1
|
Santillo A, Falvo S, Venditti M, Di Maio A, Chieffi Baccari G, Errico F, Usiello A, Minucci S, Di Fiore MM. D-Aspartate Depletion Perturbs Steroidogenesis and Spermatogenesis in Mice. Biomolecules 2023; 13:biom13040621. [PMID: 37189369 DOI: 10.3390/biom13040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
High levels of free D-aspartate (D-Asp) are present in vertebrate testis during post-natal development, coinciding with the onset of testosterone production, which suggests that this atypical amino acid might participate in the regulation of hormone biosynthesis. To elucidate the unknown role of D-Asp on testicular function, we investigated steroidogenesis and spermatogenesis in a one-month-old knockin mouse model with the constitutive depletion of D-Asp levels due to the targeted overexpression of D-aspartate oxidase (DDO), which catalyzes the deaminative oxidation of D-Asp to generate the corresponding α-keto acid, oxaloacetate, hydrogen peroxide, and ammonium ions. In the Ddo knockin mice, we found a dramatic reduction in testicular D-Asp levels, accompanied by a significant decrease in the serum testosterone levels and testicular 17β-HSD, the enzyme involved in testosterone biosynthesis. Additionally, in the testes of these Ddo knockin mice, the expression of PCNA and SYCP3 proteins decreased, suggesting alterations in spermatogenesis-related processes, as well as an increase in the cytosolic cytochrome c protein levels and TUNEL-positive cell number, which indicate an increase in apoptosis. To further investigate the histological and morphometric testicular alterations in Ddo knockin mice, we analyzed the expression and localization of prolyl endopeptidase (PREP) and disheveled-associated activator of morphogenesis 1 (DAAM1), two proteins involved in cytoskeletal organization. Our results showed that the testicular levels of DAAM1 and PREP in Ddo knockin mice were different from those in wild-type animals, suggesting that the deficiency of D-Asp is associated with overall cytoskeletal disorganization. Our findings confirmed that physiological D-Asp influences testosterone biosynthesis and plays a crucial role in germ cell proliferation and differentiation, which are required for successful reproduction.
Collapse
|
2
|
Dai W, Liu J, Qiu Y, Teng Z, Li S, Yuan H, Huang J, Xiang H, Tang H, Wang B, Chen J, Wu H. Gut Microbial Dysbiosis and Cognitive Impairment in Bipolar Disorder: Current Evidence. Front Pharmacol 2022; 13:893567. [PMID: 35677440 PMCID: PMC9168430 DOI: 10.3389/fphar.2022.893567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies have reported that the gut microbiota influences mood and cognitive function through the gut-brain axis, which is involved in the pathophysiology of neurocognitive and mental disorders, including Parkinson’s disease, Alzheimer’s disease, and schizophrenia. These disorders have similar pathophysiology to that of cognitive dysfunction in bipolar disorder (BD), including neuroinflammation and dysregulation of various neurotransmitters (i.e., serotonin and dopamine). There is also emerging evidence of alterations in the gut microbial composition of patients with BD, suggesting that gut microbial dysbiosis contributes to disease progression and cognitive impairment in BD. Therefore, microbiota-centered treatment might be an effective adjuvant therapy for BD-related cognitive impairment. Given that studies focusing on connections between the gut microbiota and BD-related cognitive impairment are lagging behind those on other neurocognitive disorders, this review sought to explore the potential mechanisms of how gut microbial dysbiosis affects cognitive function in BD and identify potential microbiota-centered treatment.
Collapse
Affiliation(s)
- Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Yuan
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
3
|
Association of the D-amino acid oxidase gene with methadone dose in heroin dependent patients under methadone maintenance treatment. J Hum Genet 2022; 67:273-278. [PMID: 34983973 DOI: 10.1038/s10038-021-01008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/08/2022]
Abstract
Methadone is a synthetic opioid used for the maintenance treatment (MMT) of heroin dependence. It primarily binds to the μ-opioid receptor (MOR; with its gene, namely OPRM1). Methadone is also an N-methyl-D-aspartate (NMDA) receptor antagonist. The role of NMDA receptor in the regulatory mechanisms of methadone dosage in heroin dependent patients is so far not clear. D-amino acid oxidase (DAO) is an important enzyme that indirectly activates the NMDA receptor through its effect on the D-serine level. To test the hypothesis that genetic polymorphisms in the DAO gene are associated with methadone treatment dose and responses, we selected four single nucleotide polymorphisms (SNPs) in DAO from the literature reports of the Taiwanese population. SNPs were genotyped in 344 MMT patients. In this study, we identified a functional SNP rs55944529 in the DAO gene that reveals a modest but significant association with the methadone dosage in the recessive model of analysis (P = 0.003) and plasma concentrations (P = 0.003) in MMT patients. However, it did not show association with plasma methadone concentration in multiple linear regression analysis. It is also associated with the methadone adverse reactions of dry mouth (P = 0.002), difficulty with urination (P = 0.0003) in the dominant model, and the withdrawal symptoms of yawning (P = 0.005) and gooseflesh skin (P = 0.004) in the recessive model. Our results suggest a role of the indirect regulatory mechanisms of the NMDA reporter, possibly via the DAO genetic variants, in the methadone dose and some adverse reactions in MMT patients.
Collapse
|
4
|
Modulation of Hippocampal Astroglial Activity by Synaptamide in Rats with Neuropathic Pain. Brain Sci 2021; 11:brainsci11121561. [PMID: 34942863 PMCID: PMC8699312 DOI: 10.3390/brainsci11121561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
The present study demonstrates that synaptamide (N-docosahexaenoylethanolamine), an endogenous metabolite of docosahexaenoic acid, when administered subcutaneously (4 mg/kg/day, 14 days), exhibits analgesic activity and promotes cognitive recovery in the rat sciatic nerve chronic constriction injury (CCI) model. We analyzed the dynamics of GFAP-positive astroglia and S100β-positive astroglia activity, the expression of nerve growth factor (NGF), and two subunits of the NMDA receptor (NMDAR1 and NMDAR2A) in the hippocampi of the experimental animals. Hippocampal neurogenesis was evaluated by immunohistochemical detection of DCX. Analysis of N-acylethanolamines in plasma and in the brain was performed using the liquid chromatography-mass spectrometry technique. In vitro and in vivo experiments show that synaptamide (1) reduces cold allodynia, (2) improves working memory and locomotor activity, (3) stabilizes neurogenesis and astroglial activity, (4) enhances the expression of NGF and NMDAR1, (5) increases the concentration of Ca2+ in astrocytes, and (6) increases the production of N-acylethanolamines. The results of the present study demonstrate that synaptamide affects the activity of hippocampal astroglia, resulting in faster recovery after CCI.
Collapse
|
5
|
Geoffroy C, Paoletti P, Mony L. Positive allosteric modulation of NMDA receptors: mechanisms, physiological impact and therapeutic potential. J Physiol 2021; 600:233-259. [PMID: 34339523 DOI: 10.1113/jp280875] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022] Open
Abstract
NMDA receptors (NMDARs) are glutamate-gated ion channels that play key roles in synaptic transmission and plasticity. Both hyper- and hypo-activation of NMDARs are deleterious to neuronal function. In particular, NMDAR hypofunction is involved in a wide range of neurological and psychiatric conditions like schizophrenia, intellectual disability, age-dependent cognitive decline, or Alzheimer's disease. While early medicinal chemistry efforts were mostly focused on the development of NMDAR antagonists, the last 10 years have seen a boom in the development of NMDAR positive allosteric modulators (PAMs). Here we review the currently developed NMDAR PAMs, their pharmacological profiles and mechanisms of action, as well as their physiological effects in healthy animals and animal models of NMDAR hypofunction. In light of the complexity of physiological outcomes of NMDAR PAMs in vivo, we discuss the remaining challenges and questions that need to be addressed to better grasp and predict the therapeutic potential of NMDAR positive allosteric modulation.
Collapse
Affiliation(s)
- Chloé Geoffroy
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| | - Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, Paris, France
| |
Collapse
|
6
|
Astrocytic contribution to glutamate-related central respiratory chemoreception in vertebrates. Respir Physiol Neurobiol 2021; 294:103744. [PMID: 34302992 DOI: 10.1016/j.resp.2021.103744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/18/2021] [Indexed: 12/24/2022]
Abstract
Central respiratory chemoreceptors play a key role in the respiratory homeostasis by sensing CO2 and H+ in brain and activating the respiratory neural network. This ability of specific brain regions to respond to acidosis and hypercapnia is based on neuronal and glial mechanisms. Several decades ago, glutamatergic transmission was proposed to be involved as a main mechanism in central chemoreception. However, a complete identification of mechanism has been elusive. At the rostral medulla, chemosensitive neurons of the retrotrapezoid nucleus (RTN) are glutamatergic and they are stimulated by ATP released by RTN astrocytes in response to hypercapnia. In addition, recent findings show that caudal medullary astrocytes in brainstem can also contribute as CO2 and H+ sensors that release D-serine and glutamate, both gliotransmitters able to activate the respiratory neural network. In this review, we describe the mammalian astrocytic glutamatergic contribution to the central respiratory chemoreception trying to trace in vertebrates the emergence of several components involved in this process.
Collapse
|
7
|
Ramos-Vicente D, Grant SG, Bayés À. Metazoan evolution and diversity of glutamate receptors and their auxiliary subunits. Neuropharmacology 2021; 195:108640. [PMID: 34116111 DOI: 10.1016/j.neuropharm.2021.108640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 01/18/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in vertebrate and invertebrate nervous systems. Proteins involved in glutamatergic neurotransmission, and chiefly glutamate receptors and their auxiliary subunits, play key roles in nervous system function. Thus, understanding their evolution and uncovering their diversity is essential to comprehend how nervous systems evolved, shaping cognitive function. Comprehensive phylogenetic analysis of these proteins across metazoans have revealed that their evolution is much more complex than what can be anticipated from vertebrate genomes. This is particularly true for ionotropic glutamate receptors (iGluRs), as their current classification into 6 classes (AMPA, Kainate, Delta, NMDA1, NMDA2 and NMDA3) would be largely incomplete. New work proposes a classification of iGluRs into 4 subfamilies that encompass 10 classes. Vertebrate AMPA, Kainate and Delta receptors would belong to one of these subfamilies, named AKDF, the NMDA subunits would constitute another subfamily and non-vertebrate iGluRs would be organised into the previously unreported Epsilon and Lambda subfamilies. Similarly, the animal evolution of metabotropic glutamate receptors has resulted in the formation of four classes of these receptors, instead of the three currently recognised. Here we review our current knowledge on the animal evolution of glutamate receptors and their auxiliary subunits. This article is part of the special issue on 'Glutamate Receptors - Orphan iGluRs'.
Collapse
Affiliation(s)
- David Ramos-Vicente
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Seth Gn Grant
- Centre for Clinical Brain Sciences, Chancellor's Building, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, EH16 4SB, UK; Simons Initiative for the Developing Brain (SIDB), Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Àlex Bayés
- Molecular Physiology of the Synapse Laboratory, Biomedical Research Institute Sant Pau, Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
8
|
Stroebel D, Mony L, Paoletti P. Glycine agonism in ionotropic glutamate receptors. Neuropharmacology 2021; 193:108631. [PMID: 34058193 DOI: 10.1016/j.neuropharm.2021.108631] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022]
Abstract
Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that mediate the majority of excitatory neurotransmission in the vertebrate CNS. Classified as AMPA, kainate, delta and NMDA receptors, iGluRs are central drivers of synaptic plasticity widely considered as a major cellular substrate of learning and memory. Surprisingly however, five out of the eighteen vertebrate iGluR subunits do not bind glutamate but glycine, a neurotransmitter known to mediate inhibitory neurotransmission through its action on pentameric glycine receptors (GlyRs). This is the case of GluN1, GluN3A, GluN3B, GluD1 and GluD2 subunits, all also binding the D amino acid d-serine endogenously present in many brain regions. Glycine and d-serine action and affinities broadly differ between glycinergic iGluR subtypes. On 'conventional' GluN1/GluN2 NMDA receptors, glycine (or d-serine) acts in concert with glutamate as a mandatory co-agonist to set the level of receptor activity. It also regulates the receptor's trafficking and expression independently of glutamate. On 'unconventional' GluN1/GluN3 NMDARs, glycine acts as the sole agonist directly triggering opening of excitatory glycinergic channels recently shown to be physiologically relevant. On GluD receptors, d-serine on its own mediates non-ionotropic signaling involved in excitatory and inhibitory synaptogenesis, further reinforcing the concept of glutamate-insensitive iGluRs. Here we present an overview of our current knowledge on glycine and d-serine agonism in iGluRs emphasizing aspects related to molecular mechanisms, cellular function and pharmacological profile. The growing appreciation of the critical influence of glycine and d-serine on iGluR biology reshapes our understanding of iGluR signaling diversity and complexity, with important implications in neuropharmacology.
Collapse
Affiliation(s)
- David Stroebel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France.
| | - Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005, Paris, France.
| |
Collapse
|
9
|
Renick PJ, Mulgaonkar A, Co CM, Wu CY, Zhou N, Velazquez A, Pennington J, Sherwood A, Dong H, Castellino L, Öz OK, Tang L, Sun X. Imaging of Actively Proliferating Bacterial Infections by Targeting the Bacterial Metabolic Footprint with d-[5- 11C]-Glutamine. ACS Infect Dis 2021; 7:347-361. [PMID: 33476123 DOI: 10.1021/acsinfecdis.0c00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Since most d-amino acids (DAAs) are utilized by bacterial cells but not by mammalian eukaryotic hosts, recently DAA-based molecular imaging strategies have been extensively explored for noninvasively differentiating bacterial infections from the host's inflammatory responses. Given glutamine's pivotal role in bacterial survival, cell growth, biofilm formation, and even virulence, here we report a new positron emission tomography (PET) imaging approach using d-5-[11C]glutamine (d-[5-11C]-Gln) for potential clinical assessment of bacterial infection through a comparative study with its l-isomer counterpart, l-[5-11C]-Gln. In both control and infected mice, l-[5-11C]-Gln had substantially higher uptake levels than d-[5-11C]-Gln in most organs except the kidneys, showing the expected higher use of l-[5-11C]-Gln by mammalian tissues and more efficient renal excretion of d-[5-11C]-Gln. Importantly, our work demonstrates that PET imaging with d-[5-11C]-Gln is capable of detecting infections induced by both Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) in a dual-infection murine myositis model with significantly higher infection-to-background contrast than with l-[5-11C]-Gln (in E. coli, 1.64; in MRSA, 2.62, p = 0.0004). This can be attributed to the fact that d-[5-11C]-Gln is utilized by bacteria while being more efficiently cleared from the host tissues. We confirmed the bacterial infection imaging specificity of d-[5-11C]-Gln by comparing its uptake in active bacterial infections versus sterile inflammation and with 2-deoxy-2-[18F]fluoroglucose ([18F]FDG). These results together demonstrate the translational potential of PET imaging with d-[5-11C]-Gln for the noninvasive detection of bacterial infectious diseases in humans.
Collapse
|
10
|
Stroebel D, Paoletti P. Architecture and function of NMDA receptors: an evolutionary perspective. J Physiol 2020; 599:2615-2638. [PMID: 32786006 DOI: 10.1113/jp279028] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are a major class of ligand-gated ion channels that are widespread in the living kingdom. Their critical role in excitatory neurotransmission and brain function of arthropods and vertebrates has made them a compelling subject of interest for neurophysiologists and pharmacologists. This is particularly true for NMDA receptor (NMDARs), a subclass of iGluRs that act as central drivers of synaptic plasticity in the CNS. How and when the unique properties of NMDARs arose during evolution, and how they relate to the evolution of the nervous system, remain open questions. Recent years have witnessed a boom in both genomic and structural data, such that it is now possible to analyse the evolution of iGluR genes on an unprecedented scale and within a solid molecular framework. In this review, combining insights from phylogeny, atomic structure and physiological and mechanistic data, we discuss how evolution of NMDAR motifs and sequences shaped their architecture and functionalities. We trace differences and commonalities between NMDARs and other iGluRs, emphasizing a few distinctive properties of the former regarding ligand binding and gating, permeation, allosteric modulation and intracellular signalling. Finally, we speculate on how specific molecular properties of iGuRs arose to supply new functions to the evolving structure of the nervous system, from early metazoan to present mammals.
Collapse
Affiliation(s)
- David Stroebel
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| | - Pierre Paoletti
- Ecole Normale Supérieure, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS), Université PSL, Paris, France
| |
Collapse
|
11
|
Graham DL, Beio ML, Nelson DL, Berkowitz DB. Human Serine Racemase: Key Residues/Active Site Motifs and Their Relation to Enzyme Function. Front Mol Biosci 2019; 6:8. [PMID: 30918891 PMCID: PMC6424897 DOI: 10.3389/fmolb.2019.00008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/12/2019] [Indexed: 01/06/2023] Open
Abstract
Serine racemase (SR) is the first racemase enzyme to be identified in human biology and converts L-serine to D-serine, an important neuronal signaling molecule that serves as a co-agonist of the NMDA (N-methyl-D-aspartate) receptor. This overview describes key molecular features of the enzyme, focusing on the side chains and binding motifs that control PLP (pyridoxal phosphate) cofactor binding as well as activity modulation through the binding of both divalent cations and ATP, the latter showing allosteric modulation. Discussed are catalytically important residues in the active site including K56 and S84—the si- and re-face bases, respectively,—and R135, a residue that appears to play a critical role in the binding of both negatively charged alternative substrates and inhibitors. The interesting bifurcated mechanism followed by this enzyme whereby substrate L-serine can be channeled either into D-serine (racemization pathway) or into pyruvate (β-elimination pathway) is discussed extensively, as are studies that focus on a key loop region (the so-called “triple serine loop”), the modification of which can be used to invert the normal in vitro preference of this enzyme for the latter pathway over the former. The possible cross-talk between the PLP enzymes hSR and hCBS (human cystathionine β-synthase) is discussed, as the former produces D-serine and the latter produces H2S, both of which stimulate the NMDAR and both of which have been implicated in neuronal infarction pursuant to ischemic stroke. Efforts to gain a more complete mechanistic understanding of these PLP enzymes are expected to provide valuable insights for the development of specific small molecule modulators of these enzymes as tools to study their roles in neuronal signaling and in modulation of NMDAR function.
Collapse
Affiliation(s)
- Danielle L Graham
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Matthew L Beio
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - David L Nelson
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
12
|
Monitoring hippocampal glycine with the computationally designed optical sensor GlyFS. Nat Chem Biol 2018; 14:861-869. [DOI: 10.1038/s41589-018-0108-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
|
13
|
Liechti G, Singh R, Rossi PL, Gray MD, Adams NE, Maurelli AT. Chlamydia trachomatis dapF Encodes a Bifunctional Enzyme Capable of Both d-Glutamate Racemase and Diaminopimelate Epimerase Activities. mBio 2018; 9:e00204-18. [PMID: 29615498 PMCID: PMC5885031 DOI: 10.1128/mbio.00204-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/16/2018] [Indexed: 02/03/2023] Open
Abstract
Peptidoglycan is a sugar/amino acid polymer unique to bacteria and essential for division and cell shape maintenance. The d-amino acids that make up its cross-linked stem peptides are not abundant in nature and must be synthesized by bacteria de novo d-Glutamate is present at the second position of the pentapeptide stem and is strictly conserved in all bacterial species. In Gram-negative bacteria, d-glutamate is generated via the racemization of l-glutamate by glutamate racemase (MurI). Chlamydia trachomatis is the leading cause of infectious blindness and sexually transmitted bacterial infections worldwide. While its genome encodes a majority of the enzymes involved in peptidoglycan synthesis, no murI homologue has ever been annotated. Recent studies have revealed the presence of peptidoglycan in C. trachomatis and confirmed that its pentapeptide includes d-glutamate. In this study, we show that C. trachomatis synthesizes d-glutamate by utilizing a novel, bifunctional homologue of diaminopimelate epimerase (DapF). DapF catalyzes the final step in the synthesis of meso-diaminopimelate, another amino acid unique to peptidoglycan. Genetic complementation of an Escherichia coli murI mutant demonstrated that Chlamydia DapF can generate d-glutamate. Biochemical analysis showed robust activity, but unlike canonical glutamate racemases, activity was dependent on the cofactor pyridoxal phosphate. Genetic complementation, enzymatic characterization, and bioinformatic analyses indicate that chlamydial DapF shares characteristics with other promiscuous/primordial enzymes, presenting a potential mechanism for d-glutamate synthesis not only in Chlamydia but also numerous other genera within the Planctomycetes-Verrucomicrobiae-Chlamydiae superphylum that lack recognized glutamate racemases.IMPORTANCE Here we describe one of the last remaining "missing" steps in peptidoglycan synthesis in pathogenic Chlamydia species, the synthesis of d-glutamate. We have determined that the diaminopimelate epimerase (DapF) encoded by Chlamydia trachomatis is capable of carrying out both the epimerization of DAP and the pyridoxal phosphate-dependent racemization of glutamate. Enzyme promiscuity is thought to be the hallmark of early microbial life on this planet, and there is currently an active debate as to whether "moonlighting enzymes" represent primordial evolutionary relics or are a product of more recent reductionist evolutionary pressures. Given the large number of Chlamydia species (as well as members of the Planctomycetes-Verrucomicrobiae-Chlamydiae superphylum) that possess DapF but lack homologues of MurI, it is likely that DapF is a primordial isomerase that functions as both racemase and epimerase in these organisms, suggesting that specialized d-glutamate racemase enzymes never evolved in these microbes.
Collapse
Affiliation(s)
- George Liechti
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Raghuveer Singh
- Emerging Pathogens Institute and Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Patricia L Rossi
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Miranda D Gray
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nancy E Adams
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony T Maurelli
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Emerging Pathogens Institute and Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Ma M, Ren Q, Fujita Y, Yang C, Dong C, Ohgi Y, Futamura T, Hashimoto K. Alterations in amino acid levels in mouse brain regions after adjunctive treatment of brexpiprazole with fluoxetine: comparison with (R)-ketamine. Psychopharmacology (Berl) 2017; 234:3165-3173. [PMID: 28748374 DOI: 10.1007/s00213-017-4700-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/17/2017] [Indexed: 11/25/2022]
Abstract
RATIONALE Brexpiprazole, a serotonin-dopamine activity modulator, is approved in the USA as an adjunctive therapy to antidepressants for treating major depressive disorders. Similar to the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine, the combination of brexpiprazole and fluoxetine has demonstrated antidepressant-like effects in animal models of depression. OBJECTIVES The present study was conducted to examine whether the combination of brexpiprazole and fluoxetine could affect the tissue levels of amino acids [glutamate, glutamine, γ-aminobutyric acid (GABA), D-serine, L-serine, and glycine] that are associated with NMDAR neurotransmission. METHODS The tissue levels of amino acids in the frontal cortex, striatum, hippocampus, and cerebellum were measured after a single [or repeated (14 days)] oral administration of vehicle, fluoxetine (10 mg/kg), brexpiprazole (0.1 mg/kg), or a combination of the two drugs. Furthermore, we measured the tissue levels of amino acids after a single administration of the NMDAR antagonist (R)-ketamine. RESULTS A single injection of the combination of fluoxetine and brexpiprazole significantly increased GABA levels in the striatum, the D-serine/L-serine ratio in the frontal cortex, and the glycine/L-serine ratio in the hippocampus. A repeated administration of the combination significantly altered the tissue levels of amino acids in all regions. Interestingly, a repeated administration of the combination significantly decreased the D-serine/L-serine ratio in the frontal cortex, striatum, and hippocampus. In contrast, a single administration of (R)-ketamine significantly increased the D-serine/L-serine ratio in the frontal cortex. CONCLUSIONS These results suggested that alterations in the tissue levels of these amino acids may be involved in the antidepressant-like effects of the combination of brexpiprazole and fluoxetine.
Collapse
Affiliation(s)
- Min Ma
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Qian Ren
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Chun Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Chao Dong
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan
| | - Yuta Ohgi
- Department of CNS Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Takashi Futamura
- Department of CNS Research, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba, 260-8670, Japan.
| |
Collapse
|
15
|
Weatherly CA, Du S, Parpia C, Santos PT, Hartman AL, Armstrong DW. d-Amino Acid Levels in Perfused Mouse Brain Tissue and Blood: A Comparative Study. ACS Chem Neurosci 2017; 8:1251-1261. [PMID: 28206740 DOI: 10.1021/acschemneuro.6b00398] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The l-enantiomer is the predominant type of amino acid in all living systems. However, d-amino acids, once thought to be "unnatural", have been found to be indigenous even in mammalian systems and increasingly appear to be functioning in essential biological and neurological roles. Both d- and l-amino acid levels in the hippocampus, cortex, and blood samples from NIH Swiss mice are reported. Perfused brain tissues were analyzed for the first time, thereby eliminating artifacts due to endogenous blood, and decreased the mouse-to-mouse variability in amino acid levels. Total amino acid levels (l- plus d-enantiomers) in brain tissue are up to 10 times higher than in blood. However, all measured d-amino acid levels in brain tissue are typically ∼10 to 2000 times higher than blood levels. There was a 13% reduction in almost all measured d-amino acid levels in the cortex compared to those in the hippocampus. There is an approximate inverse relationship between the prevalence of an amino acid and the percentage of its d-enantiomeric form. Interestingly, glutamic acid, unlike all other amino acids, had no quantifiable level of its d-antipode. The bioneurological reason for the unique and conspicuous absence/removal of this d-amino acid is yet unknown. However, results suggest that d-glutamate metabolism is likely a unidirectional process and not a cycle, as per the l-glutamate/glutamine cycle. The results suggest that there might be unreported d-amino acid racemases in mammalian brains. The regulation and function of specific other d-amino acids are discussed.
Collapse
Affiliation(s)
- Choyce A. Weatherly
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Siqi Du
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Curran Parpia
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Polan T. Santos
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
| | - Adam L. Hartman
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, United States
- Department of Molecular Microbiology and Immunology, Johns Hopkins Blomberg School of Public Health, Baltimore, Maryland 21205, United States
| | - Daniel W. Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
16
|
El-Tallawy HN, Saleem TH, El-Ebidi AM, Hassan MH, Gabra RH, Farghaly WM, Abo El-Maali N, Sherkawy HS. Clinical and biochemical study of d-serine metabolism among schizophrenia patients. Neuropsychiatr Dis Treat 2017; 13:1057-1063. [PMID: 28435276 PMCID: PMC5391825 DOI: 10.2147/ndt.s126979] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Schizophrenia is a typical N-methyl-d-aspartate receptor (NMDA-R) hypofunction disorder. Decreased d-serine (d-Ser) levels in the periphery occur in schizophrenia and may reflect decreased availability of d-Ser to activate NMDA-R in the brain. OBJECTIVE The objective of this study was to investigate the role of d-Ser metabolism in the pathogenesis of schizophrenia via biochemical assays and correlates, the serum level of d-Ser, d-serine racemase (SR) (responsible for its formation from l-serine [l-Ser]) and d-amino acid oxidase (DAAO) (responsible for its catabolism), among different clinical types of schizophrenia patients. PATIENTS AND METHODS This cross-sectional case-control study was carried out on 100 patients and 50 controls. They were recruited from the outpatients' psychiatric unit of the Neuropsychiatric Department of Assiut University Hospital, Upper Egypt. The type of schizophrenia was determined according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), while the severity of schizophrenia was determined according to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Serum d-Ser levels were estimated using high-performance liquid chromatography (HPLC), while serum SR and DAAO were measured using commercially available enzyme-linked immunosorbent assay kits. RESULTS There were significantly lower mean serum levels of d-Ser and SR and significantly higher mean serum levels of DAAO (P-value <0.01 for each) among schizophrenia patients when compared with the control group. Paranoid schizophrenia had the highest frequency, with a significantly lower serum levels of d-Ser and SR in the residual type and significantly higher serum levels of DAAO in undifferentiated and catatonic types. Combined receiver-operating characteristic curve for serum d-Ser, SR and DAAO indicated that the best serum level cutoff points at which schizophrenia manifestations started to appear were ≤ 61.4 mg/L for d-Ser, ≤ 15.5 pg/mL for SR and >35.6 pg/mL for DAAO. CONCLUSION The present study confirms that disturbed d-Ser metabolism could be implicated in the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
| | - Tahia H Saleem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut
| | - Abdallah Maa El-Ebidi
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Aswan University, Aswan
| | - Mohammed H Hassan
- Department of Medical Biochemistry and Molecular Biology, Qena Faculty of Medicine, South Valley University, Qena
| | | | | | - Nagwa Abo El-Maali
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Hoda S Sherkawy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Aswan University, Aswan
| |
Collapse
|
17
|
Cao S, Xiao Z, Sun M, Li Y. D-serine in the midbrain periaqueductal gray contributes to morphine tolerance in rats. Mol Pain 2016; 12:12/0/1744806916646786. [PMID: 27175014 PMCID: PMC4956000 DOI: 10.1177/1744806916646786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 04/04/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The N-methyl-D-aspartate subtype of glutamate receptor plays a critical role in morphine tolerance. D-serine, a co-agonist of N-methyl-D-aspartate receptor, participates in many physiological and pathophysiological processes via regulating N-methyl-D-aspartate receptor activation. The purinergic P2X7 receptor activation can induce the D-serine release in the central nervous system. This study aimed to investigate the role of the ventrolateral midbrain periaqueductal gray D-serine in the mechanism of morphine tolerance in rats. The development of morphine tolerance was induced in normal adult male Sprague-Dawley rats through subcutaneous injection of morphine (10 mg/kg). The analgesic effect of morphine (5 mg/kg, i.p.) was assessed by measuring mechanical withdrawal thresholds in rats with an electronic von Frey anesthesiometer. The D-serine concentration and serine racemase expression levels in the ventrolateral midbrain periaqueductal gray were evaluated through enzyme-linked immunosorbent assay and Western blot analysis, respectively. The effects of intra-ventrolateral midbrain periaqueductal gray injections of the D-serine degrading enzyme D-amino acid oxidase and antisense oligodeoxynucleotide targeting the P2X7 receptor on chronic morphine-treated rats were also explored. RESULTS We found that repeated morphine administrations decreased the antinociceptive potency of morphine evidenced by the percent changes in mechanical pain threshold in rats. By contrast, the D-serine contents and the expression levels of the serine racemase protein were upregulated in the ventrolateral midbrain periaqueductal gray in morphine-tolerant rats. The development of morphine tolerance was markedly alleviated by intra-ventrolateral midbrain periaqueductal gray injections of D-amino acid oxidase or antisense oligodeoxynucleotide targeting the P2X7 receptor. CONCLUSIONS Our data indicate that the development of antinociceptive tolerance to morphine is partially mediated by ventrolateral midbrain periaqueductal gray D-serine content, and the activation of the ventrolateral midbrain periaqueductal gray P2X7 receptor is an essential prelude to D-serine release. These results suggest that a cascade involving P2X7 receptor-D-serine-N-methyl-D-aspartate receptor mediated signaling pathway in the supraspinal mechanism of morphine tolerance.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Xiao
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mengjie Sun
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Youyan Li
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
18
|
Liu YL, Wang SC, Hwu HG, Fann CSJ, Yang UC, Yang WC, Hsu PC, Chang CC, Wen CC, Tsai-Wu JJ, Hwang TJ, Hsieh MH, Liu CC, Chien YL, Fang CP, Faraone SV, Tsuang MT, Chen WJ, Liu CM. Haplotypes of the D-Amino Acid Oxidase Gene Are Significantly Associated with Schizophrenia and Its Neurocognitive Deficits. PLoS One 2016; 11:e0150435. [PMID: 26986737 PMCID: PMC4795637 DOI: 10.1371/journal.pone.0150435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/13/2016] [Indexed: 01/01/2023] Open
Abstract
D-amino acid oxidase (DAO) has been reported to be associated with schizophrenia. This study aimed to search for genetic variants associated with this gene. The genomic regions of all exons, highly conserved regions of introns, and promoters of this gene were sequenced. Potentially meaningful single-nucleotide polymorphisms (SNPs) obtained from direct sequencing were selected for genotyping in 600 controls and 912 patients with schizophrenia and in a replicated sample consisting of 388 patients with schizophrenia. Genetic associations were examined using single-locus and haplotype association analyses. In single-locus analyses, the frequency of the C allele of a novel SNP rs55944529 located at intron 8 was found to be significantly higher in the original large patient sample (p = 0.016). This allele was associated with a higher level of DAO mRNA expression in the Epstein-Barr virus-transformed lymphocytes. The haplotype distribution of a haplotype block composed of rs11114083-rs2070586-rs2070587-rs55944529 across intron 1 and intron 8 was significantly different between the patients and controls and the haplotype frequencies of AAGC were significantly higher in patients, in both the original (corrected p < 0.0001) and replicated samples (corrected p = 0.0003). The CGTC haplotype was specifically associated with the subgroup with deficits in sustained attention and executive function and the AAGC haplotype was associated with the subgroup without such deficits. The DAO gene was a susceptibility gene for schizophrenia and the genomic region between intron 1 and intron 8 may harbor functional genetic variants, which may influence the mRNA expression of DAO and neurocognitive functions in schizophrenia.
Collapse
Affiliation(s)
- Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Sheng-Chang Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | - Ueng-Cheng Yang
- Institute of Bioinformatics, National Yang-Ming University, Taipei 112, Taiwan
| | - Wei-Chih Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Pei-Chun Hsu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10051, Taiwan
| | - Chien-Ching Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Chiang Wen
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Jyy-Jih Tsai-Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei 10051, Taiwan
| | - Tzung-Jeng Hwang
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Ming H. Hsieh
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Chen-Chung Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Yi-Ling Chien
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Chiu-Ping Fang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Stephen V. Faraone
- Medical Genetics Research Center and Department of Psychiatry and Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, United States of America
| | - Ming T. Tsuang
- Harvard Institute of Psychiatric Epidemiology and Genetics, and Departments of Epidemiology and Psychiatry, Harvard University, Boston, Massachusetts, 02115, United States of America
- Institute of Behavioral Genomics, University of California San Diego, San Diego, California 92093, United States of America
| | - Wei J. Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei 10051, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Astrocyte-mediated metaplasticity in the hippocampus: Help or hindrance? Neuroscience 2015; 309:113-24. [DOI: 10.1016/j.neuroscience.2015.08.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 08/03/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022]
|
20
|
Nishimura Y, Tanaka H, Ishida T, Imai S, Matsusue Y, Agata Y, Horiike K. Immunohistochemical localization of D-serine dehydratase in chicken tissues. Acta Histochem 2014; 116:702-7. [PMID: 24529545 DOI: 10.1016/j.acthis.2013.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/21/2013] [Accepted: 12/22/2013] [Indexed: 02/05/2023]
Abstract
Chicken D-serine dehydratase (DSD) degrades d-serine to pyruvate and ammonia. The enzyme requires both pyridoxal 5'-phosphate and Zn(2+) for its activity. d-Serine is a physiological coagonist that regulates the activity of the N-methyl-d-aspartate receptor (NMDAR) for l-glutamate. We have recently found in chickens that d-serine is degraded only by DSD in the brain, whereas it is also degraded to 3-hydroxypyruvate by d-amino acid oxidase (DAO) in the kidney and liver. In mammalian brains, d-serine is degraded only by DAO. It has not been clarified why chickens selectively use DSD for the control of d-serine concentrations in the brain. In the present study, we measured DSD activity in chicken tissues, and examined the cellular localization of DSD using a specific anti-chicken DSD antibody. The highest activity was found in kidney. Skeletal muscles and heart showed no activity. In chicken brain, cerebellum showed about 6-fold-higher activity (1.1 ± 0.3 U/g protein) than cerebrum (0.19 ± 0.03 U/g protein). At the cellular level DSD was demonstrated in proximal tubule cells of the kidney, in hepatocytes, in Bergmann-glia cells of the cerebellum and in astrocytes. The finding of DSD in glial cells seems to be important because d-serine is involved in NMDAR-dependent brain functions.
Collapse
Affiliation(s)
- Yoshihiro Nishimura
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Hiroyuki Tanaka
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan.
| | - Tetsuo Ishida
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Shinji Imai
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Yoshitaka Matsusue
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Yasutoshi Agata
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Kihachiro Horiike
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| |
Collapse
|
21
|
Maezawa T, Tanaka H, Nakagawa H, Ono M, Aoki M, Matsumoto M, Ishida T, Horiike K, Kobayashi K. Planarian D-amino acid oxidase is involved in ovarian development during sexual induction. Mech Dev 2014; 132:69-78. [PMID: 24434168 DOI: 10.1016/j.mod.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/18/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
Abstract
To elucidate the molecular mechanisms underlying switching from asexual to sexual reproduction, namely sexual induction, we developed an assay system for sexual induction in the hermaphroditic planarian species Dugesia ryukyuensis. Ovarian development is the initial and essential step in sexual induction, and it is followed by the formation of other reproductive organs, including the testes. Here, we report a function of a planarian D-amino acid oxidase, Dr-DAO, in the control of ovarian development in planarians. Asexual worms showed significantly more widespread expression of Dr-DAO in the parenchymal space than did sexual worms. Inhibition of Dr-DAO by RNAi caused the formation of immature ovaries. In addition, we found that feeding asexual worms 5 specific D-amino acids could induce the formation of immature ovaries that are similar to those observed in Dr-DAO knockdown worms, suggesting that Dr-DAO inhibits the formation of immature ovaries by degrading these D-amino acids. Following sexual induction, Dr-DAO expression was observed in the ovaries. The knockdown of Dr-DAO during sexual induction delayed the maturation of the other reproductive organs, as well as ovary. These findings suggest that Dr-DAO acts to promote ovarian maturation and that complete sexual induction depends on the production of mature ovaries. We propose that Dr-DAO produced in somatic cells prevents the onset of sexual induction in the asexual state, and then after sexual induction, the female germ cells specifically produce Dr-DAO to induce full maturation. Therefore, Dr-DAO produced in somatic and female germline cells may play different roles in sexual induction.
Collapse
Affiliation(s)
- Takanobu Maezawa
- Division of General Education and Research, Tsuyama National College of Technology, 624-1 Numa, Tsuyama, Okayama 708-8509, Japan
| | - Hiroyuki Tanaka
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Haruka Nakagawa
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Mizuki Ono
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Manabu Aoki
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Midori Matsumoto
- Department of Biological Sciences and Informatics, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| | - Tetsuo Ishida
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Kihachiro Horiike
- Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Kazuya Kobayashi
- Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan.
| |
Collapse
|
22
|
Hopkins SC, Campbell UC, Heffernan MLR, Spear KL, Jeggo RD, Spanswick DC, Varney MA, Large TH. Effects of D-amino acid oxidase inhibition on memory performance and long-term potentiation in vivo. Pharmacol Res Perspect 2013; 1:e00007. [PMID: 25505561 PMCID: PMC4184572 DOI: 10.1002/prp2.7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/16/2013] [Indexed: 12/11/2022] Open
Abstract
N-methyl-d-aspartate receptor (NMDAR) activation can initiate changes in synaptic strength, evident as long-term potentiation (LTP), and is a key molecular correlate of memory formation. Inhibition of d-amino acid oxidase (DAAO) may increase NMDAR activity by regulating d-serine concentrations, but which neuronal and behavioral effects are influenced by DAAO inhibition remain elusive. In anesthetized rats, extracellular field excitatory postsynaptic potentials (fEPSPs) were recorded before and after a theta frequency burst stimulation (TBS) of the Schaffer collateral pathway of the CA1 region in the hippocampus. Memory performance was assessed after training with tests of contextual fear conditioning (FC, mice) and novel object recognition (NOR, rats). Oral administration of 3, 10, and 30 mg/kg 4H-furo[3,2-b]pyrrole-5-carboxylic acid (SUN) produced dose-related and steady increases of cerebellum d-serine in rats and mice, indicative of lasting inhibition of central DAAO. SUN administered 2 h prior to training improved contextual fear conditioning in mice and novel object recognition memory in rats when tested 24 h after training. In anesthetized rats, LTP was established proportional to the number of TBS trains. d-cycloserine (DCS) was used to identify a submaximal level of LTP (5× TBS) that responded to NMDA receptor activation; SUN administered at 10 mg/kg 3-4 h prior to testing similarly increased in vivo LTP levels compared to vehicle control animals. Interestingly, in vivo administration of DCS also increased brain d-serine concentrations. These results indicate that DAAO inhibition increased NMDAR-related synaptic plasticity during phases of post training memory consolidation to improve memory performance in hippocampal-dependent behavioral tests.
Collapse
Affiliation(s)
| | | | | | - Kerry L Spear
- Sunovion Pharmaceuticals IncMarlborough, Massachusetts
| | | | - David C Spanswick
- Neurosolutions Ltd.Coventry, U.K
- Department of Physiology, Monash UniversityClayton, Victoria, Australia
- Warwick Medical School, University of WarwickCoventry, U.K
| | - Mark A Varney
- Sunovion Pharmaceuticals IncMarlborough, Massachusetts
| | | |
Collapse
|
23
|
TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive D-serine release. J Neurosci 2013; 33:10143-53. [PMID: 23761909 DOI: 10.1523/jneurosci.5779-12.2013] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are found throughout the brain where they make extensive contacts with neurons and synapses. Astrocytes are known to display intracellular Ca(2+) signals and release signaling molecules such as D-serine into the extracellular space. However, the role(s) of astrocyte Ca(2+) signals in hippocampal long-term potentiation (LTP), a form of synaptic plasticity involved in learning and memory, remains unclear. Here, we explored a recently discovered novel TRPA1 channel-mediated transmembrane Ca(2+) flux pathway in astrocytes. Specifically, we determined whether block or genetic deletion of TRPA1 channels affected LTP of Schaffer collateral to CA1 pyramidal neuron synapses. Using pharmacology, TRPA1(-/-) mice, imaging, electrophysiology, and D-serine biosensors, our data indicate that astrocyte TRPA1 channels contribute to basal Ca(2+) levels and are required for constitutive D-serine release into the extracellular space, which contributes to NMDA receptor-dependent LTP. The findings have broad relevance for the study of astrocyte-neuron interactions by demonstrating how TRPA1 channel-mediated fluxes contribute to astrocyte basal Ca(2+) levels and neuronal function via constitutive D-serine release.
Collapse
|
24
|
Hopkins SC, Heffernan MLR, Saraswat LD, Bowen CA, Melnick L, Hardy LW, Orsini MA, Allen MS, Koch P, Spear KL, Foglesong RJ, Soukri M, Chytil M, Fang QK, Jones SW, Varney MA, Panatier A, Oliet SHR, Pollegioni L, Piubelli L, Molla G, Nardini M, Large TH. Structural, Kinetic, and Pharmacodynamic Mechanisms of d-Amino Acid Oxidase Inhibition by Small Molecules. J Med Chem 2013; 56:3710-24. [DOI: 10.1021/jm4002583] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seth C. Hopkins
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | | | - Lakshmi D. Saraswat
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Carrie A. Bowen
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Laurence Melnick
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Larry W. Hardy
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Michael A. Orsini
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | | | - Patrick Koch
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Kerry L. Spear
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | | | | | - Milan Chytil
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Q. Kevin Fang
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Steven W. Jones
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Mark A. Varney
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| | - Aude Panatier
- Neurocentre Magendie, Inserm U862 and Université de Bordeaux, Bordeaux, F-33077, France
| | - Stephane H. R. Oliet
- Neurocentre Magendie, Inserm U862 and Université de Bordeaux, Bordeaux, F-33077, France
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie
e Scienze della Vita, Università degli Studi dell’Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
- The Protein Factory, Politecnico di Milano, ICRM-CNR and Università degli Studi dell’Insubria, Via Mancinelli 7,
20131 Milano, Italy
| | - Luciano Piubelli
- Dipartimento di Biotecnologie
e Scienze della Vita, Università degli Studi dell’Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
- The Protein Factory, Politecnico di Milano, ICRM-CNR and Università degli Studi dell’Insubria, Via Mancinelli 7,
20131 Milano, Italy
| | - Gianluca Molla
- Dipartimento di Biotecnologie
e Scienze della Vita, Università degli Studi dell’Insubria, Via J. H. Dunant 3, 21100 Varese, Italy
- The Protein Factory, Politecnico di Milano, ICRM-CNR and Università degli Studi dell’Insubria, Via Mancinelli 7,
20131 Milano, Italy
| | - Marco Nardini
- Department of Biosciences, University of Milan, I-20133 Milano, Italy
| | - Thomas H. Large
- Sunovion Pharmaceuticals Inc., Marlborough, Massachusetts 01752, United States
| |
Collapse
|
25
|
Yang HC, Liu CM, Liu YL, Chen CW, Chang CC, Fann CSJ, Chiou JJ, Yang UC, Chen CH, Faraone SV, Tsuang MT, Hwu HG. The DAO gene is associated with schizophrenia and interacts with other genes in the Taiwan Han Chinese population. PLoS One 2013; 8:e60099. [PMID: 23555897 PMCID: PMC3610748 DOI: 10.1371/journal.pone.0060099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 02/22/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Schizophrenia is a highly heritable disease with a polygenic mode of inheritance. Many studies have contributed to our understanding of the genetic underpinnings of schizophrenia, but little is known about how interactions among genes affect the risk of schizophrenia. This study aimed to assess the associations and interactions among genes that confer vulnerability to schizophrenia and to examine the moderating effect of neuropsychological impairment. METHODS We analyzed 99 SNPs from 10 candidate genes in 1,512 subject samples. The permutation-based single-locus, multi-locus association tests, and a gene-based multifactorial dimension reduction procedure were used to examine genetic associations and interactions to schizophrenia. RESULTS We found that no single SNP was significantly associated with schizophrenia. However, a risk haplotype, namely A-T-C of the SNP triplet rsDAO7-rsDAO8-rsDAO13 of the DAO gene, was strongly associated with schizophrenia. Interaction analyses identified multiple between-gene and within-gene interactions. Between-gene interactions including DAO*DISC1 , DAO*NRG1 and DAO*RASD2 and a within-gene interaction for CACNG2 were found among schizophrenia subjects with severe sustained attention deficits, suggesting a modifying effect of impaired neuropsychological functioning. Other interactions such as the within-gene interaction of DAO and the between-gene interaction of DAO and PTK2B were consistently identified regardless of stratification by neuropsychological dysfunction. Importantly, except for the within-gene interaction of CACNG2, all of the identified risk haplotypes and interactions involved SNPs from DAO. CONCLUSIONS These results suggest that DAO, which is involved in the N-methyl-d-aspartate receptor regulation, signaling and glutamate metabolism, is the master gene of the genetic associations and interactions underlying schizophrenia. Besides, the interaction between DAO and RASD2 has provided an insight in integrating the glutamate and dopamine hypotheses of schizophrenia.
Collapse
Affiliation(s)
- Hsin-Chou Yang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Division of Mental Health and Substance Abuse Research, National Health Research Institutes, Taipei, Taiwan
| | - Chia-Wei Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | | | - Cathy S. J. Fann
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jen-Jie Chiou
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ueng-Cheng Yang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Houh Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Stephen V. Faraone
- Medical Genetics Research Center and Departments of Psychiatry and Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States of America
| | - Ming T. Tsuang
- Harvard Institute of Psychiatric Epidemiology and Genetics, and Departments of Epidemiology and Psychiatry, Harvard University, Boston, Massachusetts, United States of America
- Institute of Behavioral Genomics, University of California San Diego, La Jolla, California, United States of America
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
- Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Psychology, College of Science, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
26
|
Hopkins SC, Zhao FY, Bowen CA, Fang X, Wei H, Heffernan MLR, Spear KL, Spanswick DC, Varney MA, Large TH. Pharmacodynamic Effects of a d-Amino Acid Oxidase Inhibitor Indicate a Spinal Site of Action in Rat Models of Neuropathic Pain. J Pharmacol Exp Ther 2013; 345:502-11. [DOI: 10.1124/jpet.113.204016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Filali M, Lalonde R. The effects of subchronic d-serine on left–right discrimination learning, social interaction, and exploratory activity in APPswe/PS1 mice. Eur J Pharmacol 2013; 701:152-8. [DOI: 10.1016/j.ejphar.2012.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/12/2012] [Accepted: 12/19/2012] [Indexed: 10/27/2022]
|
28
|
Caldinelli L, Sacchi S, Molla G, Nardini M, Pollegioni L. Characterization of human DAAO variants potentially related to an increased risk of schizophrenia. Biochim Biophys Acta Mol Basis Dis 2012; 1832:400-10. [PMID: 23219954 DOI: 10.1016/j.bbadis.2012.11.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 11/22/2012] [Accepted: 11/27/2012] [Indexed: 12/11/2022]
Abstract
Considering the key role of d-serine in N-methyl-d-aspartate receptor-mediated neurotransmission, it is highly relevant to define the role that enzymes play in d-serine synthesis and degradation. In particular, the details of regulation of the d-serine catabolic human enzyme d-amino acid oxidase (hDAAO) are unknown although different lines of evidence have shown it to be involved in schizophrenia susceptibility. Here we investigated the effect of three single nucleotide polymorphisms and known mutations in hDAAO, i.e., D31H, R279A, and G331V. A very low amount of soluble G331V hDAAO is produced in E. coli cells: the recombinant variant enzyme is fully active. Human U87 glioblastoma cells transiently transfected for G331V hDAAO show a low viability, a significant amount of protein aggregates, and augmented apoptosis. The recombinant D31H and R279A hDAAO variants do not show alterations in tertiary and quaternary structures, thermal stability, binding affinity for inhibitors, and the modulator pLG72, whereas the kinetic efficiency and the affinity for d-serine and for FAD were higher than for the wild-type enzyme. While these effects for the substitution at position 31 cannot be structurally explained, the R279A mutation might affect the hDAAO FAD-binding affinity by altering the "structurally ambivalent" peptide V47-L51. In agreement with the observed increased activity, expression of D31H and R279A hDAAO variants in U87 cells produces a higher decrease in cellular d/(d+l) serine ratio than the wild-type counterpart. In vivo, these substitutions could affect cellular d-serine concentration and its release at synapsis and thus might be relevant for schizophrenia susceptibility.
Collapse
Affiliation(s)
- Laura Caldinelli
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, Varese, Italy
| | | | | | | | | |
Collapse
|
29
|
D-serine modulates non-adrenergic non-cholinergic contraction of lower esophageal sphincter in rats. Eur J Pharmacol 2012; 696:155-60. [PMID: 23022330 DOI: 10.1016/j.ejphar.2012.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 11/22/2022]
Abstract
Endogenous D-serine is known to modulate glutamatergic transmission via interaction with the glycine site of N-methyl-D-aspartate (NMDA) receptors. D-serine is synthesized by racemization of L-serine using an enzymatic reaction catalyzed by serine racemase. Although much attention has been focused on the role of D-serine within the central nervous system, the physiological role of D-serine in enteric nervous system has not been investigated. Lower esophageal sphincter (LES) function is known to be modulated by NMDA-dependent mechanisms. The present study was aimed to study the expression of enzymes involved in D-serine metabolism and the function of D-serine in lower esophageal sphincter in rats. Reverse transcription polymerase chain reaction (RT-PCR) and western blotting showed the expression of serine racemase in isolated rat LES. Electrical field stimulation was used to induce non-adrenergic non-cholinergic (NANC) contraction/relaxation of isolated rat LES in an organ bath using an isometric force transducer. The organ bath studies on isolated rat LES showed that incubation with D-serine (100 μM) is associated with a significant increase in the NANC contraction of isolated LES. This effect of exogenous D-serine was inhibited by NMDA receptor antagonists (MK-801), suggesting that NMDA receptors are involved in the effects of D-serine on NANC contraction of LES. Incubation with D-serine did not show a significant effect on NANC relaxation within our experimental setting. The results of this study suggest that serine racemase is expressed in LES and D-serine modulates contraction of the lower esophageal sphincter in rats.
Collapse
|
30
|
Abstract
Administration of phencyclidine (PCP) is acknowledged to generate a model of psychosis in animals. With the identification of genetic susceptibility factors for schizophrenia and bipolar disorder, great efforts have been made to generate genetic animal models for major mental illnesses. As these disorders are multifactorial, comparisons among drug-induced (non-genetic) and genetic models are becoming an important issue in biological psychiatry. A major barrier is that the standard mouse strain used in the generation of genetic models is C57BL/6, whereas almost all studies with PCP-induced models have utilized other strains. To fill this technical gap, we systematically compared the behavioural changes upon PCP administration in different mouse strains, including C57BL/6N, C57BL/6J, ddY, and ICR. We observed strain differences in PCP-induced hyperlocomotion and enhanced immobility in the forced swim test (ddY>>C57BL/6N and 6J>ICR). In contrast, there was no strain difference in the impairment of recognition memory in the novel object recognition memory test after withdrawal of chronic PCP administration. This study provides practical guidance for comparing genetic with PCP-induced models of psychosis in C57BL/6. Furthermore, such strain differences may provide a clue to the biological mechanisms underlying PCP-induced endophenotypes possibly relevant to major mental illnesses.
Collapse
|
31
|
Sullivan SJ, Miller RF. AMPA receptor-dependent, light-evoked D-serine release acts on retinal ganglion cell NMDA receptors. J Neurophysiol 2012; 108:1044-51. [PMID: 22592312 DOI: 10.1152/jn.00264.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NMDA receptor (NMDAR) activation requires coincident binding of the excitatory neurotransmitter glutamate and a coagonist, either glycine or D-serine. Changes in NMDAR currents during neural transmission are typically attributed to glutamate release against a steady background of coagonist, excluding the possibility of coagonist release. AMPA receptor (AMPAR) stimulation evokes D-serine release, but it is unknown whether this is a physiological phenomenon capable of influencing synaptic responses. In this study, we utilized the intact retina to determine whether light-evoked synaptic activity in retinal ganglion cells (RGCs) is shaped by a dynamic pool of coagonist. The application of AMPAR antagonist abolished light-evoked NMDAR currents, which were rescued by adding coagonist to the bath. When NMDA was globally applied to RGCs via bath or picospritzing, the coagonist occupancy was also dependent on AMPARs but to a lesser extent than that observed during light responses, suggesting a difference in extrasynaptic coagonist regulation. By saturating the glutamate binding site of NMDARs, we were able to detect released coagonist reaching RGCs during light-evoked responses. Mutant mice lacking the d-serine-synthesizing enzyme serine racemase were deficient in coagonist release. Coagonist release in wild-type retinas was notably greater in ON than in OFF responses and depended on AMPARs. These findings suggest activity-dependent modulation of coagonist availability, particularly D-serine, and may add an extra dimension to NMDAR coincidence detection in the retina.
Collapse
Affiliation(s)
- Steve J Sullivan
- Univ. of Minnesota, Dept. of Neuroscience, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
32
|
Horio M, Kohno M, Fujita Y, Ishima T, Inoue R, Mori H, Hashimoto K. Role of serine racemase in behavioral sensitization in mice after repeated administration of methamphetamine. PLoS One 2012; 7:e35494. [PMID: 22530033 PMCID: PMC3329469 DOI: 10.1371/journal.pone.0035494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/20/2012] [Indexed: 02/07/2023] Open
Abstract
Background The N-methyl-D-aspartate (NMDA) receptors play a role in behavioral abnormalities observed after administration of the psychostimulant, methamphetamine (METH). Serine racemase (SRR) is an enzyme which synthesizes D-serine, an endogenous co-agonist of NMDA receptors. Using Srr knock-out (KO) mice, we investigated the role of SRR on METH-induced behavioral abnormalities in mice. Methodology/Principal Findings Evaluations of behavior in acute hyperlocomotion, behavioral sensitization, and conditioned place preference (CPP) were performed. The role of SRR on the release of dopamine (DA) in the nucleus accumbens after administration of METH was examined using in vivo microdialysis technique. Additionally, phosphorylation levels of ERK1/2 proteins in the striatum, frontal cortex and hippocampus were examined using Western blot analysis. Acute hyperlocomotion after a single administration of METH (3 mg/kg) was comparable between wild-type (WT) and Srr-KO mice. However, repeated administration of METH (3 mg/kg/day, once daily for 5 days) resulted in behavioral sensitization in WT, but not Srr-KO mice. Pretreatment with D-serine (900 mg/kg, 30 min prior to each METH treatment) did not affect the development of behavioral sensitization after repeated METH administration. In the CPP paradigm, METH-induced rewarding effects were demonstrable in both WT and Srr-KO mice. In vivo microdialysis study showed that METH (1 mg/kg)-induced DA release in the nucleus accumbens of Srr-KO mice previously treated with METH was significantly lower than that of the WT mice previously treated with METH. Interestingly, a single administration of METH (3 mg/kg) significantly increased the phosphorylation status of ERK1/2 in the striatum of WT, but not Srr-KO mice. Conclusions/Significance These findings suggest first, that SRR plays a role in the development of behavioral sensitization in mice after repeated administration of METH, and second that phosphorylation of ERK1/2 by METH may contribute to the development of this sensitization as seen in WT but not Srr-KO mice.
Collapse
Affiliation(s)
- Mao Horio
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Mami Kohno
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Ran Inoue
- Department of Molecular Neuroscience, Toyama University Graduate School of Medicine, Toyama, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Toyama University Graduate School of Medicine, Toyama, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
- * E-mail:
| |
Collapse
|
33
|
Henneberger C, Bard L, Rusakov DA. D-Serine: a key to synaptic plasticity? Int J Biochem Cell Biol 2012; 44:587-90. [PMID: 22266400 PMCID: PMC3375648 DOI: 10.1016/j.biocel.2012.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/04/2012] [Accepted: 01/05/2012] [Indexed: 11/29/2022]
Abstract
Two discoveries have put D-serine in the spotlight of neuroscience. First, D-serine was detected in brain tissue at high levels. Second, it was found to act on the N-methyl-D-aspartate receptor (NMDAR). This receptor is central to use-dependent synaptic plasticity, the cellular process which is widely believed to underlie learning. The ensuing quest for the mechanisms of D-serine synthesis, release and clearance, as well as for its physiological significance has provided a wealth of experimental evidence implicating D-serine in synaptic plasticity. However some key questions remain unanswered. Which cells release D-serine and upon what stimuli? Is D-serine supply dynamically regulated? What is the fate of released D-serine? Answering these questions appears to be an essential step in our understanding of how NMDARs trigger synaptic plasticity and learning. This review will highlight some recent advances and avenues of enquiry in dynamic D-serine signaling in the mammalian brain with emphasis on neurophysiology.
Collapse
|
34
|
Hebbring SJ, Chai Y, Ji Y, Abo RP, Jenkins GD, Fridley B, Zhang J, Eckloff BW, Wieben ED, Weinshilboum RM. Serine hydroxymethyltransferase 1 and 2: gene sequence variation and functional genomic characterization. J Neurochem 2012; 120:881-90. [PMID: 22220685 DOI: 10.1111/j.1471-4159.2012.07646.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the transfer of a β-carbon from serine to tetrahydrofolate to form glycine and 5,10-methylene-tetrahydrofolate. This reaction plays an important role in neurotransmitter synthesis and metabolism. We set out to resequence SHMT1 and SHMT2, followed by functional genomic studies. We identified 87 and 60 polymorphisms in SHMT1 and SHMT2, respectively. We observed no significant functional effect of the 13 non-synonymous single-nucleotide polymorphism (SNPs) in these genes, either on catalytic activity or protein quantity. We imputed additional variants across the two genes using '1000 Genomes' data, and identified 14 variants that were significantly associated (p<1.0E-10) with SHMT1 messenger RNA expression in lymphoblastoid cell lines. Many of these SNPs were also significantly correlated with basal SHMT1 protein expression in 268 human liver biopsy samples. Reporter gene assays suggested that the SHMT1 promoter SNP, rs669340, contributed to this variation. Finally, SHMT1 and SHMT2 expression were significantly correlated with those of other Folate and Methionine Cycle genes at both the messenger RNA and protein levels. These experiments represent a comprehensive study of SHMT1 and SHMT2 gene sequence variation and its functional implications. In addition, we obtained preliminary indications that these genes may be co-regulated with other Folate and Methionine Cycle genes.
Collapse
Affiliation(s)
- Scott J Hebbring
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Levels of d-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochem Int 2011; 59:853-9. [DOI: 10.1016/j.neuint.2011.08.017] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/12/2011] [Accepted: 08/22/2011] [Indexed: 01/22/2023]
|
36
|
Sacchi S, Cappelletti P, Giovannardi S, Pollegioni L. Evidence for the interaction of d-amino acid oxidase with pLG72 in a glial cell line. Mol Cell Neurosci 2011; 48:20-8. [DOI: 10.1016/j.mcn.2011.06.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/29/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022] Open
|
37
|
Tanaka H, Senda M, Venugopalan N, Yamamoto A, Senda T, Ishida T, Horiike K. Crystal structure of a zinc-dependent D-serine dehydratase from chicken kidney. J Biol Chem 2011; 286:27548-58. [PMID: 21676877 PMCID: PMC3149347 DOI: 10.1074/jbc.m110.201160] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 05/30/2011] [Indexed: 12/30/2022] Open
Abstract
D-serine is a physiological co-agonist of the N-methyl-D-aspartate receptor. It regulates excitatory neurotransmission, which is important for higher brain functions in vertebrates. In mammalian brains, D-amino acid oxidase degrades D-serine. However, we have found recently that in chicken brains the oxidase is not expressed and instead a D-serine dehydratase degrades D-serine. The primary structure of the enzyme shows significant similarities to those of metal-activated D-threonine aldolases, which are fold-type III pyridoxal 5'-phosphate (PLP)-dependent enzymes, suggesting that it is a novel class of D-serine dehydratase. In the present study, we characterized the chicken enzyme biochemically and also by x-ray crystallography. The enzyme activity on D-serine decreased 20-fold by EDTA treatment and recovered nearly completely by the addition of Zn(2+). None of the reaction products that would be expected from side reactions of the PLP-D-serine Schiff base were detected during the >6000 catalytic cycles of dehydration, indicating high reaction specificity. We have determined the first crystal structure of the D-serine dehydratase at 1.9 Å resolution. In the active site pocket, a zinc ion that coordinates His(347) and Cys(349) is located near the PLP-Lys(45) Schiff base. A theoretical model of the enzyme-D-serine complex suggested that the hydroxyl group of D-serine directly coordinates the zinc ion, and that the ε-NH(2) group of Lys(45) is a short distance from the substrate Cα atom. The α-proton abstraction from D-serine by Lys(45) and the elimination of the hydroxyl group seem to occur with the assistance of the zinc ion, resulting in the strict reaction specificity.
Collapse
Affiliation(s)
- Hiroyuki Tanaka
- From the Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Miki Senda
- the Structure-guided Drug Development Project, JBIC Research Institute, Japan Biological Informatics Consortium, 2-4-7 Aomi Koto-ku, Tokyo 135-0064, Japan
| | - Nagarajan Venugopalan
- theNational Institute of General Medical Sciences and National Cancer Institute Collaborative Access Team, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, and
| | - Atsushi Yamamoto
- From the Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Toshiya Senda
- the Biomedicinal Information Research Center, National Institute of Advanced Industrial Sciences and Technology, 2-4-7 Aomi Koto-ku, Tokyo 135-0064, Japan
| | - Tetsuo Ishida
- From the Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| | - Kihachiro Horiike
- From the Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Seta, Ohtsu, Shiga 520-2192, Japan
| |
Collapse
|
38
|
Maekawa M, Ohnishi T, Hashimoto K, Watanabe A, Iwayama Y, Ohba H, Hattori E, Yamada K, Yoshikawa T. Analysis of strain-dependent prepulse inhibition points to a role for Shmt1 (SHMT1) in mice and in schizophrenia. J Neurochem 2010; 115:1374-85. [DOI: 10.1111/j.1471-4159.2010.07039.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Kim B, Kim H, Joo YH, Lim J, Kim CY, Song K. Sex-different association of DAO with schizophrenia in Koreans. Psychiatry Res 2010; 179:121-5. [PMID: 20483168 DOI: 10.1016/j.psychres.2008.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 07/29/2008] [Accepted: 08/25/2008] [Indexed: 12/01/2022]
Abstract
The gene encoding D-amino acid oxidase (DAO), which acts as a receptor for the schizophrenia-associated neurotransmitter, N-methyl-D-aspartate (NMDA), is regarded as a potential candidate gene for schizophrenia. However, the potential association of the DAO gene with schizophrenia has been the subject of some debate. Here, we tested three single nucleotide polymorphisms (SNPs) of DAO in a group of Korean schizophrenia patients, and found no significant association in the overall study subjects. Interestingly, however, we found gender-specific differences in allele distributions, with SNP rs2070586 appearing to act as a risk allele in female schizophrenia patients, but as a protective allele in males. Our data support the hypothesis that DAO plays a role in schizophrenia, possibly in a gender-dependent manner.
Collapse
Affiliation(s)
- Byungsu Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
40
|
Hashimoto K. Comments on 'The effect of risperidone on D-amino acid oxidase activity as a hypothesis for a novel mechanism of action in the treatment of schizophrenia'. J Psychopharmacol 2010; 24:1133-4. [PMID: 19939869 DOI: 10.1177/0269881109348177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
41
|
Pollegioni L, Sacchi S. Metabolism of the neuromodulator D-serine. Cell Mol Life Sci 2010; 67:2387-404. [PMID: 20195697 PMCID: PMC11115609 DOI: 10.1007/s00018-010-0307-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/27/2010] [Accepted: 02/08/2010] [Indexed: 01/09/2023]
Abstract
Over the past years, accumulating evidence has indicated that D-serine is the endogenous ligand for the glycine-modulatory binding site on the NR1 subunit of N-methyl-D-aspartate receptors in various brain areas. D-Serine is synthesized in glial cells and neurons by the pyridoxal-5' phosphate-dependent enzyme serine racemase, and it is released upon activation of glutamate receptors. The cellular concentration of this novel messenger is regulated by both serine racemase isomerization and elimination reactions, as well as by its selective degradation catalyzed by the flavin adenine dinucleotide-containing flavoenzyme D-amino acid oxidase. Here, we present an overview of the current knowledge of the metabolism of D-serine in human brain at the molecular and cellular levels, with a specific emphasis on the brain localization and regulatory pathways of D-serine, serine racemase, and D-amino acid oxidase. Furthermore, we discuss how D-serine is involved with specific pathological conditions related to N-methyl-D-aspartate receptors over- or down-regulation.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze Molecolari, Università degli studi dell'Insubria, Varese, Italy.
| | | |
Collapse
|
42
|
d-Serine modulates neurogenic relaxation in rat corpus cavernosum. Biochem Pharmacol 2010; 79:1791-6. [DOI: 10.1016/j.bcp.2010.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 02/06/2010] [Accepted: 02/10/2010] [Indexed: 11/23/2022]
|
43
|
Villar-Cerviño V, Barreiro-Iglesias A, Rodicio MC, Anadón R. D-serine is distributed in neurons in the brain of the sea lamprey. J Comp Neurol 2010; 518:1688-710. [DOI: 10.1002/cne.22296] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Changes in D-aspartate ion currents in the Aplysia nervous system with aging. Brain Res 2010; 1343:28-36. [PMID: 20452331 DOI: 10.1016/j.brainres.2010.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 04/13/2010] [Accepted: 05/01/2010] [Indexed: 01/26/2023]
Abstract
D-Aspartate (D-Asp) can substitute for L-glutamate (L-Glu) at excitatory Glu receptors, and occurs as free D-Asp in the mammalian brain. D-Asp electrophysiological responses were studied as a potential correlate of aging in the California sea hare, Aplysia californica. Whole cell voltage- and current clamp measurements were made from primary neuron cultures of the pleural ganglion (PVC) and buccal ganglion S cluster (BSC) in 3 egg cohorts at sexual maturity and senescence. D-Asp activated an inward current at the hyperpolarized voltage of -70 mV, where molluscan NMDA receptors open free of constitutive block by Mg(2+). Half of the cells responded to both D-Asp and L-Glu while the remainder responded only to D-Asp or L-Glu, suggesting that D-Asp activated non-Glu channels in a subpopulation of these cells. The frequency of D-Asp-induced currents and their density were significantly decreased in senescent PVC cells but not in senescent BSC cells. These changes in sensory neurons of the tail predict functional deficits that may contribute to an overall decline in reflexive movement in aged Aplysia.
Collapse
|
45
|
The response to postnatal stress: amino acids transporters and PKC activity. Neurochem Res 2010; 35:967-75. [PMID: 20306295 DOI: 10.1007/s11064-010-0153-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2010] [Indexed: 10/19/2022]
Abstract
It is well known that animals exposed to stressful stimuli during their early life develop different neurological disorders when they become adults. In this study, we evaluated the effect of acute cold stress on gamma-aminobutyric acid (GABA) and L-Serine (L-Ser) transporters in vitro, using the uptake of [(3)H]-GABA and [(3)H]L-Ser by synaptosomes-enriched fractions isolated from rat cerebral cortex during postnatal development. GABA and L-Ser uptake studies in vitro will be used in this investigation as a colateral evidence of changes in the expression of transporters of GABA and L-Ser. We observed that the maximum velocity (V (max)) in L-Ser and GABA uptake after stress session increased in all stages studied. In contrast, K (m) values of L-Ser uptake enhancent in almost age calculated, excluding at PD21 after cold stress during development, at the same time as K (m) (uptake affinity) values of GABA increased in just about age considered but not at PD5 compared with the control group. Finally we investigated the mechanism by which cells regulate the substrate affinity of L-Ser and GABA transporters. We demonstrated a significantly increase in total PKC activity to PD5 from PD21. Pretreatment with PKC inhibitor: staurosporine (SP) led to a restoration of control uptake in several postnatal-days suggesting a relationship between amino acids system and PKC activation. These findings suggest that a single exposure to postnatal cold stress at different periods after birth modifies both GABA and L-Ser transporters and the related increase in total PKC activity could be intracellular events that participate in neuronal plasticity by early life stress, which could be relevant to function of transporters in the adult rat brain.
Collapse
|
46
|
Abstract
D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes certain D-amino acids, notably the endogenous N-methyl D-aspartate receptor (NMDAR) co-agonist, D-serine. As such, it has the potential to modulate the function of NMDAR and to contribute to the widely hypothesized involvement of NMDAR signalling in schizophrenia. Three lines of evidence now provide support for this possibility: DAO shows genetic associations with the disorder in several, although not all, studies; the expression and activity of DAO are increased in schizophrenia; and DAO inactivation in rodents produces behavioural and biochemical effects, suggestive of potential therapeutic benefits. However, several key issues remain unclear. These include the regional, cellular and subcellular localization of DAO, the physiological importance of DAO and its substrates other than D-serine, as well as the causes and consequences of elevated DAO in schizophrenia. Herein, we critically review the neurobiology of DAO, its involvement in schizophrenia, and the therapeutic value of DAO inhibition. This review also highlights issues that have a broader relevance beyond DAO itself: how should we weigh up convergent and cumulatively impressive, but individually inconclusive, pieces of evidence regarding the role that a given gene may have in the aetiology, pathophysiology and pharmacotherapy of schizophrenia?
Collapse
|
47
|
Antflick JE, Baker GB, Hampson DR. The effects of a low protein diet on amino acids and enzymes in the serine synthesis pathway in mice. Amino Acids 2009; 39:145-53. [PMID: 19921396 DOI: 10.1007/s00726-009-0387-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 10/30/2009] [Indexed: 11/30/2022]
Abstract
L-serine is required for cellular and tissue growth and is particularly important in the immature brain where it acts as a crucial neurotrophic factor. In this study, the levels of amino acids and enzymes in the L-serine biosynthetic pathway were examined in the forebrain, cerebellum, liver, and kidney after the exposure of mice to protein-restricted diets. The levels of L-serine, D-serine, and L-serine-O-phosphate were quantified by HPLC and quantitative Western blotting was used to measure changes in protein levels of five enzymes in the pathway. The L-serine biosynthetic enzyme phosphoserine phosphatase was strongly upregulated, while the serine degradative enzymes serine racemase and serine dehydratase were downregulated in the livers and kidneys of mice fed low (6%) or very low (2%) protein diets for 2 weeks compared with mice fed a normal diet (18% protein). No changes in these enzymes were seen in the brain. The levels of L-serine increased in the livers of mice fed 2% protein; in contrast, D-serine levels were reduced below the limit of detection in the livers of mice given either the 6 or 2% diets. D-Serine is a co-agonist at the NMDA class of glutamate receptors; no alterations in NMDA-R1 subunit expression were observed in liver or brain after protein restriction. These findings demonstrate that the expression of L-serine synthetic and degradative enzymes display reciprocal changes in the liver and kidney to increase L-serine and decrease D-serine levels under conditions of protein restriction, and that the brain is insulated from such changes.
Collapse
Affiliation(s)
- Jordan E Antflick
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St., Toronto, ON, M5S 3M2, Canada
| | | | | |
Collapse
|
48
|
FAD binding in glycine oxidase from Bacillus subtilis. Biochimie 2009; 91:1499-508. [DOI: 10.1016/j.biochi.2009.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 09/05/2009] [Indexed: 11/21/2022]
|
49
|
Bonekamp NA, Völkl A, Fahimi HD, Schrader M. Reactive oxygen species and peroxisomes: struggling for balance. Biofactors 2009; 35:346-55. [PMID: 19459143 DOI: 10.1002/biof.48] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Reactive oxygen species (ROS) can surely be considered as multifunctional biofactors within the cell. They are known to participate in regular cell functions, for example, as signal mediators, but overproduction under oxidative stress conditions leads to deleterious cellular effects, cell death and diverse pathological conditions. Peroxisomal function has long been linked to oxygen metabolism due to the high concentration of H(2)O(2)-generating oxidases in peroxisomes and their set of antioxidant enzymes, especially catalase. Still, mitochondria have been very much placed in the centre of ROS metabolism and oxidative stress. This review discusses novel findings concerning the relationship between ROS and peroxisomes, as they revealed to be a key player in the dynamic spin of ROS metabolism and oxidative injury. An overview of ROS generating enzymes as well as their antioxidant counterparts will be given, exemplifying the precise fine-tuning between the opposing systems. Various conditions in which the balance between generation and scavenging of ROS in peroxisomes is perturbed, for example, exogenous manipulation, ageing and peroxisomal disorders, are addressed. Furthermore, peroxisome-derived oxidative stress and its effect on mitochondria (and vice versa) are discussed, highlighting the close interrelationship of both organelles.
Collapse
Affiliation(s)
- Nina A Bonekamp
- Centre for Cell Biology and Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | | | | |
Collapse
|
50
|
Hoffman HE, Jirásková J, Ingr M, Zvelebil M, Konvalinka J. Recombinant human serine racemase: Enzymologic characterization and comparison with its mouse ortholog. Protein Expr Purif 2009; 63:62-7. [DOI: 10.1016/j.pep.2008.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 08/29/2008] [Accepted: 09/04/2008] [Indexed: 10/21/2022]
|