharmacy, Kinjo Gakuin University, Nagoya, Japan
| | - Kengo Houmoto
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Daisuke Fukutomi
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Daisuke Uta
- Department of Applied Pharmacology, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hisashi Okai
- Department of Pharmacological Research, Institute of Bio-active Science, Nippon Zoki Pharmaceutical Co., Ltd, Hyogo, Japan
| | - Koji Koike
- Department of Pathophysiology, Institute of Bio-active Science, Nippon Zoki Pharmaceutical Co., Ltd, Hyogo, Japan
| |
Collapse
|
3
|
Rejdak K, Sienkiewicz-Jarosz H, Bienkowski P, Alvarez A. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med Res Rev 2023; 43:1668-1700. [PMID: 37052231 DOI: 10.1002/med.21960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophic factors (NTFs) are involved in the pathophysiology of neurological disorders such as dementia, stroke and traumatic brain injury (TBI), and constitute molecular targets of high interest for the therapy of these pathologies. In this review we provide an overview of current knowledge of the definition, discovery and mode of action of five NTFs, nerve growth factor, insulin-like growth factor 1, brain derived NTF, vascular endothelial growth factor and tumor necrosis factor alpha; as well as on their contribution to brain pathology and potential therapeutic use in dementia, stroke and TBI. Within the concept of NTFs in the treatment of these pathologies, we also review the neuropeptide preparation Cerebrolysin, which has been shown to resemble the activities of NTFs and to modulate the expression level of endogenous NTFs. Cerebrolysin has demonstrated beneficial treatment capabilities in vitro and in clinical studies, which are discussed within the context of the biochemistry of NTFs. The review focuses on the interactions of different NTFs, rather than addressing a single NTF, by outlining their signaling network and by reviewing their effect on clinical outcome in prevalent brain pathologies. The effects of the interactions of these NTFs and Cerebrolysin on neuroplasticity, neurogenesis, angiogenesis and inflammation, and their relevance for the treatment of dementia, stroke and TBI are summarized.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | | | | | - Anton Alvarez
- Medinova Institute of Neurosciences, Clinica RehaSalud, Coruña, Spain
| |
Collapse
|
4
|
Murai Y, Sekiguchi A, Hirakawa T, Usuki S, Igarashi Y, Monde K. Evaluation of chiral N,N-dimethyl-sphingosine for the interaction between nerve growth factor and tropomyosin receptor kinase A. Chirality 2022; 34:807-812. [PMID: 35297105 DOI: 10.1002/chir.23433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/12/2022] [Indexed: 11/09/2022]
Abstract
Neuropathic pain is an unbearable condition caused by nervous system damage. As distinct acute pain, neuropathic pain is chronic, and it severely influences quality of life. N,N-Dimethyl-d-erythro-sphingosine (DMS), a neuropathic pain inducer, is metabolited de novo from sphingosine. In a recent study, metabolomics showed an increased concentration level of DMS in the spinal cord in mice with neuropathic pain. Nerve growth factor (NGF) is one of the peripheral nervous system targeted pain factors that interact with tropomyosin receptor kinase A (trkA). On the basis of this information, we were interested in the possibility that DMS may induce neuropathic pain-like behavior through an increase of NGF activity. In this study, we showed that DMS can enhance the binding of NGF to trkA, followed by neurite outgrowth of epidermal nerve fibers and phosphorylation of trkA. In addition, a stereoisomer, N,N-dimethyl-l-erythro-sphingosine, did not any show such biological activities. The results suggest that DMS can enhance the binding of NGF to trkA and that its stereochemistry is an essential factor for exhibiting its activity.
Collapse
Affiliation(s)
- Yuta Murai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Akihiro Sekiguchi
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Taeko Hirakawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Seigo Usuki
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kenji Monde
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Discovery of a Benzimidazole-based Dual FLT3/TrKA Inhibitor Targeting Acute Myeloid Leukemia. Bioorg Med Chem 2021; 56:116596. [DOI: 10.1016/j.bmc.2021.116596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
|
6
|
Dusan M, Jastrow C, Alyce MM, Yingkai W, Shashikanth M, Andelain E, Christine BM, Stuart BM, Oliver BG, Michael MZ, Nicolas VH, Damien KJ, Rainer HV. Differentiation of the 50B11 dorsal ganglion cells into NGF and GDNF responsive nociceptor subtypes. Mol Pain 2021; 16:1744806920970368. [PMID: 33307981 PMCID: PMC7745567 DOI: 10.1177/1744806920970368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The embryonic rat dorsal root ganglion (DRG) neuron-derived 50B11 cell line is a promising sensory neuron model expressing markers characteristic of NGF and GDNF-dependent C-fibre nociceptors. Whether these cells have the capacity to develop into distinct nociceptive subtypes based on NGF- or GDNF-dependence has not been investigated. Here we show that by augmenting forskolin (FSK) and growth factor supplementation with NGF or GDNF, 50B11 cultures can be driven to acquire differential functional responses to common nociceptive agonists capsaicin and ATP respectively. In addition, to previous studies, we also demonstrate that a differentiated neuronal phenotype can be maintained for up to 7 days. Western blot analysis of nociceptive marker proteins further demonstrates that the 50B11 cells partially recapitulate the functional phenotypes of classical NGF-dependent (peptidergic) and GDNF-dependent (non-peptidergic) neuronal subtypes described in DRGs. Further, 50B11 cells differentiated with NGF/FSK, but not GDNF/FSK, show sensitization to acute prostaglandin E2 treatment. Finally, RNA-Seq analysis confirms that differentiation with NGF/FSK or GDNF/FSK produces two 50B11 cell subtypes with distinct transcriptome expression profiles. Gene ontology comparison of the two subtypes of differentiated 50B11 cells to rodent DRG neurons studies shows significant overlap in matching or partially matching categories. This transcriptomic analysis will aid future suitability assessment of the 50B11 cells as a high-throughput nociceptor model for a broad range of experimental applications. In conclusion, this study shows that the 50B11 cell line is capable of partially recapitulating features of two distinct types of embryonic NGF and GDNF-dependent nociceptor-like cells.
Collapse
Affiliation(s)
- Matusica Dusan
- Anatomy and Histology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Canlas Jastrow
- Anatomy and Histology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Martin M Alyce
- Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Wei Yingkai
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia
| | - Marri Shashikanth
- Visceral Pain Research Group, College of Medicine and Public Health, South Australian Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Erickson Andelain
- Flow Cytometry Facility, Department of Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Barry M Christine
- Anatomy and Histology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Brierley M Stuart
- Flow Cytometry Facility, Department of Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Best G Oliver
- Flow Cytometry Facility, Department of Molecular Medicine and Genetics, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Michael Z Michael
- Visceral Pain Research Group, College of Medicine and Public Health, South Australian Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Voelcker H Nicolas
- Flinders Centre for Innovation in Cancer, College of Medicine and Public Health, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia
| | - Keating J Damien
- Human Physiology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Haberberger V Rainer
- Anatomy and Histology, Flinders Health & Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Zhang Y, Liu CY, Chen WC, Shi YC, Wang CM, Lin S, He HF. Regulation of neuropeptide Y in body microenvironments and its potential application in therapies: a review. Cell Biosci 2021; 11:151. [PMID: 34344469 PMCID: PMC8330085 DOI: 10.1186/s13578-021-00657-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022] Open
Abstract
Neuropeptide Y (NPY), one of the most abundant neuropeptides in the body, is widely expressed in the central and peripheral nervous systems and acts on the cardiovascular, digestive, endocrine, and nervous systems. NPY affects the nutritional and inflammatory microenvironments through its interaction with immune cells, brain-derived trophic factor (BDNF), and angiogenesis promotion to maintain body homeostasis. Additionally, NPY has great potential for therapeutic applications against various diseases, especially as an adjuvant therapy for stem cells. In this review, we discuss the research progress regarding NPY, as well as the current evidence for the regulation of NPY in each microenvironment, and provide prospects for further research on related diseases.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Chu-Yun Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China. .,Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia. .,Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - He-Fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
8
|
Taylor-Clark TE. Molecular identity, anatomy, gene expression and function of neural crest vs. placode-derived nociceptors in the lower airways. Neurosci Lett 2020; 742:135505. [PMID: 33197519 DOI: 10.1016/j.neulet.2020.135505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
The lower airways (larynx to alveoli) are protected by a complex array of neural networks that regulate respiration and airway function. Harmful stimuli trigger defensive responses such as apnea, cough and bronchospasm by activating a subpopulation of sensory afferent nerves (termed nociceptors) which are found throughout the airways. Airway nociceptive fibers are projected from the nodose vagal ganglia, the jugular vagal ganglia and the dorsal root ganglia, which are derived from distinct embryological sources: the former from the epibranchial placodes, the latter two from the neural crest. Embryological source determines nociceptive gene expression of receptors and neurotransmitters and recent evidence suggests that placode- and neural crest-derived nociceptors have distinct stimuli sensitivity, innervation patterns and functions. Improved understanding of the function of each subset in specific reflexes has substantial implications for therapeutic targeting of the neuronal components of airway disease such as asthma, viral infections and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
9
|
Zhang J, Chen Z, Luo X, Yang Z. TrkC Overexpression Protects Sevoflurane-Induced Neurotoxicity in Human Induced Pluripotent Stem Cell-Derived Neurons. Dev Neurosci 2020; 42:105-113. [PMID: 33105134 DOI: 10.1159/000510326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Inhaled anesthetic sevoflurane (SEVO) may induce cortical neurotoxicity and memory dysfunction in both animals and humans. In this study, we investigated the toxic effects of SEVO on human induced pluripotent stem cell (iPS)-derived neurons. METHODS Human iPS-derived neurons were exposed to SEVO in vitro. SEVO-induced toxic effects were examined with the viability, live caspase 3/7, and neurite density assays, respectively. The effects of SEVO on the receptors of the tyrosine kinases TrkA, TrkB, and TrkC were assessed by qRT-PCR. TrkA, TrkB, and TrkC were ectopically overexpressed in human iPS-derived neurons. Their functional effects on SEVO-induced human iPS-derived neuron toxicity were further investigated. RESULTS SEVO induced dose-dependent cell death, caspase 3/7 elevation, neurite degeneration, and the downregulation of Trk receptors in human iPS-derived neurons. Adenovirus-mediated Trk receptor overexpression selectively upregulated endogenous TrkA, TrkB, or TrkC gene expressions in human iPS-derived neurons. Specifically, TrkC overexpression, but not TrkA or TrkB overexpression was found to overcome the neurotoxic effects of SEVO in human iPS-derived neurons. CONCLUSIONS SEVO may induce neurotoxicity in human iPS-derived neurons, and its neurotoxic damage could be protected by the overexpression of TrkC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Anesthesiology, Xianyang Rainbow Hospital, Xianyang, China
| | - Zhifu Chen
- Department of Anesthesiology, Baoji People's Hospital, Baoji, China
| | - Xiaoyan Luo
- Department of Anesthesiology, Yangling Demonstration Zone Hospital, Xianyang, China
| | - Zhoujing Yang
- Department of Anesthesiology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China,
| |
Collapse
|
10
|
Méndez-Maldonado K, Vega-López GA, Aybar MJ, Velasco I. Neurogenesis From Neural Crest Cells: Molecular Mechanisms in the Formation of Cranial Nerves and Ganglia. Front Cell Dev Biol 2020; 8:635. [PMID: 32850790 PMCID: PMC7427511 DOI: 10.3389/fcell.2020.00635] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
The neural crest (NC) is a transient multipotent cell population that originates in the dorsal neural tube. Cells of the NC are highly migratory, as they travel considerable distances through the body to reach their final sites. Derivatives of the NC are neurons and glia of the peripheral nervous system (PNS) and the enteric nervous system as well as non-neural cells. Different signaling pathways triggered by Bone Morphogenetic Proteins (BMPs), Fibroblast Growth Factors (FGFs), Wnt proteins, Notch ligands, retinoic acid (RA), and Receptor Tyrosine Kinases (RTKs) participate in the processes of induction, specification, cell migration and neural differentiation of the NC. A specific set of signaling pathways and transcription factors are initially expressed in the neural plate border and then in the NC cell precursors to the formation of cranial nerves. The molecular mechanisms of control during embryonic development have been gradually elucidated, pointing to an important role of transcriptional regulators when neural differentiation occurs. However, some of these proteins have an important participation in malformations of the cranial portion and their mutation results in aberrant neurogenesis. This review aims to give an overview of the role of cell signaling and of the function of transcription factors involved in the specification of ganglia precursors and neurogenesis to form the NC-derived cranial nerves during organogenesis.
Collapse
Affiliation(s)
- Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Guillermo A Vega-López
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), San Miguel de Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| |
Collapse
|
11
|
Hasmatali JCD, De Guzman J, Zhai R, Yang L, McLean NA, Hutchinson C, Johnston JM, Misra V, Verge VMK. Axotomy Induces Phasic Alterations in Luman/CREB3 Expression and Nuclear Localization in Injured and Contralateral Uninjured Sensory Neurons: Correlation With Intrinsic Axon Growth Capacity. J Neuropathol Exp Neurol 2020; 78:348-364. [PMID: 30863858 DOI: 10.1093/jnen/nlz008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Luman/CREB3 is an important early retrograde axotomy signal regulating acute axon outgrowth in sensory neurons through the adaptive unfolded protein response. As the injury response is transcriptionally multiphasic, a spatiotemporal analysis of Luman/CREB3 localization in rat dorsal root ganglion (DRG) with unilateral L4-L6 spinal nerve injury was conducted to determine if Luman/CREB3 expression was similarly regulated. Biphasic alterations in Luman/CREB3 immunofluorescence and nuclear localization occurred in neurons ipsilateral to 1-hour, 1-day, 2-day, 4-day, and 1-week injury, with a largely parallel, but less avid response contralaterally. This biphasic response was not observed at the transcript level. To assess whether changes in neuronal Luman expression corresponded with an altered intrinsic capacity to grow an axon/neurite in vitro, injury-conditioned and contralateral uninjured DRG neurons underwent a 24-hour axon growth assay. Two-day injury-conditioned neurons exhibited maximal outgrowth capacity relative to naïve, declining at later injury-conditioned timepoints. Only neurons contralateral to 1-week injury exhibited significantly higher axon growth capacity than naïve. In conclusion, alterations in neuronal injury-associated Luman/CREB3 expression support that a multiphasic cell body response occurs and reveal a novel contralateral plasticity in axon growth capacity at 1-week post-injury. These adaptive responses have the potential to inform when repair or therapeutic intervention may be most effective.
Collapse
Affiliation(s)
- Jovan C D Hasmatali
- Department of Anatomy, Physiology and Pharmacology.,Cameco MS Neuroscience Research Center.,Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Critical Care Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jolly De Guzman
- Department of Anatomy, Physiology and Pharmacology.,Cameco MS Neuroscience Research Center
| | - Ruiling Zhai
- Department of Anatomy, Physiology and Pharmacology.,Cameco MS Neuroscience Research Center
| | - Lisa Yang
- Cameco MS Neuroscience Research Center
| | - Nikki A McLean
- Department of Anatomy, Physiology and Pharmacology.,Cameco MS Neuroscience Research Center
| | - Catherine Hutchinson
- Department of Anatomy, Physiology and Pharmacology.,Cameco MS Neuroscience Research Center
| | - Jayne M Johnston
- Department of Anatomy, Physiology and Pharmacology.,Cameco MS Neuroscience Research Center
| | - Vikram Misra
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Valerie M K Verge
- Department of Anatomy, Physiology and Pharmacology.,Cameco MS Neuroscience Research Center
| |
Collapse
|
12
|
Maynard TM, Zohn IE, Moody SA, LaMantia AS. Suckling, Feeding, and Swallowing: Behaviors, Circuits, and Targets for Neurodevelopmental Pathology. Annu Rev Neurosci 2020; 43:315-336. [PMID: 32101484 DOI: 10.1146/annurev-neuro-100419-100636] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All mammals must suckle and swallow at birth, and subsequently chew and swallow solid foods, for optimal growth and health. These initially innate behaviors depend critically upon coordinated development of the mouth, tongue, pharynx, and larynx as well as the cranial nerves that control these structures. Disrupted suckling, feeding, and swallowing from birth onward-perinatal dysphagia-is often associated with several neurodevelopmental disorders that subsequently alter complex behaviors. Apparently, a broad range of neurodevelopmental pathologic mechanisms also target oropharyngeal and cranial nerve differentiation. These aberrant mechanisms, including altered patterning, progenitor specification, and neurite growth, prefigure dysphagia and may then compromise circuits for additional behavioral capacities. Thus, perinatal dysphagia may be an early indicator of disrupted genetic and developmental programs that compromise neural circuits and yield a broad range of behavioral deficits in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Thomas M Maynard
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016, USA;
| | - Irene E Zohn
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.,Center for Genetic Medicine Research, Children's National Health System, Washington, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anthony-S LaMantia
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia 24016, USA; .,Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
13
|
Rodrigues-Amorim D, Rivera-Baltanás T, Bessa J, Sousa N, Vallejo-Curto MDC, Rodríguez-Jamardo C, de Las Heras ME, Díaz R, Agís-Balboa RC, Olivares JM, Spuch C. The neurobiological hypothesis of neurotrophins in the pathophysiology of schizophrenia: A meta-analysis. J Psychiatr Res 2018; 106:43-53. [PMID: 30269004 DOI: 10.1016/j.jpsychires.2018.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Schizophrenia is associated with patterns of aberrant neurobiological circuitry. The disease complexity is mirrored by multiple biological interactions known to contribute to the disease pathology. One potential contributor is the family of neurotrophins which are proteins involved in multiple functional processes in the nervous system, with crucial roles in neurodevelopment, synaptogenesis and neuroplasticity. With these roles in mind, abnormal neurotrophin profiles have been hypothesized to contribute to the pathology of schizophrenia. METHODS We performed a systematic review and a meta-analysis to scrutinize the neurobiological hypothesis of neurotrophins in schizophrenia, examining the correlation between peripheral levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3) and neurotrophin 4/5 (NT-4/5) associated with schizophrenia. RESULTS Fifty-two studies were reviewed and twenty-two studies were included in this meta-analysis. Using a random effects model, we confirmed that decreased levels of neurotrophins (BDNF, NGF and NT-4/5) were associated with schizophrenia (Hedges's g = -0.846; SE = 0.058; 95% confidence interval: -0.960 to -0.733; Z-value = -14.632; p-value = 0.000). Subgroup analysis indicated that neurotrophin levels are significantly decreased in both medicated and drug-näive patients. Meta-regression of continuous variables such as mean age, duration of illness and PANSS total score did not show significant effects (p > 0.05) in relation to neurotrophins levels. DISCUSSION We confirm that decreased peripheral neurotrophin levels are significantly associated with schizophrenia, thereby confirming the neurobiological hypothesis of neurotrophins in schizophrenia. Low levels of neurotrophins in peripheral blood of patients with schizophrenia may explain, in part, the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Daniela Rodrigues-Amorim
- Neuroscience Translational Group, Galicia Sur Health Research Institute, SERGAS-UVIGO, CIBERSAM, Spain
| | - Tania Rivera-Baltanás
- Neuroscience Translational Group, Galicia Sur Health Research Institute, SERGAS-UVIGO, CIBERSAM, Spain
| | - João Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | | | - Cynthia Rodríguez-Jamardo
- Neuroscience Translational Group, Galicia Sur Health Research Institute, SERGAS-UVIGO, CIBERSAM, Spain
| | - María Elena de Las Heras
- Neuroscience Translational Group, Galicia Sur Health Research Institute, SERGAS-UVIGO, CIBERSAM, Spain
| | - Roberto Díaz
- Hospital Universitari Institut Pere Mata, IISPV, URV, CIBERSAM, Reus, Spain; Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | | | - J M Olivares
- Neuroscience Translational Group, Galicia Sur Health Research Institute, SERGAS-UVIGO, CIBERSAM, Spain.
| | - Carlos Spuch
- Neuroscience Translational Group, Galicia Sur Health Research Institute, SERGAS-UVIGO, CIBERSAM, Spain.
| |
Collapse
|
14
|
Grice SJ, Sleigh JN, Zameel Cader M. Plexin-Semaphorin Signaling Modifies Neuromuscular Defects in a Drosophila Model of Peripheral Neuropathy. Front Mol Neurosci 2018. [PMID: 29520219 PMCID: PMC5827687 DOI: 10.3389/fnmol.2018.00055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dominant mutations in GARS, encoding the ubiquitous enzyme glycyl-tRNA synthetase (GlyRS), cause peripheral nerve degeneration and Charcot-Marie-Tooth disease type 2D (CMT2D). This genetic disorder exemplifies a recurring paradigm in neurodegeneration, in which mutations in essential genes cause selective degeneration of the nervous system. Recent evidence suggests that the mechanism underlying CMT2D involves extracellular neomorphic binding of mutant GlyRS to neuronally-expressed proteins. Consistent with this, our previous studies indicate a non-cell autonomous mechanism, whereby mutant GlyRS is secreted and interacts with the neuromuscular junction (NMJ). In this Drosophila model for CMT2D, we have previously shown that mutant gars expression decreases viability and larval motor function, and causes a concurrent build-up of mutant GlyRS at the larval neuromuscular presynapse. Here, we report additional phenotypes that closely mimic the axonal branching defects of Drosophila plexin transmembrane receptor mutants, implying interference of plexin signaling in gars mutants. Individual dosage reduction of two Drosophila Plexins, plexin A (plexA) and B (plexB) enhances and represses the viability and larval motor defects caused by mutant GlyRS, respectively. However, we find plexB levels, but not plexA levels, modify mutant GlyRS association with the presynaptic membrane. Furthermore, increasing availability of the plexB ligand, Semaphorin-2a (Sema2a), alleviates the pathology and the build-up of mutant GlyRS, suggesting competition for plexB binding may be occurring between these two ligands. This toxic gain-of-function and subversion of neurodevelopmental processes indicate that signaling pathways governing axonal guidance could be integral to neuropathology and may underlie the non-cell autonomous CMT2D mechanism.
Collapse
Affiliation(s)
- Stuart J Grice
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - M Zameel Cader
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Ahluwalia A, Jones MK, Hoa N, Tarnawski AS. NGF protects endothelial cells from indomethacin-induced injury through activation of mitochondria and upregulation of IGF-1. Cell Signal 2017; 40:22-29. [PMID: 28843696 DOI: 10.1016/j.cellsig.2017.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/02/2017] [Accepted: 08/20/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Endothelial cells (ECs) lining blood vessels are critical for delivery of oxygen and nutrients to all tissues and organs and play a crucial role in the regeneration of blood vessel following tissue injury. ECs are also major targets of injury by a variety of noxious factors [e.g., ethanol and nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, indomethacin, diclofenac], especially in gastric mucosa that has direct exposure to these agents. In this study, we investigated whether nerve growth factor (NGF) can protect gastric microvascular ECs (GECs) from injury by indomethacin (INDO) and the mechanisms involved. METHODS GECs were isolated from rat gastric mucosa and pre-treated with either vehicle or NGF (100ng/ml) for 30min to 4h followed by treatment with vehicle or 0.25mM INDO for 4h. STUDIES 1) cell viability using Calcein AM live cell tracking dye, 2) mitochondrial structure and function using MitoTracker, molecular probe that stains mitochondria in live cells in a manner dependent on mitochondrial membrane potential (MMP), 3) in vitro angiogenesis - endothelial tube formation on Matrigel, 4) expression and subcellular localization of NGF receptor, TrkA, and 5) expression of IGF-1 protein. RESULTS Treatment with INDO reduced GEC viability and in vitro angiogenesis and induced mitochondrial injury and MMP depolarization. NGF pre-treatment protected GECs from INDO-induced injury preventing both INDO-induced MMP depolarization and reduced in vitro angiogenesis. The NGF high affinity receptor, TrkA, was localized in GECs to both cell membrane and mitochondria. NGF treatment of GECs also resulted in increased IGF-1 protein expression. CONCLUSIONS 1) NGF protects GECs against IND-induced injury. 2) Mitochondria are major targets of both INDO-induced injury and NGF afforded protection of GECs. 3) TrkA expression in the mitochondria of GECs indicates that the protection afforded by NGF is partly mediated by its direct action on mitochondria. 4) NGF prevents MMP depolarization and increases expression of IGF-1 protein in GECs. These studies indicate that NGF may play a protective role against injury to GECs; and, that maintenance of mitochondrial structure and function is one of the mechanisms.
Collapse
Affiliation(s)
- Amrita Ahluwalia
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS), Long Beach, CA, USA
| | - Michael K Jones
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS), Long Beach, CA, USA; Department of Medicine, University of California, Irvine, CA, USA
| | - Neil Hoa
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS), Long Beach, CA, USA
| | - Andrzej S Tarnawski
- Medical and Research Services, Veterans Affairs Long Beach Healthcare System (VALBHS), Long Beach, CA, USA; Department of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
16
|
Altassan R, Saud HA, Masoodi TA, Dosssari HA, Khalifa O, Al-Zaidan H, Sakati N, Rhabeeni Z, Al-Hassnan Z, Binamer Y, Alhashemi N, Wade W, Al-Zayed Z, Al-Sayed M, Al-Muhaizea MA, Meyer B, Al-Owain M, Wakil SM. Exome sequencing identifies novel NTRK1 mutations in patients with HSAN-IV phenotype. Am J Med Genet A 2017; 173:1009-1016. [PMID: 28328124 DOI: 10.1002/ajmg.a.38120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/04/2016] [Accepted: 12/09/2016] [Indexed: 11/10/2022]
Abstract
Hereditary sensory autonomic neuropathy type IV (HSAN-IV) is a rare autosomal recessive disorder that usually begins in infancy and is characterized by anhidrosis, insensitivity to noxious stimuli leading to self-mutilating behavior, and intellectual disability. HSAN-IV is caused by mutations in the neurotrophic tyrosine kinase receptor type 1 gene, NTRK1, encoding the high-affinity receptor of nerve growth factor (NGF) which maps to chromosome 1q21-q22. Patients with HSAN-IV lack all NGF-dependent neurons, the primary afferents and sympathetic postganglionic neurons leading to lack of pain sensation and the presence of anhidrosis, respectively. Herein, we report nine patients from nine unrelated families with HSAN-IV due to various mutations in NTRK1, five of which are novel. These are three missense and two nonsense mutations distributed in various domains of NTRK1 involved in binding of NGF. The affected patients had variable intellectual deficits, and some had delayed diagnosis of HSAN-IV. In addition to being the first report of HSAN-IV from the Arabian Peninsula, this report expands the mutational spectrum of patients with NTRK1 mutations and provides further insights for molecular and clinical diagnosis.
Collapse
Affiliation(s)
- Ruqaiah Altassan
- Department of Medical Genetics, King Faisal Specialist Hospital and Center Hospital, Riyadh, Saudi Arabia
| | - Haya Al Saud
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tariq Ahmad Masoodi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Haya Al Dosssari
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ola Khalifa
- Department of Medical Genetics, King Faisal Specialist Hospital and Center Hospital, Riyadh, Saudi Arabia.,Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hamad Al-Zaidan
- Department of Medical Genetics, King Faisal Specialist Hospital and Center Hospital, Riyadh, Saudi Arabia.,College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Nadia Sakati
- Department of Medical Genetics, King Faisal Specialist Hospital and Center Hospital, Riyadh, Saudi Arabia
| | - Zuhair Rhabeeni
- Department of Medical Genetics, King Faisal Specialist Hospital and Center Hospital, Riyadh, Saudi Arabia
| | - Zuhair Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital and Center Hospital, Riyadh, Saudi Arabia.,College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Yousef Binamer
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.,Department of Dermatology, King Faisal Specialist
| | | | - William Wade
- Department of Orthopedics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zayed Al-Zayed
- Department of Orthopedics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Moeen Al-Sayed
- Department of Medical Genetics, King Faisal Specialist Hospital and Center Hospital, Riyadh, Saudi Arabia
| | - Mohamed A Al-Muhaizea
- Department of Neurology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Brian Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammad Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital and Center Hospital, Riyadh, Saudi Arabia.,College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Salma M Wakil
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Blits B, Boer GJ, Verhaagen J. Pharmacological, Cell, and Gene Therapy Strategies to Promote Spinal Cord Regeneration. Cell Transplant 2017. [DOI: 10.3727/000000002783985521] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, recent studies using pharmacological treatment, cell transplantation, and gene therapy to promote regeneration of the injured spinal cord in animal models will be summarized. Pharmacological and cell transplantation treatments generally revealed some degree of effect on the regeneration of the injured ascending and descending tracts, but further improvements to achieve a more significant functional recovery are necessary. The use of gene therapy to promote repair of the injured nervous system is a relatively new concept. It is based on the development of methods for delivering therapeutic genes to neurons, glia cells, or nonneural cells. Direct in vivo gene transfer or gene transfer in combination with (neuro)transplantation (ex vivo gene transfer) appeared powerful strategies to promote neuronal survival and axonal regrowth following traumatic injury to the central nervous system. Recent advances in understanding the cellular and molecular mechanisms that govern neuronal survival and neurite outgrowth have enabled the design of experiments aimed at viral vector-mediated transfer of genes encoding neurotrophic factors, growth-associated proteins, cell adhesion molecules, and antiapoptotic genes. Central to the success of these approaches was the development of efficient, nontoxic vectors for gene delivery and the acquirement of the appropriate (genetically modified) cells for neurotransplantation. Direct gene transfer in the nervous system was first achieved with herpes viral and E1-deleted adenoviral vectors. Both vector systems are problematic in that these vectors elicit immunogenic and cytotoxic responses. Adeno-associated viral vectors and lentiviral vectors constitute improved gene delivery systems and are beginning to be applied in neuroregeneration research of the spinal cord. Ex vivo approaches were initially based on the implantation of genetically modified fibroblasts. More recently, transduced Schwann cells, genetically modified pieces of peripheral nerve, and olfactory ensheathing glia have been used as implants into the injured spinal cord.
Collapse
Affiliation(s)
- Bas Blits
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Gerard J. Boer
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Joost Verhaagen
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| |
Collapse
|
18
|
Nugent M, Wang J, Lawrence G, Zurawski T, Geoghegan JA, Dolly JO. Conjugate of an IgG Binding Domain with Botulinum Neurotoxin A Lacking the Acceptor Moiety Targets Its SNARE Protease into TrkA-Expressing Cells When Coupled to Anti-TrkA IgG or Fc-βNGF. Bioconjug Chem 2017; 28:1684-1692. [PMID: 28489355 DOI: 10.1021/acs.bioconjchem.7b00157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Numerous naturally occurring toxins can perturb biological systems when they invade susceptible cells. Coupling of pertinent targeting ligands to the active domains of such proteins provides a strategy for directing these to particular cellular populations implicated in disease. A novel approach described herein involved fusion of one mutated immunoglobulin G (IgG) binding moiety of staphylococcal protein A to the SNARE protease and translocation domain of botulinum neurotoxin A (BoNT/A). This chimera could be monovalently coupled to IgG or via its Fc region to recombinant targeting ligands. The utility of the resulting conjugates is demonstrated by the delivery of a SNARE protease into a cell line expressing tropomyosin receptor kinase A (TrkA) through coupling to anti-TrkA IgG or a fusion of Fc and nerve-growth factor. Thus, this is a versitile and innovative technology for conjugating toxins to diverse ligands for retargeted cell delivery of potential therapeutics.
Collapse
Affiliation(s)
- Marc Nugent
- International Centre for Neurotherapeutics, Dublin City University , Glasnevin, Dublin 9, Ireland
| | - Jiafu Wang
- International Centre for Neurotherapeutics, Dublin City University , Glasnevin, Dublin 9, Ireland
| | - Gary Lawrence
- International Centre for Neurotherapeutics, Dublin City University , Glasnevin, Dublin 9, Ireland
| | - Tomas Zurawski
- International Centre for Neurotherapeutics, Dublin City University , Glasnevin, Dublin 9, Ireland
| | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin , Dublin 2, Ireland
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University , Glasnevin, Dublin 9, Ireland
| |
Collapse
|
19
|
Sleigh JN, Dawes JM, West SJ, Wei N, Spaulding EL, Gómez-Martín A, Zhang Q, Burgess RW, Cader MZ, Talbot K, Yang XL, Bennett DL, Schiavo G. Trk receptor signaling and sensory neuron fate are perturbed in human neuropathy caused by Gars mutations. Proc Natl Acad Sci U S A 2017; 114:E3324-E3333. [PMID: 28351971 PMCID: PMC5402433 DOI: 10.1073/pnas.1614557114] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease type 2D (CMT2D) is a peripheral nerve disorder caused by dominant, toxic, gain-of-function mutations in the widely expressed, housekeeping gene, GARS The mechanisms underlying selective nerve pathology in CMT2D remain unresolved, as does the cause of the mild-to-moderate sensory involvement that distinguishes CMT2D from the allelic disorder distal spinal muscular atrophy type V. To elucidate the mechanism responsible for the underlying afferent nerve pathology, we examined the sensory nervous system of CMT2D mice. We show that the equilibrium between functional subtypes of sensory neuron in dorsal root ganglia is distorted by Gars mutations, leading to sensory defects in peripheral tissues and correlating with overall disease severity. CMT2D mice display changes in sensory behavior concordant with the afferent imbalance, which is present at birth and nonprogressive, indicating that sensory neuron identity is prenatally perturbed and that a critical developmental insult is key to the afferent pathology. Through in vitro experiments, mutant, but not wild-type, GlyRS was shown to aberrantly interact with the Trk receptors and cause misactivation of Trk signaling, which is essential for sensory neuron differentiation and development. Together, this work suggests that both neurodevelopmental and neurodegenerative mechanisms contribute to CMT2D pathogenesis, and thus has profound implications for the timing of future therapeutic treatments.
Collapse
Affiliation(s)
- James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom;
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Steven J West
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Na Wei
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME 04609
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469
| | - Adriana Gómez-Martín
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - Qian Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME 04609
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom;
| |
Collapse
|
20
|
Su WT, Pan YJ, Huang TY, Huang YC. Hydrophobic PDMS promotes neural progenitor formation from SHEDs by Schwann cell–cultivated medium induction. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1297937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Wen-Ta Su
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yu-Jing Pan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Te-Yang Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Ching Huang
- Department of Orthopedic Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Huettl RE, Huber AB. Characterizing Semaphorin-Mediated Effects on Sensory and Motor Axon Pathfinding and Connectivity During Embryonic Development. Methods Mol Biol 2017; 1493:443-466. [PMID: 27787870 DOI: 10.1007/978-1-4939-6448-2_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
How are precise connectivity to peripheral targets and corresponding sensory-motor networks established during developmental innervation of the vertebrate extremities? The formation of functional sensory-motor circuits requires highly appropriate temporal and spatial regulation of axon growth which is achieved through the combination of different molecular mechanisms such as communication between heterotypic fiber systems, axon-environment, or axon-glia interactions that ensure proper fasciculation and accurate pathfinding to distal targets. Family members of the class 3 semaphorins and their cognate receptors, the neuropilins, were shown to govern various events during wiring of central and peripheral circuits, with mice lacking Sema3-Npn signaling showing deficits in timing of growth, selective fasciculation, guidance fidelity, and coupling of sensory axon growth to motor axons at developmental time points. Given the accuracy with which these processes have to interact in a stepwise manner, deficiency of the smallest cog in the wheel may impact severely on the faithful establishment and functionality of peripheral circuitries, ultimately leading to behavioral impairments or even cause the death of the animal. Reliable quantitative analyses of sensory-motor fasciculation, extension, and guidance of axons to their cognate target muscles and the skin during development, but also assessment of physiological and behavioral consequences at adult age, are therefore a necessity to extend our understanding of the molecular mechanisms of peripheral circuit formation. In this chapter we provide a detailed methodology to characterize class 3 semaphorin-mediated effects on peripheral sensory and motor axon pathfinding and connectivity during embryonic development.
Collapse
Affiliation(s)
- Rosa Eva Huettl
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Andrea B Huber
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
| |
Collapse
|
22
|
Cruz Villagrán C, Schumacher J, Donnell R, Dhar MS. A Novel Model for Acute Peripheral Nerve Injury in the Horse and Evaluation of the Effect of Mesenchymal Stromal Cells Applied In Situ on Nerve Regeneration: A Preliminary Study. Front Vet Sci 2016; 3:80. [PMID: 27695697 PMCID: PMC5023688 DOI: 10.3389/fvets.2016.00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2022] Open
Abstract
Transplantation of mesenchymal stromal cells (MSCs) to sites of experimentally created nerve injury in laboratory animals has shown promising results in restoring nerve function. This approach for nerve regeneration has not been reported in horses. In this study, we first evaluated the in vitro ability of equine bone marrow-derived MSCs (EBM-MSCs) to trans-differentiate into Schwann-like cells and subsequently tested the MSCs in vivo for their potential to regenerate a transected nerve after implantation. The EBM-MSCs from three equine donors were differentiated into SCLs for 7 days, in vitro, in the presence of specialized differentiation medium and evaluated for morphological characteristics, by using confocal microscopy, and for protein characteristics, by using selected Schwann cell markers (GFAP and S100b). The EBM-MSCs were then implanted into the fascia surrounding the ramus communicans of one fore limb of three healthy horses after a portion of this nerve was excised. The excised portion of the nerve was examined histologically at the time of transection, and stumps of the nerve were examined histologically at day 45 after transplantation. The EBM-MSCs from all donors demonstrated morphological and protein characteristics of those of Schwann cells 7 days after differentiation. Nerves implanted with EBM-MSCs after nerve transection did not show evidence of nerve regeneration at day 45. Examination of peripheral nerves collected 45 days after injury and stem cell treatment revealed no histological differences between nerves treated with MSCs and those treated with isotonic saline solution (controls). The optimal delivery of MSCs and the model suitable to study the efficacy of MSCs in nerve regeneration should be investigated.
Collapse
Affiliation(s)
- Claudia Cruz Villagrán
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, TN , USA
| | - Jim Schumacher
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, TN , USA
| | - Robert Donnell
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, TN , USA
| | - Madhu S Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee , Knoxville, TN , USA
| |
Collapse
|
23
|
Nelson BR, Matsuhashi S, Lefcort F. Restricted neural epidermal growth factor-like like 2 (NELL2) expression during muscle and neuronal differentiation. Mech Dev 2016; 119 Suppl 1:S11-9. [PMID: 14516654 DOI: 10.1016/s0925-4773(03)00084-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have identified a secreted glycoprotein, neural epidermal growth factor-like like 2 (NELL2), in a screen designed to isolate molecules regulating sensory neuron genesis and differentiation in the dorsal root ganglia (DRG). In investigating NELL2 expression during embryogenesis, we demonstrate here that NELL2 is highly regulated spatially and temporally, being only transiently expressed in discrete regions of the central (CNS) and peripheral nervous systems (PNS) and in a subset of mesoderm derived structures during their peak periods of development. In the CNS and PNS, NELL2 is maximally expressed as motor and sensory neurons differentiate. Interestingly, its expression is restricted to sublineages of the neural crest, being strongly expressed throughout the immature DRG, but excluded from sympathetic ganglia. Similarly during muscle development, NELL2 is specifically expressed by hypaxial muscle precursor cells in the differentiating somite and derivatives in the forelimbs and body wall, but not by epaxial muscle precursors. Furthermore, NELL2 is differentially regulated in the CNS and PNS; in the CNS, NELL2 is only expressed by nascent, post-mitotic neurons as they commence their differentiation, yet in the PNS, NELL2 is expressed by subsets of progenitor cells in addition to nascent neurons. Based on this restricted spatial and temporal expression pattern, functional studies are in progress to determine NELL2's role during neuronal differentiation in both the PNS and CNS.
Collapse
Affiliation(s)
- Branden R Nelson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | | | | |
Collapse
|
24
|
Taylor-Clark TE. Role of reactive oxygen species and TRP channels in the cough reflex. Cell Calcium 2016; 60:155-62. [PMID: 27016063 DOI: 10.1016/j.ceca.2016.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
Abstract
The cough reflex is evoked by noxious stimuli in the airways. Although this reflex is essential for health, it can be triggered chronically in inflammatory and infectious airway disease. Neuronal transient receptor potential (TRP) channels such as ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) are polymodal receptors expressed on airway nociceptive afferent nerves. Reactive oxygen species (ROS) and other reactive compounds are associated with inflammation, from either NADPH oxidase or mitochondria. These reactive compounds cause activation and hyperexcitability of nociceptive afferents innervating the airways, and evidence suggests key contributions of TRPA1 and TRPV1.
Collapse
Affiliation(s)
- Thomas E Taylor-Clark
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
25
|
Liu C, Chan CB, Ye K. 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Transl Neurodegener 2016; 5:2. [PMID: 26740873 PMCID: PMC4702337 DOI: 10.1186/s40035-015-0048-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates a variety of biological processes predominantly via binding to the transmembrane receptor tyrosine kinase TrkB. It is a potential therapeutic target in numerous neurological, mental and metabolic disorders. However, the lack of efficient means to deliver BDNF into the body imposes an insurmountable hurdle to its clinical application. To address this challenge, we initiated a cell-based drug screening to search for small molecules that act as the TrkB agonist. 7,8-Dihydroxyflavone (7,8-DHF) is our first reported small molecular TrkB agonist, which has now been extensively validated in various biochemical and cellular systems. Though binding to the extracellular domain of TrkB, 7,8-DHF triggers TrkB dimerization to induce the downstream signaling. Notably, 7,8-DHF is orally bioactive that can penetrate the brain blood barrier (BBB) to exert its neurotrophic activities in the central nervous system. Numerous reports suggest 7,8-DHF processes promising therapeutic efficacy in various animal disease models that are related to deficient BDNF signaling. In this review, we summarize our current knowledge on the binding activity and specificity, structure-activity relationship, pharmacokinetic and metabolism, and the pre-clinical efficacy of 7,8-DHF against some human diseases.
Collapse
Affiliation(s)
- Chaoyang Liu
- School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073 P.R. China
| | - Chi Bun Chan
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., Oklahoma City, OK 73104 USA
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322 USA
| |
Collapse
|
26
|
Nie S, Xu Y, Chen G, Ma K, Han C, Guo Z, Zhang Z, Ye K, Cao X. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents. Neuropharmacology 2015; 99:448-58. [DOI: 10.1016/j.neuropharm.2015.08.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 11/17/2022]
|
27
|
Landowski LM, Pavez M, Brown LS, Gasperini R, Taylor BV, West AK, Foa L. Low-density Lipoprotein Receptor-related Proteins in a Novel Mechanism of Axon Guidance and Peripheral Nerve Regeneration. J Biol Chem 2015; 291:1092-102. [PMID: 26598525 PMCID: PMC4714193 DOI: 10.1074/jbc.m115.668996] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Indexed: 11/06/2022] Open
Abstract
The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential. Using embryonic sensory neurons (rat dorsal root ganglia) in a growth cone turning assay, we tested a range of LRP1 and LRP2 ligands for the ability to guide growth cone navigation. Three ligands were chemorepulsive: α-2-macroglobulin, tissue plasminogen activator, and metallothionein III. Conversely, only one LRP ligand, metallothionein II, was found to be chemoattractive. Chemoattraction toward a gradient of metallothionein II was calcium-dependent, required the expression of both LRP1 and LRP2, and likely involves further co-receptors such as the tropomyosin-related kinase A (TrkA) receptor. The potential for LRP-mediated chemoattraction to mediate axonal regeneration was examined in vivo in a model of chemical denervation in adult rats. In these in vivo studies, metallothionein II was shown to enhance epidermal nerve fiber regeneration so that it was complete within 7 days compared with 14 days in saline-treated animals. Our data demonstrate that both LRP1 and LRP2 are necessary for metallothionein II-mediated chemotactic signal transduction and that they may form part of a signaling complex. Furthermore, the data suggest that LRP-mediated chemoattraction represents a novel, non-classical signaling system that has therapeutic potential as a disease-modifying agent for the injured peripheral nervous system.
Collapse
Affiliation(s)
- Lila M Landowski
- From the School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | | - Robert Gasperini
- From the School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7001, Australia
| | | | | |
Collapse
|
28
|
Shen J, Yu Q. Gambogic amide selectively upregulates TrkA expression and triggers its activation. Pharmacol Rep 2014; 67:217-23. [PMID: 25712642 DOI: 10.1016/j.pharep.2014.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/30/2014] [Accepted: 09/08/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Gambogic amide is the first identified small molecular agonist for TrkA receptor. It mimics NGF functions by selectively activating TrkA receptor and preventing neuron death. However, its function different from that of NGF remains unknown. METHODS In the current study, we detect the effect of gambogic amide on TrkA expression using TrkA-expressing cell lines in vitro and hippocampi from mice treated with gambogic amide. RESULTS We have confirmed that gambogic amide displays robust neurotrophic activities in provoking neurite outgrowth in vitro. However, gambiogic amide displays a different kinetics from NGF in activating TrkA signals. NGF swiftly provokes TrkA activation and quickly induces TrkA degradation, while gambogic amid selectively upregulates TrkA protein and mRNA levels in a time-dependent manner. Administration of this compound in mice also activates TrkA receptor in hippocampus and promotes TrkA transcription and expression. CONCLUSION This study provides a novel mechanism of how gambogic amide regulates TrkA receptor, other than mimicking NGF in triggering TrkA activation.
Collapse
Affiliation(s)
- Jianying Shen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingsheng Yu
- Center for Osteonecrosis and Joint Preserving and Reconstruction, Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
29
|
Tahir R, Kennedy A, Elsea SH, Dickinson AJ. Retinoic acid induced-1 (Rai1) regulates craniofacial and brain development in Xenopus. Mech Dev 2014; 133:91-104. [PMID: 24878353 DOI: 10.1016/j.mod.2014.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/18/2022]
Abstract
Retinoic acid induced-1 (RAI1) is an important yet understudied histone code reader that when mutated in humans results in Smith-Magenis syndrome (SMS), a neurobehavioral disorder accompanied by signature craniofacial abnormalities. Despite previous studies in mouse and human cell models, very little is known about the function of RAI1 during embryonic development. In the present study, we have turned to the model vertebrates Xenopus laevis and Xenopus tropicalis to better understand the developmental roles of Rai1. First we demonstrate that the Rai1 protein sequence is conserved in frogs, especially in known functional domains. By in situ hybridization we revealed expression of rai1 in the developing craniofacial tissues and the nervous system. Knockdown of Rai1 using antisense morpholinos resulted in defects in the developing brain and face. In particular, Rai1 morphants display midface hypoplasia and malformed mouth shape analogous to defects in humans with SMS. These craniofacial defects were accompanied with aberrant neural crest migration and reduction in the size of facial cartilage elements. Rai1 morphants also had defects in axon patterns and decreased forebrain ventricle size. Such brain defects correlated with a decrease in the neurotrophic factor, bdnf, and increased forebrain apoptosis. Our results emphasize a critical role of Rai1 for normal neural and craniofacial development, and further the current understanding of potential mechanisms that cause SMS.
Collapse
Affiliation(s)
- Raiha Tahir
- Center of the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Allyson Kennedy
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, MS NAB2015, Houston, TX 77030, USA
| | - Amanda J Dickinson
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA.
| |
Collapse
|
30
|
Divekar SD, Burrell TC, Lee JE, Weeber EJ, Rebeck GW. Ligand-induced homotypic and heterotypic clustering of apolipoprotein E receptor 2. J Biol Chem 2014; 289:15894-903. [PMID: 24755222 DOI: 10.1074/jbc.m113.537548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
ApoE Receptor 2 (ApoER2) and the very low density lipoprotein receptor (VLDLR) are type I transmembrane proteins belonging to the LDLR family of receptors. They are neuronal proteins found in synaptic compartments that play an important role in neuronal migration during development. ApoER2 and VLDLR bind to extracellular glycoproteins, such as Reelin and F-spondin, which leads to phosphorylation of adaptor proteins and subsequent activation of downstream signaling pathways. It is thought that ApoER2 and VLDLR undergo clustering upon binding to their ligands, but no direct evidence of clustering has been shown. Here we show strong clustering of ApoER2 induced by the dimeric ligands Fc-RAP, F-spondin, and Reelin but relatively weak clustering with the ligand apoE in the absence of lipoproteins. This clustering involves numerous proteins besides ApoER2, including amyloid precursor protein and the synaptic adaptor protein PSD-95. Interestingly, we did not observe strong clustering of ApoER2 with VLDLR. Clustering was modulated by both extracellular and intracellular domains of ApoER2. Together, our data demonstrate that several multivalent ligands for ApoER2 induce clustering in transfected cells and primary neurons and that these complexes included other synaptic molecules, such as APP and PSD-95.
Collapse
Affiliation(s)
- Shailaja D Divekar
- From the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20007 and
| | - Teal C Burrell
- From the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20007 and
| | - Jennifer E Lee
- From the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20007 and
| | - Edwin J Weeber
- the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida 33613
| | - G William Rebeck
- From the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20007 and
| |
Collapse
|
31
|
George L, Chaverra M, Wolfe L, Thorne J, Close-Davis M, Eibs A, Riojas V, Grindeland A, Orr M, Carlson GA, Lefcort F. Familial dysautonomia model reveals Ikbkap deletion causes apoptosis of Pax3+ progenitors and peripheral neurons. Proc Natl Acad Sci U S A 2013; 110:18698-703. [PMID: 24173031 PMCID: PMC3831979 DOI: 10.1073/pnas.1308596110] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Familial dysautonomia (FD) is a devastating developmental and progressive peripheral neuropathy caused by a mutation in the gene inhibitor of kappa B kinase complex-associated protein (IKBKAP). To identify the cellular and molecular mechanisms that cause FD, we generated mice in which Ikbkap expression is ablated in the peripheral nervous system and identify the steps in peripheral nervous system development that are Ikbkap-dependent. We show that Ikbkap is not required for trunk neural crest migration or pathfinding, nor for the formation of dorsal root or sympathetic ganglia, or the adrenal medulla. Instead, Ikbkap is essential for the second wave of neurogenesis during which the majority of tropomyosin-related kinase A (TrkA(+)) nociceptors and thermoreceptors arise. In its absence, approximately half the normal complement of TrkA(+) neurons are lost, which we show is partly due to p53-mediated premature differentiation and death of mitotically-active progenitors that express the paired-box gene Pax3 and give rise to the majority of TrkA(+) neurons. By the end of sensory development, the number of TrkC neurons is significantly increased, which may result from an increase in Runx3(+) cells. Furthermore, our data demonstrate that TrkA(+) (but not TrkC(+)) sensory and sympathetic neurons undergo exacerbated Caspase 3-mediated programmed cell death in the absence of Ikbkap and that this death is not due to a reduction in nerve growth factor synthesis. In summary, these data suggest that FD does not result from a failure in trunk neural crest migration, but rather from a critical function for Ikbkap in TrkA progenitors and TrkA(+) neurons.
Collapse
Affiliation(s)
- Lynn George
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
- Department of Biological and Physical Sciences, Montana State University Billings, Billings, MT 59101; and
| | - Marta Chaverra
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Lindsey Wolfe
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Julian Thorne
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Mattheson Close-Davis
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Amy Eibs
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | - Vickie Riojas
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| | | | - Miranda Orr
- McLaughlin Research Institute, Great Falls, MT 59405
| | | | - Frances Lefcort
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717
| |
Collapse
|
32
|
Sandhya VK, Raju R, Verma R, Advani J, Sharma R, Radhakrishnan A, Nanjappa V, Narayana J, Somani BL, Mukherjee KK, Pandey A, Christopher R, Prasad TSK. A network map of BDNF/TRKB and BDNF/p75NTR signaling system. J Cell Commun Signal 2013; 7:301-7. [PMID: 23606317 DOI: 10.1007/s12079-013-0200-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/09/2013] [Indexed: 01/15/2023] Open
Affiliation(s)
- Varot K Sandhya
- Institute of Bioinformatics, International Tech Park, Whitefield, Bangalore, 560066, India,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
A contemporary review of molecular candidates for the development and treatment of childhood medulloblastoma. Childs Nerv Syst 2013; 29:381-8. [PMID: 23292496 DOI: 10.1007/s00381-012-2014-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/22/2012] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Medulloblastoma is the most common pediatric central nervous system tumor; however, the causes are not well established. There has been some emphasis on mutations in developmental pathways and their impact on tumor pathology in hereditary diseases, but, in order to better understand the nature of diseases like medulloblastoma, other mechanisms also require attention. PURPOSE The purpose of this review is to provide an overview of the main genes involved in neurodevelopment, their downstream targets, and modulatory links by growth factors. Occurrence of pediatric brain tumors including medulloblastoma are mostly sporadic, but some hereditary diseases like Li-Fraumeni syndrome, Gorlin's syndrome, Turcot's syndrome, and Rubenstein-Tarbi syndrome are known to contribute their development as consequences of germline mutations at specific points: DNA-repairing gene Tp53 for Li-Fraumeni syndrome or Patch for Gorlin's, and apoptosis-related gene product adenomatous polyposis coli for Turcot's disease. CONCLUSION Intracellular relations at molecular level and future therapeutics that specifically target the corresponding pathways should be well understood in order to prevent and cure childhood medulloblastoma.
Collapse
|
34
|
Hougland MT, Harrison BJ, Magnuson DSK, Rouchka EC, Petruska JC. The Transcriptional Response of Neurotrophins and Their Tyrosine Kinase Receptors in Lumbar Sensorimotor Circuits to Spinal Cord Contusion is Affected by Injury Severity and Survival Time. Front Physiol 2013; 3:478. [PMID: 23316162 PMCID: PMC3540763 DOI: 10.3389/fphys.2012.00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/07/2012] [Indexed: 01/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in changes to the anatomical, neurochemical, and physiological properties of cells in the central and peripheral nervous system. Neurotrophins, acting by binding to their cognate Trk receptors on target cell membranes, contribute to modulation of anatomical, neurochemical, and physiological properties of neurons in sensorimotor circuits in both the intact and injured spinal cord. Neurotrophin signaling is associated with many post-SCI changes including maladaptive plasticity leading to pain and autonomic dysreflexia, but also therapeutic approaches such as training-induced locomotor improvement. Here we characterize expression of mRNA for neurotrophins and Trk receptors in lumbar dorsal root ganglia (DRG) and spinal cord after two different severities of mid-thoracic injury and at 6 and 12 weeks post-SCI. There was complex regulation that differed with tissue, injury severity, and survival time, including reversals of regulation between 6 and 12 weeks, and the data suggest that natural regulation of neurotrophins in the spinal cord may continue for months after birth. Our assessments determined that a coordination of gene expression emerged at the 12-week post-SCI time point and bioinformatic analyses address possible mechanisms. These data can inform studies meant to determine the role of the neurotrophin signaling system in post-SCI function and plasticity, and studies using this signaling system as a therapeutic approach.
Collapse
Affiliation(s)
- M Tyler Hougland
- Department of Anatomical Sciences and Neurobiology, University of Louisville Louisville, KY, USA ; Laboratory of Neural Physiology and Plasticity, Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery Louisville, KY, USA
| | | | | | | | | |
Collapse
|
35
|
Klimaschewski L, Hausott B, Angelov DN. The pros and cons of growth factors and cytokines in peripheral axon regeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 108:137-71. [PMID: 24083434 DOI: 10.1016/b978-0-12-410499-0.00006-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Injury to a peripheral nerve induces a complex cellular and molecular response required for successful axon regeneration. Proliferating Schwann cells organize into chains of cells bridging the lesion site, which is invaded by macrophages. Approximately half of the injured neuron population sends out axons that enter the glial guidance channels in response to secreted neurotrophic factors and neuropoietic cytokines. These lesion-associated polypeptides create an environment that is highly supportive for axon regrowth, particularly after acute injury, and ensure that the vast majority of regenerating axons are directed toward the distal nerve stump. Unfortunately, most neurotrophic factors and neuropoietic cytokines are also strong stimulators of axonal sprouting. Although some of the axonal branches will withdraw at later stages, the sprouting effect contributes to the misdirection of reinnervation that results in the lack of functional recovery observed in many patients with peripheral nerve injuries. Here, we critically review the role of neuronal growth factors and cytokines during axon regeneration in the peripheral nervous system. Their differential effects on axon elongation and sprouting were elucidated in various studies on intraneuronal signaling mechanisms following nerve lesion. The present data define a goal for future therapeutic strategies, namely, to selectively stimulate a Ras/Raf/ERK-mediated axon elongation program over an intrinsic PI3K-dependent axonal sprouting program in lesioned motor and sensory neurons. Instead of modulating growth factor or cytokine levels at the lesion site, targeting specific intraneuronal molecules, such as the negative feedback inhibitors of ERK signaling, has been shown to promote long-distance regeneration while avoiding sprouting of regenerating axons until they have reached their target areas.
Collapse
Affiliation(s)
- Lars Klimaschewski
- Division of Neuroanatomy, Department of Anatomy and Histology, Innsbruck Medical University, Innsbruck, Austria
| | | | | |
Collapse
|
36
|
Liu X, Chan CB, Qi Q, Xiao G, Luo HR, He X, Ye K. Optimization of a small tropomyosin-related kinase B (TrkB) agonist 7,8-dihydroxyflavone active in mouse models of depression. J Med Chem 2012; 55:8524-37. [PMID: 22984948 DOI: 10.1021/jm301099x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Structure-activity relationship study shows that the catechol group in 7,8-dihdyroxyflavone, a selective small TrkB receptor agonist, is critical for agonistic activity. To improve the poor pharmacokinetic profiles intrinsic to catechol-containing molecules and to elevate the agonistic effect of the lead compound, we initiated the lead optimization campaign by synthesizing various bioisosteric derivatives. Here we show that the optimized 2-methyl-8-(4'-(pyrrolidin-1-yl)phenyl)chromeno[7,8-d]imidazol-6(1H)-one derivative possesses enhanced TrkB stimulatory activity. Chronic oral administration of this compound significantly reduces the immobility in forced swim test and tail suspension test, two classical antidepressant behavioral animal models, which is accompanied by robust TrkB activation in hippocampus of mouse brain. Further, in vitro ADMET studies demonstrate that this compound possesses the improved features compared to the previous lead compound. Hence, this optimized compound may act as a promising lead candidate for in-depth drug development for treating various neurological disorders including depression.
Collapse
Affiliation(s)
- Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Obianyo O, Ye K. Novel small molecule activators of the Trk family of receptor tyrosine kinases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:2213-8. [PMID: 22982231 DOI: 10.1016/j.bbapap.2012.08.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/29/2012] [Indexed: 12/18/2022]
Abstract
The Tropomyosin-related kinase (Trk) receptors are a subset of the receptor tyrosine kinase family with an important functionality in the regulation of neurotrophic signaling in the peripheral and central nervous system. As the receptors are able to mediate neuronal survival by associating with their respective neurotrophin ligands, many studies have focused on the therapeutic potential of generating small-molecule mimetic compounds that elicit agonistic effects similar to those of the natural protein ligands. To this end, various structure-based studies have led to the generation of bivalent peptide-based agonists and antibodies that selectively initiate Trk receptor signaling; however, these compounds do not possess the ideal characteristics of a potential drug. Additionally, the reliance of structure-based data to generate the compound libraries, limits the potential identification of novel chemical structures with desirable activity. Therefore, subsequent investigations utilized a cell-based apoptotic screen to facilitate the analysis of large, diverse chemical libraries of small molecules and quickly identify compounds with Trk-dependent anti-apoptotic activity. Herein, we describe the Trk agonists that have been identified by this screening methodology and summarize their in vitro and in vivo neurotrophic activity as well as their efficacy in various neurological disease models, implicating their future utility as therapeutic compounds. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Obiamaka Obianyo
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
38
|
Holland LZ, Onai T. Early development of cephalochordates (amphioxus). WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:167-83. [PMID: 23801434 DOI: 10.1002/wdev.11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Phylum Chordata includes three groups--Vertebrata, Tunicata, and Cephalochordata. In cephalochordates, commonly called amphioxus or lancelets, which are basal in the Chordata, the eggs are small and relatively non-yolky. As in vertebrates, cleavage is indeterminate with cell fates determined gradually as development proceeds. The oocytes are attached to the ovarian follicle at the animal pole, where the oocyte nucleus is located. The cytoplasm at the opposite side of the egg, the vegetal pole, contains the future germ plasm or pole plasm, which includes determinants of the germline. After fertilization, additional asymmetries are established by movements of the egg and sperm nuclei, resulting in a concentration of mitochondria at one side of the animal hemisphere. This may be related to establishment of the dorsal/ventral axis. Patterning along the embryonic axes is mediated by secreted signaling proteins. Dorsal identity is specified by Nodal/Vg1 signaling, while during the gastrula stage, opposition between Nodal/Vg1 and BMP signaling establishes dorsal/anterior (i.e., head) and ventral/posterior (i.e., trunk/tail) identities, respectively. Wnt/β-catenin signaling specifies posterior identity while retinoic acid signaling specifies positions along the anterior/posterior axis. These signals are further modulated by a number of secreted antagonists. This fundamental patterning mechanism is conserved, with some modifications, in vertebrates.
Collapse
Affiliation(s)
- Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, CA, USA.
| | | |
Collapse
|
39
|
Kuo LT, Tsai SY, Groves MJ, An SF, Scaravilli F. Gene expression profile in rat dorsal root ganglion following sciatic nerve injury and systemic neurotrophin-3 administration. J Mol Neurosci 2011; 43:503-15. [PMID: 21061088 DOI: 10.1007/s12031-010-9473-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/28/2010] [Indexed: 12/14/2022]
Abstract
Following sciatic nerve transection in adult rats, a proportion of injured dorsal root ganglion (DRG) neurons die, through apoptosis, over the following 6 months. Previous studies showed that axotomy and neurotrophin-3 administration may have effects on expression of neurotrophins and their receptors in DRG. In the current study, the fourth and fifth lumbar DRGs of rats were examined 2 weeks after right sciatic nerve transection and ligation. The effects of axotomy and systemic NT-3 treatment on neuronal genes were investigated by microarray. The results demonstrated that bone morphogenetic protein (BMP) and Janus protein tyrosine kinase signaling pathways are induced in axotomized DRG, and PI-3 kinase and BMP pathways and genes controlling various cellular functions were induced after axotomy and NT-3 administration.
Collapse
Affiliation(s)
- Lu-Ting Kuo
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Yun-lin branch, No.579, Sec. 2, Yun-lin Rd., Dou-liou City, Yun-lin County, 640, Taiwan.
| | | | | | | | | |
Collapse
|
40
|
Mantyh PW, Koltzenburg M, Mendell LM, Tive L, Shelton DL. Antagonism of nerve growth factor-TrkA signaling and the relief of pain. Anesthesiology 2011; 115:189-204. [PMID: 21602663 PMCID: PMC3121917 DOI: 10.1097/aln.0b013e31821b1ac5] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nerve growth factor (NGF) was originally discovered as a neurotrophic factor essential for the survival of sensory and sympathetic neurons during development. However, in the adult NGF has been found to play an important role in nociceptor sensitization after tissue injury. The authors outline mechanisms by which NGF activation of its cognate receptor, tropomyosin-related kinase A receptor, regulates a host of ion channels, receptors, and signaling molecules to enhance acute and chronic pain. The authors also document that peripherally restricted antagonism of NGF-tropomyosin-related kinase A receptor signaling is effective for controlling human pain while appearing to maintain normal nociceptor function. Understanding whether there are any unexpected adverse events and how humans may change their behavior and use of the injured/degenerating tissue after significant pain relief without sedation will be required to fully appreciate the patient populations that may benefit from these therapies targeting NGF.
Collapse
Affiliation(s)
- Patrick W Mantyh
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA.
| | | | | | | | | |
Collapse
|
41
|
Son MY, Kim MJ, Yu K, Koo DB, Cho YS. Involvement of neuropeptide Y and its Y1 and Y5 receptors in maintaining self-renewal and proliferation of human embryonic stem cells. J Cell Mol Med 2011; 15:152-65. [PMID: 19874423 PMCID: PMC3822502 DOI: 10.1111/j.1582-4934.2009.00956.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Neuropeptide Y (NPY) and NPY receptors are widely expressed in various organs and cell types and have been shown to have pleiotropic functions. However, their presence or role in human embryonic stem cells (hESCs) remains unknown. We now show that undifferentiated hESCs primarily express NPY and its Y1 and Y5 receptors. Inhibition of NPY signalling using either the selective NPY Y1 or Y5 receptor antagonist reduces the maintenance of self-renewal and proliferation of undifferentiated hESCs. We also provide compelling evidence that exogenous NPY supports the long-term growth of undifferentiated hESCs in the absence of feeder cell factors using only knockout serum replacement media. Further, NPY facilitates the use of chemically defined medium made up of N2/B27 supplement and basic fibroblast growth factor (bFGF) for hESC feeder-free culture. Our results indicate that both Y1 and Y5 receptors appear to be involved in the NPY-mediated activation of AKT/protein kinase B and extracellular signal-regulated kinase 1/2 (ERK1/2) in hESCs. Notably, only Y1 receptor, but not Y5 receptor, is responsible for the NPY-induced activation of cAMP-response element binding (CREB) in hESCs. These results provide the first evidence that NPY and its Y1 and Y5 receptors have potential role in maintaining hESC self-renewal and pluripotency. We demonstrate the underlying importance of NPY signalling and its usefulness in the development of a defined and xeno-free culture condition for the large-scale propagation of undifferentiated hESCs.
Collapse
Affiliation(s)
- Mi-Young Son
- Development & Differentiation Research Center, KRIBB, Eoeundong, Yuseong-gu, Daejeon, Republic of Korea
| | | | | | | | | |
Collapse
|
42
|
Esaki S, Kitoh J, Katsumi S, Goshima F, Kimura H, Safwat M, Yamano K, Watanabe N, Nonoguchi N, Nakamura T, Coffin RS, Miyatake SI, Nishiyama Y, Murakami S. Hepatocyte growth factor incorporated into herpes simplex virus vector accelerates facial nerve regeneration after crush injury. Gene Ther 2011; 18:1063-9. [PMID: 21562589 DOI: 10.1038/gt.2011.57] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hepatocyte growth factor (HGF) promotes regeneration of the central nervous system, but its effects on the peripheral nervous system remain unclear. This study was conducted to elucidate the effect of HGF on regeneration of the murine facial nerve after crush injury. To do so, a replication-defective herpes simplex virus vector that incorporated HGF was prepared (HSV-HGF). The main trunk of the facial nerve was compressed by mosquito hemostats, and HSV-HGF, control vector or medium was then applied to the compressed nerve. We found that mice in the HGF group required significantly fewer days for complete recovery from nerve compression. Furthermore, the amplitude of the evoked buccinator muscle compound action potential increased following HSV-HGF application. HGF expression in and around the compressed nerve was demonstrated by enzyme-linked immunoassay and immunohistochemistry. In addition, HSV-HGF introduction around the damaged nerve significantly accelerated recovery of function of the facial nerve. These data suggest a possible role of HGF in promoting facial nerve regeneration after nerve damage. Furthermore, this viral delivery method may be applied clinically for many types of severe facial palsy during facial nerve decompression surgery.
Collapse
Affiliation(s)
- S Esaki
- Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gu Y, Hu N, Liu J, Ding F, Gu X. Isolation and differentiation of neural stem/progenitor cells from fetal rat dorsal root ganglia. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1057-64. [DOI: 10.1007/s11427-010-4053-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 11/17/2009] [Indexed: 12/13/2022]
|
44
|
Carvalho OP, Thornton GK, Hertecant J, Houlden H, Nicholas AK, Cox JJ, Rielly M, Al-Gazali L, Woods CG. A novel NGF mutation clarifies the molecular mechanism and extends the phenotypic spectrum of the HSAN5 neuropathy. J Med Genet 2010; 48:131-5. [PMID: 20978020 PMCID: PMC3030776 DOI: 10.1136/jmg.2010.081455] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Nerve growth factor β (NGFβ) and tyrosine kinase receptor type A (TRKA) are a well studied neurotrophin/receptor duo involved in neuronal survival and differentiation. The only previously reported hereditary sensory neuropathy caused by an NGF mutation, c.661C>T (HSAN5), and the pathology caused by biallelic mutations in the TRKA gene (NTRK1) (HSAN4), share only some clinical features. A consanguineous Arab family, where five of the six children were completely unable to perceive pain, were mentally retarded, did not sweat, could not discriminate temperature, and had a chronic immunodeficiency, is reported here. The condition is linked to a new homozygous mutation in the NGF gene, c.[680C>A]+[681_682delGG]. Methods Genetic linkage and standard sequencing techniques were used to identify the causative gene. Using wild-type or mutant over-expression constructs transfected into PC12 and COS-7 cells, the cellular and molecular consequences of the mutations were investigated. Results The mutant gene produced a precursor protein V232fs that was unable to differentiate PC12 cells. V232fs was not secreted from cells as mature NGFβ. Conclusions Both the clinical and cellular data suggest that the c.[680C>A]+[681_682delGG] NGF mutation is a functional null. The HSAN5 phenotype is extended to encompass HSAN4-like characteristics. It is concluded that the HSAN4 and HSAN5 phenotypes are parts of a phenotypic spectrum caused by changes in the NGF/TRKA signalling pathway.
Collapse
Affiliation(s)
- Ofélia P Carvalho
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Neurotrophins and acupuncture. Auton Neurosci 2010; 157:9-17. [DOI: 10.1016/j.autneu.2010.03.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/27/2010] [Accepted: 03/30/2010] [Indexed: 11/23/2022]
|
46
|
Du W, Huang J, Yao H, Zhou K, Duan B, Wang Y. Inhibition of TRPC6 degradation suppresses ischemic brain damage in rats. J Clin Invest 2010; 120:3480-92. [PMID: 20811149 DOI: 10.1172/jci43165] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/14/2010] [Indexed: 11/17/2022] Open
Abstract
Brain injury after focal cerebral ischemia, the most common cause of stroke, develops from a series of pathological processes, including excitotoxicity, inflammation, and apoptosis. While NMDA receptors have been implicated in excitotoxicity, attempts to prevent ischemic brain damage by blocking NMDA receptors have been disappointing. Disruption of neuroprotective pathways may be another avenue responsible for ischemic damage, and thus preservation of neuronal survival may be important for prevention of ischemic brain injury. Here, we report that suppression of proteolytic degradation of transient receptor potential canonical 6 (TRPC6) prevented ischemic neuronal cell death in a rat model of stroke. The TRPC6 protein level in neurons was greatly reduced in ischemia via NMDA receptor-dependent calpain proteolysis of the N-terminal domain of TRPC6 at Lys¹⁶. This downregulation was specific for TRPC6 and preceded neuronal death. In a rat model of ischemia, activating TRPC6 prevented neuronal death, while blocking TRPC6 increased sensitivity to ischemia. A fusion peptide derived from the calpain cleavage site in TRPC6 inhibited degradation of TRPC6, reduced infarct size, and improved behavioral performance measures via the cAMP response element-binding protein (CREB) signaling pathway. Thus, TRPC6 proteolysis contributed to ischemic neuronal cell death, and suppression of its degradation preserved neuronal survival and prevented ischemic brain damage.
Collapse
Affiliation(s)
- Wanlu Du
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, State Key Laboratory of Neuroscience, The Graduate School, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
47
|
Bagley JA, Belluscio L. Dynamic imaging reveals that brain-derived neurotrophic factor can independently regulate motility and direction of neuroblasts within the rostral migratory stream. Neuroscience 2010; 169:1449-61. [PMID: 20538046 PMCID: PMC2935908 DOI: 10.1016/j.neuroscience.2010.05.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/13/2010] [Accepted: 05/29/2010] [Indexed: 11/30/2022]
Abstract
Neuronal precursors generated in the subventricular zone (SVZ) migrate through the rostral migratory stream (RMS) to the olfactory bulb (OB). Although, the mechanisms regulating this migration remain largely unknown. Studies have shown that molecular factors, such as brain-derived neurotrophic factor (BDNF) emanating from the OB, may function as chemoattractants drawing neuroblasts toward their target. To better understand the role of BDNF in RMS migration, we used an acute slice preparation from early postnatal mice to track the tangential migration of GAD65-GFP labeled RMS neuroblasts with confocal time-lapse imaging. By quantifying the cell dynamics using specific directional and motility criteria, our results showed that removal of the OB did not alter the overall directional trajectory of neuroblasts, but did reduce their motility. This suggested that additional guidance factors present locally within the RMS region also contribute to this migration. Here we report that BDNF and its high affinity receptor, tyrosine kinase receptor type 2 (TrkB), are indeed heterogeneously expressed within the RMS at postnatal day 7. By altering BDNF levels within the entire pathway, we showed that reduced BDNF signaling changes both neuroblast motility and direction, while increased BDNF levels changes only motility. Together these data reveal that during this early postnatal period BDNF plays a complex role in regulating both the motility and direction of RMS flow, and that BDNF comes from sources within the RMS itself, as well as from the olfactory bulb.
Collapse
Affiliation(s)
- Joshua A. Bagley
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD 20892, USA
| | - Leonardo Belluscio
- Developmental Neural Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
48
|
Deoxygedunin, a natural product with potent neurotrophic activity in mice. PLoS One 2010; 5:e11528. [PMID: 20644624 PMCID: PMC2903477 DOI: 10.1371/journal.pone.0011528] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/07/2010] [Indexed: 01/19/2023] Open
Abstract
Gedunin, a family of natural products from the Indian neem tree, possess a variety of biological activities. Here we report the discovery of deoxygedunin, which activates the mouse TrkB receptor and its downstream signaling cascades. Deoxygedunin is orally available and activates TrkB in mouse brain in a BDNF-independent way. Strikingly, it prevents the degeneration of vestibular ganglion in BDNF −/− pups. Moreover, deoxygedunin robustly protects rat neurons from cell death in a TrkB-dependent manner. Further, administration of deoxygedunin into mice displays potent neuroprotective, anti-depressant and learning enhancement effects, all of which are mediated by the TrkB receptor. Hence, deoxygedunin imitates BDNF's biological activities through activating TrkB, providing a powerful therapeutic tool for treatment of various neurological diseases.
Collapse
|
49
|
Ma YH, Zhang Y, Cao L, Su JC, Wang ZW, Xu AB, Zhang SC. Effect of Neurotrophin-3 Genetically Modified Olfactory Ensheathing Cells Transplantation on Spinal Cord Injury. Cell Transplant 2010; 19:167-77. [PMID: 20350361 DOI: 10.3727/096368910x492634] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Transplantation of olfactory ensheathing cells (OECs) has emerged as a very promising therapy for spinal cord injury (SCI). Also, local delivery of NT-3 can counteract pathological events and induce a regenerative response after SCI. Supplement of exogenetic NT-3 might be a new approach to SCI repair. In this study, we examined the therapeutic effect of rat NT-3 gene-modified OECs transplantation on SCI. Rat NT-3 gene was transfected into OECs using a retroviral system. The engineered NT-3-OECs were tested for their ability to express and secrete biologically active NT-3 in vitro. Then NT-3-OECs were implanted into contused T9 spinal cord of the adult rats. Their ability of survival and NT-3 production was examined. The effect of axon regeneration was evaluated at the morphological level and promotion of locomotor functional recovery were assessed. The result showed that genetically modified OECs were capable of surviving and producing NT-3 in vivo to significantly improve the recovery after SCI.
Collapse
Affiliation(s)
- Yu-Hai Ma
- Department of Orthopaedic, Zhejiang Provincial Corps Hospital, Chinese People's Armed Polices Forces, Jiaxing, China
| | - Yong Zhang
- Department of Neurobiology, Second Military Medical University, Shanghai, China
| | - Li Cao
- Department of Neurobiology, Second Military Medical University, Shanghai, China
| | - Jia-Can Su
- Department of Orthopaedic, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhi-Wei Wang
- Department of Orthopaedic, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - A-Bing Xu
- Department of Orthopaedic, Zhejiang Provincial Corps Hospital, Chinese People's Armed Polices Forces, Jiaxing, China
| | - Shao-Cheng Zhang
- Department of Orthopaedic, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
50
|
Modulation of sensory nerve function and the cough reflex: understanding disease pathogenesis. Pharmacol Ther 2009; 124:354-75. [PMID: 19818366 DOI: 10.1016/j.pharmthera.2009.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 09/16/2009] [Indexed: 12/29/2022]
Abstract
To cough is a protective defence mechanism that is vital to remove foreign material and secretions from the airways and which in the normal state serves its function appropriately. Modulation of the cough reflex pathway in disease can lead to inappropriate chronic coughing and an augmented cough response. Chronic cough is a symptom that can present in conjunction with a number of diseases including chronic obstructive pulmonary disease (COPD) and asthma, although often the cause of chronic cough may be unknown. As current treatments for cough have proved to exhibit little efficacy and are largely ineffective, there is a need to develop novel, efficacious and safe antitussive therapies. The underlying mechanisms of the cough reflex are complex and involve a network of events, which are not fully understood. It is accepted that the cough reflex is initiated following activation of airway sensory nerves. Therefore, in the hope of identifying novel antitussives, much research has focused on understanding the neural mechanisms of cough provocation. Experimentally this has been undertaken using chemical or mechanical tussive stimuli in conjunction with animal models of cough and clinical cough assessments. This review will discuss the neural mechanisms involved in the cough, changes that occur under pathophysiological conditions and and how current research may lead to novel therapeutic opportunities for the treatment of cough.
Collapse
|