1
|
Nytko AG, Senior JK, Wooliver RC, O'Reilly‐Wapstra J, Schweitzer JA, Bailey JK. An evolutionary case for plant rarity: Eucalyptus as a model system. Ecol Evol 2024; 14:e11440. [PMID: 38855318 PMCID: PMC11156952 DOI: 10.1002/ece3.11440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Species rarity is a common phenomenon across global ecosystems that is becoming increasingly more common under climate change. Although species rarity is often considered to be a stochastic response to environmental and ecological constraints, we examined the hypothesis that plant rarity is a consequence of natural selection acting on performance traits that affect a species range size, habitat specificity, and population aggregation; three primary descriptors of rarity. Using a common garden of 25 species of Tasmanian Eucalyptus, we find that the rarest species have 70% lower biomass than common species. Although rare species demonstrate lower biomass, rare species allocated proportionally more biomass aboveground than common species. There is also a negative phylogenetic autocorrelation underlying the biomass of rare and common species, indicating that traits associated with rarity have diverged within subgenera as a result of environmental factors to reach different associated optima. In support of our hypothesis, we found significant positive relationships between species biomass, range size and habitat specificity, but not population aggregation. These results demonstrate repeated convergent evolution of the trait-based determinants of rarity across the phylogeny in Tasmanian eucalypts. Furthermore, the phylogenetically driven patterns in biomass and biomass allocation seen in rare species may be representative of a larger plant strategy, not yet considered, but offering a mechanism as to how rare species continue to persist despite inherent constraints of small, specialized ranges and populations. These results suggest that if rarity can evolve and is related to plant traits such as biomass, rather than a random outcome of environmental constraints, we may need to revise conservation efforts in these and other rare species to reconsider the abiotic and biotic factors that underlie the distributions of rare plant species.
Collapse
Affiliation(s)
- Alivia G. Nytko
- Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - John K. Senior
- Biological Sciences, School of Natural SciencesUniversity of TasmaniaHobartTasmaniaAustralia
| | - Rachel C. Wooliver
- Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
- Biosystems Engineering & Soil ScienceUniversity of TennesseeKnoxvilleTennesseeUSA
| | | | | | - Joseph K. Bailey
- Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| |
Collapse
|
2
|
Parkin T, Donnellan SC, Parkin B, Shea GM, Rowley JJL. Phylogeography, hybrid zones and contemporary species boundaries in the south-eastern Australian smooth frogs (Anura: Myobatrachidae: Geocrinia). Mol Phylogenet Evol 2023; 189:107934. [PMID: 37769826 DOI: 10.1016/j.ympev.2023.107934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Paleo-climatic fluctuations have driven episodic changes in species distributions, providing opportunities for populations to diverge in isolation and hybridise following secondary contact. Studies of phylogeographic diversity and patterns of gene flow across hybrid zones can provide insight into contemporary species boundaries and help to inform taxonomic and conservation inferences. Here we explore geographic diversity within the acoustically divergent yet morphologically conserved south-eastern Australian smooth frog complex and assess gene flow across a narrow hybrid zone using mitochondrial nucleotide sequences and nuclear genome-wide single nucleotide polymorphisms. Our analyses reveal the presence of an evolutionarily distinct taxon restricted to the Otway Plains and Ranges, Victoria, which forms a narrow (9-30 km wide), spatiotemporally stable (>50 years) hybrid zone with Geocrinia laevis, which we describe herein as a new species.
Collapse
Affiliation(s)
- Thomas Parkin
- Australian Museum Research Institute, Sydney NSW 2010, Australia.
| | | | - Benjamin Parkin
- Australian Museum Research Institute, Sydney NSW 2010, Australia
| | - Glenn M Shea
- Australian Museum Research Institute, Sydney NSW 2010, Australia; Sydney School of Veterinary Science B01, University of Sydney, NSW 2006, Australia
| | - Jodi J L Rowley
- Australian Museum Research Institute, Sydney NSW 2010, Australia; University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
3
|
McLay TGB, Fowler RM, Fahey PS, Murphy DJ, Udovicic F, Cantrill DJ, Bayly MJ. Phylogenomics reveals extreme gene tree discordance in a lineage of dominant trees: hybridization, introgression, and incomplete lineage sorting blur deep evolutionary relationships despite clear species groupings in Eucalyptus subgenus Eudesmia. Mol Phylogenet Evol 2023; 187:107869. [PMID: 37423562 DOI: 10.1016/j.ympev.2023.107869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Eucalypts are a large and ecologically important group of plants on the Australian continent, and understanding their evolution is important in understanding evolution of the unique Australian flora. Previous phylogenies using plastome DNA, nuclear-ribosomal DNA, or random genome-wide SNPs, have been confounded by limited genetic sampling or by idiosyncratic biological features of the eucalypts, including widespread plastome introgression. Here we present phylogenetic analyses of Eucalyptus subgenus Eudesmia (22 species from western, northern, central and eastern Australia), in the first study to apply a target-capture sequencing approach using custom, eucalypt-specific baits (of 568 genes) to a lineage of Eucalyptus. Multiple accessions of all species were included, and target-capture data were supplemented by separate analyses of plastome genes (average of 63 genes per sample). Analyses revealed a complex evolutionary history likely shaped by incomplete lineage sorting and hybridization. Gene tree discordance generally increased with phylogenetic depth. Species, or groups of species, toward the tips of the tree are mostly supported, and three major clades are identified, but the branching order of these clades cannot be confirmed with confidence. Multiple approaches to filtering the nuclear dataset, by removing genes or samples, could not reduce gene tree conflict or resolve these relationships. Despite inherent complexities in eucalypt evolution, the custom bait kit devised for this research will be a powerful tool for investigating the evolutionary history of eucalypts more broadly.
Collapse
Affiliation(s)
- Todd G B McLay
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia.
| | - Rachael M Fowler
- School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Patrick S Fahey
- Research Centre for Ecosystem Resilience, The Royal Botanic Garden Sydney, Sydney 2000, NSW, Australia; Qld Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Qld, Australia
| | - Daniel J Murphy
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Frank Udovicic
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia
| | - David J Cantrill
- Royal Botanic Gardens Victoria, Melbourne 3004, Vic, Australia; School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| | - Michael J Bayly
- School of BioSciences, The University of Melbourne, Parkville 3010, Vic, Australia
| |
Collapse
|
4
|
Pfeilsticker TR, Jones RC, Steane DA, Vaillancourt RE, Potts BM. Molecular insights into the dynamics of species invasion by hybridisation in Tasmanian eucalypts. Mol Ecol 2023; 32:2913-2929. [PMID: 36807951 DOI: 10.1111/mec.16892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/26/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023]
Abstract
In plants where seed dispersal is limited compared with pollen dispersal, hybridisation may enhance gene exchange and species dispersal. We provide genetic evidence of hybridisation contributing to the expansion of the rare Eucalyptus risdonii into the range of the widespread Eucalyptus amygdalina. These closely related tree species are morphologically distinct, and observations suggest that natural hybrids occur along their distribution boundaries and as isolated trees or in small patches within the range of E. amygdalina. Hybrid phenotypes occur outside the range of normal dispersal for E. risdonii seed, yet in some hybrid patches small individuals resembling E. risdonii occur and are hypothesised to be a result of backcrossing. Using 3362 genome-wide SNPs assessed from 97 individuals of E. risdonii and E. amygdalina and 171 hybrid trees, we show that (i) isolated hybrids match the genotypes expected of F1 /F2 hybrids, (ii) there is a continuum in the genetic composition among the isolated hybrid patches from patches dominated by F1 /F2 -like genotypes to those dominated by E. risdonii-backcross genotypes, and (iii) the E. risdonii-like phenotypes in the isolated hybrid patches are most-closely related to proximal larger hybrids. These results suggest that the E. risdonii phenotype has been resurrected in isolated hybrid patches established from pollen dispersal, providing the first steps in its invasion of suitable habitat by long-distance pollen dispersal and complete introgressive displacement of E. amygdalina. Such expansion accords with the population demographics, common garden performance data, and climate modelling which favours E. risdonii and highlights a role of interspecific hybridisation in climate change adaptation and species expansion.
Collapse
Affiliation(s)
- Thais R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Rebecca C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Dorothy A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - René E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
5
|
Rutherford S, Wilson TC, Yap JYS, Lee E, Errington G, Rossetto M. Evolutionary processes in an undescribed eucalypt: implications for the translocation of a critically endangered species. ANNALS OF BOTANY 2022; 130:491-508. [PMID: 35802354 PMCID: PMC9510949 DOI: 10.1093/aob/mcac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Knowledge of the evolutionary processes responsible for the distribution of threatened and highly localized species is important for their conservation. Population genomics can provide insights into evolutionary processes to inform management practices, including the translocation of threatened plant species. In this study, we focus on a critically endangered eucalypt, Eucalyptus sp. Cattai, which is restricted to a 40-km2 area of Sydney, Australia, and is threatened by increased urbanization. Eucalyptus sp. Cattai has yet to be formally described in part due to its suspected hybrid origin. Here, we examined evolutionary processes and species boundaries in E. sp. Cattai to determine whether translocation was warranted. METHODS We used genome-wide scans to investigate the evolutionary relationships of E. sp. Cattai with related species, and to assess levels of genetic health and admixture. Morphological trait and genomic data were obtained from seedlings of E. sp. Cattai propagated in a common garden to assess their genetic provenance and hybrid status. KEY RESULTS All analyses revealed that E. sp. Cattai was strongly supported as a distinct species. Genetic diversity varied across populations, and clonality was unexpectedly high. Interspecific hybridization was detected, and was more prevalent in seedlings compared to in situ adult plants, indicating that post-zygotic barriers may restrict the establishment of hybrids. CONCLUSIONS Multiple evolutionary processes (e.g. hybridization and clonality) can operate within one rare and restricted species. Insights regarding evolutionary processes from our study were used to assist with the translocation of genetically 'pure' and healthy ex situ seedlings to nearby suitable habitat. Our findings demonstrate that it is vital to provide an understanding of evolutionary relationships and processes with an examination of population genomics in the design and implementation of an effective translocation strategy.
Collapse
Affiliation(s)
| | - Trevor C Wilson
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Jia-Yee Samantha Yap
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| | - Enhua Lee
- Biodiversity and Conservation Division, New South Wales Department of Planning and Environment, Sydney, Australia
| | - Graeme Errington
- Australian PlantBank, Australian Institute of Botanical Science, Australian Botanic Garden, Mount Annan, New South Wales, Australia
| | - Maurizio Rossetto
- Research Centre for Ecosystem Resilience, Australian Institute of Botanic Science, Royal Botanic Garden Sydney, Sydney, Australia
| |
Collapse
|
6
|
Leaf Economic and Hydraulic Traits Signal Disparate Climate Adaptation Patterns in Two Co-Occurring Woodland Eucalypts. PLANTS 2022; 11:plants11141846. [PMID: 35890479 PMCID: PMC9320154 DOI: 10.3390/plants11141846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022]
Abstract
With climate change impacting trees worldwide, enhancing adaptation capacity has become an important goal of provenance translocation strategies for forestry, ecological renovation, and biodiversity conservation. Given that not every species can be studied in detail, it is important to understand the extent to which climate adaptation patterns can be generalised across species, in terms of the selective agents and traits involved. We here compare patterns of genetic-based population (co)variation in leaf economic and hydraulic traits, climate–trait associations, and genomic differentiation of two widespread tree species (Eucalyptus pauciflora and E. ovata). We studied 2-year-old trees growing in a common-garden trial established with progeny from populations of both species, pair-sampled from 22 localities across their overlapping native distribution in Tasmania, Australia. Despite originating from the same climatic gradients, the species differed in their levels of population variance and trait covariance, patterns of population variation within each species were uncorrelated, and the species had different climate–trait associations. Further, the pattern of genomic differentiation among populations was uncorrelated between species, and population differentiation in leaf traits was mostly uncorrelated with genomic differentiation. We discuss hypotheses to explain this decoupling of patterns and propose that the choice of seed provenances for climate-based plantings needs to account for multiple dimensions of climate change unless species-specific information is available.
Collapse
|
7
|
Climate Adaptation, Drought Susceptibility, and Genomic-Informed Predictions of Future Climate Refugia for the Australian Forest Tree Eucalyptus globulus. FORESTS 2022. [DOI: 10.3390/f13040575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change.
Collapse
|
8
|
Bush D. Long-term research reveals potential role of hybrids in climate-change adaptation. A commentary on 'Expansion of the rare Eucalyptus risdonii under climate change through hybridisation with a closely related species despite hybrid inferiority'. ANNALS OF BOTANY 2022; 129:i-iii. [PMID: 34289013 PMCID: PMC8829906 DOI: 10.1093/aob/mcab085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article comments on: T. R. Pfeilsticker, R. C. Jones, D. A. Steane, P. A. Harrison, R. E. Vaillancourt and B. M. Potts, Expansion of the rare Eucalyptus risdonii under climate change through hybridization with a closely related species despite hybrid inferiority, Annals of Botany, Volume 129, Issue 1, 1 January 2022, Pages 1–14 https://doi.org/10.1093/aob/mcab103
Collapse
Affiliation(s)
- David Bush
- CSIRO Australian Tree Seed Centre, Black Mountain Innovation Precinct, Canberra, 2600, Australia
| |
Collapse
|
9
|
Pfeilsticker TR, Jones RC, Steane DA, Harrison PA, Vaillancourt RE, Potts BM. Expansion of the rare Eucalyptus risdonii under climate change through hybridization with a closely related species despite hybrid inferiority. ANNALS OF BOTANY 2022; 129:1-14. [PMID: 34351372 PMCID: PMC8752398 DOI: 10.1093/aob/mcab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/04/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND AND AIMS Hybridization is increasingly recognized as an integral part of the dynamics of species range expansion and contraction. Thus, it is important to understand the reproductive barriers between co-occurring species. Extending previous studies that argued that the rare Eucalyptus risdonii was expanding into the range of the surrounding E. amygdalina by both seed and pollen dispersal, we here investigate the long-term fitness of both species and their hybrids and whether expansion is continuing. METHODS We assessed the survival of phenotypes representing a continuum between the two pure species in a natural hybrid swarm after 29 years, along with seedling recruitment. The performance of pure species as well as of artificial and natural hybrids was also assessed over 28 years in a common garden trial. KEY RESULTS In the hybrid zone, E. amygdalina adults showed greater mortality than E. risdonii, and the current seedling cohort is still dominated by E. risdonii phenotypes. Morphologically intermediate individuals appeared to be the least fit. Similar results were observed after growing artificial first-generation and natural hybrids alongside pure species families in a common garden trial. Here, the survival, reproduction, health and growth of the intermediate hybrids were significantly less than those of either pure species, consistent with hybrid inferiority, although this did not manifest until later reproductive ages. Among the variable progeny of natural intermediate hybrids, the most E. risdonii-like phenotypes were the most fit. CONCLUSIONS This study contributes to the increasing number of reports of hybrid inferiority in Eucalyptus, suggesting that post-zygotic barriers contribute to the maintenance of species integrity even between closely related species. However, with fitness rapidly recovered following backcrossing, it is argued that hybridization can still be an important evolutionary process, in the present case appearing to contribute to the range expansion of the rare E. risdonii in response to climate change.
Collapse
Affiliation(s)
- T R Pfeilsticker
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - R C Jones
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - D A Steane
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - P A Harrison
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - R E Vaillancourt
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| | - B M Potts
- School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Australia
| |
Collapse
|
10
|
Ghosh Dasgupta M, Abdul Bari MP, Shanmugavel S, Dharanishanthi V, Muthupandi M, Kumar N, Chauhan SS, Kalaivanan J, Mohan H, Krutovsky KV, Rajasugunasekar D. Targeted re-sequencing and genome-wide association analysis for wood property traits in breeding population of Eucalyptus tereticornis × E. grandis. Genomics 2021; 113:4276-4292. [PMID: 34785351 DOI: 10.1016/j.ygeno.2021.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 06/20/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
Globally, Eucalyptus plantations occupy 22 million ha area and is one of the preferred hardwood species due to their short rotation, rapid growth, adaptability and wood properties. In this study, we present results of GWAS in parents and 100 hybrids of Eucalyptus tereticornis × E. grandis using 762 genes presumably involved in wood formation. Comparative analysis between parents predicted 32,202 polymorphic SNPs with high average read depth of 269-562× per individual per nucleotide. Seventeen wood related traits were phenotyped across three diverse environments and GWAS was conducted using 13,610 SNPs. A total of 45 SNP-trait associations were predicted across two locations. Seven large effect markers were identified which explained more than 80% of phenotypic variation for fibre area. This study has provided an array of candidate genes which may govern fibre morphology in this genus and has predicted potential SNPs which can guide future breeding programs in tropical Eucalyptus.
Collapse
Affiliation(s)
| | | | | | | | - Muthusamy Muthupandi
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore 641002, India
| | - Naveen Kumar
- Institute of Wood Science and Technology, 18(th) Cross Malleshwaram, Bangalore 560 003, India
| | - Shakti Singh Chauhan
- Institute of Wood Science and Technology, 18(th) Cross Malleshwaram, Bangalore 560 003, India
| | | | - Haritha Mohan
- Institute of Forest Genetics and Tree Breeding, R.S. Puram, Coimbatore 641002, India
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, 37077 Göttingen, Germany; Center for Integrated Breeding Research, George-August University of Göttingen, 37075 Göttingen, Germany; Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660036 Krasnoyarsk, Russia; Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; Department of Ecosystem Science and Management, Texas A&M University, College Station, TX 77843-2138, USA
| | | |
Collapse
|
11
|
Stacy EA, Sakishima T, Tharp H, Snow N. Isolation of Metrosideros ('Ohi'a) Taxa on O'ahu Increases with Elevation and Extreme Environments. J Hered 2021; 111:103-118. [PMID: 31844884 DOI: 10.1093/jhered/esz069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/08/2019] [Indexed: 01/04/2023] Open
Abstract
Species radiations should be facilitated by short generation times and limited dispersal among discontinuous populations. Hawaii's hyper-diverse, landscape-dominant tree, Metrosideros, is unique among the islands' radiations for its massive populations that occur continuously over space and time within islands, its exceptional capacity for gene flow by both pollen and seed, and its extended life span (ca. >650 years). Metrosideros shows the greatest phenotypic and microsatellite DNA diversity on O'ahu, where taxa occur in tight sympatry or parapatry in mesic and montane wet forest on 2 volcanoes. We document the nonrandom distributions of 12 taxa (including unnamed morphotypes) along elevation gradients, measure phenotypes of ~6-year-old common-garden plants of 8 taxa to verify heritability of phenotypes, and examine genotypes of 476 wild adults at 9 microsatellite loci to compare the strengths of isolation across taxa, volcanoes, and distance. All 8 taxa retained their diagnostic phenotypes in the common garden. Populations were isolated by taxon to a range of degrees (pairwise FST between taxa: 0.004-0.267), and there was no pattern of isolation by distance or by elevation; however, significant isolation between volcanoes was observed within monotypic species, suggesting limited gene flow between volcanoes. Among the infraspecific taxa of Metrosideros polymorpha, genetic diversity and isolation significantly decreased and increased, respectively, with elevation. Overall, 5 of the 6 most isolated taxa were associated with highest elevations or otherwise extreme environments. These findings suggest a principal role for selection in the origin and maintenance of the exceptional diversity that occurs within continuous Metrosideros stands on O'ahu.
Collapse
Affiliation(s)
- Elizabeth A Stacy
- Department of Biology, University of Hawai'i Hilo, Hilo, HI.,Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawai'i Hilo, Hilo, HI
| | - Tomoko Sakishima
- Department of Biology, University of Hawai'i Hilo, Hilo, HI.,Tropical Conservation Biology and Environmental Science Graduate Program, University of Hawai'i Hilo, Hilo, HI
| | - Heaven Tharp
- Department of Biology, University of Hawai'i Hilo, Hilo, HI
| | - Neil Snow
- Department of Biology, Pittsburg State University, Pittsburg, KS
| |
Collapse
|
12
|
Binks RM, Steane DA, Byrne M. Genomic divergence in sympatry indicates strong reproductive barriers and cryptic species within Eucalyptus salubris. Ecol Evol 2021; 11:5096-5110. [PMID: 34025994 PMCID: PMC8131811 DOI: 10.1002/ece3.7403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022] Open
Abstract
Genetic studies are increasingly detecting cryptic taxa that likely represent a significant component of global biodiversity. However, cryptic taxa are often criticized because they are typically detected serendipitously and may not receive the follow-up study required to verify their geographic or evolutionary limits. Here, we follow-up a study of Eucalyptus salubris that unexpectedly detected two divergent lineages but was not sampled sufficiently to make clear interpretations. We undertook comprehensive sampling for an independent genomic analysis (3,605 SNPs) to investigate whether the two purported lineages remain discrete genetic entities or if they intergrade throughout the species' range. We also assessed morphological and ecological traits, and sequenced chloroplast DNA. SNP results showed strong genome-wide divergence (F ST = 0.252) between two discrete lineages: one dominated the north and one the southern regions of the species' range. Within lineages, gene flow was high, with low differentiation (mean F ST = 0.056) spanning hundreds of kilometers. In the central region, the lineages were interspersed but maintained their genomic distinctiveness: an indirect demonstration of reproductive isolation. Populations of the southern lineage exhibited significantly lower specific leaf area and occurred on soils with lower phosphorus relative to the northern lineage. Finally, two major chloroplast haplotypes were associated with each lineage but were shared between lineages in the central distribution. Together, these results suggest that these lineages have non-contemporary origins and that ecotypic adaptive processes strengthened their divergence more recently. We conclude that these lineages warrant taxonomic recognition as separate species and provide fascinating insight into eucalypt speciation.
Collapse
Affiliation(s)
- Rachel M. Binks
- Biodiversity and Conservation ScienceDepartment of Biodiversity, Conservation and AttractionsBentley Delivery CentreBentleyWAAustralia
| | - Dorothy A. Steane
- School of Natural Sciences and ARC Training Centre for Forest ValueUniversity of TasmaniaHobartTasmaniaAustralia
- CSIRO Land and WaterSandy BayTasmaniaAustralia
| | - Margaret Byrne
- Biodiversity and Conservation ScienceDepartment of Biodiversity, Conservation and AttractionsBentley Delivery CentreBentleyWAAustralia
| |
Collapse
|
13
|
Population Divergence along a Genetic Line of Least Resistance in the Tree Species Eucalyptus globulus. Genes (Basel) 2020; 11:genes11091095. [PMID: 32962131 PMCID: PMC7565133 DOI: 10.3390/genes11091095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/11/2020] [Indexed: 11/30/2022] Open
Abstract
The evolutionary response to selection depends on the distribution of genetic variation in traits under selection within populations, as defined by the additive genetic variance-covariance matrix (G). The structure and evolutionary stability of G will thus influence the course of phenotypic evolution. However, there are few studies assessing the stability of G and its relationship with population divergence within foundation tree species. We compared the G-matrices of Mainland and Island population groups of the forest tree Eucalyptus globulus, and determined the extent to which population divergence aligned with within-population genetic (co)variation. Four key wood property traits exhibiting signals of divergent selection were studied—wood density, extractive content, and lignin content and composition. The comparison of G-matrices of the mainland and island populations indicated that the G-eigenstructure was relatively well preserved at an intra-specific level. Population divergence tended to occur along a major direction of genetic variation in G. The observed conservatism of G, the moderate evolutionary timescale, and close relationship between genetic architecture and population trajectories suggest that genetic constraints may have influenced the evolution and diversification of the E. globulus populations for the traits studied. However, alternative scenarios, including selection aligning genetic architecture and population divergence, are discussed.
Collapse
|
14
|
Mostert-O'Neill MM, Reynolds SM, Acosta JJ, Lee DJ, Borevitz JO, Myburg AA. Genomic evidence of introgression and adaptation in a model subtropical tree species, Eucalyptus grandis. Mol Ecol 2020; 30:625-638. [PMID: 32881106 DOI: 10.1111/mec.15615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 11/27/2022]
Abstract
The genetic consequences of adaptation to changing environments can be deciphered using population genomics, which may help predict species' responses to global climate change. Towards this, we used genome-wide SNP marker analysis to determine population structure and patterns of genetic differentiation in terms of neutral and adaptive genetic variation in the natural range of Eucalyptus grandis, a widely cultivated subtropical and temperate species, serving as genomic reference for the genus. We analysed introgression patterns at subchromosomal resolution using a modified ancestry mapping approach and identified provenances with extensive interspecific introgression in response to increased aridity. Furthermore, we describe potentially adaptive genetic variation as explained by environment-associated SNP markers, which also led to the discovery of what is likely a large structural variant. Finally, we show that genes linked to these markers are enriched for biotic and abiotic stress responses.
Collapse
Affiliation(s)
- Marja Mirjam Mostert-O'Neill
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Sharon Melissa Reynolds
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Juan Jose Acosta
- Camcore, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - David John Lee
- Forest Industries Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD, Australia
| | - Justin O Borevitz
- Research School of Biology and Centre for Biodiversity Analysis, ARC Centre of Excellence in Plant Energy Biology, Australian National University, Canberra, ACT, Australia
| | - Alexander Andrew Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
15
|
Mutton TY, Phillips MJ, Fuller SJ, Bryant LM, Baker AM. Systematics, biogeography and ancestral state of the Australian marsupial genus Antechinus (Dasyuromorphia: Dasyuridae). Zool J Linn Soc 2019. [DOI: 10.1093/zoolinnean/zly062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Y Mutton
- Earth, Environmental and Biological Sciences School, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Matthew J Phillips
- Earth, Environmental and Biological Sciences School, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Susan J Fuller
- Earth, Environmental and Biological Sciences School, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Litticia M Bryant
- Earth, Environmental and Biological Sciences School, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andrew M Baker
- Earth, Environmental and Biological Sciences School, Queensland University of Technology, Brisbane, Queensland, Australia
- Natural Environments Program, Queensland Museum, South Brisbane, Australia
| |
Collapse
|
16
|
Alwadani KG, Janes JK, Andrew RL. Chloroplast genome analysis of box-ironbark Eucalyptus. Mol Phylogenet Evol 2019; 136:76-86. [PMID: 30954587 DOI: 10.1016/j.ympev.2019.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022]
Abstract
Eucalyptus L'Hérit. (Myrtaceae) is a taxonomically complex and highly speciose genus that dominates much of Australia's woody vegetation. However, very little information is available about the molecular biology and chloroplast diversity of certain groups, such as Eucalyptus section Adnataria, which is found in many woodland habitats of eastern Australia. We report four new complete chloroplast genomes of Eucalyptus, including three genomes from species previously lacking any chloroplast reference sequences. Plastomes of E. albens, E. conica, E. crebra and E. melliodora assembled using a de novo approach were shown to be largely identical to each other, and similar in size and structure to previously published chloroplast genomes from Eucalyptus. A total of 132 genes (114 single-copy genes and 18 duplicated genes in the IR regions) were identified, and shown to be highly conserved in terms of gene order, content and organization. Slightly higher divergence in the intergenic spacers was identified through comparative genomic analyses. Chloroplast sequences of 35 additional individuals representing 12 species were assembled using a reference guided approach. Rates of nucleotide substitution varied among the protein coding genes, with 17 genes under possible positive selection, and 29 invariant genes. Phylogenetic analysis of either the whole reconstructed plastome sequences or the individual genes revealed extreme discordance with expected species boundaries or higher-level relationships. Plastome relationships were better predicted by geography than by nuclear DNA or taxonomic relationships, suggesting a substantial influence of gene flow over and above the effects of incomplete lineage sorting. These results provide resources for future research and valuable insights into the prevalence of interspecific gene flow among Eucalyptus species.
Collapse
Affiliation(s)
- Khawla G Alwadani
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; Biology Department, Faculty of Science, Jazan University, Saudi Arabia
| | - Jasmine K Janes
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia; Biology Department, Faculty of Science and Technology, Vancouver Island University, British Columbia, Canada
| | - Rose L Andrew
- School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
17
|
Lucani CJ, Brodribb TJ, Jordan G, Mitchell PJ. Intraspecific variation in drought susceptibility in Eucalyptus globulus is linked to differences in leaf vulnerability. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:286-293. [PMID: 32172771 DOI: 10.1071/fp18077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/19/2018] [Indexed: 06/10/2023]
Abstract
Understanding intraspecific variation in the vulnerability of the xylem to hydraulic failure during drought is critical in predicting the response of forest tree species to climate change. However, few studies have assessed intraspecific variation in this trait, and a likely limitation is the large number of measurements required to generate the standard 'vulnerability curve' used to assess hydraulic failure. Here we explore an alternative approach that requires fewer measurements, and assess within species variation in leaf xylem vulnerability in Eucalyptus globulus Labill., an ecologically and economically important species with known genetic variation in drought tolerance. Using this approach we demonstrate significant phenotypic differences and evidence of plasticity among two provenances with contrasting drought tolerance.
Collapse
Affiliation(s)
- Christopher J Lucani
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas. 7001, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas. 7001, Australia
| | - Greg Jordan
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas. 7001, Australia
| | | |
Collapse
|
18
|
Phylogeography of western Mediterranean Cymbalaria (Plantaginaceae) reveals two independent long-distance dispersals and entails new taxonomic circumscriptions. Sci Rep 2018; 8:18079. [PMID: 30591708 PMCID: PMC6308241 DOI: 10.1038/s41598-018-36412-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 11/19/2018] [Indexed: 11/24/2022] Open
Abstract
The Balearic Islands, Corsica and Sardinia (BCS) constitute biodiversity hotspots in the western Mediterranean Basin. Oligocene connections and long distance dispersal events have been suggested to cause presence of BCS shared endemic species. One of them is Cymbalaria aequitriloba, which, together with three additional species, constitute a polyploid clade endemic to BCS. Combining amplified fragment length polymorphism (AFLP) fingerprinting, plastid DNA sequences and morphometrics, we inferred the phylogeography of the group and evaluated the species’ current taxonomic circumscriptions. Based on morphometric and AFLP data we propose a new circumscription for C. fragilis to additionally comprise a group of populations with intermediate morphological characters previously included in C. aequitriloba. Consequently, we suggest to change the IUCN category of C. fragilis from critically endangered (CR) to near threatened (NT). Both morphology and AFLP data support the current taxonomy of the single island endemics C. hepaticifolia and C. muelleri. The four species had a common origin in Corsica-Sardinia, and two long-distance dispersal events to the Balearic Islands were inferred. Finally, plastid DNA data suggest that interspecific gene flow took place where two species co-occur.
Collapse
|
19
|
Hyman IT, Köhler F. Reconciling comparative anatomy and mitochondrial phylogenetics in revising species limits in the Australian semislug Helicarion Férussac, 1821 (Gastropoda: Stylommatophora). Zool J Linn Soc 2018. [DOI: 10.1093/zoolinnean/zly017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
20
|
Schuster TM, Setaro SD, Tibbits JFG, Batty EL, Fowler RM, McLay TGB, Wilcox S, Ades PK, Bayly MJ. Chloroplast variation is incongruent with classification of the Australian bloodwood eucalypts (genus Corymbia, family Myrtaceae). PLoS One 2018; 13:e0195034. [PMID: 29668710 PMCID: PMC5905893 DOI: 10.1371/journal.pone.0195034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 03/15/2018] [Indexed: 11/19/2022] Open
Abstract
Previous molecular phylogenetic analyses have resolved the Australian bloodwood eucalypt genus Corymbia (~100 species) as either monophyletic or paraphyletic with respect to Angophora (9-10 species). Here we assess relationships of Corymbia and Angophora using a large dataset of chloroplast DNA sequences (121,016 base pairs; from 90 accessions representing 55 Corymbia and 8 Angophora species, plus 33 accessions of related genera), skimmed from high throughput sequencing of genomic DNA, and compare results with new analyses of nuclear ITS sequences (119 accessions) from previous studies. Maximum likelihood and maximum parsimony analyses of cpDNA resolve well supported trees with most nodes having >95% bootstrap support. These trees strongly reject monophyly of Corymbia, its two subgenera (Corymbia and Blakella), most taxonomic sections (Abbreviatae, Maculatae, Naviculares, Septentrionales), and several species. ITS trees weakly indicate paraphyly of Corymbia (bootstrap support <50% for maximum likelihood, and 71% for parsimony), but are highly incongruent with the cpDNA analyses, in that they support monophyly of both subgenera and some taxonomic sections of Corymbia. The striking incongruence between cpDNA trees and both morphological taxonomy and ITS trees is attributed largely to chloroplast introgression between taxa, because of geographic sharing of chloroplast clades across taxonomic groups. Such introgression has been widely inferred in studies of the related genus Eucalyptus. This is the first report of its likely prevalence in Corymbia and Angophora, but this is consistent with previous morphological inferences of hybridisation between species. Our findings (based on continent-wide sampling) highlight a need for more focussed studies to assess the extent of hybridisation and introgression in the evolutionary history of these genera, and that critical testing of the classification of Corymbia and Angophora requires additional sequence data from nuclear genomes.
Collapse
Affiliation(s)
- Tanja M. Schuster
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- National Herbarium of Victoria, Royal Botanic Gardens Victoria, Birdwood Avenue, South Yarra, VIC, Australia
- * E-mail:
| | - Sabrina D. Setaro
- Department of Biology, Wake Forest University, Winston-Salem, NC,United States of America
| | - Josquin F. G. Tibbits
- Department of Economic Development, Jobs, Transport and Resources, AgriBiosciences Centre, La Trobe University, Bundoora, VIC, Australia
| | - Erin L. Batty
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rachael M. Fowler
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Todd G. B. McLay
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Stephen Wilcox
- Genomics Hub, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, VIC, Australia
| | - Peter K. Ades
- School of Ecosystem and Forest Sciences, The University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Michael J. Bayly
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
21
|
Rutherford S, Rossetto M, Bragg JG, McPherson H, Benson D, Bonser SP, Wilson PG. Speciation in the presence of gene flow: population genomics of closely related and diverging Eucalyptus species. Heredity (Edinb) 2018; 121:126-141. [PMID: 29632325 DOI: 10.1038/s41437-018-0073-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 01/22/2023] Open
Abstract
Speciation is a complex process that is fundamental to the origins of biological diversity. While there has been considerable progress in our understanding of speciation, there are still many unanswered questions, especially regarding barriers to gene flow in diverging populations. Eucalyptus is an appropriate system for investigating speciation mechanisms since it comprises species that are rapidly evolving across heterogeneous environments. We examined patterns of genetic variation within and among six closely related Eucalyptus species in subgenus Eucalyptus section Eucalyptus in south-eastern Australia (commonly known as the "green ashes"). We used reduced representation genome sequencing to genotype samples from populations across altitudinal and latitudinal gradients. We found one species, Eucalyptus cunninghamii, to be highly genetically differentiated from the others, and a population of mallees from Mount Banks to be genetically distinct and therefore likely to be a new undescribed species. Only modest levels of differentiation were found between all other species in the study. There was population structure within some species (e.g., E. obstans) corresponding to geographical factors, indicating that vicariance may have played a role in the evolution of the group. Overall, we found that lineages within the green ashes are differentiated to varying extents, from strongly diverged to much earlier stages of the speciation continuum. Furthermore, our results suggest the green ashes represent a group where a range of mechanisms (e.g., reticulate evolution and vicariance) have been operating in concert. These findings not only offer insights into recent speciation mechanisms in Eucalyptus, but also other species complexes.
Collapse
Affiliation(s)
- Susan Rutherford
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Kensington, Sydney, Australia. .,National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia.
| | - Maurizio Rossetto
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| | - Jason G Bragg
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| | - Hannah McPherson
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| | - Doug Benson
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| | - Stephen P Bonser
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW, Kensington, Sydney, Australia
| | - Peter G Wilson
- National Herbarium of NSW, Royal Botanic Garden Sydney, Sydney, Australia
| |
Collapse
|
22
|
Costa J, Vaillancourt RE, Steane DA, Jones RC, Marques C. Microsatellite analysis of population structure in Eucalyptus globulus. Genome 2017; 60:770-777. [PMID: 28679070 DOI: 10.1139/gen-2016-0218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Eucalyptus globulus subsp. globulus Labill. (Tasmanian Blue Gum), native to southeast Australia, is a benchmark species for the pulp and paper industry. We genotyped 397 trees from 16 populations of E. globulus representing the native diversity in Australia using 24 microsatellite loci. Eight genetically distinct groups were detected, consistent with genetic groupings detected in previous quantitative and molecular studies. A sample of 29 Portuguese individuals was added to help clarify the origin of the Portuguese landrace. The results suggest a southern and eastern Tasmania origin for the Portuguese landrace. This genetic framework will enable researchers to investigate the provenance of individuals of unknown pedigree and assess the levels of representation of E. globulus natural variation in the Portuguese landrace.
Collapse
Affiliation(s)
- Joana Costa
- a RAIZ, Instituto de Investigação da Floresta e do Papel, Herdade de Espirra, 2985-270 Pegões-Gare, Portugal
| | - René E Vaillancourt
- b School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, 7001, Tasmania, Australia.,c ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, 7001, Tasmania, Australia
| | - Dorothy A Steane
- b School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, 7001, Tasmania, Australia
| | - Rebecca C Jones
- b School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, 7001, Tasmania, Australia
| | - Cristina Marques
- a RAIZ, Instituto de Investigação da Floresta e do Papel, Herdade de Espirra, 2985-270 Pegões-Gare, Portugal
| |
Collapse
|
23
|
Butler JB, Vaillancourt RE, Potts BM, Lee DJ, King GJ, Baten A, Shepherd M, Freeman JS. Comparative genomics of Eucalyptus and Corymbia reveals low rates of genome structural rearrangement. BMC Genomics 2017; 18:397. [PMID: 28532390 PMCID: PMC5441008 DOI: 10.1186/s12864-017-3782-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Previous studies suggest genome structure is largely conserved between Eucalyptus species. However, it is unknown if this conservation extends to more divergent eucalypt taxa. We performed comparative genomics between the eucalypt genera Eucalyptus and Corymbia. Our results will facilitate transfer of genomic information between these important taxa and provide further insights into the rate of structural change in tree genomes. RESULTS We constructed three high density linkage maps for two Corymbia species (Corymbia citriodora subsp. variegata and Corymbia torelliana) which were used to compare genome structure between both species and Eucalyptus grandis. Genome structure was highly conserved between the Corymbia species. However, the comparison of Corymbia and E. grandis suggests large (from 1-13 MB) intra-chromosomal rearrangements have occurred on seven of the 11 chromosomes. Most rearrangements were supported through comparisons of the three independent Corymbia maps to the E. grandis genome sequence, and to other independently constructed Eucalyptus linkage maps. CONCLUSIONS These are the first large scale chromosomal rearrangements discovered between eucalypts. Nonetheless, in the general context of plants, the genomic structure of the two genera was remarkably conserved; adding to a growing body of evidence that conservation of genome structure is common amongst woody angiosperms.
Collapse
Affiliation(s)
- J B Butler
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - R E Vaillancourt
- School of Biological Science and ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - B M Potts
- School of Biological Science and ARC Training Centre for Forest Value, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - D J Lee
- Forest Industries Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, QLD, 4558, Australia
| | - G J King
- Southern Cross Plant Science, Southern Cross University, Military Rd, Lismore, NSW, 2480, Australia
| | - A Baten
- Southern Cross Plant Science, Southern Cross University, Military Rd, Lismore, NSW, 2480, Australia
| | - M Shepherd
- Southern Cross Plant Science, Southern Cross University, Military Rd, Lismore, NSW, 2480, Australia
| | - J S Freeman
- School of Biological Science, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia.
| |
Collapse
|
24
|
Edwards RD, Crisp MD, Cook DH, Cook LG. Congruent biogeographical disjunctions at a continent-wide scale: Quantifying and clarifying the role of biogeographic barriers in the Australian tropics. PLoS One 2017; 12:e0174812. [PMID: 28376094 PMCID: PMC5380322 DOI: 10.1371/journal.pone.0174812] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/15/2017] [Indexed: 11/18/2022] Open
Abstract
AIM To test whether novel and previously hypothesized biogeogaphic barriers in the Australian Tropics represent significant disjunction points or hard barriers, or both, to the distribution of plants. LOCATION Australian tropics: Australian Monsoon Tropics and Australian Wet Tropics. METHODS The presence or absence of 6,861 plant species was scored across 13 putative biogeographic barriers in the Australian Tropics, including two that have not previously been recognised. Randomizations of these data were used to test whether more species showed disjunctions (gaps in distribution) or likely barriers (range limits) at these points than expected by chance. RESULTS Two novel disjunctions in the Australian Tropics flora are identified in addition to eleven putative barriers previously recognized for animals. Of these, eleven disjunction points (all within the Australian Monsoon Tropics) were found to correspond to range-ending barriers to a significant number of species, while neither of the two disjunctions found within the Australian Wet Tropics limited a significant number of species' ranges. MAIN CONCLUSIONS Biogeographic barriers present significant distributional limits to native plant species in the Australian Monsoon Tropics but not in the Australian Wet Tropics.
Collapse
Affiliation(s)
- Robert D Edwards
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael D Crisp
- Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Dianne H Cook
- Department of Econometrics and Business Statistics, Monash University, Clayton, Victoria, Australia
| | - Lyn G Cook
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
25
|
Soler-Hurtado MM, López-González PJ, Machordom A. Molecular phylogenetic relationships reveal contrasting evolutionary patterns in Gorgoniidae (Octocorallia) in the Eastern Pacific. Mol Phylogenet Evol 2017; 111:219-230. [PMID: 28344106 DOI: 10.1016/j.ympev.2017.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 10/19/2022]
Abstract
The description and delimitation of species in an evolutionary framework is essential for understanding patterns of biodiversity and distribution, and in the assessment of conservation strategies for natural resources. This study seeks to clarify the evolutionary history and genetic variation within and between closely related octocoral species that are fundamental to benthic marine ecosystems for harbouring a high diversity of associated fauna. For our study system, we focused on members of the Gorgoniidae family in the Eastern Pacific, particularly of the Ecuadorian littoral, a less studied marine ecosystem. According to our results, the diagnosis of the genus Pacifigorgia is here amended to include species previously considered in the genus Leptogorgia. The genera Leptogorgia and Eugorgia are included within a single clade, and neither are recovered as monophyletic. In this case, according to the priority rule of the International Code of Zoological Nomenclature (ICZN), our proposal is to include the species considered in these two genera in Leptogorgia. In addition, we found evidence of interesting speciation patterns: morphological differentiation with no apparent genetic differentiation (in Pacifigorgia), and inconsistencies between mitochondrial and nuclear data that suggest a hybridisation phenomenon (in Leptogorgia). In the first case, recent radiation, ancient hybridisation, sympatric speciation, and in the second, reticulate evolution may have contributed to the evolutionary history of the studied taxa. Therefore, incongruences observed between morphological and molecular evidences in these octocorals, and in corals in general, may reveal the types of events/patterns that have influenced their evolution.
Collapse
Affiliation(s)
- M M Soler-Hurtado
- Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain; Biodiversidad y Ecología de Invertebrados Marinos, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto Nacional de Biodiversidad, Museo Ecuatoriano de Ciencias Naturales, Rumipamba 341 y Av. Shyris, Quito, Ecuador.
| | - P J López-González
- Biodiversidad y Ecología de Invertebrados Marinos, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - A Machordom
- Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain
| |
Collapse
|
26
|
Weber XA, Edgar GJ, Banks SC, Waters JM, Fraser CI. A morphological and phylogenetic investigation into divergence among sympatric Australian southern bull kelps (Durvillaea potatorum and D. amatheiae sp. nov.). Mol Phylogenet Evol 2017; 107:630-643. [PMID: 28017856 DOI: 10.1016/j.ympev.2016.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 11/19/2022]
Abstract
Genetic analyses can reveal a wealth of hitherto undiscovered cryptic biodiversity. For co-occurring and morphologically similar species, the combination of molecular, ecological and morphological analyses provides an excellent opportunity for understanding some of the processes that can lead to divergence and speciation. The Australian endemic brown macroalga Durvillaea potatorum (Phaeophyceae) was examined with a combination of genetic and morphological approaches to confirm the presence of two separate species and to infer the processes that led to their divergence. A total of 331 individuals from 11 sites around coastal Tasmania were collected and measured in situ for a range of morphological and ecological characteristics. Tissue samples were also collected for each individual to allow genetic analyses using mitochondrial (COI) and nuclear (28S) markers. Genetic analyses confirmed the presence of two deeply divergent clades. The significant morphological differentiation, despite high levels of intra-lineage variability, further supported their recognition as distinct species. We describe a new species, D. amatheiae sp. nov., which is characterised by a narrower and proportionately shorter stipe, shorter total length, and higher number of stipitate lateral blades and branches than D. potatorum (sensu stricto). The occurrence of both species in sympatry along Tasmania's eastern and western coasts, as well as their contrasting patterns of haplotype diversity, supports a hypothesis of geographical isolation, allopatric speciation and subsequent secondary contact in response to sea level and ocean current change throughout the Pleistocene glaciation cycles. This research contributes to resolving the phylogenetic relationships, taxonomy and evolution of the ecologically keystone kelp genus Durvillaea.
Collapse
Affiliation(s)
- Xénia A Weber
- Fenner School of Environment and Society, Australian National University, Building 141, Linnaeus Way, Acton ACT 2601, Australia.
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, GPO Box 252-49, Hobart, Tasmania 7001, Australia
| | - Sam C Banks
- Fenner School of Environment and Society, Australian National University, Building 141, Linnaeus Way, Acton ACT 2601, Australia
| | - Jonathan M Waters
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| | - Ceridwen I Fraser
- Fenner School of Environment and Society, Australian National University, Building 141, Linnaeus Way, Acton ACT 2601, Australia
| |
Collapse
|
27
|
Larcombe MJ, Costa E Silva J, Tilyard P, Gore P, Potts BM. On the persistence of reproductive barriers in Eucalyptus: the bridging of mechanical barriers to zygote formation by F1 hybrids is counteracted by intrinsic post-zygotic incompatibilities. ANNALS OF BOTANY 2016; 118:431-44. [PMID: 27401540 PMCID: PMC4998977 DOI: 10.1093/aob/mcw115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/04/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Many previous studies conclude that pre-zygotic barriers such as mechanical isolation account for most reproductive isolation between pairs of taxa. However, the inheritance and persistence of barriers such as these after the first generation of hybridization is rarely quantified, even though it is a vital consideration in understanding gene flow potential. There is an asymmetrical pre-zygotic mechanical barrier to hybridization between Eucalyptus nitens and Eucalyptus globulus, which completely prevents small-flowered E. nitens pollen from mating with large E. globulus flowers, while the reverse cross is possible. We aimed to determine the relative importance of pre- and post-zygotic barriers in preventing gene flow following secondary contact between E. nitens and E. globulus, including the inheritance of barriers in advanced-generation hybrids. METHODS Experimental crossing was used to produce outcrossed E. nitens, E. globulus and their F1, F2, BCg and BCn hybrids. The strength and inheritance of a suite of pre- and post-zygotic barriers were assessed, including 20-year survival, growth and reproductive capacity. KEY RESULTS The mechanical barrier to hybridization was lost or greatly reduced in the F1 hybrid. In contrast, intrinsic post-zygotic barriers were strong and persistent. Line-cross analysis indicated that the outbreeding depression in the hybrids was best explained by epistatic loss. CONCLUSIONS The removal of strong mechanical barriers between E. nitens and E. globulus allows F1 hybrids to act as a bridge for bi-directional gene flow between these species. However, strong and persistent post-zygotic barriers exist, meaning that wherever F1 hybridization does occur, intrinsic post-zygotic barriers will be responsible for most reproductive isolation in this system. This potential transient nature of mechanical barriers to zygote formation due to additive inheritance in hybrids appears under-appreciated, and highlights the often important role that intrinsic post-mating barriers play in maintaining species boundaries at zones of secondary contact.
Collapse
Affiliation(s)
- Matthew J Larcombe
- Department of Botany, University of Otago, PO Box 56, Dunedin 9011, New Zealand
| | - João Costa E Silva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Paul Tilyard
- School of Biological Sciences, and ARC Centre for Forest Value, 10 University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Peter Gore
- seedEnergy Pty Ltd, 2 Derwent Avenue, Margate, Tasmania 7054, Australia
| | - Brad M Potts
- School of Biological Sciences, and ARC Centre for Forest Value, 10 University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| |
Collapse
|
28
|
Cliff HB, Wapstra E, Burridge CP. Persistence and dispersal in a Southern Hemisphere glaciated landscape: the phylogeography of the spotted snow skink (Niveoscincus ocellatus) in Tasmania. BMC Evol Biol 2015; 15:121. [PMID: 26111715 PMCID: PMC4482293 DOI: 10.1186/s12862-015-0397-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/29/2015] [Indexed: 11/10/2022] Open
Abstract
Background The aim of this research was to identify the effects of Pleistocene climate change on the distribution of fauna in Tasmania, and contrast this with biotic responses in other temperate regions in the Northern and Southern Hemisphere that experienced glacial activity during this epoch. This was achieved by examining the phylogeographic patterns in a widely distributed Tasmanian endemic reptile, Niveoscincus ocellatus. 204 individuals from 29 populations across the distributional range of N. ocellatus were surveyed for variation at two mitochondrial genes (ND2, ND4), and two nuclear genes (β-globin, RPS8). Phylogenetic relationships were reconstructed using a range of methods (maximum parsimony, Bayesian inference and haplotype networks), and the demographic histories of populations were assessed (AMOVA, Tajima’s D, Fu’s Fs, mismatch distributions, extended Bayesian skyline plots, and relaxed random walk analyses). Results There was a high degree of mitochondrial haplotype diversity (96 unique haplotypes) and phylogeographic structure, where spatially distinct groups were associated with Tasmania’s Northeast and a large area covering Southeast and Central Tasmania. Phylogeographic structure was also present within each major group, but the degree varied regionally, being highest in the Northeast. Only the Southeastern group had a signature of demographic expansion, occurring during the Pleistocene but post-dating the Last Glacial Maximum. In contrast, nuclear DNA had low levels of variation and a lack of phylogeographic structure, and further loci should be surveyed to corroborate the mitochondrial inferences. Conclusions The phylogeographic patterns of N. ocellatus indicate Pleistocene range and demographic expansion in N. ocellatus, particularly in the Southeast and Central areas of Tasmania. Expansion in Central and Southeastern areas appears to have been more recent in both demographic and spatial contexts, than in Northeast Tasmania, which is consistent with inferences for other taxa of greater stability and persistence in Northeast Tasmania during the Last Glacial Maximum. These phylogeographic patterns indicate contrasting demographic histories of populations in close proximity to areas directly affected by glaciers in the Southern Hemisphere during the LGM. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0397-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- H B Cliff
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia.
| | - E Wapstra
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia.
| | - C P Burridge
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia.
| |
Collapse
|
29
|
Pollock LJ, Bayly MJ, Vesk PA. The Roles of Ecological and Evolutionary Processes in Plant Community Assembly: The Environment, Hybridization, and Introgression Influence Co-occurrence of Eucalyptus. Am Nat 2015; 185:784-96. [PMID: 25996863 DOI: 10.1086/680983] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Introgressive hybridization is increasingly recognized as having influenced the gene pools of large genera of plants, yet it is rarely invoked as an explanation for why closely related plant species do not co-occur. Here, we asked how the environment and tendency to interbreed relate to neighborhood co-occurrence patterns for Eucalyptus species in the Grampians National Park, Victoria, Australia. We identified species pairs that have experienced ongoing hybridization and introgression on the basis of the extent of incongruence between chloroplast DNA (JLA+ region) and nuclear ribosomal DNA (internal transcribed spacer region) phylogenies, geographic patterns of gene sharing, and field observation of intermediate morphologies. Co-occurrence, trait data (specific leaf area [SLA], maximum height, and seed mass), and environmental data were measured in plots distributed along environmental gradients. Trait and habitat similarity influenced species co-occurrence the most overall (e.g., co-occurring species had similar SLA). Reproductively compatible species were an exception; they rarely co-occurred despite being functionally similar. The negative effect of reproductive compatibility was stronger than the positive effect of SLA on co-occurrence. Our results emphasize the dominant roles of the environment and the importance of evolution in structuring local assemblages. We argue that the mechanism responsible for preventing closely related species from co-occurring in this system is reproductive interference rather than competitive exclusion. Reproductive interference should be considered more generally as a potential cause of phylogenetic overdispersion.
Collapse
Affiliation(s)
- Laura J Pollock
- School of Botany, University of Melbourne, 3010 Victoria, Australia
| | | | | |
Collapse
|
30
|
Larcombe MJ, Holland B, Steane DA, Jones RC, Nicolle D, Vaillancourt RE, Potts BM. Patterns of Reproductive Isolation inEucalyptus—A Phylogenetic Perspective. Mol Biol Evol 2015; 32:1833-46. [DOI: 10.1093/molbev/msv063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
31
|
Goldberg J, Morgan-Richards M, Trewick SA. Intercontinental island hopping: Colonization and speciation of the grasshopper genus Phaulacridium (Orthoptera: Acrididae) in Australasia. ZOOL ANZ 2015. [DOI: 10.1016/j.jcz.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Zhang ZY, Cashins S, Philips A, Burridge CP. Significant population genetic structuring but a lack of phylogeographic structuring in the endemic Tasmanian tree frog (Litoria burrowsae). AUST J ZOOL 2014. [DOI: 10.1071/zo14028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conservation of frogs is of global concern, owing to declines resulting from habitat destruction, global climate change, and disease. Knowledge of genetic variation in frog species is therefore desirable for the identification of management units. Here we surveyed mitochondrial DNA sequence variation in the Tasmanian endemic hylid frog Litoria burrowsae, which is infected by chytrid fungus, Batrachochytrium dendrobatidis, and may be declining. Neither phylogeographic structure nor deep phylogenetic divergence was detected in the species, although its populations were highly differentiated with respect to haplotype frequencies. The low-haplotype diversity in L. burrowsae suggests a recent bottleneck in the species, and population genetic structuring may reflect isolation by distance as well as founder effects associated with range expansion. Three putative management units were identified that require verification based on nuclear DNA variation and adaptation to local environments.
Collapse
|
33
|
Nevill PG, Bradbury D, Williams A, Tomlinson S, Krauss SL. Genetic and palaeo-climatic evidence for widespread persistence of the coastal tree species Eucalyptus gomphocephala (Myrtaceae) during the Last Glacial Maximum. ANNALS OF BOTANY 2014; 113:55-67. [PMID: 24284819 PMCID: PMC3864724 DOI: 10.1093/aob/mct253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/06/2013] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIMS Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia. METHODS The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models. KEY RESULTS The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r(2) = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline. CONCLUSIONS The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.
Collapse
Affiliation(s)
- Paul G. Nevill
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, Western Australia 6005, Australia
- School of Plant Biology, The University of Western Australia, Nedlands, Western Australia 6009, Australia
- For correspondence. E-mail
| | - Donna Bradbury
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, Western Australia 6005, Australia
- School of Plant Biology, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Anna Williams
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, Western Australia 6005, Australia
- School of Plant Biology, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Sean Tomlinson
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, Western Australia 6005, Australia
- School of Animal Biology, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Siegfried L. Krauss
- Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth, Western Australia 6005, Australia
- School of Plant Biology, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| |
Collapse
|
34
|
Bayly MJ, Rigault P, Spokevicius A, Ladiges PY, Ades PK, Anderson C, Bossinger G, Merchant A, Udovicic F, Woodrow IE, Tibbits J. Chloroplast genome analysis of Australian eucalypts – Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae). Mol Phylogenet Evol 2013; 69:704-16. [DOI: 10.1016/j.ympev.2013.07.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/28/2013] [Accepted: 07/08/2013] [Indexed: 12/01/2022]
|
35
|
Kremer A, Potts BM, Delzon S. Genetic divergence in forest trees: understanding the consequences of climate change. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12169] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Antoine Kremer
- INRA; UMR1202 Biodiversité Gènes et Communautés; Cestas F-33610, France
- Université de Bordeaux, UMR1202 Biodiversité Gènes et Communautés; Talence F-33410 France
| | - Brad M. Potts
- School of Plant Science and National Centre for Future Forest Industries; University of Tasmania; Private Bag 55 Hobart TAS 7001, Australia
| | - Sylvain Delzon
- INRA; UMR1202 Biodiversité Gènes et Communautés; Cestas F-33610, France
- Université de Bordeaux, UMR1202 Biodiversité Gènes et Communautés; Talence F-33410 France
| |
Collapse
|
36
|
Meiri M, Lister AM, Higham TFG, Stewart JR, Straus LG, Obermaier H, González Morales MR, Marín-Arroyo AB, Barnes I. Late-glacial recolonization and phylogeography of European red deer (Cervus elaphusL.). Mol Ecol 2013; 22:4711-22. [DOI: 10.1111/mec.12420] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/09/2013] [Accepted: 06/11/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Meirav Meiri
- Department of Zoology; Institute of Archaeology; Tel Aviv University; Tel Aviv 69978 Israel
| | - Adrian M. Lister
- Department of Earth Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Thomas F. G. Higham
- Research Lab for Archaeology and the History of Art; University of Oxford; Oxford OX1 3QY UK
| | - John R. Stewart
- School of Applied Sciences; Bournemouth University; Poole Dorset BH12 5BB UK
| | - Lawrence G. Straus
- Department of Anthropology; University of New Mexico; Albuquerque NM 87131-0001 USA
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria; Universidad de Cantabria; Santander 39005 Spain
| | - Henriette Obermaier
- Bavarian State Collection for Anthropology and Palaeoanatomy Munich; Munich 80539 Germany
| | - Manuel R. González Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria; Universidad de Cantabria; Santander 39005 Spain
| | - Ana B. Marín-Arroyo
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria; Universidad de Cantabria; Santander 39005 Spain
| | - Ian Barnes
- School of Biological Sciences; Royal Holloway; University of London; Egham Surrey TW20 0EX UK
| |
Collapse
|
37
|
McCallum KP, Guerin GR, Breed MF, Lowe AJ. Combining population genetics, species distribution modelling and field assessments to understand a species vulnerability to climate change. AUSTRAL ECOL 2013. [DOI: 10.1111/aec.12041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kimberly P. McCallum
- Australian Centre for Evolutionary Biology and Biodiversity; Environment Institute; School of Earth and Environmental Sciences; University of Adelaide; Adelaide SA 5005 Australia
| | - Greg R. Guerin
- Australian Centre for Evolutionary Biology and Biodiversity; Environment Institute; School of Earth and Environmental Sciences; University of Adelaide; Adelaide SA 5005 Australia
| | - Martin F. Breed
- Australian Centre for Evolutionary Biology and Biodiversity; Environment Institute; School of Earth and Environmental Sciences; University of Adelaide; Adelaide SA 5005 Australia
| | - Andrew J. Lowe
- Australian Centre for Evolutionary Biology and Biodiversity; Environment Institute; School of Earth and Environmental Sciences; University of Adelaide; Adelaide SA 5005 Australia
- Department of Environment; Water and Natural Resources; Adelaide South Australia Australia
| |
Collapse
|
38
|
McPherson H, van der Merwe M, Delaney SK, Edwards MA, Henry RJ, McIntosh E, Rymer PD, Milner ML, Siow J, Rossetto M. Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree. BMC Ecol 2013; 13:8. [PMID: 23497206 PMCID: PMC3605380 DOI: 10.1186/1472-6785-13-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/01/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND With high quantity and quality data production and low cost, next generation sequencing has the potential to provide new opportunities for plant phylogeographic studies on single and multiple species. Here we present an approach for in silicio chloroplast DNA assembly and single nucleotide polymorphism detection from short-read shotgun sequencing. The approach is simple and effective and can be implemented using standard bioinformatic tools. RESULTS The chloroplast genome of Toona ciliata (Meliaceae), 159,514 base pairs long, was assembled from shotgun sequencing on the Illumina platform using de novo assembly of contigs. To evaluate its practicality, value and quality, we compared the short read assembly with an assembly completed using 454 data obtained after chloroplast DNA isolation. Sanger sequence verifications indicated that the Illumina dataset outperformed the longer read 454 data. Pooling of several individuals during preparation of the shotgun library enabled detection of informative chloroplast SNP markers. Following validation, we used the identified SNPs for a preliminary phylogeographic study of T. ciliata in Australia and to confirm low diversity across the distribution. CONCLUSIONS Our approach provides a simple method for construction of whole chloroplast genomes from shotgun sequencing of whole genomic DNA using short-read data and no available closely related reference genome (e.g. from the same species or genus). The high coverage of Illumina sequence data also renders this method appropriate for multiplexing and SNP discovery and therefore a useful approach for landscape level studies of evolutionary ecology.
Collapse
Affiliation(s)
- Hannah McPherson
- National Herbarium of NSW, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, 2000, Sydney, NSW, Australia
- Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Science, University of Adelaide, Adelaide, SA, Australia
| | - Marlien van der Merwe
- National Herbarium of NSW, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, 2000, Sydney, NSW, Australia
- Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental Science, University of Adelaide, Adelaide, SA, Australia
| | - Sven K Delaney
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052, Sydney, NSW, Australia
| | - Mark A Edwards
- Southern Cross Plant Science, Southern Cross University, 2480, Lismore, NSW, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, 4072, Brisbane, QLD, Australia
| | - Emma McIntosh
- National Herbarium of NSW, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, 2000, Sydney, NSW, Australia
| | - Paul D Rymer
- National Herbarium of NSW, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, 2000, Sydney, NSW, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus, 2753, Richmond, NSW, Australia
| | - Melita L Milner
- National Herbarium of NSW, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, 2000, Sydney, NSW, Australia
| | - Juelian Siow
- National Herbarium of NSW, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, 2000, Sydney, NSW, Australia
| | - Maurizio Rossetto
- National Herbarium of NSW, The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, 2000, Sydney, NSW, Australia
| |
Collapse
|
39
|
Milner ML, Rossetto M, Crisp MD, Weston PH. The impact of multiple biogeographic barriers and hybridization on species-level differentiation. AMERICAN JOURNAL OF BOTANY 2012; 99:2045-2057. [PMID: 23221499 DOI: 10.3732/ajb.1200327] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PREMISE OF THE STUDY The glacial cycles of the Quaternary did not impact Australia in the same way as Europe and North America. Here we investigate the history of population isolation, species differentiation, and hybridization in the southeastern Australian landscape, using five species of Lomatia (Proteaceae). We use a chloroplast DNA phylogeography to assess chloroplast haplotype (chlorotype) sharing among these species and whether species with shared distributions have been affected by shared biogeographic barriers. • METHODS We used six chloroplast DNA simple sequence repeats (cpSSR) across five species of Lomatia, sampled across their entire distributional range in southeastern Australia. Resulting size data were combined, presented as a network, and visualized on a map. Biogeographical barriers were tested using AMOVA. To explore hypotheses of chlorotype origin, we converted the network into a cladogram and reconciled with all possible species trees using parsimony-based tree mapping. • KEY RESULTS Some chlorotypes were shared across multiple species of Lomatia in the study, including between morphologically differentiated species. Chlorotypes were either widespread in distribution or geographically restricted to specific regions. Biogeographical structure was identified across the range of Lomatia. The most parsimonious reconciled tree incorporated horizontal transfer of chlorotypes. • CONCLUSIONS Lomatia shows evidence of both incomplete lineage sorting and extensive hybridization between co-occurring species. Although the species in the study appear to have responded to a number of biogeographic barriers to varying degrees, our findings identified the Hunter River Valley as the most important long-term biogeographic barrier for the genus in southeastern Australia.
Collapse
Affiliation(s)
- Melita L Milner
- Evolution, Ecology and Genetics, School of Biology, The Australian National University, Building 116 Daley Road, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
40
|
Janes JK, Steane DA, Vaillancourt RE. What does population structure analysis reveal about the Pterostylis longifolia complex (Orchidaceae)? Ecol Evol 2012; 2:2631-44. [PMID: 23170201 PMCID: PMC3501618 DOI: 10.1002/ece3.376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 08/13/2012] [Accepted: 08/20/2012] [Indexed: 01/29/2023] Open
Abstract
Morphologically similar groups of species are common and pose significant challenges for taxonomists. Differences in approaches to classifying unique species can result in some species being overlooked, whereas others are wrongly conserved. The genetic diversity and population structure of the Pterostylis longifolia complex (Orchidaceae) in Tasmania was investigated to determine if four species, and potential hybrids, could be distinguished through genomic AFLP and chloroplast restriction-fragment-length polymorphism (RFLP) markers. Analysis of molecular variance (AMOVA) results indicated that little genetic variation was present among taxa, whereas PCoA analyses revealed genetic variation at a regional scale irrespective of taxa. Population genetic structure analyses identified three clusters that correspond to regional genetic and single taxon-specific phenotypic variation. The results from this study suggest that "longifolia" species have persisted throughout the last glacial maximum in Tasmania and that the complex may be best treated as a single taxon with several morphotypes. These results could have serious evolutionary and conservation implications as taxonomic changes could result in the instatement of a single, widespread taxon in which rarer morphotypes are not protected.
Collapse
Affiliation(s)
- Jasmine K Janes
- School of Plant Science, University of Tasmania Private Bag 55, Hobart, Tasmania, 7001, Australia ; Biological Sciences, University of Alberta Edmonton, Alberta, T6G 2E9, Canada
| | | | | |
Collapse
|
41
|
Frankham GJ, Handasyde KA, Eldridge MD. Novel insights into the phylogenetic relationships of the endangered marsupial genus Potorous. Mol Phylogenet Evol 2012; 64:592-602. [DOI: 10.1016/j.ympev.2012.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/04/2012] [Accepted: 05/15/2012] [Indexed: 11/16/2022]
|
42
|
Fraser CI, Nikula R, Ruzzante DE, Waters JM. Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol Evol 2012; 27:462-71. [DOI: 10.1016/j.tree.2012.04.011] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022]
|
43
|
Jones RC, Steane DA, Lavery M, Vaillancourt RE, Potts BM. Multiple evolutionary processes drive the patterns of genetic differentiation in a forest tree species complex. Ecol Evol 2012; 3:1-17. [PMID: 23403692 PMCID: PMC3568837 DOI: 10.1002/ece3.421] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/26/2012] [Accepted: 10/03/2012] [Indexed: 12/02/2022] Open
Abstract
Forest trees frequently form species complexes, complicating taxonomic classification and gene pool management. This is certainly the case in Eucalyptus, and well exemplified by the Eucalyptus globulus complex. This ecologically and economically significant complex comprises four taxa (sspp. bicostata, globulus, maidenii, pseudoglobulus) that are geographically and morphologically distinct, but linked by extensive "intergrade" populations. To resolve their genetic affinities, nine microsatellites were used to genotype 1200 trees from throughout the natural range of the complex in Australia, representing 33 morphological core and intergrade populations. There was significant spatial genetic structure (F(ST) = 0.10), but variation was continuous. High genetic diversity in southern ssp. maidenii indicates that this region is the center of origin. Genetic diversity decreases and population differentiation increases with distance from this area, suggesting that drift is a major evolutionary process. Many of the intergrade populations, along with other populations morphologically classified as ssp. pseudoglobulus or ssp. globulus, belong to a "cryptic genetic entity" that is genetically and geographically intermediate between core ssp. bicostata, ssp. maidenii, and ssp. globulus. Geography, rather than morphology, therefore, is the best predictor of overall genetic affinities within the complex and should be used to classify germplasm into management units for conservation and breeding purposes.
Collapse
Affiliation(s)
- Rebecca C Jones
- School of Plant Science, University of Tasmania Private Bag 55, Hobart, Tasmania, 7001, Australia ; CRC for Forestry Private Bag 12, Hobart, Tasmania, 7001, Australia
| | | | | | | | | |
Collapse
|
44
|
Wang J, Wu Y, Ren G, Guo Q, Liu J, Lascoux M. Genetic differentiation and delimitation between ecologically diverged Populus euphratica and P. pruinosa. PLoS One 2011; 6:e26530. [PMID: 22028897 PMCID: PMC3197521 DOI: 10.1371/journal.pone.0026530] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 09/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The fixed genetic differences between ecologically divergent species were found to change greatly depending on the markers examined. With such species it is difficult to differentiate between shared ancestral polymorphisms and past introgressions between the diverging species. In order to disentangle these possibilities and provide a further case for DNA barcoding of plants, we examine genetic differentiation between two ecologically divergent poplar species, Populus euphratica Oliver and P. pruinosa Schrenk using three different types of genetic marker. METHODOLOGY/PRINCIPAL FINDINGS We genotyped 290 individuals from 29 allopatric and sympatric populations, using chloroplast (cp) DNA, nuclear (nr) ITS sequences and eight simple sequence repeat (SSR) loci. Three major cpDNA haplotypes were widely shared between the two species and between-species cpDNA differentiation (F(CT)) was very low, even lower than among single species populations. The average SSR F(CT) values were higher. Bayesian clustering analysis of all loci allowed a clear delineation of the two species. Gene flow, determined by examining all SSR loci, was obvious but only slightly asymmetrical. However, the two species were almost fixed for two different nrITS genotypes that had the highest F(CT), although a few introgressed individuals were detected both in allopatric and sympatric populations. CONCLUSIONS The two species shared numerous ancestral polymorphisms at cpDNA and a few SSR loci. Both ITS and a combination of nuclear SSR data could be used to differentiate between the two species. Introgressions and gene flow were obvious between the two species either during or after their divergence. Our findings underscore the complex genetic differentiations between ecologically diverged species and highlight the importance of nuclear DNA (especially ITS) differentiation for delimiting closely related plant species.
Collapse
Affiliation(s)
- Juan Wang
- Molecular Ecology Group, State Key Laboratory of Grassland Farming System, Lanzhou University, Lanzhou, Gansu, China
| | - Yuxia Wu
- Molecular Ecology Group, State Key Laboratory of Grassland Farming System, Lanzhou University, Lanzhou, Gansu, China
| | - Guangpeng Ren
- Molecular Ecology Group, State Key Laboratory of Grassland Farming System, Lanzhou University, Lanzhou, Gansu, China
| | - Qiuhong Guo
- Molecular Ecology Group, State Key Laboratory of Grassland Farming System, Lanzhou University, Lanzhou, Gansu, China
| | - Jianquan Liu
- Molecular Ecology Group, State Key Laboratory of Grassland Farming System, Lanzhou University, Lanzhou, Gansu, China
| | - Martin Lascoux
- Laboratory of Evolutionary Genomics, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai, China
- Program in Evolutionary Functional Genomics, Evolutionary Biology Centre, Uppsala University, Norbyvägen, Uppsala, Sweden
| |
Collapse
|
45
|
Species delimitation and biogeography of two fir species (Abies) in central China: cytoplasmic DNA variation. Heredity (Edinb) 2011; 107:362-70. [PMID: 21448232 DOI: 10.1038/hdy.2011.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
It remains unclear how speciation history might contribute to species-specific variation and affect species delimitation. We examined concordance between cytoplasmic genetic variation and morphological taxonomy in two fir species, Abies chensiensis and A. fargesii, with overlapping distributions in central China. Range-wide genetic variation was investigated using mitochondrial (mt) and plastid (pt) DNA sequences, which contrast in their rates of gene flow. Four mtDNA haplotypes were recovered and showed no obvious species' bias in terms of relative frequency. In contrast, a high level of ptDNA variation was recorded in both species with 3 common ptDNA haplotypes shared between them and 21 rare ptDNA haplotypes specific to one or other species. We argue that the lack of concordance between morphological and molecular variation between the two fir species most likely reflects extensive ancestral polymorphism sharing for both forms of cytoplasmic DNA variation. It is feasible that a relatively fast mutation rate for ptDNA contributed to the production of many species-specific ptDNA haplotypes, which remained rare due to insufficient time passing for their spread and fixation in either species, despite high levels of intraspecific ptDNA gene flow. Our phylogeographic analyses further suggest that polymorphisms in both organelle genomes most likely originated during and following glacial intervals preceding the last glacial maximum, when species distributions became fragmented into several refugia and then expanded in range across central China.
Collapse
|
46
|
A plastid tree can bring order to the chaotic generic taxonomy of Rytidosperma Steud. s.l. (Poaceae). Mol Phylogenet Evol 2010; 55:911-28. [DOI: 10.1016/j.ympev.2009.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/07/2009] [Accepted: 12/09/2009] [Indexed: 11/17/2022]
|
47
|
McKinnon GE, Smith JJ, Potts BM. Recurrent nuclear DNA introgression accompanies chloroplast DNA exchange between two eucalypt species. Mol Ecol 2010; 19:1367-80. [PMID: 20298471 DOI: 10.1111/j.1365-294x.2010.04579.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Numerous studies within plant genera have found geographically structured sharing of chloroplast (cp) DNA among sympatric species, consistent with introgressive hybridization. Current research is aimed at understanding the extent, direction and significance of nuclear (nr) DNA exchange that accompanies putative cpDNA exchange. Eucalyptus is a complex tree genus for which cpDNA sharing has been established between multiple species. Prior phylogeographic analysis has indicated cpDNA introgression into the widespread forest species Eucalyptus globulus from its rare congener E. cordata. In this study, we use AFLP markers to characterize corresponding nrDNA introgression, on both a broad and fine spatial scale. Using 388 samples we examine (i) the fine-scale spatial structure of cp and nrDNA introgression from E. cordata into E. globulus at a site in natural forest and (ii) broad-scale patterns of AFLP marker introgression at six additional mixed populations. We show that while E. globulus and E. cordata retain strongly differentiated nuclear gene pools overall, leakage of nrDNA occurs at mixed populations, with some AFLP markers being transferred to E. globulus recurrently at different sites. On the fine scale, different AFLP fragments show varying distances of introgression into E. globulus, while introgression of cpDNA is extensive. The frequency of E. cordata markers in E. globulus is correlated with spatial proximity to E. cordata, but departs from expectations based on AFLP marker frequency in E. cordata, indicating that selection may be governing the persistence of introgressed fragments in E. globulus.
Collapse
Affiliation(s)
- G E McKinnon
- School of Plant Science, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia.
| | | | | |
Collapse
|
48
|
MACQUEEN PEGGY, GOLDIZEN ANNEW, SEDDON JENNIFERM. Response of a southern temperate marsupial, the Tasmanian pademelon (Thylogale billardierii), to historical and contemporary forest fragmentation. Mol Ecol 2009; 18:3291-306. [DOI: 10.1111/j.1365-294x.2009.04262.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
KAWAKAMI TAKESHI, BUTLIN ROGERK, ADAMS MARK, SAINT KATHLEENM, PAULL DAVIDJ, COOPER STEVENJB. Re-examination of a proposed case of stasipatric speciation: phylogeography of the Australian morabine grasshoppers (Vandiemenella viaticaspecies group). Mol Ecol 2009; 18:3429-42. [DOI: 10.1111/j.1365-294x.2009.04277.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
MARSHALL DAVIDC, HILL KATHYBR, FONTAINE KATHRYNM, BUCKLEY THOMASR, SIMON CHRIS. Glacial refugia in a maritime temperate climate: Cicada (Kikihia subalpina) mtDNA phylogeography in New Zealand. Mol Ecol 2009; 18:1995-2009. [DOI: 10.1111/j.1365-294x.2009.04155.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|