1
|
Kumar R, Goel H, Solanki R, Rawat L, Tabasum S, Tanwar P, Pal S, Sabarwal A. Recent developments in receptor tyrosine kinase inhibitors: A promising mainstay in targeted cancer therapy. MEDICINE IN DRUG DISCOVERY 2024; 23:100195. [PMID: 39281823 PMCID: PMC11393807 DOI: 10.1016/j.medidd.2024.100195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
During the past two decades, significant advances have been made in the discovery and development of targeted inhibitors aimed at improving the survival rates of cancer patients. Among the multitude of potential therapeutic targets identified thus far, Receptor Tyrosine Kinases (RTKs) are of particular importance. Dysregulation of RTKs has been implicated in numerous human diseases, particularly cancer, where aberrant signaling pathways contribute to disease progression. RTKs have a profound impact on intra and intercellular communication, and they also facilitate post-translational modifications, notably phosphorylation, which intricately regulates a multitude of cellular processes. Prolonged phosphorylation or the disruption of kinase regulation may lead to significant alterations in cell signaling. The emergence of small molecule kinase inhibitors has revolutionized cancer therapy by offering a targeted and strategic approach that surpasses the efficacy of traditional chemotherapeutic drugs. Over the last two decades, a plethora of targeted inhibitors have been identified or engineered and have undergone clinical evaluation to enhance the survival rates of cancer patients. In this review, we have compared the expression of different RTKs, including Met, KDR/VEGFR2, EGFR, BRAF, BCR, and ALK across different cancer types in TCGA samples. Additionally, we have summarized the recent development of small molecule inhibitors and their potential in treating various malignancies. Lastly, we have discussed the mechanisms of acquired therapeutic resistance with a focus on kinase inhibitors in EGFR mutant and ALK-rearranged non-small cell lung cancer and BCR-ABL positive chronic myeloid leukemia.
Collapse
Affiliation(s)
- Rahul Kumar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Harsh Goel
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Raghu Solanki
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Laxminarayan Rawat
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Saba Tabasum
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Pranay Tanwar
- Dr B. R. A.-Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Soumitro Pal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Akash Sabarwal
- Division of Nephrology, Boston Children's Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Ou X, Gao G, Habaz IA, Wang Y. Mechanisms of resistance to tyrosine kinase inhibitor-targeted therapy and overcoming strategies. MedComm (Beijing) 2024; 5:e694. [PMID: 39184861 PMCID: PMC11344283 DOI: 10.1002/mco2.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/27/2024] Open
Abstract
Tyrosine kinase inhibitor (TKI)-targeted therapy has revolutionized cancer treatment by selectively blocking specific signaling pathways crucial for tumor growth, offering improved outcomes with fewer side effects compared with conventional chemotherapy. However, despite their initial effectiveness, resistance to TKIs remains a significant challenge in clinical practice. Understanding the mechanisms underlying TKI resistance is paramount for improving patient outcomes and developing more effective treatment strategies. In this review, we explored various mechanisms contributing to TKI resistance, including on-target mechanisms and off-target mechanisms, as well as changes in the tumor histology and tumor microenvironment (intrinsic mechanisms). Additionally, we summarized current therapeutic approaches aiming at circumventing TKI resistance, including the development of next-generation TKIs and combination therapies. We also discussed emerging strategies such as the use of dual-targeted antibodies and PROteolysis Targeting Chimeras. Furthermore, we explored future directions in TKI-targeted therapy, including the methods for detecting and monitoring drug resistance during treatment, identification of novel targets, exploration of dual-acting kinase inhibitors, application of nanotechnologies in targeted therapy, and so on. Overall, this review provides a comprehensive overview of the challenges and opportunities in TKI-targeted therapy, aiming to advance our understanding of resistance mechanisms and guide the development of more effective therapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Xuejin Ou
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Ge Gao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China HospitalSichuan UniversityChengduChina
| | - Inbar A. Habaz
- Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonOntarioCanada
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
3
|
Vlashi R, Sun F, Zheng C, Zhang X, Liu J, Chen G. The molecular biology of NF2/Merlin on tumorigenesis and development. FASEB J 2024; 38:e23809. [PMID: 38967126 DOI: 10.1096/fj.202400019rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The neurofibromatosis type 2 (NF2) gene, known for encoding the tumor suppressor protein Merlin, is central to the study of tumorigenesis and associated cellular processes. This review comprehensively examines the multifaceted role of NF2/Merlin, detailing its structural characteristics, functional diversity, and involvement in various signaling pathways such as Wnt/β-catenin, Hippo, TGF-β, RTKs, mTOR, Notch, and Hedgehog. These pathways are crucial for cellular growth, proliferation, and differentiation. NF2 mutations are specifically linked to the development of schwannomas, meningiomas, and ependymomas, although the precise mechanisms of tumor formation in these specific cell types remain unclear. Additionally, the review explores Merlin's role in embryogenesis, highlighting the severe developmental defects and embryonic lethality caused by NF2 deficiency. The potential therapeutic strategies targeting these genetic aberrations are also discussed, emphasizing inhibitors of mTOR, HDAC, and VEGF as promising avenues for treatment. This synthesis of current knowledge underscores the necessity for ongoing research to elucidate the detailed mechanisms of NF2/Merlin and develop effective therapeutic strategies, ultimately aiming to improve the prognosis and quality of life for individuals with NF2 mutations.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenggong Zheng
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jie Liu
- Department of Cancer Center, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
4
|
Bourlon MT, Urbina-Ramirez S, Verduzco-Aguirre HC, Mora-Pineda M, Velazquez HE, Leon-Rodriguez E, Atisha-Fregoso Y, De Anda-Gonzalez MG. Differences in the expression of the phosphatase PTP-1B in patients with localized prostate cancer with and without adverse pathological features. Front Oncol 2024; 14:1334845. [PMID: 38706600 PMCID: PMC11066170 DOI: 10.3389/fonc.2024.1334845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Patients with adverse pathological features (APF) at radical prostatectomy (RP) for prostate cancer (PC) are candidates for adjuvant treatment. Clinicians lack reliable markers to predict these APF preoperatively. Protein tyrosine phosphatase 1B (PTP-1B) is involved in migration and invasion of PC, and its expression could predict presence of APF. Our aim was to compare PTP-1B expression in patients with and without APF, and to explore PTP-1B expression as an independent prognostic factor. Methods Tissue microarrays (TMAs) were constructed using RP archival specimens for immunohistochemical staining of PTP-1B; expression was reported with a standardized score (0-9). We compared median PTP-1B score between cases with and without APF. We constructed two logistic regression models, one to identify the independence of PTP-1B score from biologically associated variables (metformin use and type 2 diabetes mellitus [T2DM]) and the second to seek independence of known risk factors (Gleason score and prostate specific antigen [PSA]). Results A total of 73 specimens were suitable for TMA construction. Forty-four (60%) patients had APF. The median PTP-1B score was higher in those with APF: 8 (5-9) vs 5 (3-8) (p=0.026). In the logistic regression model including T2DM and metformin use, the PTP-1B score maintained statistical significance (OR 1.21, 95% CI 1.01-1.45, p=0.037). In the model including PSA and Gleason score; the PTP-1B score showed no independence (OR 1.68, 95% CI 0.97-1.41, p=0.11). The area under the curve to predict APF for the PTP-1B score was 0.65 (95% CI 0.52-0.78, p=0.03), for PSA+Gleason 0.71 (95% CI 0.59-0.82, p=0.03), and for PSA+Gleason+PTP-1B score 0.73 (95% CI 0.61-0.84, p=0.001). Discussion Patients with APF after RP have a higher expression of PTP-1B than those without APF, even after adjusting for T2DM and metformin exposure. PTP-1B has a good accuracy for predicting APF but does not add to known prognostic factors.
Collapse
Affiliation(s)
- Maria T. Bourlon
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
- Universidad Panamericana, Escuela de Medicina, Mexico City, Mexico
| | - Shaddai Urbina-Ramirez
- Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Haydee C. Verduzco-Aguirre
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Mauricio Mora-Pineda
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Hugo E. Velazquez
- Instituto Nacional de Cardiología “Ignacio Chavez”, Radiology Department, Mexico City, Mexico
| | - Eucario Leon-Rodriguez
- Department of Hemato-Oncology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Yemil Atisha-Fregoso
- Instituto Tecnológico de Estudios Superiores de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - María G. De Anda-Gonzalez
- Department of Pathology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
5
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
6
|
Liu S, Xu P. Advancements in tyrosine kinase-mediated regulation of innate nucleic acid sensing. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:35-46. [PMID: 38426691 PMCID: PMC10945499 DOI: 10.3724/zdxbyxb-2023-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/28/2023] [Indexed: 03/02/2024]
Abstract
Innate nucleic acid sensing is a ubiquitous and highly conserved immunological process, which is pivotal for monitoring and responding to pathogenic invasion and cellular damage, and central to host defense, autoimmunity, cell fate determination and tumorigenesis. Tyrosine phosphorylation, a major type of post-translational modification, plays a critical regulatory role in innate immune sensing pathway. Core members of nucleic acid sensing signaling pathway, such as cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), stimulator of interferon genes (STING), and TANK binding kinase 1 (TBK1), are all subject to activity regulation triggered by tyrosine phosphorylation, thereby affecting the host antiviral defense and anti-tumor immunity under physiological or pathological conditions. This review summarizes the recent advances in research on tyrosine kinases and tyrosine phosphorylation in regulation of nucleic acid sensing. The function and potential applications of targeting tyrosine phosphorylation in anti-tumor immunity is disussed to provide insights for understanding and expanding new anti-tumor strategies.
Collapse
Affiliation(s)
- Shengduo Liu
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China.
| | - Pinglong Xu
- Institute of Intelligent Medicine, Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biosystems Homeostasis and Protection, Ministry of Education, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Zhejiang University, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Yuan BY, Zhuang Y, Wu ZF, Zhao XM, Zhang L, Chen GW, Zeng ZC. miR-146a-5p Alleviates Radiation-Induced Liver Fibrosis by Regulating PTPRA-SRC Signaling in Mice. Radiat Res 2023; 200:531-537. [PMID: 38014555 DOI: 10.1667/rade-22-00017.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/05/2023] [Indexed: 11/29/2023]
Abstract
Patients with hepatobiliary tumors who accept radiotherapy are at risk for radiation-induced liver fibrosis. MicroRNAs (miRNAs) have been implicated in the pathogenesis of radiation-induced liver damage and possess potential as novel biomarkers and therapeutic targets. However, the role of miR-146a-5p in radiation-induced liver fibrosis is less well understood. The current study was designed to evaluate the role of miR-146a-5p in radiation-induced liver fibrosis in mice and to investigate the possible mechanisms involved in miR-146a-5p-mediated effects. The experiments were performed on Institute of Cancer Research (ICR) mice which received fractionated radiation (30 Gy in 5 fractions) to the liver. The results show radiation could induce histopathological changes, liver dysfunction and fibrosis accompanied with decreased miR-146a-5p expression. miR-146a-5p agomir treatment resulted in recovery of liver function and reduced the amount of alpha-smooth muscle actin (α-SMA), collagen 1, protein tyrosine phosphatase receptor type A (PTPRA) and phosphorylated SRC in the livers of irradiated mice. Therefore, our study reveals that miR-146a-5p inhibits the progression of hepatic fibrosis after radiation treatment. And the beneficial role of miR-146a-5p may be relevant to PTPRA-SRC signaling pathway.
Collapse
Affiliation(s)
- Bao-Ying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhi-Feng Wu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao-Mei Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gen-Wen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
9
|
Androutsopoulos G, Styliara I, Zarogianni E, Lazurko N, Valasoulis G, Michail G, Adonakis G. The ErbB Signaling Network and Its Potential Role in Endometrial Cancer. EPIGENOMES 2023; 7:24. [PMID: 37873809 PMCID: PMC10594534 DOI: 10.3390/epigenomes7040024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
Endometrial cancer (EC) is the second most common malignancy of the female reproductive system worldwide. The updated EC classification emphasizes the significant role of various signaling pathways such as PIK3CA-PIK3R1-PTEN and RTK/RAS/β-catenin in EC pathogenesis. Some of these pathways are part of the EGF system signaling network, which becomes hyperactivated by various mechanisms and participates in cancer pathogenesis. In EC, the expression of ErbB receptors is significantly different, compared with the premenopausal and postmenopausal endometrium, mainly because of the increased transcriptional activity of ErbB encoding genes in EC cells. Moreover, there are some differences in ErbB-2 receptor profile among EC subgroups that could be explained by the alterations in pathophysiology and clinical behavior of various EC histologic subtypes. The fact that ErbB-2 receptor expression is more common in aggressive EC histologic subtypes (papillary serous and clear cell) could indicate a future role of ErbB-targeted therapies in well-defined EC subgroups with overexpression of ErbB receptors.
Collapse
Affiliation(s)
- Georgios Androutsopoulos
- Gynaecological Oncology Unit, Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Ioanna Styliara
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Evgenia Zarogianni
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Nadia Lazurko
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - George Valasoulis
- Department of Obstetrics and Gynaecology, Medical School, University of Thessaly, 41334 Larisa, Greece;
- Hellenic National Public Health Organization—ECDC, 15123 Athens, Greece
| | - Georgios Michail
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| | - Georgios Adonakis
- Department of Obstetrics and Gynaecology, School of Medicine, University of Patras, 26504 Rion, Greece; (I.S.); (E.Z.); (N.L.); (G.M.); (G.A.)
| |
Collapse
|
10
|
Peng C, Li S, Wang Y, Ge L, Zhang S, Cai Q, Zhen D, Chen P. Preparation of Er-Nd-TiO2 nanocomposite for the highly selective enrichment of phosphotyrosine peptides. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
11
|
Seed Storage Protein, Functional Diversity and Association with Allergy. ALLERGIES 2023. [DOI: 10.3390/allergies3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Plants are essential for humans as they serve as a source of food, fuel, medicine, oils, and more. The major elements that are utilized for our needs exist in storage organs, such as seeds. These seeds are rich in proteins, show a broad spectrum of physiological roles, and are classified based on their sequence, structure, and conserved motifs. With the improvements to our knowledge of the basic sequence and our structural understanding, we have acquired better insights into seed proteins and their role. However, we still lack a systematic analysis towards understanding the functional diversity associated within each family and their associations with allergy. This review puts together the information about seed proteins, their classification, and diverse functional roles along with their associations with allergy.
Collapse
|
12
|
Liu S, Cui C, Chen H, Liu T. Ensemble learning-based feature selection for phosphorylation site detection. Front Genet 2022; 13:984068. [PMID: 36338976 PMCID: PMC9634105 DOI: 10.3389/fgene.2022.984068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022] Open
Abstract
SARS-COV-2 is prevalent all over the world, causing more than six million deaths and seriously affecting human health. At present, there is no specific drug against SARS-COV-2. Protein phosphorylation is an important way to understand the mechanism of SARS -COV-2 infection. It is often expensive and time-consuming to identify phosphorylation sites with specific modified residues through experiments. A method that uses machine learning to make predictions about them is proposed. As all the methods of extracting protein sequence features are knowledge-driven, these features may not be effective for detecting phosphorylation sites without a complete understanding of the mechanism of protein. Moreover, redundant features also have a great impact on the fitting degree of the model. To solve these problems, we propose a feature selection method based on ensemble learning, which firstly extracts protein sequence features based on knowledge, then quantifies the importance score of each feature based on data, and finally uses the subset of important features as the final features to predict phosphorylation sites.
Collapse
Affiliation(s)
- Songbo Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chengmin Cui
- Beijing Institute of Control Engineering, China Academy of Space Technology, Beijing, China
| | - Huipeng Chen
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tong Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
13
|
Xiong Y, Li M, Lu W, Wang D, Tang M, Liu Y, Na B, Qin H, Qing G. Discerning Tyrosine Phosphorylation from Multiple Phosphorylations Using a Nanofluidic Logic Platform. Anal Chem 2021; 93:16113-16122. [PMID: 34841853 DOI: 10.1021/acs.analchem.1c03889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Discerning tyrosine phosphorylation (pTyr) catalyzed by Tyr kinase is central to the revelation of oncogenic mechanisms and the development of targeted anticancer drugs. Despite some techniques, this goal remains challenging, especially when faced with the interference of multiple phosphorylation events, including serine (pSer) and threonine phosphorylation (pThr). We describe here a functional polymer-modified artificial ion nanochannel, which enables the sensitive and selective recognition of phosphotyrosine (pY) peptide by the distinct ionic current change. Such a recognition effect allows for the nanochannel to work in a complex protein digest condition. Further, the implementation of nanofluidic logic functions with the addition of Ca2+ dramatically improves the selectivity of the nanochannel to pY peptide and thus can discern pTyr by the Tyr kinase from pSer by the Ser/Thr kinase through simultaneously monitoring multisite phosphorylation at the same or different peptide substrates in one-pot. This logic sensing platform displays the potential in differentiating Tyr kinase and Ser/Thr kinase and assessing multi-kinase activities in multi-targeted drug design.
Collapse
Affiliation(s)
- Yuting Xiong
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Minmin Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Wenqi Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Bing Na
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, 418 Guanglan Avenue, Nanchang 330013, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
14
|
Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT. MASS SPECTROMETRY REVIEWS 2021; 40:309-333. [PMID: 32491218 DOI: 10.1002/mas.21636] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000, Kuala Lumpur, Malaysia
| | - Houjiang Zhou
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, United Kingdom
| | - Mingliang Ye
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Centre, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
15
|
Yamaguchi N. [Novel Tyrosine Phosphorylation Signals in the Nucleus and on Mitotic Spindle Fibers and Lysosomes Revealed by Strong Inhibition of Tyrosine Dephosphorylation]. YAKUGAKU ZASSHI 2021; 141:927-947. [PMID: 34193653 DOI: 10.1248/yakushi.21-00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-tyrosine phosphorylation is one of the posttranslational modifications and plays critical roles in regulating a wide variety of cellular processes, such as cell proliferation, differentiation, adhesion, migration, survival, and apoptosis. Protein-tyrosine phosphorylation is reversibly regulated by protein-tyrosine kinases and protein-tyrosine phosphatases. Strong inhibition of protein-tyrosine phosphatase activities is required to undoubtedly detect tyrosine phosphorylation. Our extremely careful usage of Na3VO4, a potent protein-tyrosine phosphatase inhibitor, has revealed not only the different intracellular trafficking pathways of Src-family tyrosine kinase members but also novel tyrosine phosphorylation signals in the nucleus and on mitotic spindle fibers and lysosomes. Furthermore, despite that the first identified oncogene product v-Src is generally believed to induce transformation through continuous stimulation of proliferation signaling by its strong tyrosine kinase activity, v-Src-driven transformation was found to be caused not by continuous proliferation signaling but by v-Src tyrosine kinase activity-dependent stochastic genome alterations. Here, I summarize our findings regarding novel tyrosine phosphorylation signaling in a spatiotemporal sense and highlight the significance of the roles of tyrosine phosphorylation in transcriptional regulation inside the nucleus and chromosome dynamics.
Collapse
Affiliation(s)
- Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
16
|
Guo Y, Xu Y, Dong X, Zhang J. Cross the Undruggable Barrier, the Development of SHP2 Inhibitors: From Catalytic Site Inhibitors to Allosteric Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202100186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu Guo
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Yaping Xu
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine College of Pharmaceutical Sciences Zhejiang University Hangzhou 310058 P.R. China
| | - Jianjun Zhang
- Department of Pharmacy Institution The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine) Hangzhou 310006 P.R. China
| |
Collapse
|
17
|
Yu Y, Wei SG, Weiss RM, Felder RB. Silencing Epidermal Growth Factor Receptor in Hypothalamic Paraventricular Nucleus Reduces Extracellular Signal-regulated Kinase 1 and 2 Signaling and Sympathetic Excitation in Heart Failure Rats. Neuroscience 2021; 463:227-237. [PMID: 33540053 PMCID: PMC8106624 DOI: 10.1016/j.neuroscience.2021.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/29/2022]
Abstract
Activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling in cardiovascular regulatory regions of the brain contributes to sympathetic excitation in myocardial infarction (MI)-induced heart failure (HF) by increasing brain renin-angiotensin system (RAS) activity, neuroinflammation, and endoplasmic reticulum (ER) stress. The mechanisms eliciting brain ERK1/2 signaling in HF are still poorly understood. We tested the involvement of the epidermal growth factor receptor (EGFR) which, upon activation, stimulates ERK1/2 activity. Adult male Sprague-Dawley rats received bilateral microinjections of a lentiviral vector encoding a small interfering RNA (siRNA) for EGFR, or a scrambled siRNA, into the hypothalamic paraventricular nucleus (PVN), a recognized source of sympathetic overactivity in HF. One week later, coronary artery ligation was performed to induce HF. Four weeks later, the EGFR siRNA-treated HF rats, compared with the scrambled siRNA-treated HF rats, had lower mRNA and protein levels of EGFR, lower levels of phosphorylated (p-) EGFR and p-ERK1/2 and lower mRNA levels of the inflammatory mediators TNF-α, IL-1β and cyclooxygenase-2, the RAS components angiotensin-converting enzyme and angiotensin II type 1a receptor and the ER stress markers BIP and ATF4 in the PVN. They also had lower plasma and urinary norepinephrine levels and improved peripheral manifestations of HF. Additional studies revealed that p-EGFR was increased in the PVN of HF rats, compared with sham-operated control rats. These results suggest that activation of EGFR in the PVN triggers ERK1/2 signaling, along with ER stress, neuroinflammation and RAS activity, in MI-induced HF. Brain EGFR may be a novel target for therapeutic intervention in MI-induced HF.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shun-Guang Wei
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert M Weiss
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Robert B Felder
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, USA; VA Medical Center, Iowa City, IA, USA.
| |
Collapse
|
18
|
Mu R, Yu YY, Gegen T, Wen D, Wang F, Chen Z, Xu WB. Transcriptome analysis of ovary tissues from low- and high-yielding Changshun green-shell laying hens. BMC Genomics 2021; 22:349. [PMID: 33990173 PMCID: PMC8122536 DOI: 10.1186/s12864-021-07688-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/28/2021] [Indexed: 02/18/2023] Open
Abstract
Background Changshun green-shell laying hens are unique to Guizhou Province, China, and have high egg quality. Improving egg production performance has become an important breeding task, and in recent years, the development of high-throughput sequencing technology provides a fast and exact method for genetic selection. Therefore, we aimed to use this technology to analyze the differences between the ovarian mRNA transcriptome of low and high-yield Changshun green-shell layer hens, identify critical pathways and candidate genes involved in controlling the egg production rate, and provide basic data for layer breeding. Results The egg production rates of the low egg production group (LP) and the high egg production group (HP) were 68.00 ± 5.56 % and 93.67 ± 7.09 %, with significant differences between the groups (p < 0.01). Moreover, the egg weight, shell thickness, strength and layer weight of the LP were significantly greater than those of the HP (p < 0.05). More than 41 million clean reads per sample were obtained, and more than 90 % of the clean reads were mapped to the Gallus gallus genome. Further analysis identified 142 differentially expressed genes (DEGs), and among them, 55 were upregulated and 87 were downregulated in the ovaries. KEGG pathway enrichment analysis identified 9 significantly enriched pathways, with the neuroactive ligand-receptor interaction pathway being the most enriched. GO enrichment analysis indicated that the GO term transmembrane receptor protein tyrosine kinase activity, and the DEGs identified in this GO term, including PRLR, NRP1, IL15, BANK1, NTRK1, CCK, and HGF may be associated with crucial roles in the regulation of egg production. Conclusions The above-mentioned DEGs may be relevant for the molecular breeding of Changshun green-shell laying hens. Moreover, enrichment analysis indicated that the neuroactive ligand-receptor interaction pathway and receptor protein tyrosine kinases may play crucial roles in the regulation of ovarian function and egg production. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07688-x.
Collapse
Affiliation(s)
- Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities Duyun, Jianjiang Road 5, 558000, Duyun, China
| | - Yi-Yin Yu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities Duyun, Jianjiang Road 5, 558000, Duyun, China
| | - Tuya Gegen
- Library, Qiannan Normal University for Nationalities, 558000, Duyun, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities Duyun, Jianjiang Road 5, 558000, Duyun, China
| | - Fen Wang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities Duyun, Jianjiang Road 5, 558000, Duyun, China
| | - Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities Duyun, Jianjiang Road 5, 558000, Duyun, China.
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China. .,School of Marine Sciences, Ningbo University, 315211, Ningbo, China.
| |
Collapse
|
19
|
Grześk G, Woźniak-Wiśniewska A, Błażejewski J, Górny B, Wołowiec Ł, Rogowicz D, Nowaczyk A. The Interactions of Nintedanib and Oral Anticoagulants-Molecular Mechanisms and Clinical Implications. Int J Mol Sci 2020; 22:ijms22010282. [PMID: 33396592 PMCID: PMC7795697 DOI: 10.3390/ijms22010282] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
Nintedanib is a synthetic orally active tyrosine kinase inhibitor, whose main action is to inhibit the receptors of the platelet-derived growth factor, fibroblast growth factor and vascular endothelial growth factor families. The drug also affects other kinases, including Src, Flt-3, LCK, LYN. Nintedanib is used in the treatment of idiopathic pulmonary fibrosis, chronic fibrosing interstitial lung diseases and lung cancer. The mechanism of action suggests that nintedanib should be considered one of the potential agents for inhibiting and revising the fibrosis process related to COVID-19 infections. Due to the known induction of coagulation pathways during COVID-19 infections, possible interaction between nintedanib and anticoagulant seems to be an extremely important issue. In theory, nintedanib could increase the bleeding risk, thrombosis and lead to thrombocytopenia. The data from clinical trials on the concomitant use of nintedanib and antithrombotic agents is very limited as this patient group was within the standard exclusion criteria. Nintedanib is an important therapeutic option, despite its interaction with anticoagulants. If anticoagulant therapy is necessary, the more effective and safer option is the concomitant administration of DOACs and nintedanib, especially when drug-monitored therapy will be used in patients at high risk of bleeding complications.
Collapse
Affiliation(s)
- Grzegorz Grześk
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.G.); (A.W.-W.); (J.B.); (B.G.); (Ł.W.); (D.R.)
| | - Anita Woźniak-Wiśniewska
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.G.); (A.W.-W.); (J.B.); (B.G.); (Ł.W.); (D.R.)
| | - Jan Błażejewski
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.G.); (A.W.-W.); (J.B.); (B.G.); (Ł.W.); (D.R.)
| | - Bartosz Górny
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.G.); (A.W.-W.); (J.B.); (B.G.); (Ł.W.); (D.R.)
| | - Łukasz Wołowiec
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.G.); (A.W.-W.); (J.B.); (B.G.); (Ł.W.); (D.R.)
| | - Daniel Rogowicz
- Department of Cardiology and Clinical Pharmacology, Faculty of Health Sciences, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (G.G.); (A.W.-W.); (J.B.); (B.G.); (Ł.W.); (D.R.)
| | - Alicja Nowaczyk
- Department of Organic Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 2 dr. A. Jurasza St., 85-094 Bydgoszcz, Poland
- Correspondence:
| |
Collapse
|
20
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Comparative Analysis and Molecular Evolution of Class I PI3K Regulatory Subunit p85α Reveal the Structural Similarity Between nSH2 and cSH2 Domains. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Li M, Xiong Y, Lu W, Wang X, Liu Y, Na B, Qin H, Tang M, Qin H, Ye M, Liang X, Qing G. Functional Nanochannels for Sensing Tyrosine Phosphorylation. J Am Chem Soc 2020; 142:16324-16333. [PMID: 32894673 DOI: 10.1021/jacs.0c06510] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tyrosine phosphorylation (pTyr), much of which occurred on localized multiple sites, initiates cellular signaling, governs cellular functions, and its dysregulation is implicated in many diseases, especially cancers. pTyr-specific sensing is of great significance for understanding disease states and developing targeted anticancer drugs, however, it is very challenging due to the slight difference from serine (pSer) or threonine phosphorylation (pThr). Here we present polyethylenimine-g-phenylguanidine (PEI-PG)-modified nanochannels that can address the challenge. Rich guanidinium groups enabled PEI-PG to form multiple interactions with phosphorylated residues, especially pTyr residue, which triggered the conformational change of PEI-PG. By taking advantage of the "OFF-ON" change of the ion flux arising from the conformational shrinkage of the grafted PEI-PG, the nanochannels could distinguish phosphorylated peptide (PP) from nonmodified peptide, recognize PPs with pSer, pThr, or pTyr residue and PPs with different numbers of identical residues, and importantly could sense pTyr peptides in a biosample. Benefiting from the strong interaction between the guanidinium group and the pTyr side-chain, the specific sensing of pTyr peptide was achieved by performing a simple logic operation based on PEI-PG-modified nanochannels when Ca2+ was introduced as an interferent. The excellent pTyr sensing capacity makes the nanochannels available for real-time monitoring of the pTyr process by c-Abl kinase on a peptide substrate, even under complicated conditions, and the proof-of-concept study of monitoring the kinase activity demonstrates its potential in kinase inhibitor screening.
Collapse
Affiliation(s)
- Minmin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Yuting Xiong
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Wenqi Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yunhai Liu
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Bing Na
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, East China University of Technology, Nanchang 330013, P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Mingliang Tang
- College of Life Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
22
|
Tang K, Jia YN, Yu B, Liu HM. Medicinal chemistry strategies for the development of protein tyrosine phosphatase SHP2 inhibitors and PROTAC degraders. Eur J Med Chem 2020; 204:112657. [PMID: 32738411 DOI: 10.1016/j.ejmech.2020.112657] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
Abstract
As a non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene, the Src homology 2 domain-containing protein tyrosine phosphatase (SHP2) is involved in mitogen-activated protein kinase (MAPK) signaling pathway and contributes to immune surveillance via programmed cell death pathway (PD-1/PD-L1). To date, numerous SHP2 inhibitors have been developed, some of them have advanced into clinical trials. Moreover, the first PROTAC degrader SHP2-D26 has been proved to effectively induce degradation of SHP2, which may open a new avenue for targeted SHP2 therapies. In this review, we systematically summarized the development of SHP2 inhibitors with a particular focus on the structure-activity relationships (SAR) studies, crystal structures or binding models, and their modes of action.
Collapse
Affiliation(s)
- Kai Tang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yao-Nan Jia
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Military of Education, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
23
|
Kong Q, Huang P, Chu B, Ke M, Chen W, Zheng Z, Ji S, Cai Z, Li P, Tian R. High-Throughput and Integrated Chemical Proteomic Approach for Profiling Phosphotyrosine Signaling Complexes. Anal Chem 2020; 92:8933-8942. [PMID: 32539344 DOI: 10.1021/acs.analchem.0c00839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phosphotyrosine (pTyr) signaling complexes are important resources of biomarkers and drug targets which often need to be profiled with enough throughput. Current profiling approaches are not feasible to meet this need due to either biased profiling by antibody-based detection or low throughput by traditional affinity purification-mass spectrometry approach (AP-MS), as exemplified by our previously developed photo-pTyr-scaffold approach. To address these limitations, we developed a 96-well microplate-based sample preparation and fast data independent proteomic analysis workflow. By assembling the photo-pTyr-scaffold probe into a 96-well microplate, we achieved steric hindrance-free photoaffinity capture of pTyr signaling complexes, selective enrichment under denaturing conditions, and efficient in-well digestion in a fully integrated manner. EGFR signaling complex proteins could be efficiently captured and identified by using 300 times less cell lysate and 100 times less photo-pTyr-scaffold probe as compared with our previous approach operated in an Eppendorf tube. Furthermore, the lifetime of the photo-pTyr-scaffold probe in a 96-well microplate was significantly extended from 1 week up to 1 month. More importantly, by combining with high-flow nano LC separation and data independent acquisition on the Q Exactive HF-X mass spectrometer, LC-MS time could be significantly reduced to only 35 min per sample without increasing sample loading amount and compromising identification and quantification performance. This new high-throughput proteomic approach allowed us to rapidly and reproducibly profile dynamic pTyr signaling complexes with EGF stimulation at five time points and EGFR inhibitor treatment at five different concentrations. We are therefore optimized for its generic application in biomarkers discovery and drug screening in a high-throughput fashion.
Collapse
Affiliation(s)
- Qian Kong
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Peiwu Huang
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Bizhu Chu
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Mi Ke
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Wendong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Zhendong Zheng
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Shanping Ji
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Pengfei Li
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Shenzhen Grubbs Institute, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
24
|
Protein Phosphorylation in Serine Residues Correlates with Progression from Precancerous Lesions to Cervical Cancer in Mexican Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5058928. [PMID: 32337254 PMCID: PMC7157794 DOI: 10.1155/2020/5058928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a posttranslational modification that is essential for normal cellular processes; however, abnormal phosphorylation is one of the prime causes for alteration of many structural, functional, and regulatory proteins in disease conditions. In cancer, changes in the states of protein phosphorylation in tyrosine residues have been more studied than phosphorylation in threonine or serine residues, which also undergo alterations with greater predominance. In general, serine phosphorylation leads to the formation of multimolecular signaling complexes that regulate diverse biological processes, but in pathological conditions such as tumorigenesis, anomalous phosphorylation may result in the deregulation of some signaling pathways. Cervical cancer (CC), the main neoplasm associated with human papillomavirus (HPV) infection, is the fourth most frequent cancer worldwide. Persistent infection of the cervix with high-risk human papillomaviruses produces precancerous lesions starting with low-grade squamous intraepithelial lesions (LSIL), progressing to high-grade squamous intraepithelial lesions (HSIL) until CC is generated. Here, we compared the proteomic profile of phosphorylated proteins in serine residues from healthy, LSIL, HSIL, and CC samples. Our data show an increase in the number of phosphorylated proteins in serine residues as the grade of injury rises. These results provide a support for future studies focused on phosphorylated proteins and their possible correlation with the progression of cervical lesions.
Collapse
|
25
|
Abstract
Exposure to arsenic in contaminated drinking water is an emerging public health problem that impacts more than 200 million people worldwide. Accumulating lines of evidence from epidemiological studies revealed that chronic exposure to arsenic can result in various human diseases including cancer, type 2 diabetes, and neurodegenerative disorders. Arsenic is also classified as a Group I human carcinogen. In this review, we survey extensively different modes of action for arsenic-induced carcinogenesis, with focus being placed on arsenic-mediated impairment of DNA repair pathways. Inorganic arsenic can be bioactivated by methylation, and the ensuing products are highly genotoxic. Bioactivation of arsenicals also elicits the production of reactive oxygen and nitrogen species (ROS and RNS), which can directly damage DNA and modify cysteine residues in proteins. Results from recent studies suggest zinc finger proteins as crucial molecular targets for direct binding to As3+ or for modifications by arsenic-induced ROS/RNS, which may constitute a common mechanism underlying arsenic-induced perturbations of DNA repair.
Collapse
|
26
|
Martin-Hidalgo D, Serrano R, Zaragoza C, Garcia-Marin LJ, Bragado MJ. Human sperm phosphoproteome reveals differential phosphoprotein signatures that regulate human sperm motility. J Proteomics 2020; 215:103654. [DOI: 10.1016/j.jprot.2020.103654] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
|
27
|
Abe Y, Hirano H, Shoji H, Tada A, Isoyama J, Kakudo A, Gunji D, Honda K, Boku N, Adachi J, Tomonaga T. Comprehensive characterization of the phosphoproteome of gastric cancer from endoscopic biopsy specimens. Theranostics 2020; 10:2115-2129. [PMID: 32089736 PMCID: PMC7019165 DOI: 10.7150/thno.37623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Rationale: Cancer phosphoproteomics can provide insights regarding kinases that can be targeted for therapeutic applications. Monitoring the phosphoproteomics in cancer is expected to play a key role in optimizing treatments with kinase inhibitors. Clinical phosphoproteomics in surgical tissues and patient-derived models has been studied intensively. However, the reported data may not accurately reflect the phosphosignaling status in patients due to the effect of ischemia occurring during surgery or changes in the characteristics of cancer cells when establishing the models. In contrast, endoscopic biopsies have an advantage for clinical phosphoproteomics because they can be rapidly cryo-preserved. We aimed to develop a highly sensitive method for phosphoproteomics in endoscopic biopsies of gastric cancer. Methods: Three tumor biopsies and three normal gastric biopsies were obtained by endoscopy at one time, and subjected to our optimized phosphoproteomics. Phosphopeptides were enriched with an immobilized metal affinity chromatography, and labeled with Tandem Mass Tag reagent. Quantified phosphosites were compared between the pairs of tumor/normal biopsies within same patient. Cancer-specific activated pathways and kinases were identified by pathway enrichment analysis and kinase-substrate enrichment analysis. Results: Our protocol enabled the identification of more than 10,000 class 1 phosphosites from endoscopic biopsies. A comparison between samples from cancer tissue and normal mucosa demonstrated differences in the phosphosignaling, including biomarkers of response to DNA damage. Finally, cancer-specific activation of DNA damage response signaling was validated by additional phosphoproteomics of other patients and western blotting of gastric cancer/normal cells. Conclusion: In summary, our pioneering approach will facilitate more accurate clinical phosphoproteomics in endoscopic biopsies, which can be applied to monitor the activities of therapeutic kinases and, ultimately, can be a useful tool to precision medicine.
Collapse
|
28
|
Zheng W, Zhang Z, Ye Y, Wu Q, Liu M, Li C. Phosphorylation dependent α-synuclein degradation monitored by in-cell NMR. Chem Commun (Camb) 2019; 55:11215-11218. [PMID: 31469130 DOI: 10.1039/c9cc05662a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the dephosphorylation and proteolysis of phosphorylated α-synuclein, a Parkinson's disease-related protein, in living cells in a time resolved manner using in-cell NMR.
Collapse
Affiliation(s)
- Wenwen Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| | | | | | | | | | | |
Collapse
|
29
|
Chen M, Cao Y, Dong D, Zhang Z, Zhang Y, Chen J, Luo Y, Chen Q, Xiao X, Zhou J, Xie W, Li D, Xie S, Liu M. Regulation of mitotic spindle orientation by phosphorylation of end binding protein 1. Exp Cell Res 2019; 384:111618. [PMID: 31505167 DOI: 10.1016/j.yexcr.2019.111618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
Abstract
End binding protein 1 (EB1) is a key regulator of microtubule dynamics that orchestrates hierarchical interaction networks at microtubule plus ends to control proper cell division. EB1 activity is known to be regulated by serine/threonine phosphorylation; however, how tyrosine phosphorylation affects EB1 activity remains poorly understood. In this study, we mapped the tyrosine phosphorylation pattern of EB1 in synchronized cells and identified two tyrosine phosphorylation sites (Y217 and Y247) in mitotic cells. Using phospho-deficient (Y/F) and phospho-mimic (Y/D) mutants, we revealed that Y247, but not Y217, is critical for astral microtubule stability. The Y247D mutant contributed to increased spindle angle, indicative of defects in spindle orientation. Time-lapse microscopy revealed that the Y247D mutant significantly delayed mitotic progression by increasing the duration times of prometaphase and metaphase. Structural analysis suggests that Y247 mutants lead to instability of the hydrophobic cavity in the EB homology (EBH) domain, thereby affecting its interactions with p150glued, a protein essential for Gαi/LGN/NuMA complex capture. These findings uncover a crucial role for EB1 phosphorylation in the regulation of mitotic spindle orientation and cell division.
Collapse
Affiliation(s)
- Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yu Cao
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dan Dong
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zhenhua Zhang
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yijun Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Youguang Luo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiang Chen
- Department of Emergency, Shanxian Dongda Hospital, Shandong, 274300, China
| | - Xin Xiao
- Department of Pathology, Zaozhuang Central District People's Hospital, Shandong, 277011, China
| | - Jun Zhou
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|
30
|
He S, Tong X, Han M, Bai Y, Dai F. Genome-Wide Identification and Characterization of Tyrosine Kinases in the Silkworm, Bombyx mori. Int J Mol Sci 2018; 19:E934. [PMID: 29561793 PMCID: PMC5979338 DOI: 10.3390/ijms19040934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
The tyrosine kinases (TKs) are important parts of metazoan signaling pathways and play significant roles in cell growth, development, apoptosis and disease. Genome-wide characterization of TKs has been conducted in many metazoans, however, systematic information about this family in Lepidoptera is still lacking. We retrieved 33 TK-encoding genes in silkworm and classified them into 25 subfamilies by sequence analysis, without members in AXL, FRK, PDGFR, STYK1 and TIE subfamilies. Although domain sequences in each subfamily are conserved, TKs in vertebrates tend to be remarkably conserved and stable. Our results of phylogenetic analysis supported the previous conclusion for the second major expansion of TK family. Gene-Ontology (GO) analysis revealed that a higher proportion of BmTKs played roles in binding, catalysis, signal transduction, metabolism, biological regulation and response to stimulus, compared to all silkworm genes annotated in GO. Moreover, the expression profile analysis of BmTKs among multiple tissues and developmental stages demonstrated that many genes exhibited stage-specific and/or sex-related expression during embryogenesis, molting and metamorphosis, and that 8 BmTKs presented tissue-specific high expression. Our study provides systematic description of silkworm tyrosine kinases, and may also provide further insights into metazoan TKs and assist future studies addressing their functions.
Collapse
Affiliation(s)
- Songzhen He
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| | - Yanmin Bai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China.
| |
Collapse
|
31
|
Goel RK, Paczkowska M, Reimand J, Napper S, Lukong KE. Phosphoproteomics Analysis Identifies Novel Candidate Substrates of the Nonreceptor Tyrosine Kinase, Src- related Kinase Lacking C-terminal Regulatory Tyrosine and N-terminal Myristoylation Sites (SRMS). Mol Cell Proteomics 2018; 17:925-947. [PMID: 29496907 DOI: 10.1074/mcp.ra118.000643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 01/23/2023] Open
Abstract
SRMS (Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites), also known as PTK 70 (Protein tyrosine kinase 70), is a non-receptor tyrosine kinase that belongs to the BRK family of kinases (BFKs). To date less is known about the cellular role of SRMS primarily because of the unidentified substrates or signaling intermediates regulated by the kinase. In this study, we used phosphotyrosine antibody-based immunoaffinity purification in large-scale label-free quantitative phosphoproteomics to identify novel candidate substrates of SRMS. Our analyses led to the identification of 1258 tyrosine-phosphorylated peptides which mapped to 663 phosphoproteins, exclusively from SRMS-expressing cells. DOK1, a previously characterized SRMS substrate, was also identified in our analyses. Functional enrichment analyses revealed that the candidate SRMS substrates were enriched in various biological processes including protein ubiquitination, mitotic cell cycle, energy metabolism and RNA processing, as well as Wnt and TNF signaling. Analyses of the sequence surrounding the phospho-sites in these proteins revealed novel candidate SRMS consensus substrate motifs. We utilized customized high-throughput peptide arrays to validate a subset of the candidate SRMS substrates identified in our MS-based analyses. Finally, we independently validated Vimentin and Sam68, as bona fide SRMS substrates through in vitro and in vivo assays. Overall, our study identified a number of novel and biologically relevant SRMS candidate substrates, which suggests the involvement of the kinase in a vast array of unexplored cellular functions.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- From the ‡Department of Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada
| | - Marta Paczkowska
- §Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto M5G 0A3, Ontario, Canada
| | - Jüri Reimand
- §Computational Biology Program, Ontario Institute for Cancer Research, 661 University Ave Suite 510, Toronto M5G 0A3, Ontario, Canada.,¶Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto M5G 1L7, Ontario, Canada
| | - Scott Napper
- From the ‡Department of Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada.,‖Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), 120 Veterinary Road, University of Saskatchewan, Saskatoon S7N 5E3, Saskatchewan, Canada
| | - Kiven Erique Lukong
- From the ‡Department of Biochemistry, College of Medicine, 107 Wiggins Road, University of Saskatchewan, Saskatoon S7N 5E5, Saskatchewan, Canada;
| |
Collapse
|
32
|
Wu S, Fu L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer 2018; 17:25. [PMID: 29455646 PMCID: PMC5817862 DOI: 10.1186/s12943-018-0775-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance (MDR) triggered by ATP binding cassette (ABC) transporter such as ABCB1, ABCC1, ABCG2 limited successful cancer chemotherapy. Unfortunately, no commercial available MDR modulator approved by FDA was used in clinic. Tyrosine kinase inhibitors (TKIs) have been administrated to fight against cancer for decades. Almost TKI was used alone in clinic. However, drug combinations acting synergistically to kill cancer cells have become increasingly important in cancer chemotherapy as an approach for the recurrent resistant disease. Here, we summarize the effect of TKIs on enhancing the efficacy of conventional chemotherapeutic drug in ABC transporter-mediated MDR cancer cells, which encourage to further discuss and study in clinic.
Collapse
Affiliation(s)
- Shaocong Wu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
33
|
The plant-specific histone residue Phe41 is important for genome-wide H3.1 distribution. Nat Commun 2018; 9:630. [PMID: 29434220 PMCID: PMC5809374 DOI: 10.1038/s41467-018-02976-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
The dynamic incorporation of histone variants influences chromatin structure and many biological processes. In Arabidopsis, the canonical variant H3.1 differs from H3.3 in four residues, one of which (H3.1Phe41) is unique and conserved in plants. However, its evolutionary significance remains unclear. Here, we show that Phe41 first appeared in H3.1 in ferns and became stable during land plant evolution. Unlike H3.1, which is specifically enriched in silent regions, H3.1F41Y variants gain ectopic accumulation at actively transcribed regions. Reciprocal tail and core domain swap experiments between H3.1 and H3.3 show that the H3.1 core, while necessary, is insufficient to restrict H3.1 to silent regions. We conclude that the vascular-plant-specific Phe41 is critical for H3.1 genomic distribution and may act collaboratively with the H3.1 core to regulate deposition patterns. This study reveals that Phe41 may have evolved to provide additional regulation of histone deposition in plants. The canonical histone variant H3.1 of vascular plants contains a conserved Phe residue at position 41 that is unique to the plant kingdom. Here, Lu et al. provide evidence that H3.1Phe41 acts collaboratively with the H3.1 core domain to restrict H3.1 deposition to silent regions of the genome.
Collapse
|
34
|
Erthal RP, Siervo GEML, Silveira LTR, Scarano WR, Fernandes GSA. Can resveratrol attenuate testicular damage in neonatal and adult rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin during gestation? Reprod Fertil Dev 2018; 30:442-450. [DOI: 10.1071/rd17180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is considered one of the most toxic dioxins. The effects of TCDD are exerted via binding to the aryl hydrocarbon receptor (AhR). The aim of the present study was to evaluate the possible protective effects of resveratrol, an AhR antagonist, against testicular damage caused by TCDD exposure during pregnancy. Pregnant female Sprague-Dawley rats were divided into four groups: a control group; a group treated with 1 µg kg−1, p.o., TCDD on Gestational Day (GD) 15; a group treated with 20 µg kg−1, p.o., resveratrol on GD10–21; and a group treated with both TCDD and resveratrol. Rats were weighed and killed, and neonatal testes were collected for histopathological analysis on Postnatal Day (PND) 1. At PND90, adult male rats were killed and the testes collected for histopathological analysis and determination of sperm count. Resveratrol had a protective effect against the effects of TCDD on Sertoli cell number in adult and neonate testes, as well as against the effects of TCDD on abnormal seminiferous tubules in adults. Combined administration of TCDD and resveratrol altered the kinetics of spermatogenesis and the proportion of neonatal testicular compartments compared with the control group In addition, combined TCDD and resveratrol treatment decreased seminiferous tubule diameter in adult male rats compared with the control group. In conclusion, resveratrol may protect against some TCDD-induced testicular damage, but, based on the parameters assessed, the administration of resveratrol and TCDD in combination may result in more severe toxicity than administration of either drug alone.
Collapse
|
35
|
Abdelrasoul M, Ponniah K, Mao A, Warden MS, Elhefnawy W, Li Y, Pascal SM. Conformational Clusters of Phosphorylated Tyrosine. J Am Chem Soc 2017; 139:17632-17638. [PMID: 29121470 DOI: 10.1021/jacs.7b10367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tyrosine phosphorylation plays an important role in many cellular and intercellular processes including signal transduction, subcellular localization, and regulation of enzymatic activity. In 1999, Blom et al., using the limited number of protein data bank (PDB) structures available at that time, reported that the side chain structures of phosphorylated tyrosine (pY) are partitioned into two conserved conformational clusters ( Blom, N.; Gammeltoft, S.; Brunak, S. J. Mol. Biol. 1999 , 294 , 1351 - 1362 ). We have used the spectral clustering algorithm to cluster the increasingly growing number of protein structures with pY sites, and have found that the pY residues cluster into three distinct side chain conformations. Two of these pY conformational clusters associate strongly with a narrow range of tyrosine backbone conformation. The novel cluster also highly correlates with the identity of the n + 1 residue, and is strongly associated with a sequential pYpY conformation which places two adjacent pY side chains in a specific relative orientation. Further analysis shows that the three pY clusters are associated with distinct distributions of cognate protein kinases.
Collapse
Affiliation(s)
- Maha Abdelrasoul
- Department of Computer Science, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Komala Ponniah
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Alice Mao
- Ocean Lake High School , Virginia Beach, Virginia 23454, United States
| | - Meghan S Warden
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Wessam Elhefnawy
- Department of Computer Science, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Yaohang Li
- Department of Computer Science, Old Dominion University , Norfolk, Virginia 23529, United States
| | - Steven M Pascal
- Department of Chemistry and Biochemistry, Old Dominion University , Norfolk, Virginia 23529, United States
| |
Collapse
|
36
|
Bllaci L, Torsetnes SB, Wierzbicka C, Shinde S, Sellergren B, Rogowska-Wrzesinska A, Jensen ON. Phosphotyrosine Biased Enrichment of Tryptic Peptides from Cancer Cells by Combining pY-MIP and TiO2 Affinity Resins. Anal Chem 2017; 89:11332-11340. [DOI: 10.1021/acs.analchem.7b02091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Loreta Bllaci
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Silje B. Torsetnes
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Celina Wierzbicka
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Sudhirkumar Shinde
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Börje Sellergren
- Department
of Biomedical Sciences, Malmö University, S-20506 Malmö, Sweden
| | - Adelina Rogowska-Wrzesinska
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| | - Ole N. Jensen
- Department
of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical
Sciences, University of Southern Denmark, DK-5230 Odense
M, Denmark
| |
Collapse
|
37
|
Duarte M, Subedi P, Yilmaz E, Marcus K, Laurell T, Ekström S. Molecularly imprinted polymers synthesizedviatemplate immobilization on fumed silica nanoparticles for the enrichment of phosphopeptides. J Mol Recognit 2017; 31. [DOI: 10.1002/jmr.2677] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 08/27/2017] [Accepted: 09/08/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Mariana Duarte
- Department of Biomedical Engineering; Lund University; Lund Sweden
- MIP Technologies AB, a subsidiary of Biotage AB; Lund Sweden
| | - Prabal Subedi
- Medizinisches Proteom-Center; Ruhr-University Bochum; Bochum Germany
| | - Ecevit Yilmaz
- MIP Technologies AB, a subsidiary of Biotage AB; Lund Sweden
| | - Katrin Marcus
- Medizinisches Proteom-Center; Ruhr-University Bochum; Bochum Germany
| | - Thomas Laurell
- Department of Biomedical Engineering; Lund University; Lund Sweden
| | - Simon Ekström
- Department of Biomedical Engineering; Lund University; Lund Sweden
| |
Collapse
|
38
|
Kang UB, Alexander WM, Marto JA. Interrogating the hidden phosphoproteome. Proteomics 2017; 17. [PMID: 28165663 DOI: 10.1002/pmic.201600437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/27/2017] [Accepted: 02/01/2017] [Indexed: 12/23/2022]
Abstract
Postgenomic studies continue to highlight the potential clinical importance of protein phosphorylation signaling pathways in drug discovery. Unfortunately, the dynamic range and variable stoichiometry of protein phosphorylation continues to stymie efforts to achieve comprehensive characterization of the human phosphoproteome. In this study, we develop a complementary, two-stage method for enrichment of cysteine-containing phosphopeptides combined with TMT multiplex labeling for relative quantification. The use of this approach with multidimensional fractionation in mammalian cells yielded more than 7000 unique cys-phosphopeptide sequences, comprising 15-20% novel phosphorylation sites. The use of our approach in combination with pharmacologic inhibitors of the mechanistic target of rapamycin complex 1 and 2 identified several putatively novel protein substrates for the mechanistic target of rapamycin kinase.
Collapse
Affiliation(s)
- Un-Beom Kang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William M Alexander
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Eritja N, Yeramian A, Chen BJ, Llobet-Navas D, Ortega E, Colas E, Abal M, Dolcet X, Reventos J, Matias-Guiu X. Endometrial Carcinoma: Specific Targeted Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 943:149-207. [PMID: 27910068 DOI: 10.1007/978-3-319-43139-0_6] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometrial cancer (EC) is the most common gynecologic malignancy in the western world with more than 280,000 cases per year worldwide. Prognosis for EC at early stages, when primary surgical resection is the most common initial treatment, is excellent. Five-year survival rate is around 70 %.Several molecular alterations have been described in the different types of EC. They occur in genes involved in important signaling pathways. In this chapter, we will review the most relevant altered pathways in EC, including PI3K/AKT/mTOR, RAS-RAF-MEK-ERK, Tyrosine kinase, WNT/β-Catenin, cell cycle, and TGF-β signaling pathways. At the end of the chapter, the most significant clinical trials will be briefly discussed.This information is important to identify specific targets for therapy.
Collapse
Affiliation(s)
- Nuria Eritja
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Bo-Juen Chen
- New York Genome Center, New York, NY, 10013, USA
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne, NE1 3BZ, UK
| | - Eugenia Ortega
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Eva Colas
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Miguel Abal
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Translational Medical Oncology, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain
| | - Xavier Dolcet
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
| | - Jaume Reventos
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain
- Research Unit in Biomedicine and Translational and Pediatric Oncology, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
- GEICEN Research Group, Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, Av Rovira Roure, 80, 25198, Lleida, Spain.
| |
Collapse
|
40
|
Hydrogen bond based smart polymer for highly selective and tunable capture of multiply phosphorylated peptides. Nat Commun 2017; 8:461. [PMID: 28878229 PMCID: PMC5587758 DOI: 10.1038/s41467-017-00464-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/30/2017] [Indexed: 01/01/2023] Open
Abstract
Multisite phosphorylation is an important and common mechanism for finely regulating protein functions and subsequent cellular responses. However, this study is largely restricted by the difficulty to capture low-abundance multiply phosphorylated peptides (MPPs) from complex biosamples owing to the limitation of enrichment materials and their interactions with phosphates. Here we show that smart polymer can serve as an ideal platform to resolve this challenge. Driven by specific but tunable hydrogen bonding interactions, the smart polymer displays differential complexation with MPPs, singly phosphorylated and non-modified peptides. Importantly, MPP binding can be modulated conveniently and precisely by solution conditions, resulting in highly controllable MPP adsorption on material surface. This facilitates excellent performance in MPP enrichment and separation from model proteins and real biosamples. High enrichment selectivity and coverage, extraordinary adsorption capacities and recovery towards MPPs, as well as high discovery rates of unique phosphorylation sites, suggest its great potential in phosphoproteomics studies. Capture of low-abundance multiply phosphorylated peptides (MPPs) is difficult due to limitation of enrichment materials and their interactions with phosphates. Here the authors show, a smart polymer driven by specific but tunable hydrogen bonding interactions can differentially complex with MPPs, singly phosphorylated and non-modified peptides.
Collapse
|
41
|
Abe Y, Nagano M, Kuga T, Tada A, Isoyama J, Adachi J, Tomonaga T. Deep Phospho- and Phosphotyrosine Proteomics Identified Active Kinases and Phosphorylation Networks in Colorectal Cancer Cell Lines Resistant to Cetuximab. Sci Rep 2017; 7:10463. [PMID: 28874695 PMCID: PMC5585238 DOI: 10.1038/s41598-017-10478-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/09/2017] [Indexed: 12/23/2022] Open
Abstract
Abnormality in cellular phosphorylation is closely related to oncogenesis. Thus, kinase inhibitors, especially tyrosine kinase inhibitors (TKIs), have been developed as anti-cancer drugs. Genomic analyses have been used in research on TKI sensitivity, but some types of TKI resistance have been unclassifiable by genomic data. Therefore, global proteomic analysis, especially phosphotyrosine (pY) proteomic analysis, could contribute to predict TKI sensitivity and overcome TKI-resistant cancer. In this study, we conducted deep phosphoproteomic analysis to select active kinase candidates in colorectal cancer intrinsically resistant to Cetuximab. The deep phosphoproteomic data were obtained by performing immobilized metal-ion affinity chromatography-based phosphoproteomic and highly sensitive pY proteomic analyses. Comparison between sensitive (LIM1215 and DLD1) and resistant cell lines (HCT116 and HT29) revealed active kinase candidates in the latter, most of which were identified by pY proteomic analysis. Remarkably, genomic mutations were not assigned in most of these kinases. Phosphorylation-based signaling network analysis of the active kinase candidates indicated that SRC-PRKCD cascade was constitutively activated in HCT116 cells. Treatment with an SRC inhibitor significantly inhibited proliferation of HCT116 cells. In summary, our results based on deep phosphoproteomic data led us to propose novel therapeutic targets against cetuximab resistance and showed the potential for anti-cancer therapy.
Collapse
Affiliation(s)
- Yuichi Abe
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Maiko Nagano
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Takahisa Kuga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.,Department of Biochemistry and Molecular Biology, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, 607-8414, Japan
| | - Asa Tada
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Junko Isoyama
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| |
Collapse
|
42
|
Huhtinen A, Hongisto V, Laiho A, Löyttyniemi E, Pijnenburg D, Scheinin M. Gene expression profiles and signaling mechanisms in α 2B-adrenoceptor-evoked proliferation of vascular smooth muscle cells. BMC SYSTEMS BIOLOGY 2017; 11:65. [PMID: 28659168 PMCID: PMC5490158 DOI: 10.1186/s12918-017-0439-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND α2-adrenoceptors are important regulators of vascular tone and blood pressure. Regulation of cell proliferation is a less well investigated consequence of α2-adrenoceptor activation. We have previously shown that α2B-adrenoceptor activation stimulates proliferation of vascular smooth muscle cells (VSMCs). This may be important for blood vessel development and plasticity and for the pathology and therapeutics of cardiovascular disorders. The underlying cellular mechanisms have remained mostly unknown. This study explored pathways of regulation of gene expression and intracellular signaling related to α2B-adrenoceptor-evoked VSMC proliferation. RESULTS The cellular mechanisms and signaling pathways of α2B-adrenoceptor-evoked proliferation of VSMCs are complex and include redundancy. Functional enrichment analysis and pathway analysis identified differentially expressed genes associated with α2B-adrenoceptor-regulated VSMC proliferation. They included the upregulated genes Egr1, F3, Ptgs2 and Serpine1 and the downregulated genes Cx3cl1, Cav1, Rhoa, Nppb and Prrx1. The most highly upregulated gene, Lypd8, represents a novel finding in the VSMC context. Inhibitor library screening and kinase activity profiling were applied to identify kinases in the involved signaling pathways. Putative upstream kinases identified by two different screens included PKC, Raf-1, Src, the MAP kinases p38 and JNK and the receptor tyrosine kinases EGFR and HGF/HGFR. As a novel finding, the Src family kinase Lyn was also identified as a putative upstream kinase. CONCLUSIONS α2B-adrenoceptors may mediate their pro-proliferative effects in VSMCs by promoting the activity of bFGF and PDGF and the growth factor receptors EGFR, HGFR and VEGFR-1/2. The Src family kinase Lyn was also identified as a putative upstream kinase. Lyn is known to be expressed in VSMCs and has been identified as an important regulator of GPCR trafficking and GPCR effects on cell proliferation. Identified Ser/Thr kinases included several PKC isoforms and the β-adrenoceptor kinases 1 and 2. Cross-talk between the signaling mechanisms involved in α2B-adrenoceptor-evoked VSMC proliferation thus appears to involve PKC activation, subsequent changes in gene expression, transactivation of EGFR, and modulation of kinase activities and growth factor-mediated signaling. While many of the identified individual signals were relatively small in terms of effect size, many of them were validated by combining pathway analysis and our integrated screening approach.
Collapse
Affiliation(s)
- Anna Huhtinen
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| | - Vesa Hongisto
- Toxicology Division, Misvik Biology Oy, Turku, Finland
| | - Asta Laiho
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Eliisa Löyttyniemi
- Department of Biostatistics, Department of Clinical Medicine, University of Turku, Turku, Finland
| | - Dirk Pijnenburg
- PamGene International BV, Wolvenhoek 10, 5211HH s’Hertogenbosch, The Netherlands
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
- Unit of Clinical Pharmacology, Turku University Hospital, Turku, Finland
| |
Collapse
|
43
|
Irtegun S, Akcora-Yıldız D, Pektanc G, Karabulut C. Deregulation of c-Src tyrosine kinase and its downstream targets in pre-eclamptic placenta. J Obstet Gynaecol Res 2017; 43:1278-1284. [DOI: 10.1111/jog.13350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/13/2017] [Accepted: 03/12/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Sevgi Irtegun
- Department of Medical Biology, Faculty of Medicine; Dicle University; Diyarbakır Turkey
| | - Dilara Akcora-Yıldız
- Department of Biology, Faculty of Science and Arts; Mehmet Akif Ersoy University; Burdur Turkey
| | - Gulsum Pektanc
- Department of Medical Biology, Faculty of Medicine; Dicle University; Diyarbakır Turkey
| | | |
Collapse
|
44
|
Targeted mass spectrometry: An emerging powerful approach to unblock the bottleneck in phosphoproteomics. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1055-1056:29-38. [PMID: 28441545 DOI: 10.1016/j.jchromb.2017.04.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/23/2017] [Accepted: 04/14/2017] [Indexed: 01/21/2023]
Abstract
Following the rapid expansion of the proteomics field, the investigation of post translational modifications (PTM) has become extremely popular changing our perspective of how proteins constantly fine tune cellular functions. Reversible protein phosphorylation plays a pivotal role in virtually all biological processes in the cell and it is one the most characterized PTM up to date. During the last decade, the development of phosphoprotein/phosphopeptide enrichment strategies and mass spectrometry (MS) technology has revolutionized the field of phosphoproteomics discovering thousands of new site-specific phosphorylations and unveiling unprecedented evidence about their modulation under distinct cellular conditions. The field has expanded so rapidly that the use of traditional methods to validate and characterize the biological role of the phosphosites is not feasible any longer. Targeted MS holds great promise for becoming the method of choice to study with high precision and sensitivity already known site-specific phosphorylation events. This review summarizes the contribution of large-scale unbiased MS analyses and highlights the need of targeted MS-based approaches for follow-up investigation. Additionally, the article illustrates the biological relevance of protein phosphorylation by providing examples of disease-related phosphorylation events and emphasizes the benefits of applying targeted MS in clinics for disease diagnosis, prognosis and drug-response evaluation.
Collapse
|
45
|
Ebeid K, Ho GN, Salem AK. HPLC-UV method for simultaneous determination of MK-1775 and AZD-7762 in both acetonitrile-aqueous solution and mouse plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:70-76. [PMID: 28088043 DOI: 10.1016/j.jchromb.2016.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/19/2016] [Accepted: 12/16/2016] [Indexed: 11/24/2022]
Abstract
A sensitive and precise method is described for the simultaneous determination of two small molecule kinase inhibitors: MK-1775 (MK) and AZD-7762 (AZD), in acetonitrile (ACN)-aqueous solution and in mouse plasma. A Nova-Pak C18 reversed phase column (3.9mm×150mm, 4μm, 60Å) was utilized in the separation using an isocratic mobile phase of 0.1% v/v triethylamine in phosphate buffer (pH=7.4): acetonitrile (ACN) (60:40, v/v), at a flow rate of 0.8mL/min. Detection wavelength was set at 310nm for both MK and AZD, and 431nm for the internal standard sunitinib (SUN). The developed method was validated following the ICH guidelines and it was shown to be accurate, precise and linear in the range of 41ng/mL to 8333ng/mL for both drugs in the ACN-aqueous solution and from 83ng/mL to 8333ng/mL for both drugs in mouse plasma samples. For the first time, the presented data suggest the suitability of this method for the simultaneous separation and quantification of MK and AZD in both ACN aqueous solution as well as in mouse plasma samples.
Collapse
Affiliation(s)
- Kareem Ebeid
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 51141, USA
| | - Giang N Ho
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 51141, USA
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 51141, USA.
| |
Collapse
|
46
|
Palma A, Tinti M, Paoluzi S, Santonico E, Brandt BW, Hooft van Huijsduijnen R, Masch A, Heringa J, Schutkowski M, Castagnoli L, Cesareni G. Both Intrinsic Substrate Preference and Network Context Contribute to Substrate Selection of Classical Tyrosine Phosphatases. J Biol Chem 2017; 292:4942-4952. [PMID: 28159843 DOI: 10.1074/jbc.m116.757518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/31/2017] [Indexed: 01/19/2023] Open
Abstract
Reversible tyrosine phosphorylation is a widespread post-translational modification mechanism underlying cell physiology. Thus, understanding the mechanisms responsible for substrate selection by kinases and phosphatases is central to our ability to model signal transduction at a system level. Classical protein-tyrosine phosphatases can exhibit substrate specificity in vivo by combining intrinsic enzymatic specificity with the network of protein-protein interactions, which positions the enzymes in close proximity to their substrates. Here we use a high throughput approach, based on high density phosphopeptide chips, to determine the in vitro substrate preference of 16 members of the protein-tyrosine phosphatase family. This approach helped identify one residue in the substrate binding pocket of the phosphatase domain that confers specificity for phosphopeptides in a specific sequence context. We also present a Bayesian model that combines intrinsic enzymatic specificity and interaction information in the context of the human protein interaction network to infer new phosphatase substrates at the proteome level.
Collapse
Affiliation(s)
- Anita Palma
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Michele Tinti
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Serena Paoluzi
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Elena Santonico
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Bernd Willem Brandt
- the Centre for Integrative Bioinformatics, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and
| | | | - Antonia Masch
- the Institut für Biochemie & Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06108 Halle, Germany
| | - Jaap Heringa
- the Centre for Integrative Bioinformatics, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands, and
| | - Mike Schutkowski
- the Institut für Biochemie & Biotechnologie, Martin-Luther-Universität Halle-Wittenberg, 06108 Halle, Germany
| | - Luisa Castagnoli
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gianni Cesareni
- From the Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy,
| |
Collapse
|
47
|
Tang XL, Wang CN, Zhu XY, Ni X. Protein tyrosine phosphatase SHP-1 modulates osteoblast differentiation through direct association with and dephosphorylation of GSK3β. Mol Cell Endocrinol 2017; 439:203-212. [PMID: 27614023 DOI: 10.1016/j.mce.2016.08.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/04/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022]
Abstract
SHP-1, the Src homology-2 (SH2) domain-containing phosphatase 1, is a cytosolic protein-tyrosine phosphatase (PTP) predominantly expressed in hematopoietic-derived cells. Previous studies have focused on the involvement of SHP-1 in osteoclastogenesis. Using primary cultured mouse fetal calvaria-derived osteoblasts as a model, this study aims to investigate the effects of SHP-1 on differentiation and mineralization of osteoblasts and elucidate the signaling pathways responsible for these effects. We found that osteoblasts treated by osteogenic media showed significant increase in SHP-1 expression, which contributed to osteoblastic differentiation and mineralization. Using immunoprecipitation assay, we found that a direct association between SHP-1 and glycogen synthase kinase (GSK)-3β could be detected in differentiated osteoblasts and was significantly inhibited by SHP-1 inhibitor NSC87877. Inhibition of SHP-1 activated GSK3β, thereby leading to suppression of osteoblast differentiation and mineralization, which could be rescued by the inhibitor of GSK3β. In addition, we found that rosiglitazone (RSG) treatment led to significant decrease in SHP-1 expression. Overexpression of SHP-1 reversed RSG-induced GSK3β activation, thus rescuing the inhibitory effect of RSG on osteoblast differentiation and mineralization. These findings suggest that protein tyrosine phosphatase SHP-1 may act as a positive regulator of osteoblast differentiation through direct association with and dephosphorylation of GSK3β. Downregulation of SHP-1 may contribute to RSG-induced inhibition of mouse calvaria osteoblast differentiation by activating GSK3β-dependent pathway.
Collapse
Affiliation(s)
- Xiao-Lu Tang
- Department of Physiology and the Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, 200433, China
| | - Chang-Nan Wang
- Department of Physiology and the Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, 200433, China
| | - Xiao-Yan Zhu
- Department of Physiology and the Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, 200433, China.
| | - Xin Ni
- Department of Physiology and the Key Laboratory of Molecular Neurobiology of Ministry of Education, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
48
|
Eritja N, Chen BJ, Rodríguez-Barrueco R, Santacana M, Gatius S, Vidal A, Martí MD, Ponce J, Bergadà L, Yeramian A, Encinas M, Ribera J, Reventós J, Boyd J, Villanueva A, Matias-Guiu X, Dolcet X, Llobet-Navàs D. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy 2017; 13:608-624. [PMID: 28055301 PMCID: PMC5361596 DOI: 10.1080/15548627.2016.1271512] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Targeted therapies in endometrial cancer (EC) using kinase inhibitors rarely result in complete tumor remission and are frequently challenged by the appearance of refractory cell clones, eventually resulting in disease relapse. Dissecting adaptive mechanisms is of vital importance to circumvent clinical drug resistance and improve the efficacy of targeted agents in EC. Sorafenib is an FDA-approved multitarget tyrosine and serine/threonine kinase inhibitor currently used to treat hepatocellular carcinoma, advanced renal carcinoma and radioactive iodine-resistant thyroid carcinoma. Unfortunately, sorafenib showed very modest effects in a multi-institutional phase II trial in advanced uterine carcinoma patients. Here, by leveraging RNA-sequencing data from the Cancer Cell Line Encyclopedia and cell survival studies from compound-based high-throughput screenings we have identified the lysosomal pathway as a potential compartment involved in the resistance to sorafenib. By performing additional functional biology studies we have demonstrated that this resistance could be related to macroautophagy/autophagy. Specifically, our results indicate that sorafenib triggers a mechanistic MAPK/JNK-dependent early protective autophagic response in EC cells, providing an adaptive response to therapeutic stress. By generating in vivo subcutaneous EC cell line tumors, lung metastatic assays and primary EC orthoxenografts experiments, we demonstrate that targeting autophagy enhances sorafenib cytotoxicity and suppresses tumor growth and pulmonary metastasis progression. In conclusion, sorafenib induces the activation of a protective autophagic response in EC cells. These results provide insights into the unopposed resistance of advanced EC to sorafenib and highlight a new strategy for therapeutic intervention in recurrent EC.
Collapse
Affiliation(s)
- Núria Eritja
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | | | | | - Maria Santacana
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - Sònia Gatius
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - August Vidal
- e Department of Pathology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Maria Dolores Martí
- f Department of Gynecology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Jordi Ponce
- f Department of Gynecology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Laura Bergadà
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - Andree Yeramian
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - Mario Encinas
- g Department of Experimental Medicine , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8 , Lleida , Spain
| | - Joan Ribera
- g Department of Experimental Medicine , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.8 , Lleida , Spain
| | - Jaume Reventós
- e Department of Pathology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain.,f Department of Gynecology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Jeff Boyd
- h Department of Human and Molecular Genetics , Herbert Wertheim College of Medicine, Florida International University , Miami , FL , USA
| | - Alberto Villanueva
- i Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE) , Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Xavier Matias-Guiu
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain.,e Department of Pathology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain.,f Department of Gynecology , University Hospital of Bellvitge, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat , Barcelona , Catalonia , Spain
| | - Xavier Dolcet
- a Department of Basic Sciences , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida, Edifici Biomedicina I, Lab 2.4 , Lleida , Spain.,b Department of Pathology , Universitat de Lleida/Institut de Recerca Biomèdica de Lleida/Hospital Universitari Arnau de Vilanova , Lleida , Spain
| | - David Llobet-Navàs
- d Institute of Genetic Medicine, Newcastle University , Newcastle-Upon-Tyne , UK
| |
Collapse
|
49
|
Abstract
TCR signaling critically depends on protein phosphorylation across many proteins. Localization of each phosphorylation event relative to the T-cell receptor (TCR) and canonical T-cell signaling proteins will provide clues about the structure of TCR signaling networks. Quantitative phosphoproteomic analysis by mass spectrometry provides a wide-scale view of cellular phosphorylation networks. However, analysis of phosphorylation by mass spectrometry is still challenging due to the relative low abundance of phosphorylated proteins relative to all proteins and the extraordinary diversity of phosphorylation sites across the proteome. Highly selective enrichment of phosphorylated peptides is essential to provide the most comprehensive view of the phosphoproteome. Optimization of phosphopeptide enrichment methods coupled with highly sensitive mass spectrometry workflows significantly improves the sequencing depth of the phosphoproteome to over 10,000 unique phosphorylation sites from complex cell lysates. Here we describe a step-by-step method for phosphoproteomic analysis that has achieved widespread success for identification of serine, threonine, and tyrosine phosphorylation. Reproducible quantification of relative phosphopeptide abundance is provided by intensity-based label-free quantitation. An ideal set of mass spectrometry analysis parameters is also provided that optimize the yield of identified sites. We also provide guidelines for the bioinformatic analysis of this type of data to assess the quality of the data and to comply with proteomic data reporting requirements.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine, Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Center for Cancer Research and Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, 02903, USA
| | - Arthur R Salomon
- Center for Cancer Research and Development, Proteomics Core Facility, Rhode Island Hospital, Providence, RI, 02903, USA.
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
50
|
Chan CYX, Gritsenko MA, Smith RD, Qian WJ. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research. Expert Rev Proteomics 2016; 13:421-33. [PMID: 26960075 DOI: 10.1586/14789450.2016.1164604] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation is a fundamental regulatory mechanism in many cellular processes and aberrant perturbation of phosphorylation has been implicated in various human diseases. Kinases and their cognate inhibitors have been considered as hotspots for drug development. Therefore, the emerging tools, which enable a system-wide quantitative profiling of phosphoproteome, would offer a powerful impetus in unveiling novel signaling pathways, drug targets and/or biomarkers for diseases of interest. This review highlights recent advances in phosphoproteomics, the current state of the art of the technologies and the challenges and future perspectives of this research area. Finally, some exemplary applications of phosphoproteomics in diabetes research are underscored.
Collapse
Affiliation(s)
- Chi Yuet X'avia Chan
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Marina A Gritsenko
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Richard D Smith
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| | - Wei-Jun Qian
- a Biological Sciences Division and Environmental Molecular Sciences Laboratory , Pacific Northwest National Laboratory , Richland , WA , USA
| |
Collapse
|