1
|
Ngasala B, Chiduo MG, Bushukatale S, Mmbando BP, Makene T, Kamugisha E, Ahmed M, Mandara CI, Francis F, Mahende MK, Kavishe RA, Muro F, Ishengoma DS, Mandike R, Molteni F, Chacky F, Kitojo C, Greer G, Bishanga D, Chadewa J, Njau R, Warsame M, Kabula B, Nyinondi SS, Reaves E, Mohamed A. Efficacy and safety of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in mainland Tanzania, 2018. Malar J 2024; 23:95. [PMID: 38582830 PMCID: PMC10998292 DOI: 10.1186/s12936-024-04926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/01/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND The use of artemisinin-based combination therapy (ACT) is recommended by the World Health Organization for the treatment of uncomplicated falciparum malaria. Artemether-lumefantrine (AL) is the most widely adopted first-line ACT for uncomplicated malaria in sub-Saharan Africa (SSA), including mainland Tanzania, where it was introduced in December 2006. The WHO recommends regular assessment to monitor the efficacy of the first-line treatment specifically considering that artemisinin partial resistance was reported in Greater Mekong sub-region and has been confirmed in East Africa (Rwanda and Uganda). The main aim of this study was to assess the efficacy and safety of AL for the treatment of uncomplicated falciparum malaria in mainland Tanzania. METHODS A single-arm prospective anti-malarial drug efficacy trial was conducted in Kibaha, Mlimba, Mkuzi, and Ujiji (in Pwani, Morogoro, Tanga, and Kigoma regions, respectively) in 2018. The sample size of 88 patients per site was determined based on WHO 2009 standard protocol. Participants were febrile patients (documented axillary temperature ≥ 37.5 °C and/or history of fever during the past 24 h) aged 6 months to 10 years. Patients received a 6-dose AL regimen by weight twice a day for 3 days. Clinical and parasitological parameters were monitored during 28 days of follow-up to evaluate the drug efficacy and safety. RESULTS A total of 653 children were screened for uncomplicated malaria and 349 (53.7%) were enrolled between April and August 2018. Of the enrolled children, 345 (98.9%) completed the 28 days of follow-up or attained the treatment outcomes. There were no early treatment failures, but recurrent infections were higher in Mkuzi (35.2%) and Ujiji (23%). By Kaplan-Meier analysis of polymerase chain reaction (PCR) uncorrected adequate clinical and parasitological response (ACPR) ranged from 63.4% in Mkuzi to 85.9% in Mlimba, while PCR-corrected ACPR on day 28 varied from 97.6% in Ujiji to 100% in Mlimba. The drug was well tolerated; the commonly reported adverse events were cough, runny nose, and abdominal pain. No serious adverse event was reported. CONCLUSION This study showed that AL had adequate efficacy and safety for the treatment of uncomplicated falciparum malaria. The high number of recurrent infections were mainly due to new infections, indicating the necessity of utilizing alternative artemisinin-based combinations, such as artesunate amodiaquine, which provide a significantly longer post-treatment prophylactic effect.
Collapse
Affiliation(s)
- Billy Ngasala
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania.
| | - Mercy G Chiduo
- Tanga Research Centre, National Institute for Medical Research, P.O Box 5004, Tanga, Tanzania
| | - Samwel Bushukatale
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Bruno P Mmbando
- Tanga Research Centre, National Institute for Medical Research, P.O Box 5004, Tanga, Tanzania
| | - Twilumba Makene
- Department of Parasitology, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Erasmus Kamugisha
- Catholic University of Health and Allied Sciences/Bugando Medical Centre, P. O Box 1464, Mwanza, Tanzania
| | - Maimuna Ahmed
- Catholic University of Health and Allied Sciences/Bugando Medical Centre, P. O Box 1464, Mwanza, Tanzania
| | - Celine I Mandara
- Tanga Research Centre, National Institute for Medical Research, P.O Box 5004, Tanga, Tanzania
- National Institute for Medical Research, Headquarters, P.O. Box 9653, Dar-es-Salaam, Tanzania
| | - Filbert Francis
- Tanga Research Centre, National Institute for Medical Research, P.O Box 5004, Tanga, Tanzania
| | - Muhidin K Mahende
- Ifakara Health Institute Dar es Salaam Office, P. O. Box 78373, Dar es Salaam, Tanzania
| | | | - Florida Muro
- Kilimanjaro Christian Medical Centre, P.O. Box 3010, Moshi, Tanzania
| | - Deus S Ishengoma
- National Institute for Medical Research, Headquarters, P.O. Box 9653, Dar-es-Salaam, Tanzania
| | - Renata Mandike
- National Malaria Control Programme (NMCP), P.O. Box 743, Dodoma, Tanzania
| | - Fabrizio Molteni
- National Malaria Control Programme (NMCP), P.O. Box 743, Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Programme (NMCP), P.O. Box 743, Dodoma, Tanzania
| | - Chonge Kitojo
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, Tanzania
| | - George Greer
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Dar es Salaam, Tanzania
| | - Dunstan Bishanga
- Department of Community Health, Muhimbili University of Health and Allied Sciences, P.O. Box 65011, Dar es Salaam, Tanzania
| | - Jasmine Chadewa
- Jhpiego, Boresha Afya, P.O. Box 9170, Dar es Salaam, Tanzania
| | - Ritha Njau
- World Health Organization Country Office, P.O Box 9292, Dar es Salaam, Tanzania
| | | | | | | | - Erik Reaves
- U.S. President's Malaria Initiative, U.S. Centers for Disease Control and Prevention, Dar es Salaam, Tanzania
| | - Ally Mohamed
- National Malaria Control Programme (NMCP), P.O. Box 743, Dodoma, Tanzania
| |
Collapse
|
2
|
He Q, Chaillet JK, Labbé F. Antigenic strain diversity predicts different biogeographic patterns of maintenance and decline of antimalarial drug resistance. eLife 2024; 12:RP90888. [PMID: 38363295 PMCID: PMC10942604 DOI: 10.7554/elife.90888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The establishment and spread of antimalarial drug resistance vary drastically across different biogeographic regions. Though most infections occur in sub-Saharan Africa, resistant strains often emerge in low-transmission regions. Existing models on resistance evolution lack consensus on the relationship between transmission intensity and drug resistance, possibly due to overlooking the feedback between antigenic diversity, host immunity, and selection for resistance. To address this, we developed a novel compartmental model that tracks sensitive and resistant parasite strains, as well as the host dynamics of generalized and antigen-specific immunity. Our results show a negative correlation between parasite prevalence and resistance frequency, regardless of resistance cost or efficacy. Validation using chloroquine-resistant marker data supports this trend. Post discontinuation of drugs, resistance remains high in low-diversity, low-transmission regions, while it steadily decreases in high-diversity, high-transmission regions. Our study underscores the critical role of malaria strain diversity in the biogeographic patterns of resistance evolution.
Collapse
Affiliation(s)
- Qixin He
- Department of Biological Sciences, Purdue UniversityWest LafayetteUnited States
| | - John K Chaillet
- Department of Biological Sciences, Purdue UniversityWest LafayetteUnited States
| | - Frédéric Labbé
- Department of Ecology and Evolution, University of ChicagoChicagoUnited States
| |
Collapse
|
3
|
Li EZ, Nguyen TD, Tran TNA, Zupko RJ, Boni MF. Assessing emergence risk of double-resistant and triple-resistant genotypes of Plasmodium falciparum. Nat Commun 2024; 15:1390. [PMID: 38360803 PMCID: PMC10869733 DOI: 10.1038/s41467-024-45547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Delaying and slowing antimalarial drug resistance evolution is a priority for malaria-endemic countries. Until novel therapies become available, the mainstay of antimalarial treatment will continue to be artemisinin-based combination therapy (ACT). Deployment of different ACTs can be optimized to minimize evolutionary pressure for drug resistance by deploying them as a set of co-equal multiple first-line therapies (MFT) rather than rotating therapies in and out of use. Here, we consider one potential detriment of MFT policies, namely, that the simultaneous deployment of multiple ACTs could drive the evolution of different resistance alleles concurrently and that these resistance alleles could then be brought together by recombination into double-resistant or triple-resistant parasites. Using an individual-based model, we compare MFT and cycling policies in malaria transmission settings ranging from 0.1% to 50% prevalence. We define a total risk measure for multi-drug resistance (MDR) by summing the area under the genotype-frequency curves (AUC) of double- and triple-resistant genotypes. When prevalence ≥ 1%, total MDR risk ranges from statistically similar to 80% lower under MFT policies than under cycling policies, irrespective of whether resistance is imported or emerges de novo. At 0.1% prevalence, there is little statistical difference in MDR risk between MFT and cycling.
Collapse
Affiliation(s)
- Eric Zhewen Li
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Tran Dang Nguyen
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Thu Nguyen-Anh Tran
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Robert J Zupko
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Maciej F Boni
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, University Park, PA, USA.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Magboul AM, Nour BYM, Tamomh AG, Abdul-Ghani R, Albushra SM, Eltahir HB. Unraveling Key Chloroquine Resistance-Associated Alleles Among Plasmodium falciparum Isolates in South Darfur State, Sudan Twelve Years After Drug Withdrawal. Infect Drug Resist 2024; 17:221-227. [PMID: 38283109 PMCID: PMC10822104 DOI: 10.2147/idr.s439875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024] Open
Abstract
Background Due to the increasing resistance of Plasmodium falciparum to chloroquine (CQ) in Sudan, a shift from CQ to artesunate combined with sulfadoxine/pyrimethamine as a first-line treatment for uncomplicated falciparum malaria was adopted in 2004. This study aimed to determine the frequency distribution of K76T and N86Y mutations in P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes as key markers of resistance to CQ among P. falciparum isolates from patients in Nyala district of South Darfur state, west of Sudan. Methods A descriptive, cross-sectional study was conducted among 75 P. falciparum isolates from Sudanese patients diagnosed with falciparum malaria mono-infection. Parasite DNA was extracted from dried blood spots and amplified using a nested polymerase chain reaction (PCR). Then, restriction fragment length polymorphism (RFLP) was used to detect the genetic polymorphisms in codons 76 of pfcrt and 86 of pfmdr1. PCR-RFLP products were analyzed using 1.5% gel electrophoresis to identify the genetic polymorphisms in the studied codons. The wild-type (pfcrt K76 and pfmdr1 N86), mutant (pfcrt 76T and pfmdr1 86Y) and mixed-type (pfcrt K76T and pfmdr1 N86Y) alleles were expressed as frequencies and proportions. Results The wild-type pfcrt K76 allele was observed among 34.7% of isolates and the mutant 76T allele among 20% of isolates, while the mixed-type K76T allele was observed among 45.3% of isolates. On the other hand, 54.7% of isolates harbored the wild-type pfmdr1 N86 allele and 5.3% of isolates had the mutant 86Y allele, while the mixed-type N86Y allele was observed among 40% of isolates. Conclusion The key molecular markers associated with CQ resistance (pfcrt 76T and pfmdr1 86Y) are still circulating in high frequency among P. falciparum isolates in South Darfur state, about twelve years after the official withdrawal of the drug as a treatment for uncomplicated falciparum malaria.
Collapse
Affiliation(s)
- Abdalmoneim M Magboul
- Department of Parasitology & Medical Entomology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Bakri Y M Nour
- Department of Parasitology, Faculty of Medical Laboratory Sciences, University of Gezira, Wad Madani, Sudan
| | - Abdelhakam G Tamomh
- Department of Parasitology & Medical Entomology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti, Sudan
| | - Rashad Abdul-Ghani
- Department of Medical Parasitology, Faculty of Medicine and Health Sciences, Sana’a University, Sana’a, Yemen
- Tropical Disease Research Center, Faculty of Medicine and Health Sciences, University of Science and Technology, Sana’a, Yemen
| | - Sayed Mustafa Albushra
- Department of Internal Medicine, Faculty of Medicine, University of Gezira, Wad Madani, Sudan
| | - Hanan Babiker Eltahir
- Department of Biochemistry, Faculty of Medicine, University of El Imam El Mahdi, Kosti, Sudan
| |
Collapse
|
5
|
He Q, Chaillet JK, Labbé F. Antigenic strain diversity predicts different biogeographic patterns of maintenance and decline of anti-malarial drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531320. [PMID: 37987011 PMCID: PMC10659383 DOI: 10.1101/2023.03.06.531320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The establishment and spread of anti-malarial drug resistance vary drastically across different biogeographic regions. Though most infections occur in Sub-Saharan Africa, resistant strains often emerge in low-transmission regions. Existing models on resistance evolution lack consensus on the relationship between transmission intensity and drug resistance, possibly due to overlooking the feedback between antigenic diversity, host immunity, and selection for resistance. To address this, we developed a novel compartmental model that tracks sensitive and resistant parasite strains, as well as the host dynamics of generalized and antigen-specific immunity. Our results show a negative correlation between parasite prevalence and resistance frequency, regardless of resistance cost or efficacy. Validation using chloroquine-resistant marker data supports this trend. Post discontinuation of drugs, resistance remains high in low-diversity, low-transmission regions, while it steadily decreases in high-diversity, high-transmission regions. Our study underscores the critical role of malaria strain diversity in the biogeographic patterns of resistance evolution.
Collapse
Affiliation(s)
- Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - John K. Chaillet
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Frédéric Labbé
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Stadler E, Maiga M, Friedrich L, Thathy V, Demarta-Gatsi C, Dara A, Sogore F, Striepen J, Oeuvray C, Djimdé AA, Lee MCS, Dembélé L, Fidock DA, Khoury DS, Spangenberg T. Propensity of selecting mutant parasites for the antimalarial drug cabamiquine. Nat Commun 2023; 14:5205. [PMID: 37626093 PMCID: PMC10457284 DOI: 10.1038/s41467-023-40974-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
We report an analysis of the propensity of the antimalarial agent cabamiquine, a Plasmodium-specific eukaryotic elongation factor 2 inhibitor, to select for resistant Plasmodium falciparum parasites. Through in vitro studies of laboratory strains and clinical isolates, a humanized mouse model, and volunteer infection studies, we identified resistance-associated mutations at 11 amino acid positions. Of these, six (55%) were present in more than one infection model, indicating translatability across models. Mathematical modelling suggested that resistant mutants were likely pre-existent at the time of drug exposure across studies. Here, we estimated a wide range of frequencies of resistant mutants across the different infection models, much of which can be attributed to stochastic differences resulting from experimental design choices. Structural modelling implicates binding of cabamiquine to a shallow mRNA binding site adjacent to two of the most frequently identified resistance mutations.
Collapse
Affiliation(s)
- Eva Stadler
- The Kirby Institute, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Mohamed Maiga
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Lukas Friedrich
- Medicinal Chemistry & Drug Design Global Research & Development, Discovery Technologies, Merck Healthcare, 64293, Darmstadt, Germany
| | - Vandana Thathy
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Claudia Demarta-Gatsi
- Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland
| | - Antoine Dara
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Fanta Sogore
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Weill Cornell Medical College, New York, NY, 10021, USA
| | - Claude Oeuvray
- Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland
| | - Abdoulaye A Djimdé
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali
| | - Marcus C S Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA, Hinxton, UK
- Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, DD1 4HN, Scotland, UK
| | - Laurent Dembélé
- Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Faculté de Pharmacie, Malaria Research and Training Center (MRTC), Point G, PB1805, Bamako, Mali.
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - David S Khoury
- The Kirby Institute, UNSW Sydney, Kensington, NSW, 2052, Australia.
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., (an affiliate of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland.
| |
Collapse
|
7
|
Masserey T, Lee T, Golumbeanu M, Shattock AJ, Kelly SL, Hastings IM, Penny MA. The influence of biological, epidemiological, and treatment factors on the establishment and spread of drug-resistant Plasmodium falciparum. eLife 2022; 11:e77634. [PMID: 35796430 PMCID: PMC9262398 DOI: 10.7554/elife.77634] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
The effectiveness of artemisinin-based combination therapies (ACTs) to treat Plasmodium falciparum malaria is threatened by resistance. The complex interplay between sources of selective pressure-treatment properties, biological factors, transmission intensity, and access to treatment-obscures understanding how, when, and why resistance establishes and spreads across different locations. We developed a disease modelling approach with emulator-based global sensitivity analysis to systematically quantify which of these factors drive establishment and spread of drug resistance. Drug resistance was more likely to evolve in low transmission settings due to the lower levels of (i) immunity and (ii) within-host competition between genotypes. Spread of parasites resistant to artemisinin partner drugs depended on the period of low drug concentration (known as the selection window). Spread of partial artemisinin resistance was slowed with prolonged parasite exposure to artemisinin derivatives and accelerated when the parasite was also resistant to the partner drug. Thus, to slow the spread of partial artemisinin resistance, molecular surveillance should be supported to detect resistance to partner drugs and to change ACTs accordingly. Furthermore, implementing more sustainable artemisinin-based therapies will require extending parasite exposure to artemisinin derivatives, and mitigating the selection windows of partner drugs, which could be achieved by including an additional long-acting drug.
Collapse
Affiliation(s)
- Thiery Masserey
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Tamsin Lee
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Monica Golumbeanu
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Andrew J Shattock
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Sherrie L Kelly
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| | - Ian M Hastings
- Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Melissa A Penny
- Swiss Tropical and Public Health InstituteAllschwilSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
8
|
Erhunse N, Sahal D. Protecting future antimalarials from the trap of resistance: Lessons from artemisinin-based combination therapy (ACT) failures. J Pharm Anal 2021; 11:541-554. [PMID: 34765267 PMCID: PMC8572664 DOI: 10.1016/j.jpha.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/01/2022] Open
Abstract
Having faced increased clinical treatment failures with dihydroartemisinin-piperaquine (DHA-PPQ), Cambodia swapped the first line artemisinin-based combination therapy (ACT) from DHA-PPQ to artesunate-mefloquine given that parasites resistant to piperaquine are susceptible to mefloquine. However, triple mutants have now emerged, suggesting that drug rotations may not be adequate to keep resistance at bay. There is, therefore, an urgent need for alternative treatment strategies to tackle resistance and prevent its spread. A proper understanding of all contributors to artemisinin resistance may help us identify novel strategies to keep artemisinins effective until new drugs become available for their replacement. This review highlights the role of the key players in artemisinin resistance, the current strategies to deal with it and suggests ways of protecting future antimalarial drugs from bowing to resistance as their predecessors did.
Collapse
Affiliation(s)
- Nekpen Erhunse
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Edo-State, Nigeria
| | - Dinkar Sahal
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
9
|
Hughes E, Wallender E, Mohamed Ali A, Jagannathan P, Savic RM. Malaria PK/PD and the Role Pharmacometrics Can Play in the Global Health Arena: Malaria Treatment Regimens for Vulnerable Populations. Clin Pharmacol Ther 2021; 110:926-940. [PMID: 33763871 PMCID: PMC8518425 DOI: 10.1002/cpt.2238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022]
Abstract
Malaria is an infectious disease which disproportionately effects children and pregnant women. These vulnerable populations are often excluded from clinical trials resulting in one‐size‐fits‐all treatment regimens based on those established for a nonpregnant adult population. Pharmacokinetic/pharmacodynamic (PK/PD) models can be used to optimize dose selection as they define the drug exposure‐response relationship. Additionally, these models are able to identify patient characteristics that cause alterations in the expected PK/PD profiles and through simulations can recommend changes to dosing which compensate for the differences. In this review, we examine how PK/PD models have been applied to optimize antimalarial dosing recommendations for young children, including those who are malnourished, pregnant women, and individuals receiving concomitant therapies such as those for HIV treatment. The malaria field has had great success in utilizing PK/PD models as a foundation to update treatment guidelines and propose the next generation of dosing regimens to investigate in clinical trials. We propose how the malaria field can continue to use modeling to improve therapies by further integrating PK data into clinical studies and including data on drug resistance and host immunity in PK/PD models. Finally, we suggest that other disease areas can achieve similar success in applying pharmacometrics to improve outcomes by implementing three key principals.
Collapse
Affiliation(s)
- Emma Hughes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Erika Wallender
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Ali Mohamed Ali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | | | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
10
|
van der Pluijm RW, Amaratunga C, Dhorda M, Dondorp AM. Triple Artemisinin-Based Combination Therapies for Malaria - A New Paradigm? Trends Parasitol 2020; 37:15-24. [PMID: 33060063 DOI: 10.1016/j.pt.2020.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 01/31/2023]
Abstract
Recent gains in the fight against malaria are threatened by the emergence and spread of artemisinin and partner drug resistance in Plasmodium falciparum in the Greater Mekong Subregion (GMS). When artemisinins are combined with a single partner drug, all recommended artemisinin-based combination therapies have shown reduced efficacy in some countries in the GMS at some point. Novel drugs are not available for the near future. Triple artemisinin-based combination therapies, combining artemisinins with two currently available partner drugs, will provide one of the last remaining safe and effective treatments for falciparum malaria that can be deployed rapidly in the GMS, whereas their deployment beyond the GMS could delay or prevent the global emergence and spread of resistance to currently available drugs.
Collapse
Affiliation(s)
- Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chanaki Amaratunga
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Karbwang J, Na‐Bangchang K. The Role of Clinical Pharmacology in Chemotherapy of Multidrug‐Resistant
Plasmodium falciparum. J Clin Pharmacol 2020; 60:830-847. [DOI: 10.1002/jcph.1589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/21/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Juntra Karbwang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
- Department of Clinical Product developmentNagasaki Institute of Tropical MedicineNagasaki University Nagasaki Japan
| | - Kesara Na‐Bangchang
- Graduate Program in Bioclinical SciencesChulabhorn International College of MedicineThammasat University (Rangsit Campus) Pathumthani Thailand
- Center of Excellence in Pharmacology and Molecular Biology of Malaria and CholangiocarcinomaThammasat University (Rangsit Campus) Pathumthani Thailand
- Drug Discovery and Development Center, Office of Advanced Science and TechnologyThammasat University (Rangsit Campus) Pathumthani Thailand
| |
Collapse
|
12
|
Lu F, He XL, Richard C, Cao J. A brief history of artemisinin: Modes of action and mechanisms of resistance. Chin J Nat Med 2020; 17:331-336. [PMID: 31171267 DOI: 10.1016/s1875-5364(19)30038-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 12/18/2022]
Abstract
The cornerstone of antimalarial treatment, artemisinin, has reduced malaria associated morbidity and mortality worldwide. However, Plasmodium falciparum parasites with reduced sensitivity to artemisinin have emerged, and this threatens malaria control and elimination efforts. In this minireview, we describe the initial development of artemisinin as an antimalarial drug, its use both historically and currently, and our current understanding of its mode of action and the mechanisms by which malaria parasites achieve resistance.
Collapse
Affiliation(s)
- Feng Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China; Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xin-Long He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
| | - Culleton Richard
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Sakamoto, Nagasaki, Japan.
| | - Jun Cao
- Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Public Health Research Center, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
13
|
Anticandidal agent for multiple targets: the next paradigm in the discovery of proficient therapeutics/overcoming drug resistance. Future Med Chem 2019; 11:2955-2974. [DOI: 10.4155/fmc-2018-0479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is a prominent human fungal pathogen. Current treatments are suffering a massive gap due to emerging resistance against available antifungals. Therefore, there is an ardent need for novel antifungal candidates that essentially have more than one target, as most antifungal repertoires are single-target drugs. Exploration of multiple-drug targeting in antifungal therapeutics is still pending. An extensive literature survey was performed to categorize and comprehend relevant studies and the current therapeutic scenario that led researchers to preferentially consider multitarget drug-based Candida infection therapy. With this article, we identified and compiled a few potent antifungal compounds that are directed toward multiple virulent targets in C. albicans. Such compound(s) provide an optimistic platform of multiple targeting and could leave a substantial impact on the development of effective antifungals.
Collapse
|
14
|
Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 2019; 18:314-328. [PMID: 31119263 PMCID: PMC6859814 DOI: 10.1093/bfgp/elz008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax, the two protozoan parasite species that cause the majority of cases of human malaria, have developed resistance to nearly all known antimalarials. The ability of malaria parasites to develop resistance is primarily due to the high numbers of parasites in the infected person's bloodstream during the asexual blood stage of infection in conjunction with the mutability of their genomes. Identifying the genetic mutations that mediate antimalarial resistance has deepened our understanding of how the parasites evade our treatments and reveals molecular markers that can be used to track the emergence of resistance in clinical samples. In this review, we examine known genetic mutations that lead to resistance to the major classes of antimalarial medications: the 4-aminoquinolines (chloroquine, amodiaquine and piperaquine), antifolate drugs, aryl amino-alcohols (quinine, lumefantrine and mefloquine), artemisinin compounds, antibiotics (clindamycin and doxycycline) and a napthoquinone (atovaquone). We discuss how the evolution of antimalarial resistance informs strategies to design the next generation of antimalarial therapies.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| |
Collapse
|
15
|
Ocan M, Akena D, Nsobya S, Kamya MR, Senono R, Kinengyere AA, Obuku EA. Persistence of chloroquine resistance alleles in malaria endemic countries: a systematic review of burden and risk factors. Malar J 2019; 18:76. [PMID: 30871535 PMCID: PMC6419488 DOI: 10.1186/s12936-019-2716-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Background Chloroquine, a previous highly efficacious, easy to use and affordable anti-malarial agent was withdrawn from malaria endemic regions due to high levels of resistance. This review collated evidence from published-reviewed articles to establish prevalence of Pfcrt 76T and Pfmdr-1 86Y alleles in malaria affected countries following official discontinuation of chloroquine use. Methods A review protocol was developed, registered in PROSPERO (#CRD42018083957) and published in a peer-reviewed journal. Article search was done in PubMed, Scopus, Lilacs/Vhl and Embase databases by two experienced librarians (AK, RS) for the period 1990-to-Febuary 2018. Mesh terms and Boolean operators (AND, OR) were used. Data extraction form was designed in Excel spread sheet 2007. Data extraction was done by three reviewers (NL, BB and MO), discrepancies were resolved by discussion. Random effects analysis was done in Open Meta Analyst software. Heterogeneity was established using I2-statistic. Results A total of 4721 citations were retrieved from article search (Pubmed = 361, Lilac/vhl = 28, Science Direct = 944, Scopus = 3388). Additional targeted search resulted in three (03) eligible articles. After removal of duplicates (n = 523) and screening, 38 articles were included in the final review. Average genotyping success rate was 63.6% (18,343/28,820) for Pfcrt K76T and 93.5% (16,232/17,365) for Pfmdr-1 86Y mutations. Prevalence of Pfcrt 76T was as follows; East Africa 48.9% (2528/5242), Southern Africa 18.6% (373/2163), West Africa 58.3% (3321/6608), Asia 80.2% (1951/2436). Prevalence of Pfmdr-1 86Y was; East Africa 32.4% (1447/5722), Southern Africa 36.1% (544/1640), West Africa 52.2% (1986/4200), Asia 46.4% (1276/2217). Over half, 52.6% (20/38) of included studies reported continued unofficial chloroquine use following policy change. Studies done in Madagascar and Kenya reported re-emergence of chloroquine sensitive parasites (IC50 < 30.9 nM). The average time (years) since discontinuation of chloroquine use to data collection was 8.7 ± 7.4. There was high heterogeneity (I2 > 95%). Conclusion The prevalence of chloroquine resistance alleles among Plasmodium falciparum parasites have steadily declined since discontinuation of chloroquine use. However, Pfcrt K76T and Pfmdr-1 N86Y mutations still persist at moderate frequencies in most malaria affected countries.
Collapse
Affiliation(s)
- Moses Ocan
- Department of Pharmacology & Therapeutics, Makerere University, P.O. Box 7072, Kampala, Uganda. .,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.
| | - Dickens Akena
- Department of Psychiatry, Makerere University, P.O. Box 7072, Kampala, Uganda.,Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda
| | - Sam Nsobya
- Department of Medical Microbiology, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Moses R Kamya
- Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda
| | - Richard Senono
- Infectious Disease Institute, Makerere University, P. O. Box 22418, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Alison Annet Kinengyere
- Albert Cook Library, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda
| | - Ekwaro A Obuku
- Clinical Epidemiology Unit, Department of Medicine, Makerere University, P.O. Box 7072, Kampala, Uganda.,Africa Centre for Systematic Reviews and Knowledge Translation, Makerere University College of Health Sciences, P.O. Box 7072, Kampala, Uganda.,Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
16
|
Resistance to Artemisinin Combination Therapies (ACTs): Do Not Forget the Partner Drug! Trop Med Infect Dis 2019; 4:tropicalmed4010026. [PMID: 30717149 PMCID: PMC6473515 DOI: 10.3390/tropicalmed4010026] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/30/2023] Open
Abstract
Artemisinin-based combination therapies (ACTs) have become the mainstay for malaria treatment in almost all malaria endemic settings. Artemisinin derivatives are highly potent and fast acting antimalarials; but they have a short half-life and need to be combined with partner drugs with a longer half-life to clear the remaining parasites after a standard 3-day ACT regimen. When introduced, ACTs were highly efficacious and contributed to the steep decrease of malaria over the last decades. However, parasites with decreased susceptibility to artemisinins have emerged in the Greater Mekong Subregion (GMS), followed by ACTs’ failure, due to both decreased susceptibility to artemisinin and partner drug resistance. Therefore, there is an urgent need to strengthen and expand current resistance surveillance systems beyond the GMS to track the emergence or spread of artemisinin resistance. Great attention has been paid to the spread of artemisinin resistance over the last five years, since molecular markers of decreased susceptibility to artemisinin in the GMS have been discovered. However, resistance to partner drugs is critical, as ACTs can still be effective against parasites with decreased susceptibility to artemisinins, when the latter are combined with a highly efficacious partner drug. This review outlines the different mechanisms of resistance and molecular markers associated with resistance to partner drugs for the currently used ACTs. Strategies to improve surveillance and potential solutions to extend the useful therapeutic lifespan of the currently available malaria medicines are proposed.
Collapse
|
17
|
Lee TE, Penny MA. Identifying key factors of the transmission dynamics of drug-resistant malaria. J Theor Biol 2019; 462:210-220. [DOI: 10.1016/j.jtbi.2018.10.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/15/2018] [Accepted: 10/25/2018] [Indexed: 11/30/2022]
|
18
|
Khamis D, El Mouden C, Kura K, Bonsall MB. Optimal control of malaria: combining vector interventions and drug therapies. Malar J 2018; 17:174. [PMID: 29690874 PMCID: PMC5937842 DOI: 10.1186/s12936-018-2321-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/18/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The sterile insect technique and transgenic equivalents are considered promising tools for controlling vector-borne disease in an age of increasing insecticide and drug-resistance. Combining vector interventions with artemisinin-based therapies may achieve the twin goals of suppressing malaria endemicity while managing artemisinin resistance. While the cost-effectiveness of these controls has been investigated independently, their combined usage has not been dynamically optimized in response to ecological and epidemiological processes. RESULTS An optimal control framework based on coupled models of mosquito population dynamics and malaria epidemiology is used to investigate the cost-effectiveness of combining vector control with drug therapies in homogeneous environments with and without vector migration. The costs of endemic malaria are weighed against the costs of administering artemisinin therapies and releasing modified mosquitoes using various cost structures. Larval density dependence is shown to reduce the cost-effectiveness of conventional sterile insect releases compared with transgenic mosquitoes with a late-acting lethal gene. Using drug treatments can reduce the critical vector control release ratio necessary to cause disease fadeout. CONCLUSIONS Combining vector control and drug therapies is the most effective and efficient use of resources, and using optimized implementation strategies can substantially reduce costs.
Collapse
Affiliation(s)
- Doran Khamis
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| | - Claire El Mouden
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| | - Klodeta Kura
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| | - Michael B. Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| |
Collapse
|
19
|
Adams T, Ennuson NAA, Quashie NB, Futagbi G, Matrevi S, Hagan OCK, Abuaku B, Koram KA, Duah NO. Prevalence of Plasmodium falciparum delayed clearance associated polymorphisms in adaptor protein complex 2 mu subunit (pfap2mu) and ubiquitin specific protease 1 (pfubp1) genes in Ghanaian isolates. Parasit Vectors 2018. [PMID: 29530100 PMCID: PMC5848568 DOI: 10.1186/s13071-018-2762-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Plasmodium falciparum delayed clearance with the use of artemisinin-based combination therapy (ACTs) has been reported in some African countries. Single nucleotide polymorphisms (SNPs) in two genes, P. falciparum adaptor protein complex 2 mu subunit (pfap2mu) and ubiquitin specific protease 1 (pfubp1), have been linked to delayed clearance with ACT use in Kenya and recurrent imported malaria in Britain. With over 12 years of ACT use in Ghana, this study investigated the prevalence of SNPs in the pfap2mu and pfubp1 in Ghanaian clinical P. falciparum isolates to provide baseline data for antimalarial drug resistance surveillance in the country. Methods Filter paper blood blots collected in 2015–2016 from children aged below 9 years presenting with uncomplicated malaria at hospitals in three sentinel sites Begoro, Cape Coast and Navrongo were used. Parasite DNA was extracted from 120 samples followed by nested polymerase chain reaction (nPCR). Sanger sequencing was performed to detect and identify SNPs in pfap2mu and pfubp1 genes. Results In all, 11.1% (9/81) of the isolates carried the wildtype genotypes for both genes. A total of 164 pfap2mu mutations were detected in 67 isolates whilst 271 pfubp1 mutations were observed in 72 isolates. The majority of the mutations were non-synonymous (NS): 78% (128/164) for pfap2mu and 92.3% (250/271) for pfubp1. Five unique samples had a total of 215 pfap2mu SNPs, ranging between 15 and 63 SNPs per sample. Genotypes reportedly associated with ART resistance detected in this study included pfap2mu S160N (7.4%, 6/81) and pfubp1 E1528D (7.4%, 6/81) as well as D1525E (4.9%, 4/81). There was no significant difference in the prevalence of the SNPs between the three ecologically distinct study sites (pfap2mu: χ2 = 6.905, df = 2, P = 0.546; pfubp1: χ2 = 4.883, df = 2, P = 0.769). Conclusions The detection of pfap2mu and pfubp1 genotypes associated with ACT delayed parasite clearance is evidence of gradual nascent emergence of resistance in Ghana. The results will serve as baseline data for surveillance and the selection of the genotypes with drug pressure over time. The pfap2mu S160N, pfubp1 E1528D and D1525E must be monitored in Ghanaian isolates in ACT susceptibility studies, especially when cure rates of ACTs, particularly AL, is less than 100%. Electronic supplementary material The online version of this article (10.1186/s13071-018-2762-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tryphena Adams
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Allied Sciences, University of Ghana, Accra, Ghana
| | - Nana Aba A Ennuson
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Allied Sciences, University of Ghana, Accra, Ghana
| | - Neils B Quashie
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.,Centre for Tropical Clinical Pharmacology and Therapeutics, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Godfred Futagbi
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Allied Sciences, University of Ghana, Accra, Ghana
| | - Sena Matrevi
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Oheneba C K Hagan
- Department of Biochemistry, Cell and Molecular Biology, School of Biological Sciences, College of Basic and Allied Sciences, University of Ghana, Accra, Ghana
| | - Benjamin Abuaku
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Kwadwo A Koram
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Nancy O Duah
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana.
| |
Collapse
|
20
|
Zuber JA, Takala-Harrison S. Multidrug-resistant malaria and the impact of mass drug administration. Infect Drug Resist 2018. [PMID: 29535546 PMCID: PMC5840189 DOI: 10.2147/idr.s123887] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Based on the emergence and spread throughout the Greater Mekong Subregion (GMS) of multiple artemisinin-resistant lineages, the prevalence of multidrug resistance leading to high rates of artemisinin-based combination treatment failure in parts of the GMS, and the declining malaria burden in the region, the World Health Organization has recommended complete elimination of falciparum malaria from the GMS. Mass drug administration (MDA) is being piloted as one elimination intervention to be employed as part of this effort. However, concerns remain as to whether MDA might exacerbate the already prevalent problem of multidrug resistance in the region. In this review, we briefly discuss challenges of MDA, the use of MDA in the context of multidrug-resistant malaria, and the potential of different drug combinations and drug-based elimination strategies for mitigating the emergence and spread of resistance.
Collapse
Affiliation(s)
- Janie Anne Zuber
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Winslow CJ, Nichols BL, Novo DC, Mosquera-Giraldo LI, Taylor LS, Edgar KJ, Neilson AP. Cellulose-based amorphous solid dispersions enhance rifapentine delivery characteristics in vitro. Carbohydr Polym 2018; 182:149-158. [DOI: 10.1016/j.carbpol.2017.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 11/26/2022]
|
22
|
The Impact of Antimalarial Use on the Emergence and Transmission of Plasmodium falciparum Resistance: A Scoping Review of Mathematical Models. Trop Med Infect Dis 2017; 2:tropicalmed2040054. [PMID: 30270911 PMCID: PMC6082068 DOI: 10.3390/tropicalmed2040054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
The emergence and transmission of resistance to antimalarial treatments continue to hamper malaria elimination efforts. A scoping review was undertaken regarding the impact of antimalarial treatment in the human population on the emergence and transmission of Plasmodium falciparum resistance, to (i) describe the use of mathematical models used to explore this relationship; (ii) discuss model findings; and (iii) identify factors influencing the emergence and transmission of resistance. Search strategies were developed and deployed in six major databases. Thirty-seven articles met the eligibility criteria and were included in the review: nine articles modeled the emergence of resistance, 19 modeled the transmission of resistance, and nine modeled both the emergence and transmission. The proportion of antimalarial use within the population and the presence of residual drug concentrations were identified to be the main predictors of the emergence and transmission of resistance. Influencing factors pertaining to the human, parasite and mosquito populations are discussed. To ensure the prolonged therapeutic usefulness of antimalarial treatments, the effect of antimalarial drug use on the emergence and transmission of resistance must be understood, and mathematical models are a useful tool for exploring these dynamics.
Collapse
|
23
|
Cañón M, Diaz H, Olarte A. Mathematical model for the spread of drug resistance in Plasmodium falciparum parasite considering transmission conditions. J Theor Biol 2017; 435:1-11. [PMID: 28888945 DOI: 10.1016/j.jtbi.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 07/21/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
Antimalarial drugs have been used as one of the main strategies for controlling this disease. However, the spread of drug resistance in the Plasmodium falciparum parasite has generated major challenges for the control of malaria. For this reason, it is necessary to develop an efficient policy considering the parasite behavior in relation to drug treatment and epidemiological parameters. To achieve this goal, we propose a mathematical model that describes the dynamics of parasite population considering the transmission effects between mosquitoes and humans. In order to quantify the drug treatment effect on humans and the generation of new parasite genotypes within the mosquito, the parasite population was divided into those found in humans and mosquitoes. To test the model, we simulate several parasite populations, related with pyrimethamine resistance, in high and low transmission conditions. Simulation results show the dynamics of different parasite populations depending on drug coverage and the effect of epidemiological parameters. These results show that disease elimination may not be possible by using only pyrimethamine treatment, so we include different control strategies and we observe that reducing contacts between mosquitoes and humans helped the drug coverage to reduce the prevalence of disease. Finally, this model is used to propose an optimal policy that minimizes disease prevalence; the principal result is that the most effective coverage of the drug is around middle coverage. The model can also be used to evaluate not only pyrimethamine treatments, but it can be adapted for the study of resistance to other drugs.
Collapse
Affiliation(s)
- Mario Cañón
- Universidad Nacional de Colombia, Department of Electrical and Electronics Engineering, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Hernando Diaz
- Universidad Nacional de Colombia, Department of Electrical and Electronics Engineering, Carrera 45 No. 26-85, Bogotá, Colombia.
| | - Andrés Olarte
- Universidad Nacional de Colombia, Department of Electrical and Electronics Engineering, Carrera 45 No. 26-85, Bogotá, Colombia.
| |
Collapse
|
24
|
Bretscher MT, Griffin JT, Ghani AC, Okell LC. Modelling the benefits of long-acting or transmission-blocking drugs for reducing Plasmodium falciparum transmission by case management or by mass treatment. Malar J 2017; 16:341. [PMID: 28814310 PMCID: PMC5559805 DOI: 10.1186/s12936-017-1988-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Background Anti-malarial drugs are an important tool for malaria control and elimination. Alongside their direct benefit in the treatment of disease, drug use has a community-level effect, clearing the reservoir of infection and reducing onward transmission of the parasite. Different compounds potentially have different impacts on transmission—with some providing periods of prolonged chemoprophylaxis whilst others have greater transmission-blocking potential. The aim was to quantify the relative benefit of such properties for transmission reduction to inform target product profiles in the drug development process and choice of first-line anti-malarial treatment in different endemic settings. Methods A mathematical model of Plasmodium falciparum epidemiology was used to estimate the transmission reduction that can be achieved by using drugs of varying chemoprophylactic (protection for 3, 30 or 60 days) or transmission-blocking activity (blocking 79, 92 or 100% of total onward transmission). Simulations were conducted at low, medium or high transmission intensity (slide-prevalence in 2–10 year olds being 1, 10 or 40%, respectively), with drugs administered either via case management or mass drug administration (MDA). Results Transmission reductions depend strongly on deployment strategy, treatment coverage and endemicity level. Transmission-blocking was most effective at low endemicity, whereas chemoprophylaxis was most useful at high endemicity levels. Increasing the duration of protection as much as possible was beneficial. Increasing transmission-blocking activity from the level of ACT to a 100% transmission-blocking drug (close to the effect estimated for ACT combined with primaquine) produced moderate impact but was not as effective as increasing the duration of protection in medium-to-high transmission settings (slide prevalence 10–40%). Combining both good transmission-blocking activity (e.g. as achieved by ACT or ACT + primaquine) and a long duration of protection (30 days or more, such as provided by piperaquine or mefloquine) within a drug regimen can substantially increase impact compared with drug regimens with only one of these properties in medium to high transmission areas (slide-prevalence in 2–10 year olds ~10 to 40%). These results applied whether the anti-malarials were used for case management or for MDA. Discussion These results emphasise the importance of increasing access to treatment for routine case management, and the potential value of choosing first-line anti-malarial treatment policies according to local malaria epidemiology to maximise impact on transmission. There is no indication that the optimal drug choice should differ between delivery via case management or MDA. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1988-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael T Bretscher
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis & Modelling, Imperial College, London, UK.,F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jamie T Griffin
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Azra C Ghani
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis & Modelling, Imperial College, London, UK
| | - Lucy C Okell
- Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis & Modelling, Imperial College, London, UK.
| |
Collapse
|
25
|
Teklemariam M, Assefa A, Kassa M, Mohammed H, Mamo H. Therapeutic efficacy of artemether-lumefantrine against uncomplicated Plasmodium falciparum malaria in a high-transmission area in northwest Ethiopia. PLoS One 2017; 12:e0176004. [PMID: 28445503 PMCID: PMC5405980 DOI: 10.1371/journal.pone.0176004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/04/2017] [Indexed: 11/18/2022] Open
Abstract
Malaria, particularly due to Plasmodium falciparum, remains a major public health threat in Ethiopia. Artemether-lumefantine (AL) has been the first-line antimalarial drug against uncomplicated P. falciparum malaria in the country since 2004. Regular monitoring of antimalarial drugs is recommended by the World Health Organization (WHO) to help early detection of drug resistant strains of the parasite and contain their rapid spread. The objective of this study was to assess the therapeutic efficacy of AL in a high-transmission setting in Ethiopia. The study site was Setit Humera, northwest Ethiopia. Single-arm prospective study of a 28-day follow-up was conducted from October 2014 to January 2015 according to the revised WHO 2009 drug efficacy study protocol. Study end-points were classified into primary end-point and secondary end-point. While the primary end-point was the day-28 adequate clinical and parasitological response the secondary end-points were clinical and parasitological evaluations (parasite, fever and gametocyte clearance rate, incidence of drug adverse events) and the relative increment in hemoglobin (Hb) level from baseline to day (D) 14 and D28. A total of 92 patients were enrolled and 79 had completed the 28-day follow-up period. The overall cure rate was 98.8% with 95% confidence interval of 0.915-0.998 without polymerase chain reaction correction. The parasite clearance rate was high with fast resolution of clinical symptoms; 100% of the study participants cleared parasitaemia and fever on D3. Gametocyte carriage was reduced from 7% on D0 to 1% on D3 and complete clearance was achieved on D14. Mean Hb concentration significantly increased on D28 compared to that on D14. There was no serious adverse event. AL was efficacious and safe in a high-transmission setting for treatment of uncomplicated falciparum malaria.
Collapse
Affiliation(s)
- Michael Teklemariam
- Department of Microbial, Cellular and Molecular Biology; College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Moges Kassa
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Hussien Mohammed
- Bacterial, Parasitic and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Hassen Mamo
- Department of Microbial, Cellular and Molecular Biology; College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- * E-mail:
| |
Collapse
|
26
|
The within-host population dynamics of Mycobacterium tuberculosis vary with treatment efficacy. Genome Biol 2017; 18:71. [PMID: 28424085 PMCID: PMC5395877 DOI: 10.1186/s13059-017-1196-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022] Open
Abstract
Background Combination therapy is one of the most effective tools for limiting the emergence of drug resistance in pathogens. Despite the widespread adoption of combination therapy across diseases, drug resistance rates continue to rise, leading to failing treatment regimens. The mechanisms underlying treatment failure are well studied, but the processes governing successful combination therapy are poorly understood. We address this question by studying the population dynamics of Mycobacterium tuberculosis within tuberculosis patients undergoing treatment with different combinations of antibiotics. Results By combining very deep whole genome sequencing (~1000-fold genome-wide coverage) with sequential sputum sampling, we were able to detect transient genetic diversity driven by the apparently continuous turnover of minor alleles, which could serve as the source of drug-resistant bacteria. However, we report that treatment efficacy has a clear impact on the population dynamics: sufficient drug pressure bears a clear signature of purifying selection leading to apparent genetic stability. In contrast, M. tuberculosis populations subject to less drug pressure show markedly different dynamics, including cases of acquisition of additional drug resistance. Conclusions Our findings show that for a pathogen like M. tuberculosis, which is well adapted to the human host, purifying selection constrains the evolutionary trajectory to resistance in effectively treated individuals. Nonetheless, we also report a continuous turnover of minor variants, which could give rise to the emergence of drug resistance in cases of drug pressure weakening. Monitoring bacterial population dynamics could therefore provide an informative metric for assessing the efficacy of novel drug combinations. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1196-0) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Slater HC, Okell LC, Ghani AC. Mathematical Modelling to Guide Drug Development for Malaria Elimination. Trends Parasitol 2017; 33:175-184. [PMID: 27727128 PMCID: PMC5347022 DOI: 10.1016/j.pt.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022]
Abstract
Mathematical models of the dynamics of a drug within the host are now frequently used to guide drug development. These generally focus on assessing the efficacy and duration of response to guide patient therapy. Increasingly, antimalarial drugs are used at the population level, to clear infections, provide chemoprevention, and to reduce onward transmission of infection. However, there is less clarity on the extent to which different drug properties are important for these different uses. In addition, the emergence of drug resistance poses new threats to longer-term use and highlights the need for rational drug development. Here, we argue that integrating within-host pharmacokinetic and pharmacodynamic (PK/PD) models with mathematical models for the population-level transmission of malaria is key to guiding optimal drug design to aid malaria elimination.
Collapse
Affiliation(s)
- Hannah C Slater
- MRC Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College London, UK
| | - Lucy C Okell
- MRC Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College London, UK
| | - Azra C Ghani
- MRC Centre for Outbreak Analysis & Modelling, Department of Infectious Disease Epidemiology, Imperial College London, UK.
| |
Collapse
|
28
|
Abstract
For decades antimonials were the drugs of choice for the treatment of visceral
leishmaniasis (VL), but the recent emergence of resistance has made them redundant as
first-line therapy in the endemic VL region in the Indian subcontinent. The application of
other drugs has been limited due to adverse effects, perceived high cost, need for
parenteral administration and increasing rate of treatment failures. Liposomal
amphotericin B (AmB) and miltefosine (MIL) have been positioned as the effective
first-line treatments; however, the number of monotherapy MIL-failures has increased after
a decade of use. Since no validated molecular resistance markers are yet available,
monitoring and surveillance of changes in drug sensitivity and resistance still depends on
standard phenotypic in vitro promastigote or amastigote susceptibility
assays. Clinical isolates displaying defined MIL- or AmB-resistance are still fairly
scarce and fundamental and applied research on resistance mechanisms and dynamics remains
largely dependent on laboratory-generated drug resistant strains. This review addresses
the various challenges associated with drug susceptibility and -resistance monitoring in
VL, with particular emphasis on the choice of strains, susceptibility model selection and
standardization of procedures with specific read-out parameters and well-defined threshold
criteria. The latter are essential to support surveillance systems and safeguard the
limited number of currently available antileishmanial drugs.
Collapse
|
29
|
Alareqi LM, Mahdy MA, Lau YL, Fong MY, Abdul-Ghani R, Mahmud R. Molecular markers associated with resistance to commonly used antimalarial drugs among Plasmodium falciparum isolates from a malaria-endemic area in Taiz governorate-Yemen during the transmission season. Acta Trop 2016; 162:174-179. [PMID: 27343362 DOI: 10.1016/j.actatropica.2016.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/13/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
Since 2005, artesunate (AS) plus sulfadoxine/pyrimethamine (SP) combination has been adopted as the first-line treatment for uncomplicated malaria in Yemen in response to the high level of Plasmodium falciparum resistance to chloroquine (CQ). Therefore, the aim of the present study was to determine the frequency distribution of molecular markers associated with resistance to CQ and AS plus SP combination among P. falciparum isolates from a malaria-endemic area in Taiz governorate, Yemen. Fifty P. falciparum isolates were collected during a cross-sectional study in Mawza district, Taiz, in the period from October 2013 to April 2014. The isolates were investigated for drug resistance-associated molecular markers in five genes, including P. falciparum CQ resistance transporter (pfcrt) 76T and P. falciparum multidrug resistance 1 (pfmdr1) 86Y as markers of resistance to CQ, mutations in the Kelch 13 (K13) propeller domain for resistance to AS, and P. falciparum dihydrofolate reductase (pfdhfr) and P. falciparum dihydropteroate synthase (pfdhps) genes for resistance to SP. Nested polymerase chain reaction was used to amplify target genes in DNA extracts of the isolates followed by restriction fragment length polymorphism for detecting 76T and 86Y mutations in pfcrt and pfmdr1, respectively, and by DNA sequencing for detecting mutations in K13, pfdhfr and pfdhps. All the investigated isolates from Mawza district were harboring the pfcrt 76T mutant and the pfmdr1 N86 wild-type alleles. The pfdhfr 51I/108N double mutant allele was found in 2.2% (1/45) of the isolates; however, no mutations were detected at codons 436, 437, 540, 581 and 613 of pfdhps. All P. falciparum isolates that were successfully sequenced (n=47) showed the K13 Y493, R539, I543 and C580 wild-type alleles. In conclusion, the pfcrt 76T mutant allele is fixed in the study area about six years after the official withdrawal of CQ, possibly indicating its over-the-counter availability and continued use as a self-medication in the study area. However, the almost predominant wild-type alleles of the genes associated with resistance to AS and SP among P. falciparum isolates in the present study indicates the sustained efficacy of the currently adopted first-line treatment of AS plus SP in the study area.
Collapse
|
30
|
Hastings IM, Hodel EM, Kay K. Quantifying the pharmacology of antimalarial drug combination therapy. Sci Rep 2016; 6:32762. [PMID: 27604175 PMCID: PMC5036534 DOI: 10.1038/srep32762] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022] Open
Abstract
Most current antimalarial drugs are combinations of an artemisinin plus a
‘partner’ drug from another class, and are known as
artemisinin-based combination therapies (ACTs). They are the frontline drugs in
treating human malaria infections. They also have a public-health role as an
essential component of recent, comprehensive scale-ups of malaria interventions and
containment efforts conceived as part of longer term malaria elimination efforts.
Recent reports that resistance has arisen to artemisinins has caused considerable
concern. We investigate the likely impact of artemisinin resistance by quantifying
the contribution artemisinins make to the overall therapeutic capacity of ACTs. We
achieve this using a simple, easily understood, algebraic approach and by more
sophisticated pharmacokinetic/pharmacodynamic analyses of drug action; the two
approaches gave consistent results. Surprisingly, the artemisinin component
typically makes a negligible contribution (≪0.0001%) to the therapeutic
capacity of the most widely used ACTs and only starts to make a significant
contribution to therapeutic outcome once resistance has started to evolve to the
partner drugs. The main threat to antimalarial drug effectiveness and control comes
from resistance evolving to the partner drugs. We therefore argue that public health
policies be re-focussed to maximise the likely long-term effectiveness of the
partner drugs.
Collapse
Affiliation(s)
- Ian M Hastings
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Eva Maria Hodel
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Katherine Kay
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| |
Collapse
|
31
|
Davis TME, Moore BR, Salman S, Page-Sharp M, Batty KT, Manning L. Use of quantitative pharmacology tools to improve malaria treatments. Expert Rev Clin Pharmacol 2015; 9:303-16. [DOI: 10.1586/17512433.2016.1129273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Parker DM, Carrara VI, Pukrittayakamee S, McGready R, Nosten FH. Malaria ecology along the Thailand-Myanmar border. Malar J 2015; 14:388. [PMID: 26437860 PMCID: PMC4594738 DOI: 10.1186/s12936-015-0921-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/26/2015] [Indexed: 11/10/2022] Open
Abstract
Background Malaria in Southeast Asia frequently clusters along international borders. For example, while most of Thailand is malaria free, the border region shared with Myanmar continues to have endemic malaria. This spatial pattern is the result of complex interactions between landscape, humans, mosquito vectors, and malaria parasites. An understanding of these complex ecological and socio-cultural interactions is important for designing and implementing malaria elimination efforts in the region. This article offers an ecological perspective on the malaria situation along the Thailand–Myanmar border. Discussion This border region is long (2000 km), mountainous, and the environment ranges from thick forests to growing urban settlements and wet-rice fields. It is also a biologically diverse region. All five species of malaria known to naturally infect humans are present. At least three mosquito vector species complexes, with widely varying behavioural characteristics, exist in the area. The region is also a hub for ethnic diversity, being home to over ten different ethnolinguistic groups, several of which have been engaged in conflict with the Myanmar government now for over half a century. Given the biological and ethnic diversity, as well as the complex socio-political context, malaria control and elimination in the region is challenging. Conclusion Despite these complexities, multipronged approaches including collaborations with multiple local organizations, quick access to diagnosis and treatment, prevention of mosquito bites, radical cure of parasites, and mass drug administration appear to be drastically decreasing Plasmodium falciparum infections. Such approaches remain crucial as the region moves toward elimination of P. falciparum and potentially Plasmodium vivax.
Collapse
Affiliation(s)
- Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand.
| | - Verena I Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand.
| | | | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand. .,Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK.
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Tak, Thailand. .,Nuffield Department of Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Kay K, Hastings IM. Measuring windows of selection for anti-malarial drug treatments. Malar J 2015; 14:292. [PMID: 26228915 PMCID: PMC4521485 DOI: 10.1186/s12936-015-0810-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/15/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The long half-lives of malaria 'partner' drugs are a potent force selecting for drug resistance. Clinical trials can quantify this effect by estimating a window of selection (WoS), defined as the amount of time post-treatment when drug levels are sufficiently high that resistant parasites can re-establish an infection while preventing drug-sensitive parasites from establishing viable infections. METHODS The ability of clinical data to accurately estimate the true WoS was investigated using standard pharmacokinetic-pharmacodynamic models for three widely used malaria drugs: artemether-lumefantrine (AR-LF), artesunate-mefloquine (AS-MQ) and dihydroartemisinin-piperaquine (DHA-PPQ). Estimates of the clinical WoS either (1) ignored all new infections occurring after the 63-day follow-up period, as is currently done in clinical trials, or, (2) recognized that all individuals would eventually be re-infected and arbitrarily assigned them a new infection day. RESULTS The results suggest current methods of estimating the clinical WoS underestimate the true WoS by as much as 9 days for AR-LF, 33 days for AS-MQ and 7 days for DHA-PPQ. The new method of estimating clinical WoS (i.e., retaining all individuals in the analysis) was significantly better at estimating the true WoS for AR-LF and AS-MQ. CONCLUSIONS Previous studies, based on clinically observed WoS, have probably underestimated the 'true' WoS and hence the role of drugs with long half-lives in driving resistance. This has important policy implications: high levels of drug use are inevitable in mass drug administration programmes and intermittent preventative treatment programmes and the analysis herein suggests these policies will be far more potent drivers of resistance than previously thought.
Collapse
Affiliation(s)
- Katherine Kay
- Parasitology Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Ian M Hastings
- Parasitology Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
34
|
Snow RW, Kibuchi E, Karuri SW, Sang G, Gitonga CW, Mwandawiro C, Bejon P, Noor AM. Changing Malaria Prevalence on the Kenyan Coast since 1974: Climate, Drugs and Vector Control. PLoS One 2015; 10:e0128792. [PMID: 26107772 PMCID: PMC4479373 DOI: 10.1371/journal.pone.0128792] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/30/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Progress toward reducing the malaria burden in Africa has been measured, or modeled, using datasets with relatively short time-windows. These restricted temporal analyses may miss the wider context of longer-term cycles of malaria risk and hence may lead to incorrect inferences regarding the impact of intervention. METHODS 1147 age-corrected Plasmodium falciparum parasite prevalence (PfPR2-10) surveys among rural communities along the Kenyan coast were assembled from 1974 to 2014. A Bayesian conditional autoregressive generalized linear mixed model was used to interpolate to 279 small areas for each of the 41 years since 1974. Best-fit polynomial splined curves of changing PfPR2-10 were compared to a sequence of plausible explanatory variables related to rainfall, drug resistance and insecticide-treated bed net (ITN) use. RESULTS P. falciparum parasite prevalence initially rose from 1974 to 1987, dipped in 1991-92 but remained high until 1998. From 1998 onwards prevalence began to decline until 2011, then began to rise through to 2014. This major decline occurred before ITNs were widely distributed and variation in rainfall coincided with some, but not all, short-term transmission cycles. Emerging resistance to chloroquine and introduction of sulfadoxine/pyrimethamine provided plausible explanations for the rise and fall of malaria transmission along the Kenyan coast. CONCLUSIONS Progress towards elimination might not be as predictable as we would like, where natural and extrinsic cycles of transmission confound evaluations of the effect of interventions. Deciding where a country lies on an elimination pathway requires careful empiric observation of the long-term epidemiology of malaria transmission.
Collapse
Affiliation(s)
- Robert W. Snow
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Eliud Kibuchi
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Stella W. Karuri
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Gilbert Sang
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Caroline W. Gitonga
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Charles Mwandawiro
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute, Nairobi, Kenya
| | - Philip Bejon
- Centre for Tropical Medicine & Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Centre for Geographic Medicine-Coast, KEMRI-Wellcome Trust programme, Kilifi, Kenya
| | - Abdisalan M. Noor
- Spatial Health Metrics Group, Kenya Medical Research Institute-Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine & Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Moreno-Gamez S, Hill AL, Rosenbloom DIS, Petrov DA, Nowak MA, Pennings PS. Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug resistance. Proc Natl Acad Sci U S A 2015; 112:E2874-83. [PMID: 26038564 PMCID: PMC4460514 DOI: 10.1073/pnas.1424184112] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Infections with rapidly evolving pathogens are often treated using combinations of drugs with different mechanisms of action. One of the major goal of combination therapy is to reduce the risk of drug resistance emerging during a patient's treatment. Although this strategy generally has significant benefits over monotherapy, it may also select for multidrug-resistant strains, particularly during long-term treatment for chronic infections. Infections with these strains present an important clinical and public health problem. Complicating this issue, for many antimicrobial treatment regimes, individual drugs have imperfect penetration throughout the body, so there may be regions where only one drug reaches an effective concentration. Here we propose that mismatched drug coverage can greatly speed up the evolution of multidrug resistance by allowing mutations to accumulate in a stepwise fashion. We develop a mathematical model of within-host pathogen evolution under spatially heterogeneous drug coverage and demonstrate that even very small single-drug compartments lead to dramatically higher resistance risk. We find that it is often better to use drug combinations with matched penetration profiles, although there may be a trade-off between preventing eventual treatment failure due to resistance in this way and temporarily reducing pathogen levels systemically. Our results show that drugs with the most extensive distribution are likely to be the most vulnerable to resistance. We conclude that optimal combination treatments should be designed to prevent this spatial effective monotherapy. These results are widely applicable to diverse microbial infections including viruses, bacteria, and parasites.
Collapse
Affiliation(s)
- Stefany Moreno-Gamez
- Program for Evolutionary Dynamics, Department of Mathematics, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; Theoretical Biology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Alison L Hill
- Program for Evolutionary Dynamics, Department of Mathematics, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Daniel I S Rosenbloom
- Program for Evolutionary Dynamics, Department of Mathematics, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Martin A Nowak
- Program for Evolutionary Dynamics, Department of Mathematics, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - Pleuni S Pennings
- Department of Biology, Stanford University, Stanford, CA 94305; Department of Biology, San Francisco State University, San Francisco, CA 94132; and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
36
|
Awasthi G, Das A. Genetics of chloroquine-resistant malaria: a haplotypic view. Mem Inst Oswaldo Cruz 2015; 108:947-61. [PMID: 24402147 PMCID: PMC4005552 DOI: 10.1590/0074-0276130274] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/26/2013] [Indexed: 02/05/2023] Open
Abstract
The development and rapid spread of chloroquine resistance (CQR) in
Plasmodium falciparum have triggered the identification of
several genetic target(s) in the P. falciparum genome. In
particular, mutations in the Pfcrt gene, specifically, K76T and
mutations in three other amino acids in the region adjoining K76 (residues 72, 74, 75
and 76), are considered to be highly related to CQR. These various mutations form
several different haplotypes and Pfcrt gene polymorphisms and the
global distribution of the different CQR- Pfcrt haplotypes in
endemic and non-endemic regions of P. falciparum malaria have been
the subject of extensive study. Despite the fact that the Pfcrt gene
is considered to be the primary CQR gene in P. falciparum , several
studies have suggested that this may not be the case. Furthermore, there is a poor
correlation between the evolutionary implications of the Pfcrt
haplotypes and the inferred migration of CQR P. falciparum based on
CQR epidemiological surveillance data. The present paper aims to clarify the existing
knowledge on the genetic basis of the different CQR- Pfcrt
haplotypes that are prevalent in worldwide populations based on the published
literature and to analyse the data to generate hypotheses on the genetics and
evolution of CQR malaria.
Collapse
|
37
|
Read AF, Huijben S. Evolutionary biology and the avoidance of antimicrobial resistance. Evol Appl 2015; 2:40-51. [PMID: 25567846 PMCID: PMC3352414 DOI: 10.1111/j.1752-4571.2008.00066.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 12/11/2008] [Indexed: 11/29/2022] Open
Abstract
Evolutionary biologists have largely left the search for solutions to the drug resistance crisis to biomedical scientists, physicians, veterinarians and public health specialists. We believe this is because the vast majority of professional evolutionary biologists consider the evolutionary science of drug resistance to be conceptually uninteresting. Using malaria as case study, we argue that it is not. We review examples of evolutionary thinking that challenge various fallacies dominating antimalarial therapy, and discuss open problems that need evolutionary insight. These problems are unlikely to be resolved by biomedical scientists ungrounded in evolutionary biology. Involvement by evolutionary biologists in the science of drug resistance requires no intellectual compromises: the problems are as conceptually challenging as they are important.
Collapse
Affiliation(s)
- Andrew F Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park PA, USA
| | - Silvie Huijben
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park PA, USA ; School of Biological Sciences, University of Edinburgh West Mains Road, Edinburgh, UK
| |
Collapse
|
38
|
Contrasting benefits of different artemisinin combination therapies as first-line malaria treatments using model-based cost-effectiveness analysis. Nat Commun 2014; 5:5606. [PMID: 25425081 PMCID: PMC4263185 DOI: 10.1038/ncomms6606] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/20/2014] [Indexed: 01/15/2023] Open
Abstract
There are currently several recommended drug regimens for uncomplicated falciparum malaria in Africa. Each has different properties that determine its impact on disease burden. Two major antimalarial policy options are artemether–lumefantrine (AL) and dihydroartemisinin–piperaquine (DHA–PQP). Clinical trial data show that DHA–PQP provides longer protection against reinfection, while AL is better at reducing patient infectiousness. Here we incorporate pharmacokinetic-pharmacodynamic factors, transmission-reducing effects and cost into a mathematical model and simulate malaria transmission and treatment in Africa, using geographically explicit data on transmission intensity and seasonality, population density, treatment access and outpatient costs. DHA–PQP has a modestly higher estimated impact than AL in 64% of the population at risk. Given current higher cost estimates for DHA–PQP, there is a slightly greater cost per case averted, except in areas with high, seasonally varying transmission where the impact is particularly large. We find that a locally optimized treatment policy can be highly cost effective for reducing clinical malaria burden. Several drug combinations with different properties are used for malaria treatment. Here, Okell et al. use a mathematical model to simulate malaria transmission and treatment with two drug combinations in Africa, and find that locally optimized policies can be highly cost effective for reducing malaria burden.
Collapse
|
39
|
Sinha S, Medhi B, Sehgal R. Challenges of drug-resistant malaria. ACTA ACUST UNITED AC 2014; 21:61. [PMID: 25402734 PMCID: PMC4234044 DOI: 10.1051/parasite/2014059] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/23/2014] [Indexed: 01/09/2023]
Abstract
Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
40
|
Teboh-Ewungkem MI, Mohammed-Awel J, Baliraine FN, Duke-Sylvester SM. The effect of intermittent preventive treatment on anti-malarial drug resistance spread in areas with population movement. Malar J 2014; 13:428. [PMID: 25398463 PMCID: PMC4289180 DOI: 10.1186/1475-2875-13-428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/25/2014] [Indexed: 11/30/2022] Open
Abstract
Background The use of intermittent preventive treatment in pregnant women (IPTp), children (IPTc) and infant (IPTi) is an increasingly popular preventive strategy aimed at reducing malaria risk in these vulnerable groups. Studies to understand how this preventive intervention can affect the spread of anti-malarial drug resistance are important especially when there is human movement between neighbouring low and high transmission areas. Because the same drug is sometimes utilized for IPTi and for symptomatic malaria treatment, distinguishing their individual roles on accelerating the spread of drug resistant malaria, with or without human movement, may be difficult to isolate experimentally or by analysing data. A theoretical framework, as presented here, is thus relevant as the role of IPTi on accelerating the spread of drug resistance can be isolated in individual populations and when the populations are interconnected and interact. Methods A previously published model is expanded to include human movement between neighbouring high and low transmission areas, with focus placed on the malaria parasites. Parasite fitness functions, determined by how many humans the parasites can infect, are used to investigate how fast resistance can spread within the neighbouring communities linked by movement, when the populations are at endemic equilibrium. Results Model simulations indicate that population movement results in resistance spreading fastest in high transmission areas, and the more complete the anti-malarial resistance the faster the resistant parasite will tend to spread through a population. Moreover, the demography of infection in low transmission areas tends to change to reflect the demography of high transmission areas. Additionally, when regions are strongly connected the rate of spread of partially resistant parasites (R1) relative to drug sensitive parasites (RS), and fully resistant parasites (R2) relative to partially resistant parasites (R1) tend to behave the same in both populations, as should be expected. Conclusions In fighting anti-malarial drug resistance, different drug resistance monitoring and management policies are needed when the area in question is an isolated high or low transmission area, or when it is close and interacting with a neighbouring high or low transmission area, with human movement between them. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-428) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Absence of the human CYP2C8*3 allele in Ugandan children exposed to Plasmodium falciparum malaria. INFECTION GENETICS AND EVOLUTION 2014; 27:432-5. [DOI: 10.1016/j.meegid.2014.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/05/2014] [Accepted: 08/16/2014] [Indexed: 11/20/2022]
|
42
|
Abdul-Ghani R, Al-Maktari MT, Al-Shibani LA, Allam AF. A better resolution for integrating methods for monitoring Plasmodium falciparum resistance to antimalarial drugs. Acta Trop 2014; 137:44-57. [PMID: 24801884 DOI: 10.1016/j.actatropica.2014.04.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 12/16/2022]
Abstract
Effective chemotherapy is the mainstay of malaria control. However, resistance of falciparum malaria to antimalarial drugs compromised the efforts to eliminate the disease and led to the resurgence of malaria epidemics. Three main approaches are used to monitor antimalarial drug efficacy and drug resistance; namely, in vivo trials, in vitro/ex vivo assays and molecular markers of drug resistance. Each approach has its implications of use as well as its advantages and drawbacks. Therefore, there is a need to use an integrated approach that would give the utmost effect to detect resistance as early as its emergence and to track it once spread. Such integration becomes increasingly needed in the era of artemisinin-based combination therapy as a forward action to deter resistance. The existence of regional and global networks for the standardization of methodology, provision of high quality reagents for the assessment of antimalarial drug resistance and dissemination of open-access data would help in approaching an integrated resistance surveillance system on a global scale.
Collapse
|
43
|
Kim Y, Escalante AA, Schneider KA. A population genetic model for the initial spread of partially resistant malaria parasites under anti-malarial combination therapy and weak intrahost competition. PLoS One 2014; 9:e101601. [PMID: 25007207 PMCID: PMC4090191 DOI: 10.1371/journal.pone.0101601] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/09/2014] [Indexed: 11/18/2022] Open
Abstract
To develop public-health policies that extend the lifespan of affordable anti-malarial drugs as effective treatment options, it is necessary to understand the evolutionary processes leading to the origin and spread of mutations conferring drug resistance in malarial parasites. We built a population-genetic model for the emergence of resistance under combination drug therapy. Reproductive cycles of parasites are specified by their absolute fitness determined by clinical parameters, thus coupling the evolutionary-genetic with population-dynamic processes. Initial mutations confer only partial drug-resistance. Therefore, mutant parasites rarely survive combination therapy and within-host competition is very weak among parasites. The model focuses on the early phase of such unsuccessful recurrent mutations. This ends in the rare event of mutants enriching in an infected individual from which the successful spread of resistance over the entire population is initiated. By computer simulations, the waiting time until the establishment of resistant parasites is analysed. Resistance spreads quickly following the first appearance of a host infected predominantly by mutant parasites. This occurs either through a rare transmission of a resistant parasite to an uninfected host or through a rare failure of drugs in removing "transient" mutant alleles. The emergence of resistance is delayed with lower mutation rate, earlier treatment, higher metabolic cost of resistance, longer duration of high drug dose, and higher drug efficacy causing a stronger reduction in the sensitive and resistant parasites' fitnesses. Overall, contrary to other studies' proposition, the current model based on absolute fitness suggests that aggressive drug treatment delays the emergence of drug resistance.
Collapse
Affiliation(s)
- Yuseob Kim
- Department of Life Science and Division of EcoScience, Ewha Womans University, Seoul, South Korea
- * E-mail:
| | - Ananias A. Escalante
- School of Life Sciences and Center for Evolutionary Medicine and Informatics at the Biodesign Institute, Arizona State University, Tempe, Arizona, United States of America
| | | |
Collapse
|
44
|
Cuadrat RRC, da Serra Cruz SM, Tschoeke DA, Silva E, Tosta F, Jucá H, Jardim R, Campos MLM, Mattoso M, Dávila AMR. An orthology-based analysis of pathogenic protozoa impacting global health: an improved comparative genomics approach with prokaryotes and model eukaryote orthologs. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:524-38. [PMID: 24960463 DOI: 10.1089/omi.2013.0172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A key focus in 21(st) century integrative biology and drug discovery for neglected tropical and other diseases has been the use of BLAST-based computational methods for identification of orthologous groups in pathogenic organisms to discern orthologs, with a view to evaluate similarities and differences among species, and thus allow the transfer of annotation from known/curated proteins to new/non-annotated ones. We used here a profile-based sensitive methodology to identify distant homologs, coupled to the NCBI's COG (Unicellular orthologs) and KOG (Eukaryote orthologs), permitting us to perform comparative genomics analyses on five protozoan genomes. OrthoSearch was used in five protozoan proteomes showing that 3901 and 7473 orthologs can be identified by comparison with COG and KOG proteomes, respectively. The core protozoa proteome inferred was 418 Protozoa-COG orthologous groups and 704 Protozoa-KOG orthologous groups: (i) 31.58% (132/418) belongs to the category J (translation, ribosomal structure, and biogenesis), and 9.81% (41/418) to the category O (post-translational modification, protein turnover, chaperones) using COG; (ii) 21.45% (151/704) belongs to the categories J, and 13.92% (98/704) to the O using KOG. The phylogenomic analysis showed four well-supported clades for Eukarya, discriminating Multicellular [(i) human, fly, plant and worm] and Unicellular [(ii) yeast, (iii) fungi, and (iv) protozoa] species. These encouraging results attest to the usefulness of the profile-based methodology for comparative genomics to accelerate semi-automatic re-annotation, especially of the protozoan proteomes. This approach may also lend itself for applications in global health, for example, in the case of novel drug target discovery against pathogenic organisms previously considered difficult to research with traditional drug discovery tools.
Collapse
Affiliation(s)
- Rafael R C Cuadrat
- 1 Computational and Systems Biology Laboratory, Computational and Systems Biology Pole, Oswaldo Cruz Institute , Fiocruz, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hastings IM, Hodel EM. Pharmacological considerations in the design of anti-malarial drug combination therapies - is matching half-lives enough? Malar J 2014; 13:62. [PMID: 24552440 PMCID: PMC3975950 DOI: 10.1186/1475-2875-13-62] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/15/2014] [Indexed: 11/20/2022] Open
Abstract
Anti-malarial drugs are now mainly deployed as combination therapy (CT), primarily as a mechanism to prevent or slow the spread of resistance. This strategy is justified by mathematical arguments that generally assume that drug 'resistance' is a binary all-or-nothing genetic trait. Herein, a pharmacological, rather than a purely genetic, approach is used to investigate resistance and it is argued that this provides additional insight into the design principles of anti-malarial CTs. It is usually suggested that half-lives of constituent drugs in a CT be matched: it appears more important that their post-treatment anti-malarial activity profiles be matched and strategies identified that may achieve this. In particular, the considerable variation in pharmacological parameters noted in both human and parasites populations may compromise this matching and it is, therefore, essential to accurately quantify the population pharmacokinetics of the drugs in the CTs. Increasing drug dosages will likely follow a law of diminishing returns in efficacy, i.e. a certain increase in dose will not necessarily lead to the same percent increase in efficacy. This may allow individual drug dosages to be lowered without proportional decrease in efficacy, reducing any potential toxicity, and allowing the other drug(s) in the CT to compensate for this reduced dosage; this is a dangerous strategy which is discussed further. Finally, pharmacokinetic and pharmacodynamic drug interactions and the role of resistance mechanisms are discussed. This approach generated an idealized target product profile (TPP) for anti-malarial CTs. There is a restricted pipeline of anti-malarial drugs but awareness of pharmacological design principles during the development stages could optimize CT design pre-deployment. This may help prevent changes in drug dosages and/or regimen that have previously occurred post-deployment in most current anti-malarial drugs.
Collapse
Affiliation(s)
- Ian M Hastings
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Eva Maria Hodel
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
46
|
Gosling RD, Cairns ME, Chico RM, Chandramohan D. Intermittent preventive treatment against malaria: an update. Expert Rev Anti Infect Ther 2014; 8:589-606. [DOI: 10.1586/eri.10.36] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Liu R, Dong HF, Jiang MS. A pharmacokinetic approach to assess artemisinin–naphthoquine combination therapy for uncomplicated pediatric malaria. Expert Rev Clin Pharmacol 2014; 5:521-4. [DOI: 10.1586/ecp.12.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Stewart LB, Peters W, Robinson BL. The chemotherapy of rodent malaria. LXII. Drug combinations to impede the selection of drug resistance, part 5: rates of development of resistance to some inhibitors of folate metabolism and to artesunate. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2013; 98:763-83. [PMID: 15667710 DOI: 10.1179/136485913x13789813917625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years infection with chloroquine-resistant Plasmodium falciparum has been combatted with two long-acting antimalarials, pyrimethamine and sulfadoxine, in the combination known as Fansidar that exerts a strong, synergistic action on the asexual stages of the parasite. This second-line regimen, however, is failing increasingly because of the selection of resistant clones in endemic areas, and effective, safe, alternative drugs or drug combinations that are also affordable are urgently needed. Antimalarial drugs with shorter half-lives than those of pyrimethamine or sulfadoxine are likely to be slower to select resistant parasites. In the experiments reported here, the baseline in-vivo responses of rodent malarial parasites to chlorproguanil and proguanil and their active metabolites, chlorcycloguanil and cycloguanil, as well as those to dapsone and artesunate, were explored. In general, the most sensitive parasite to all of these compounds was P. chabaudi. When the drugs were used, individually, to select resistance via the '2%-relapse technique', relatively stable resistance to each was obtained in P. chabaudi as well as in P. berghei and P. yoelii ssp. NS, the last of these being also highly resistant to chloroquine. Of most concern was the rapidity and high level of resistance developed by P. chabaudi to artesunate. The experiments also validated the use of chlorcycloguanil or cycloguanil as surrogates for chlorproguanil or proguanil. Further studies to investigate the possible value of administering chlorproguanil-dapsone, with or without artesunate, are under way and will be reported separately.
Collapse
Affiliation(s)
- L B Stewart
- Centre for Tropical Antiprotozoal Chemotherapy, Y Block, Northwick Park Institute for Medical Research, Watford Road, Harrow HA1 3UJ, UK.
| | | | | |
Collapse
|
49
|
Abdul-Ghani R, Farag HF, Allam AF, Shawky SM, Al-Mekhlafi AM. Mutant Plasmodium falciparum chloroquine resistance transporter in Hodeidah, Yemen: association with parasitologic indices and treatment-seeking behaviors. Acta Trop 2013; 128:473-8. [PMID: 23906615 DOI: 10.1016/j.actatropica.2013.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/04/2013] [Accepted: 07/17/2013] [Indexed: 11/27/2022]
Abstract
Malaria still represents a major health problem in Yemen, particularly in Hodeidah, despite continuing efforts to eliminate it. With the absence of clinically proven vaccines, chemotherapy with antimalarials is still greatly needed. Chloroquine (CQ) has been popular as the drug of choice for malaria control. However, Plasmodium falciparum resistance to CQ has been one of the main obstacles in malaria control and elimination. Although CQ is no longer the recommended antimalarial chemotherapy, it has remained the number one over-the-counter antimalarial drug in many endemic areas, including Yemen, and is still used for self-medication. In addition, promising reports on CQ efficacy reversal in many African countries brought it again into the scene. This has led to a growing interest in the possibility of its re-introduction, particularly with the concerns raised about the parasite resistance to artemisinin-based combination therapies. Therefore, the present study aimed at analyzing the CQ-associated pfcrt 76T mutation in P. falciparum isolates from patients with uncomplicated falciparum malaria in Hodeidah, west of Yemen. The association of treatment-seeking behaviors and antimalarial drug use with the pfcrt 76T mutant allele was also studied. It was revealed that there is still a sustained high frequency of this molecular marker among parasite isolates associated with younger age, decreased parasite density and the presence of gametocytes in blood. Delay in seeking treatment and frequent use of antimalarials were the behaviors significantly associated with the presence of the pfcrt 76T mutant allele among patients reporting a history of malaria treatment.
Collapse
|
50
|
Eapen A, Ravindran KJ, Joshi H, Dhiman RC, Balavinayagam S, Mallick PK, Kumar R, Rajendran C, Selvakumar AD, Dash AP. Detection of in-vivo chloroquine resistance inPlasmodium falciparumfrom Rameswaram Island, a pilgrim centre in southern India. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2013; 101:305-13. [PMID: 17524245 DOI: 10.1179/136485907x176418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Resistance to chloroquine (CQ) in Plasmodium falciparum is one of the main causes of the wide-spread resurgence of malaria in India and a challenge to the effective control of the disease. In the pilgrim centre of Rameswaram Island, malaria has persisted despite the various control measures undertaken over the years. When CQ resistance in Rameswaram was investigated in vivo, recrudescent parasitaemias were observed in 25 (58%) of the 43 study subjects who were given CQ and completed follow-up, all occurring between days 10 and 28 (late treatment failures). The results of the msp(1), msp(2) and glurp genotyping of paired samples of P. falciparum, collected on day 0 and the day of recrudescence from 23 of the apparent treatment failures, indicated that 21 (91%) of the 23 were probably true treatment failures. All of the paired samples harboured parasites with the K76T mutation in their pfcrt genes, and subsequent sequencing of nine day-0 samples revealed the SVMNT haplotype in all nine. This is the first report of in-vivo drug resistance in P. falciparum from Rameswaram Island. Such resistance, which is probably the result of the indiscriminate use of CQ and/or the import of malaria from mainland India, warrants a change in the drug regimen used locally for the first-line treatment of uncomplicated, P. falciparum malaria, to make treatment more effective and slow the development and spread of more foci of CQ resistance.
Collapse
Affiliation(s)
- A Eapen
- National Institute of Malaria Research, IDVC Field Unit, 332-A Spartan School Road, Panneer Nagar, Mogappair, Chennai - 600 037, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|