1
|
Le Moan A, Stankowski S, Rafajlović M, Ortega-Martinez O, Faria R, Butlin RK, Johannesson K. Coupling of twelve putative chromosomal inversions maintains a strong barrier to gene flow between snail ecotypes. Evol Lett 2024; 8:575-586. [PMID: 39479507 PMCID: PMC11523631 DOI: 10.1093/evlett/qrae014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/07/2024] [Accepted: 03/29/2024] [Indexed: 11/02/2024] Open
Abstract
Chromosomal rearrangements can lead to the coupling of reproductive barriers, but whether and how they contribute to the completion of speciation remains unclear. Marine snails of the genus Littorina repeatedly form hybrid zones between populations segregating for multiple inversion arrangements, providing opportunities to study their barrier effects. Here, we analyzed 2 adjacent transects across hybrid zones between 2 ecotypes of Littorina fabalis ("large" and "dwarf") adapted to different wave exposure conditions on a Swedish island. Applying whole-genome sequencing, we found 12 putative inversions on 9 of 17 chromosomes. Nine of the putative inversions reached near differential fixation between the 2 ecotypes, and all were in strong linkage disequilibrium. These inversions cover 20% of the genome and carry 93% of divergent single nucleotide polymorphisms (SNPs). Bimodal hybrid zones in both transects indicated that the 2 ecotypes of Littorina fabalis maintain their genetic and phenotypic integrity following contact. The bimodality reflects the strong coupling between inversion clines and the extension of the barrier effect across the whole genome. Demographic inference suggests that coupling arose during a period of allopatry and has been maintained for > 1,000 generations after secondary contact. Overall, this study shows that the coupling of multiple chromosomal inversions contributes to strong reproductive isolation. Notably, 2 of the putative inversions overlap with inverted genomic regions associated with ecotype differences in a closely related species (Littorina saxatilis), suggesting the same regions, with similar structural variants, repeatedly contribute to ecotype evolution in distinct species.
Collapse
Affiliation(s)
- Alan Le Moan
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
- Adaptation et Diversité en Milieu Marin, UMR7144, Station Biologique de Roscoff, Sorbonne Université, 29680 Roscoff, France
| | - Sean Stankowski
- Institute of Science and Technology Austria, 3 21 44 Klosterneuburg, Austria
| | - Marina Rafajlović
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Olga Ortega-Martinez
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Roger K Butlin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, 452 96 Strömstad, Sweden
| |
Collapse
|
2
|
Geng FD, Liu MQ, Zhang XD, Wang LZ, Lei MF. Genomics of hybrid parallel origin in Aquilegia ecalcarata. BMC Ecol Evol 2024; 24:75. [PMID: 38844857 PMCID: PMC11155106 DOI: 10.1186/s12862-024-02266-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The parallel evolution of similar traits or species provides strong evidence for the role of natural selection in evolution. Traits or species that evolved repeatedly can be driven by separate de novo mutations or interspecific gene flow. Although parallel evolution has been reported in many studies, documented cases of parallel evolution caused by gene flow are scarce by comparison. Aquilegia ecalcarata and A. kansuensis belong to the genus of Aquilegia, and are the closest related sister species. Mutiple origins of A. ecalcarata have been reported in previous studies, but whether they have been driven by separate de novo mutations or gene flow remains unclear. RESULTS In this study, We conducted genomic analysis from 158 individuals of two repeatedly evolving pairs of A. ecalcarata and A. kansuensis. All samples were divided into two distinct clades with obvious geographical distribution based on phylogeny and population structure. Demographic modeling revealed that the origin of the A. ecalcarata in the Eastern of China was caused by gene flow, and the Eastern A. ecalcarata occurred following introgression from Western A. ecalcarata population. Analysis of Treemix and D-statistic also revealed that a strong signal of gene flow was detected from Western A. ecalcarata to Eastern A. ecalcarata. Genetic divergence and selective sweep analyses inferred parallel regions of genomic divergence and identified many candidate genes associated with ecologically adaptive divergence between species pair. Comparative analysis of parallel diverged regions and gene introgression confirms that gene flow contributed to the parallel evolution of A. ecalcarata. CONCLUSIONS Our results further confirmed the multiple origins of A. ecalcarata and highlighted the roles of gene flow. These findings provide new evidence for parallel origin after hybridization as well as insights into the ecological adaptation mechanisms underlying the parallel origins of species.
Collapse
Affiliation(s)
- Fang-Dong Geng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China.
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Miao-Qing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Xue-Dong Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Lu-Zhen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Meng-Fan Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
3
|
De Jode A, Faria R, Formenti G, Sims Y, Smith TP, Tracey A, Wood JMD, Zagrodzka ZB, Johannesson K, Butlin RK, Leder EH. Chromosome-scale Genome Assembly of the Rough Periwinkle Littorina saxatilis. Genome Biol Evol 2024; 16:evae076. [PMID: 38584387 PMCID: PMC11050657 DOI: 10.1093/gbe/evae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/09/2024] Open
Abstract
The intertidal gastropod Littorina saxatilis is a model system to study speciation and local adaptation. The repeated occurrence of distinct ecotypes showing different levels of genetic divergence makes L. saxatilis particularly suited to study different stages of the speciation continuum in the same lineage. A major finding is the presence of several large chromosomal inversions associated with the divergence of ecotypes and, specifically, the species offers a system to study the role of inversions in this divergence. The genome of L. saxatilis is 1.35 Gb and composed of 17 chromosomes. The first reference genome of the species was assembled using Illumina data, was highly fragmented (N50 of 44 kb), and was quite incomplete, with a BUSCO completeness of 80.1% on the Metazoan dataset. A linkage map of one full-sibling family enabled the placement of 587 Mbp of the genome into 17 linkage groups corresponding to the haploid number of chromosomes, but the fragmented nature of this reference genome limited the understanding of the interplay between divergent selection and gene flow during ecotype formation. Here, we present a newly generated reference genome that is highly contiguous, with a N50 of 67 Mb and 90.4% of the total assembly length placed in 17 super-scaffolds. It is also highly complete with a BUSCO completeness of 94.1% of the Metazoa dataset. This new reference will allow for investigations into the genomic regions implicated in ecotype formation as well as better characterization of the inversions and their role in speciation.
Collapse
Affiliation(s)
- Aurélien De Jode
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE 45296 Strömstad, Sweden
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
- Dauphin Island Sea Lab, Dauphin Island, AL, USA
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Giulio Formenti
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA
| | - Ying Sims
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Timothy P Smith
- USDA Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Jonathan M D Wood
- Tree of Life, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Zuzanna B Zagrodzka
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE 45296 Strömstad, Sweden
| | - Roger K Butlin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE 45296 Strömstad, Sweden
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK
| | - Erica H Leder
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, SE 45296 Strömstad, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Johannesson K, Faria R, Le Moan A, Rafajlović M, Westram AM, Butlin RK, Stankowski S. Diverse pathways to speciation revealed by marine snails. Trends Genet 2024; 40:337-351. [PMID: 38395682 DOI: 10.1016/j.tig.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 02/25/2024]
Abstract
Speciation is a key evolutionary process that is not yet fully understood. Combining population genomic and ecological data from multiple diverging pairs of marine snails (Littorina) supports the search for speciation mechanisms. Placing pairs on a one-dimensional speciation continuum, from undifferentiated populations to species, obscured the complexity of speciation. Adding multiple axes helped to describe either speciation routes or reproductive isolation in the snails. Divergent ecological selection repeatedly generated barriers between ecotypes, but appeared less important in completing speciation while genetic incompatibilities played a key role. Chromosomal inversions contributed to genomic barriers, but with variable impact. A multidimensional (hypercube) approach supported framing of questions and identification of knowledge gaps and can be useful to understand speciation in many other systems.
Collapse
Affiliation(s)
- Kerstin Johannesson
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, SE 45296 Strömstad, Sweden; The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden.
| | - Rui Faria
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Alan Le Moan
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; CNRS & Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Marina Rafajlović
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; Department of Marine Sciences, University of Gothenburg, SE 41390 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
| | - Anja Marie Westram
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, SE 45296 Strömstad, Sweden; The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Roger K Butlin
- Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, SE 45296 Strömstad, Sweden; The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Sean Stankowski
- The Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden; Institute of Science and Technology Austria, Klosterneuburg, Austria; Department of Ecology and Evolution, University of Sussex, Brighton, UK
| |
Collapse
|
5
|
Wang YS, Li MY, Li YL, Li YQ, Xue DX, Liu JX. Chromosome-level genome assemblies of two littorinid marine snails indicate genetic basis of intertidal adaptation and ancient karyotype evolved from bilaterian ancestors. Gigascience 2024; 13:giae072. [PMID: 39320316 PMCID: PMC11423352 DOI: 10.1093/gigascience/giae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Living in the intertidal environment, littorinid snails are excellent models for understanding genetic mechanisms underlying adaptation to harsh fluctuating environments. Furthermore, the karyotypes of littorinid snails, with the same chromosome number as the presumed bilaterian ancestor, make them valuable for investigating karyotype evolution from the bilaterian ancestor to mollusks. Here, we generated high-quality, chromosome-scale genome assemblies for 2 littorinid marine snails, Littorina brevicula (927.94 Mb) and Littoraria sinensis (882.51 Mb), with contig N50 of 3.43 Mb and 2.31 Mb, respectively. Comparative genomic analyses identified 92 expanded gene families and 85 positively selected genes as potential candidates possibly associated with intertidal adaptation in the littorinid lineage, which were functionally enriched in stimulus responses, innate immunity, and apoptosis process regulation and might be involved in cellular homeostasis maintenance in stressful intertidal environments. Genome macrosynteny analyses indicated that 4 fissions and 4 fusions led to the evolution from the 17 presumed bilaterian ancestral chromosomes to the 17 littorinid chromosomes, implying that the littorinid snails have a highly conserved karyotype with the bilaterian ancestor. Based on the most parsimonious reconstruction of the common ancestral karyotype of scallops and littorinid snails, 3 chromosomal fissions and 1 chromosomal fusion from the bilaterian ancient linkage groups were shared by the bivalve scallop and gastropoda littorinid snails, indicating that the chromosome-scale ancient gene linkages were generally preserved in the mollusk genomes for over 500 million years. The highly conserved karyotype makes the littorinid snail genomes valuable resources for understanding early bilaterian evolution and biology.
Collapse
Affiliation(s)
- Yan-Shu Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Yu Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yu-Qiang Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Xiu Xue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
6
|
Gafarova E, Kuracji D, Sogomonyan K, Gorokhov I, Polev D, Zubova E, Golikova E, Granovitch A, Maltseva A. Gut Bacteriomes and Ecological Niche Divergence: An Example of Two Cryptic Gastropod Species. BIOLOGY 2023; 12:1521. [PMID: 38132347 PMCID: PMC10740740 DOI: 10.3390/biology12121521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Symbiotic microorganisms may provide their hosts with abilities critical to their occupation of microhabitats. Gut (intestinal) bacterial communities aid animals to digest substrates that are either innutritious or toxic, as well as support their development and physiology. The role of microbial communities associated with sibling species in the hosts' adaptation remains largely unexplored. In this study, we examined the composition and plasticity of the bacteriomes in two sibling intertidal gastropod species, Littorina fabalis and L. obtusata, which are sympatric but differ in microhabitats. We applied 16S rRNA gene metabarcoding and shotgun sequencing to describe associated microbial communities and their spatial and temporal variation. A significant drop in the intestinal bacteriome diversity was revealed during the cold season, which may reflect temperature-related metabolic shifts and changes in snail behavior. Importantly, there were significant interspecies differences in the gut bacteriome composition in summer but not in autumn. The genera Vibrio, Aliivibrio, Moritella and Planktotalea were found to be predominantly associated with L. fabalis, while Granulosicoccus, Octadecabacter, Colwellia, Pseudomonas, Pseudoalteromonas and Maribacter were found to be mostly associated with L. obtusata. Based on these preferential associations, we analyzed the metabolic pathways' enrichment. We hypothesized that the L. obtusata gut bacteriome contributes to decomposing algae and detoxifying polyphenols produced by fucoids. Thus, differences in the sets of associated bacteria may equip their closely phylogenetically related hosts with a unique ability to occupy specific micro-niches.
Collapse
Affiliation(s)
- Elizaveta Gafarova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Dmitrii Kuracji
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Karina Sogomonyan
- Center for Bioinformatics and Algorithmic Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia;
| | - Ivan Gorokhov
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Dmitrii Polev
- Department of Epidemiology, St. Petersburg Pasteur Institute, Mira Street 14, 197101 St. Petersburg, Russia;
| | - Ekaterina Zubova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Elena Golikova
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Andrey Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| | - Arina Maltseva
- Department of Invertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia; (D.K.); (E.Z.); (A.G.)
| |
Collapse
|
7
|
Carvalho J, Morales HE, Faria R, Butlin RK, Sousa VC. Integrating Pool-seq uncertainties into demographic inference. Mol Ecol Resour 2023; 23:1737-1755. [PMID: 37475177 DOI: 10.1111/1755-0998.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
Next-generation sequencing of pooled samples (Pool-seq) is a popular method to assess genome-wide diversity patterns in natural and experimental populations. However, Pool-seq is associated with specific sources of noise, such as unequal individual contributions. Consequently, using Pool-seq for the reconstruction of evolutionary history has remained underexplored. Here we describe a novel Approximate Bayesian Computation (ABC) method to infer demographic history, explicitly modelling Pool-seq sources of error. By jointly modelling Pool-seq data, demographic history and the effects of selection due to barrier loci, we obtain estimates of demographic history parameters accounting for technical errors associated with Pool-seq. Our ABC approach is computationally efficient as it relies on simulating subsets of loci (rather than the whole-genome) and on using relative summary statistics and relative model parameters. Our simulation study results indicate Pool-seq data allows distinction between general scenarios of ecotype formation (single versus parallel origin) and to infer relevant demographic parameters (e.g. effective sizes and split times). We exemplify the application of our method to Pool-seq data from the rocky-shore gastropod Littorina saxatilis, sampled on a narrow geographical scale at two Swedish locations where two ecotypes (Wave and Crab) are found. Our model choice and parameter estimates show that ecotypes formed before colonization of the two locations (i.e. single origin) and are maintained despite gene flow. These results indicate that demographic modelling and inference can be successful based on pool-sequencing using ABC, contributing to the development of suitable null models that allow for a better understanding of the genetic basis of divergent adaptation.
Collapse
Affiliation(s)
- João Carvalho
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Portugal
| | - Hernán E Morales
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rui Faria
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Roger K Butlin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Vítor C Sousa
- cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Portugal
| |
Collapse
|
8
|
Abalde S, Crocetta F, Tenorio MJ, D'Aniello S, Fassio G, Rodríguez-Flores PC, Uribe JE, M L Afonso C, Oliverio M, Zardoya R. Hidden species diversity and mito-nuclear discordance within the Mediterranean cone snail, Lautoconus ventricosus. Mol Phylogenet Evol 2023:107838. [PMID: 37286063 DOI: 10.1016/j.ympev.2023.107838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The Mediterranean cone snail, Lautoconus ventricosus, is currently considered a single species inhabiting the whole Mediterranean basin and the adjacent Atlantic coasts. Yet, no population genetic study has assessed its taxonomic status. Here, we collected 245 individuals from 75 localities throughout the Mediterranean Sea and used cox1 barcodes, complete mitochondrial genomes, and genome skims to test whether L. ventricosus represents a complex of cryptic species. The maximum likelihood phylogeny based on complete mitochondrial genomes recovered six main clades (hereby named blue, brown, green, orange, red, and violet) with sufficient sequence divergence to be considered putative species. On the other hand, phylogenomic analyses based on 437 nuclear genes only recovered four out of the six clades: blue and orange clades were thoroughly mixed and the brown one was not recovered. This mito-nuclear discordance revealed instances of incomplete lineage sorting and introgression, and may have caused important differences in the dating of main cladogenetic events. Species delimitation tests proposed the existence of at least three species: green, violet, and red+blue+orange (i.e., cyan). Green plus cyan (with sympatric distributions) and violet, had West and East Mediterranean distributions, respectively, mostly separated by the Siculo-Tunisian biogeographical barrier. Morphometric analyses of the shell using species hypotheses as factor and shell length as covariate showed that the discrimination power of the studied parameters was only 70.2%, reinforcing the cryptic nature of the uncovered species, and the importance of integrative taxonomic approaches considering morphology, ecology, biogeography, and mitochondrial and nuclear population genetic variation.
Collapse
Affiliation(s)
- Samuel Abalde
- Department of Zoology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| | - Fabio Crocetta
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Giulia Fassio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Zoology-Viale dell'Università 32, 00185 Rome, Italy
| | - Paula C Rodríguez-Flores
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain; Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge MA 02138, USA
| | - Juan E Uribe
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Carlos M L Afonso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005 - 139 Faro, Portugal
| | - Marco Oliverio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Zoology-Viale dell'Università 32, 00185 Rome, Italy
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
9
|
Westram AM, Butlin R. Professor Kerstin Johannesson-winner of the 2022 Molecular Ecology Prize. Mol Ecol 2023; 32:26-29. [PMID: 36443277 DOI: 10.1111/mec.16779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Anja Marie Westram
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roger Butlin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Tjärnö Marine Laboratory, Strömstad, Sweden
| |
Collapse
|
10
|
Almeida SC, Neiva J, Sousa F, Martins N, Cox CJ, Melo-Ferreira J, Guiry MD, Serrão EA, Pearson GA. A low-latitude species pump: Peripheral isolation, parapatric speciation and mating-system evolution converge in a marine radiation. Mol Ecol 2022; 31:4797-4817. [PMID: 35869812 DOI: 10.1111/mec.16623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022]
Abstract
Geologically recent radiations can shed light on speciation processes, but incomplete lineage sorting and introgressive gene flow render accurate evolutionary reconstruction and interpretation challenging. Independently evolving metapopulations of low dispersal taxa may provide an additional level of phylogeographic information, given sufficiently broad sampling and genome-wide sequencing. Evolution in the marine brown algal genus Fucus in the south-eastern North Atlantic was shaped by Quaternary climate-driven range shifts. Over this timescale, divergence and speciation occurred against a background of expansion-contraction cycles from multiple refugia, together with mating-system shifts from outcrossing (dioecy) to selfing hermaphroditism. We tested the hypothesis that peripheral isolation of range edge (dioecious) F. vesiculosus led to parapatric speciation and radiation of hermaphrodite lineages. Species tree methods using 876 single-copy nuclear genes and extensive geographic coverage produced conflicting topologies with respect to geographic clades of F. vesiculosus. All methods, however, revealed a new and early diverging hermaphrodite species, Fucus macroguiryi sp. nov. Both the multispecies coalescent and polymorphism-aware models (in contrast to concatenation) support sequential paraphyly in F. vesiculosus resulting from distinct evolutionary processes. Our results support (1) peripheral isolation of the southern F. vesiculosus clade prior to parapatric speciation and radiation of hermaphrodite lineages-a "low-latitude species pump". (2) Directional introgressive gene flow into F. vesiculosus around the present-day secondary contact zone (sympatric-allopatric boundary) between dioecious/hermaphrodite lineages as hermaphrodites expanded northwards, supported by concordance analysis and statistical tests of introgression. (3) Species boundaries in the extensive sympatric range are probably maintained by reproductive system (selfing in hermaphrodites) and reinforcement.
Collapse
Affiliation(s)
- Susana C Almeida
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - João Neiva
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Filipe Sousa
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Neusa Martins
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Cymon J Cox
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - José Melo-Ferreira
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, R. Padre Armando Quintas, Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| | - Michael D Guiry
- AlgaeBase, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Ester A Serrão
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| | - Gareth A Pearson
- Centre of Marine Sciences, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
11
|
Hearn KE, Koch EL, Stankowski S, Butlin RK, Faria R, Johannesson K, Westram AM. Differing associations between sex determination and sex‐linked inversions in two ecotypes of
Littorina saxatilis. Evol Lett 2022; 6:358-374. [PMID: 36254259 PMCID: PMC9554762 DOI: 10.1002/evl3.295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 12/14/2022] Open
Abstract
Sexual antagonism is a common hypothesis for driving the evolution of sex chromosomes, whereby recombination suppression is favored between sexually antagonistic loci and the sex‐determining locus to maintain beneficial combinations of alleles. This results in the formation of a sex‐determining region. Chromosomal inversions may contribute to recombination suppression but their precise role in sex chromosome evolution remains unclear. Because local adaptation is frequently facilitated through the suppression of recombination between adaptive loci by chromosomal inversions, there is potential for inversions that cover sex‐determining regions to be involved in local adaptation as well, particularly if habitat variation creates environment‐dependent sexual antagonism. With these processes in mind, we investigated sex determination in a well‐studied example of local adaptation within a species: the intertidal snail, Littorina saxatilis. Using SNP data from a Swedish hybrid zone, we find novel evidence for a female‐heterogametic sex determination system that is restricted to one ecotype. Our results suggest that four putative chromosomal inversions, two previously described and two newly discovered, span the putative sex chromosome pair. We determine their differing associations with sex, which suggest distinct strata of differing ages. The same inversions are found in the second ecotype but do not show any sex association. The striking disparity in inversion‐sex associations between ecotypes that are connected by gene flow across a habitat transition that is just a few meters wide indicates a difference in selective regime that has produced a distinct barrier to the spread of the newly discovered sex‐determining region between ecotypes. Such sex chromosome‐environment interactions have not previously been uncovered in L. saxatilis and are known in few other organisms. A combination of both sex‐specific selection and divergent natural selection is required to explain these highly unusual patterns.
Collapse
Affiliation(s)
- Katherine E. Hearn
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
| | - Eva L. Koch
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
- Department of Zoology University of Cambridge Cambridge CB2 3EJ United Kingdom
| | - Sean Stankowski
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
- ISTA (Institute of Science and Technology Austria) Klosterneuburg 3400 Austria
| | - Roger K. Butlin
- Ecology and Evolutionary Biology, School of Biosciences University of Sheffield Sheffield S10 2TN United Kingdom
- Department of Marine Sciences University of Gothenburg Strömstad SE‐45296 Sweden
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado Campus de Vairão, Universidade do Porto Vairão 4485‐661 Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO Campus de Vairão, Universidade do Porto Vairão 4485‐661 Portugal
| | - Kerstin Johannesson
- Department of Marine Sciences University of Gothenburg Strömstad SE‐45296 Sweden
| | - Anja M. Westram
- ISTA (Institute of Science and Technology Austria) Klosterneuburg 3400 Austria
- Faculty of Biosciences and Aquaculture Nord University Bodø 8026 Norway
| |
Collapse
|
12
|
Westram AM, Faria R, Johannesson K, Butlin R, Barton N. Inversions and parallel evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210203. [PMID: 35694747 PMCID: PMC9189493 DOI: 10.1098/rstb.2021.0203] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local adaptation leads to differences between populations within a species. In many systems, similar environmental contrasts occur repeatedly, sometimes driving parallel phenotypic evolution. Understanding the genomic basis of local adaptation and parallel evolution is a major goal of evolutionary genomics. It is now known that by preventing the break-up of favourable combinations of alleles across multiple loci, genetic architectures that reduce recombination, like chromosomal inversions, can make an important contribution to local adaptation. However, little is known about whether inversions also contribute disproportionately to parallel evolution. Our aim here is to highlight this knowledge gap, to showcase existing studies, and to illustrate the differences between genomic architectures with and without inversions using simple models. We predict that by generating stronger effective selection, inversions can sometimes speed up the parallel adaptive process or enable parallel adaptation where it would be impossible otherwise, but this is highly dependent on the spatial setting. We highlight that further empirical work is needed, in particular to cover a broader taxonomic range and to understand the relative importance of inversions compared to genomic regions without inversions. This article is part of the theme issue ‘Genomic architecture of supergenes: causes and evolutionary consequences’.
Collapse
Affiliation(s)
- Anja M Westram
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.,Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Roger Butlin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nick Barton
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| |
Collapse
|
13
|
Non-parallel morphological divergence following colonization of a new host plant. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractAdaptation to new ecological niches is known to spur population diversification and may lead to speciation if gene flow is ceased. While adaptation to the same ecological niche is expected to be parallel, it is more difficult to predict whether selection against maladaptive hybridization in secondary sympatry results in parallel divergence also in traits that are not directly related to the ecological niches. Such parallelisms in response to selection for reproductive isolation can be identified through estimating parallelism in reproductive character displacement across different zones of secondary contact. Here, we use a host shift in the phytophagous peacock fly Tephritis conura, with both host races represented in two geographically separate areas East and West of the Baltic Sea to investigate convergence in morphological adaptations. We asked (i) if there are consistent morphological adaptations to a host plant shift and (ii) if the response to secondary sympatry with the alternate host race is parallel across contact zones. We found surprisingly low and variable, albeit significant, divergence between host races. Only one trait, the length of the female ovipositor, which serves an important function in the interaction with the hosts, was consistently different between host races. Instead, co-existence with the other host race significantly affected the degree of morphological divergence, but the divergence was largely driven by different traits in different contact zones. Thus, local stochastic fixation or reinforcement could generate trait divergence, and additional evidence is needed to conclude whether divergence is locally adaptive.
Collapse
|
14
|
The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02838-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Rodriguez AK, Krug PJ. Ecological speciation by sympatric host shifts in a clade of herbivorous sea slugs, with introgression and localized mitochondrial capture between species. Mol Phylogenet Evol 2022; 174:107523. [PMID: 35589054 DOI: 10.1016/j.ympev.2022.107523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022]
Abstract
Host shifting in insect-plant systems was historically important to the development of ecological speciation theory, yet surprisingly few studies have examined whether host shifting drives diversification of marine herbivores. When small-bodied consumers feed and also mate on a preferred host, disruptive selection can split a population into host races despite gene flow. Support for host shifts is notably lacking for invertebrates associated with macroalgae, where the scale of dispersal by planktonic larvae often far exceeds the grain of host patchiness, and adults are typically less specialized than terrestrial herbivores. Here, we present a candidate example of ecological speciation in a clade of sea slugs that primarily consume green algae in the genus Caulerpa, including highly invasive species. Ancestral character state reconstructions supported 'sea grapes' (C. racemosa, C. lentillifera) as the ancestral host for a tropical radiation of 12 Elysia spp., with one shift onto alternative Caulerpa spp. in the Indo-Pacific. A Caribbean radiation of three species included symaptric host shifts to Rhipocephalus brevicaulis in the ancestor of E. pratensis Ortea & Espinosa, 1996, and to C. prolifera in E. hamanni Krug, Vendetti & Valdes 2016, plus a niche expansion to a range of Caulerpa spp. in E. subornata Verrill, 1901. All three species are broadly sympatric across the Caribbean but are host-partitioned at a fine grain, and distinct by morphology and at nuclear loci. However, non-recombining mtDNA revealed a history of gene flow between E. pratensis and E. subornata: COI haplotypes from E. subornata were 10.4% divergent from E. pratensis haplotypes from four sites, but closely related to all E. pratensis haplotypes sampled from six Bahamian islands, indicating historical introgression and localized "mitochondrial capture." Disruptive selective likely fueled divergence and adaptation to distinct host environments, indicating ecological speciation may be an under-appreciated driver of diversification for marine herbivores as well as epibionts and other resource specialists.
Collapse
Affiliation(s)
- Albert K Rodriguez
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, U.S.A
| | - Patrick J Krug
- Department of Biological Sciences, California State University, Los Angeles, CA 90032-8201, U.S.A.
| |
Collapse
|
16
|
Fernández-Meirama M, Rolán-Alvarez E, Carvajal-Rodríguez A. A Simulation Study of the Ecological Speciation Conditions in the Galician Marine Snail Littorina saxatilis. Front Genet 2022; 13:680792. [PMID: 35480312 PMCID: PMC9037070 DOI: 10.3389/fgene.2022.680792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
In the last years, the interest in evolutionary divergence at small spatial scales has increased and so did the study of speciation caused by ecologically based divergent natural selection. The evolutionary interplay between gene flow and local adaptation can lead to low-dispersal locally adapted specialists. When this occurs, the evolutionary interplay between gene flow and local adaptation could eventually lead to speciation. The L. saxatilis system consists of two ecotypes displaying a microhabitat-associated intraspecific dimorphism along the wave-exposed rocky shores of Galicia. Despite being a well-known system, the dynamics of the ecotype formation remain unclear and cannot be studied from empirical evidence alone. In this study, individual-based simulations were used to incorporate relevant ecological, spatial, and genetic information, to check different evolutionary scenarios that could evolve non-random mating preferences and finally may facilitate speciation. As main results, we observed the evolution of intermediate values of choice which matches the estimates from empirical data of L. saxatilis in Galician shores and coincides with previous theoretical outcomes. Also, the use of the mating correlation as a proxy for assortative mating led to spuriously inferring greater reproductive isolation in the middle habitat than in the others, which does not happen when directly considering the choice values from the simulations. We also corroborate the well-known fact that the occurrence of speciation is influenced by the strength of selection. Taken together, this means, also according to other L. saxatilis systems, that speciation is not an immediate consequence of local divergent selection and mating preferences, but a fine tuning among several factors including the ecological conditions in the shore levels, the selection strength, the mate choice stringency, and cost to choosiness. The L. saxatilis system could correspond to a case of incomplete reproductive isolation, where the choice intensity is intermediate and local adaptation within the habitat is strong. These results support previous interpretations of the L. saxatilis model system and indicate that further empirical studies would be interesting to test whether the mate choice mechanism functions as a similarity-like mechanism as has been shown in other littorinids.
Collapse
Affiliation(s)
- M Fernández-Meirama
- Departamento de Bioquímica, Genética e Inmunología and Centro de Investigación Mariña (CIM), Universidade de Vigo, Vigo, Spain
| | - E Rolán-Alvarez
- Departamento de Bioquímica, Genética e Inmunología and Centro de Investigación Mariña (CIM), Universidade de Vigo, Vigo, Spain
| | - A Carvajal-Rodríguez
- Departamento de Bioquímica, Genética e Inmunología and Centro de Investigación Mariña (CIM), Universidade de Vigo, Vigo, Spain
| |
Collapse
|
17
|
Durán-Castillo M, Hudson A, Wilson Y, Field DL, Twyford AD. A phylogeny of Antirrhinum reveals parallel evolution of alpine morphology. THE NEW PHYTOLOGIST 2022; 233:1426-1439. [PMID: 34170548 DOI: 10.1111/nph.17581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Parallel evolution of similar morphologies in closely related lineages provides insight into the repeatability and predictability of evolution. In the genus Antirrhinum (snapdragons), as in other plants, a suite of morphological characters are associated with adaptation to alpine environments. We tested for parallel trait evolution in Antirrhinum by investigating phylogenetic relationships using restriction-site associated DNA (RAD) sequencing. We then associated phenotypic information to our phylogeny to reconstruct the patterns of morphological evolution and related this to evidence for hybridisation between emergent lineages. Phylogenetic analyses showed that the alpine character syndrome is present in multiple groups, suggesting that Antirrhinum has repeatedly colonised alpine habitats. Dispersal to novel environments happened in the presence of intraspecific and interspecific gene flow. We found support for a model of parallel evolution in Antirrhinum. Hybridisation in natural populations, and a complex genetic architecture underlying the alpine morphology syndrome, support an important role of natural selection in maintaining species divergence in the face of gene flow.
Collapse
Affiliation(s)
- Mario Durán-Castillo
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Andrew Hudson
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Yvette Wilson
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - David L Field
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, 6027, Australia
| | - Alex D Twyford
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| |
Collapse
|
18
|
Malec P, Weber J, Böhmer R, Fiebig M, Meinert D, Rein C, Reinisch R, Henrich M, Polyvas V, Pollmann M, von Berg L, König C, Steidle JLM. The emergence of ecotypes in a parasitoid wasp: a case of incipient sympatric speciation in Hymenoptera? BMC Ecol Evol 2021; 21:204. [PMID: 34781897 PMCID: PMC8591844 DOI: 10.1186/s12862-021-01938-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background To understand which reproductive barriers initiate speciation is a major question in evolutionary research. Despite their high species numbers and specific biology, there are only few studies on speciation in Hymenoptera. This study aims to identify very early reproductive barriers in a local, sympatric population of Nasonia vitripennis (Walker 1836), a hymenopterous parasitoid of fly pupae. We studied ecological barriers, sexual barriers, and the reduction in F1-female offspring as a postmating barrier, as well as the population structure using microsatellites. Results We found considerable inbreeding within female strains and a population structure with either three or five subpopulation clusters defined by microsatellites. In addition, there are two ecotypes, one parasitizing fly pupae in bird nests and the other on carrion. The nest ecotype is mainly formed from one of the microsatellite clusters, the two or four remaining microsatellite clusters form the carrion ecotype. There was slight sexual isolation and a reduction in F1-female offspring between inbreeding strains from the same microsatellite clusters and the same ecotypes. Strains from different microsatellite clusters are separated by a reduction in F1-female offspring. Ecotypes are separated only by ecological barriers. Conclusions This is the first demonstration of very early reproductive barriers within a sympatric population of Hymenoptera. It demonstrates that sexual and premating barriers can precede ecological separation. This indicates the complexity of ecotype formation and highlights the general need for more studies within homogenous populations for the identification of the earliest barriers in the speciation process. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01938-y.
Collapse
Affiliation(s)
- Pawel Malec
- Naturpark Steigerwald E.V., 91443, Scheinfeld, Germany
| | - Justus Weber
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Robin Böhmer
- Natural History Museum Bern, 3005, Bern, Switzerland
| | - Marc Fiebig
- Untere Naturschutzbehörde, Landratsamt Kitzingen, 97318, Kitzingen, Germany
| | | | - Carolin Rein
- Apicultural State Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Ronja Reinisch
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Maik Henrich
- Wildlife Ecology and Management, University of Freiburg, 79106, Freiburg, Germany
| | - Viktoria Polyvas
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Marie Pollmann
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Lea von Berg
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany
| | - Christian König
- Akademie für Natur- und Umweltschutz Baden-Württemberg beim Ministerium für Umwelt, Klima und Energiewirtschaft, 70192, Stuttgart, Germany
| | - Johannes L M Steidle
- Dep. of Chemical Ecology 190T, Institute of Biology, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
19
|
James ME, Arenas-Castro H, Groh JS, Allen SL, Engelstädter J, Ortiz-Barrientos D. Highly Replicated Evolution of Parapatric Ecotypes. Mol Biol Evol 2021; 38:4805-4821. [PMID: 34254128 PMCID: PMC8557401 DOI: 10.1093/molbev/msab207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Parallel evolution of ecotypes occurs when selection independently drives the evolution of similar traits across similar environments. The multiple origins of ecotypes are often inferred based on a phylogeny that clusters populations according to geographic location and not by the environment they occupy. However, the use of phylogenies to infer parallel evolution in closely related populations is problematic because gene flow and incomplete lineage sorting can uncouple the genetic structure at neutral markers from the colonization history of populations. Here, we demonstrate multiple origins within ecotypes of an Australian wildflower, Senecio lautus. We observed strong genetic structure as well as phylogenetic clustering by geography and show that this is unlikely due to gene flow between parapatric ecotypes, which was surprisingly low. We further confirm this analytically by demonstrating that phylogenetic distortion due to gene flow often requires higher levels of migration than those observed in S. lautus. Our results imply that selection can repeatedly create similar phenotypes despite the perceived homogenizing effects of gene flow.
Collapse
Affiliation(s)
- Maddie E James
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | - Henry Arenas-Castro
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | - Jeffrey S Groh
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland,St. Lucia, QLD, Australia
| | | |
Collapse
|
20
|
Mehner T, Palm S, Delling B, Karjalainen J, Kiełpińska J, Vogt A, Freyhof J. Genetic relationships between sympatric and allopatric Coregonus ciscoes in North and Central Europe. BMC Ecol Evol 2021; 21:186. [PMID: 34615463 PMCID: PMC8496053 DOI: 10.1186/s12862-021-01920-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sympatric speciation along ecological gradients has been studied repeatedly, in particular in freshwater fishes. Rapid post-glacial ecological divergence has resulted in numerous endemic species or ecologically distinct populations in lakes of the temperate zones. Here, we focus on the Baltic cisco (Coregonus albula) complex, to study the genetic similarity among two pairs of sympatric autumn- and spring-spawning populations from post-glacial German Lakes Stechlin and Breiter Luzin. For comparison, we included a similar pair of sympatric populations from the Swedish Lake Fegen. We wanted to explore potential genetic similarities between the three sympatric cisco population pairs in the three lakes, to evaluate whether the pairs may have emerged independently in the three lakes, or whether two different species may have colonized all three lakes independently. Furthermore, we considered allopatric C. albula populations from three Polish, three Finnish, and four Swedish locations, added one Siberian population of the sister species C. sardinella and a Swedish C. maraena (whitefish) population. By genotyping nine microsatellite markers in 655 individuals from these 18 populations, we wanted to elucidate how strongly the cisco populations differ across a larger geographical area within Europe. Finally, we compared the genetic differences between the spring- and autumn-spawning populations of ciscoes in the two German lakes to infer the potentially deteriorating effect of strong anthropogenic pressure on the lakes. RESULTS Dendrogram, Principal Coordinate Analysis and admixture analysis all indicated strong correspondence between population differentiation and geographical location for most cisco populations in Europe, including the Siberian population of C. sardinella. However, populations from some Swedish lakes deviated from this general pattern, by showing a distinct genetic structure. We found evidence for independent evolution of the three sympatric population pairs, because the populations co-occurring in the same lake were always most closely related. However, genetic differentiation was weak in the two German population pairs, but strong in the Swedish Lake Fegen, indicating that the weak differentiation in the German pairs reported earlier has eroded further. CONCLUSIONS Our results suggest that the genetic differentiation at neutral genetic markers among populations of the Baltic cisco complex has evolved (and is maintained) by random genetic drift in isolated populations. However, earlier studies on the Swedish populations combining mitochondrial DNA and microsatellite data indicate that also post-glacial immigration from separate glacial refugia has shaped the present genetic population structure. The low neutral differentiation of the German sympatric pairs in contrast to the Swedish pair suggests that recent anthropogenic effects on the lakes in Germany may put the endemic spring-spawners at risk to extinction.
Collapse
Affiliation(s)
- Thomas Mehner
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
| | - Stefan Palm
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Bo Delling
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Juha Karjalainen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Jolanta Kiełpińska
- Department of Aquatic Bioengineering and Aquaculture, Faculty of Food Science and Fisheries, West Pomeranian University of Technology in Szczecin, Szczecin, Poland
| | - Asja Vogt
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| | - Jörg Freyhof
- Museum Für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
21
|
Zerebecki RA, Sotka EE, Hanley TC, Bell KL, Gehring C, Nice CC, Richards CL, Hughes AR. Repeated Genetic and Adaptive Phenotypic Divergence across Tidal Elevation in a Foundation Plant Species. Am Nat 2021; 198:E152-E169. [DOI: 10.1086/716512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Robyn A. Zerebecki
- Marine Science Center, Northeastern University, Nahant, Massachusetts 01908
- Dauphin Island Sea Lab, Dauphin Island, Alabama 36528
| | - Erik E. Sotka
- Department of Biology and Grice Marine Laboratory, College of Charleston, South Carolina 29412
| | - Torrance C. Hanley
- Marine Science Center, Northeastern University, Nahant, Massachusetts 01908
| | - Katherine L. Bell
- Department of Entomology, University of Maryland, College Park, Maryland 20742
| | - Catherine Gehring
- Department of Biological Science and Merriam-Powell Center for Environmental Research, Northern Arizona University, Flagstaff, Arizona 86011
| | - Chris C. Nice
- Department of Biology, Texas State University, San Marcos, Texas 78666
| | - Christina L. Richards
- Department of Integrative Biology, University of South Florida, Tampa, Florida 33617; and Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - A. Randall Hughes
- Marine Science Center, Northeastern University, Nahant, Massachusetts 01908
| |
Collapse
|
22
|
Diz AP, Romero MR, Galindo J, Saura M, Skibinski DOF, Rolán-Alvarez E. Proteomic analysis of F1 hybrids and intermediate variants in a littorina saxatilis hybrid zone. Curr Zool 2021; 68:351-359. [PMID: 35592345 PMCID: PMC9113252 DOI: 10.1093/cz/zoab054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/03/2021] [Indexed: 11/22/2022] Open
Abstract
Proteomic analysis was carried out on the Crab (upper-shore) and Wave (lower-shore) ecotypes of Littorina saxatilis from a hybrid zone at Silleiro Cape, Spain. Proteome profiles of individual snails were obtained. Protein expression in F1 hybrid snails bred in the laboratory and snails with intermediate shell phenotypes collected from the mid-shore were compared with Crab and Wave ecotypes using analytical approaches used to study dominance. Multivariate analysis over many protein spots showed that the F1 snails are distinct from both ecotypes but closer to the Wave ecotype. The intermediate snails are highly variable, some closer to the Crab and others to the Wave ecotype. Considered on a protein by protein basis, some proteins are significantly closer in expression to the Crab and others to the Wave ecotype for both F1 and intermediate snails. Furthermore, a significant majority of proteins were closer in expression to the Wave ecotype for the F1, consistent with the multivariate analysis. No such significant majority toward either the Crab or Wave ecotype was observed for the intermediate snails. The closer similarity of F1 and Wave ecotype expression patterns could be the result of similar selective pressures in the similar mid-shore and low-shore environments. For a significantly larger number of proteins, intermediate snails were closer in expression to the ecotype having the lower expression, for both Crab and Wave ecotypes. This is somewhat unexpected as lower expression might be expected to be an indication of impairment of function and lower fitness. Proteomic analysis could be important for the identification of candidate proteins useful for gaining improved understanding of adaptation and barriers to gene flow in hybrid zones.
Collapse
Affiliation(s)
- Angel P Diz
- Centro de Investigación Mariña (CIM-UVIGO), Universidade de Vigo, Vigo 36310, Spain
- Address Correspondence to Angel P. Diz. E-mail:
| | - Mónica R Romero
- Centro de Investigación Mariña (CIM-UVIGO), Universidade de Vigo, Vigo 36310, Spain
| | - Juan Galindo
- Centro de Investigación Mariña (CIM-UVIGO), Universidade de Vigo, Vigo 36310, Spain
| | - María Saura
- Departamento de Mejora Genética Animal, INIA, Madrid 28040, Spain
| | - David O F Skibinski
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Emilio Rolán-Alvarez
- Centro de Investigación Mariña (CIM-UVIGO), Universidade de Vigo, Vigo 36310, Spain
| |
Collapse
|
23
|
Westram AM, Faria R, Johannesson K, Butlin R. Using replicate hybrid zones to understand the genomic basis of adaptive divergence. Mol Ecol 2021; 30:3797-3814. [PMID: 33638231 DOI: 10.1111/mec.15861] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/12/2021] [Indexed: 12/28/2022]
Abstract
Combining hybrid zone analysis with genomic data is a promising approach to understanding the genomic basis of adaptive divergence. It allows for the identification of genomic regions underlying barriers to gene flow. It also provides insights into spatial patterns of allele frequency change, informing about the interplay between environmental factors, dispersal and selection. However, when only a single hybrid zone is analysed, it is difficult to separate patterns generated by selection from those resulting from chance. Therefore, it is beneficial to look for repeatable patterns across replicate hybrid zones in the same system. We applied this approach to the marine snail Littorina saxatilis, which contains two ecotypes, adapted to wave-exposed rocks vs. high-predation boulder fields. The existence of numerous hybrid zones between ecotypes offered the opportunity to test for the repeatability of genomic architectures and spatial patterns of divergence. We sampled and phenotyped snails from seven replicate hybrid zones on the Swedish west coast and genotyped them for thousands of single nucleotide polymorphisms. Shell shape and size showed parallel clines across all zones. Many genomic regions showing steep clines and/or high differentiation were shared among hybrid zones, consistent with a common evolutionary history and extensive gene flow between zones, and supporting the importance of these regions for divergence. In particular, we found that several large putative inversions contribute to divergence in all locations. Additionally, we found evidence for consistent displacement of clines from the boulder-rock transition. Our results demonstrate patterns of spatial variation that would not be accessible without continuous spatial sampling, a large genomic data set and replicate hybrid zones.
Collapse
Affiliation(s)
- Anja M Westram
- IST Austria, Klosterneuburg, Austria.,Animal & Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Rui Faria
- Animal & Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto, Portugal
| | - Kerstin Johannesson
- Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Roger Butlin
- Animal & Plant Sciences, Western Bank, University of Sheffield, Sheffield, UK.,Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
24
|
Koch EL, Morales HE, Larsson J, Westram AM, Faria R, Lemmon AR, Lemmon EM, Johannesson K, Butlin RK. Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evol Lett 2021; 5:196-213. [PMID: 34136269 PMCID: PMC8190449 DOI: 10.1002/evl3.227] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/06/2021] [Accepted: 03/29/2021] [Indexed: 01/11/2023] Open
Abstract
Chromosomal inversions have long been recognized for their role in local adaptation. By suppressing recombination in heterozygous individuals, they can maintain coadapted gene complexes and protect them from homogenizing effects of gene flow. However, to fully understand their importance for local adaptation we need to know their influence on phenotypes under divergent selection. For this, the marine snail Littorina saxatilis provides an ideal study system. Divergent ecotypes adapted to wave action and crab predation occur in close proximity on intertidal shores with gene flow between them. Here, we used F2 individuals obtained from crosses between the ecotypes to test for associations between genomic regions and traits distinguishing the Crab‐/Wave‐adapted ecotypes including size, shape, shell thickness, and behavior. We show that most of these traits are influenced by two previously detected inversion regions that are divergent between ecotypes. We thus gain a better understanding of one important underlying mechanism responsible for the rapid and repeated formation of ecotypes: divergent selection acting on inversions. We also found that some inversions contributed to more than one trait suggesting that they may contain several loci involved in adaptation, consistent with the hypothesis that suppression of recombination within inversions facilitates differentiation in the presence of gene flow.
Collapse
Affiliation(s)
- Eva L Koch
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom
| | - Hernán E Morales
- Evolutionary Genetics Section Globe Institute University of Copenhagen Copenhagen Denmark.,Department of Marine Sciences University of Gothenburg Strömstad 45296 Sweden
| | - Jenny Larsson
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom
| | - Anja M Westram
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom.,IST Austria Klosterneuburg Austria
| | - Rui Faria
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom.,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto Vairão Portugal
| | - Alan R Lemmon
- Department of Scientific Computing Florida State University Tallahassee Florida FL 32306-4120
| | - E Moriarty Lemmon
- Department of Biological Science Florida State University Tallahassee Florida FL 32306-4295
| | - Kerstin Johannesson
- Department of Marine Sciences University of Gothenburg Strömstad 45296 Sweden
| | - Roger K Butlin
- Department of Animal and Plant Sciences University of Sheffield Sheffield United Kingdom.,Department of Marine Sciences University of Gothenburg Strömstad 45296 Sweden
| |
Collapse
|
25
|
Phylogeographic and demographic modeling analyses of the multiple origins of the rheophytic goldenrod Solidago yokusaiana Makino. Heredity (Edinb) 2021; 126:831-845. [PMID: 33510467 PMCID: PMC8102582 DOI: 10.1038/s41437-021-00408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
Understanding adaptation mechanisms is important in evolutionary biology. Parallel adaptation provides good opportunities to investigate adaptive evolution. To confirm parallel adaptation, it is effective to examine whether the phenotypic similarity has one or multiple origins and to use demographic modeling to consider the gene flow between ecotypes. Solidago yokusaiana is a rheophyte endemic to the Japanese Archipelago that diverged from Solidago virgaurea. This study examined the parallel origins of S. yokusaiana by distinguishing between multiple and single origins and subsequent gene flow. The haplotypes of noncoding chloroplast DNA and genotypes at 14 nuclear simple sequence repeat (nSSR) loci and single-nucleotide polymorphisms (SNPs) revealed by double-digest restriction-associated DNA sequencing (ddRADseq) were used for phylogeographic analysis; the SNPs were also used to model population demographics. Some chloroplast haplotypes were common to S. yokusaiana and its ancestor S. virgaurea. Also, the population genetic structures revealed by nSSR and SNPs did not correspond to the taxonomic species. The demographic modeling supported the multiple origins of S. yokusaiana in at least four districts and rejected a single origin with ongoing gene flow between the two species, implying that S. yokusaiana independently and repeatedly adapted to frequently flooding riversides.
Collapse
|
26
|
Knotek A, Konečná V, Wos G, Požárová D, Šrámková G, Bohutínská M, Zeisek V, Marhold K, Kolář F. Parallel Alpine Differentiation in Arabidopsis arenosa. FRONTIERS IN PLANT SCIENCE 2020; 11:561526. [PMID: 33363550 PMCID: PMC7753741 DOI: 10.3389/fpls.2020.561526] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/16/2020] [Indexed: 05/14/2023]
Abstract
Parallel evolution provides powerful natural experiments for studying repeatability of evolution and genomic basis of adaptation. Well-documented examples from plants are, however, still rare, as are inquiries of mechanisms driving convergence in some traits while divergence in others. Arabidopsis arenosa, a predominantly foothill species with scattered morphologically distinct alpine occurrences is a promising candidate. Yet, the hypothesis of parallelism remained untested. We sampled foothill and alpine populations in all regions known to harbor the alpine ecotype and used SNP genotyping to test for repeated alpine colonization. Then, we combined field surveys and a common garden experiment to quantify phenotypic parallelism. Genetic clustering by region but not elevation and coalescent simulations demonstrated parallel origin of alpine ecotype in four mountain regions. Alpine populations exhibited parallelism in height and floral traits which persisted after two generations in cultivation. In contrast, leaf traits were distinctive only in certain region(s), reflecting a mixture of plasticity and genetically determined non-parallelism. We demonstrate varying degrees and causes of parallelism and non-parallelism across populations and traits within a plant species. Parallel divergence along a sharp elevation gradient makes A. arenosa a promising candidate for studying genomic basis of adaptation.
Collapse
Affiliation(s)
- Adam Knotek
- Department of Botany, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Veronika Konečná
- Department of Botany, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Guillaume Wos
- Department of Botany, Charles University, Prague, Czechia
| | | | | | - Magdalena Bohutínská
- Department of Botany, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Vojtěch Zeisek
- Department of Botany, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
| | - Karol Marhold
- Department of Botany, Charles University, Prague, Czechia
- Institute of Botany, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Filip Kolář
- Department of Botany, Charles University, Prague, Czechia
- Institute of Botany, The Czech Academy of Sciences, Průhonice, Czechia
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
Marshall DJ, Taha H, Brahim A, Abdelhady AA. Supratidal existence drives phenotypic divergence, but not speciation, in tropical rocky-shore snails. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The mechanisms underlying the evolutionary adaptation of animals that transcend the ecological barrier separating the intertidal and supratidal zones of rocky shores are poorly understood. Different wetting frequencies in these zones in tropical regions (daily vs. seasonally, respectively) impose different physical stressors, which should drive phenotypic variation and ultimately speciation in the animals that inhabit them. We studied morphological, physiological and genetic variation in a tropical high-shore gastropod that transcends these zones [Echinolittorina malaccana (Philippi, 1847)]. Variation in melanization, shell features and evaporative water loss was linked to regular seawater wetting, frequent activity and feeding, and solar exposure in intertidal snails, and to inactivity and prolonged aestivation in the shade during continuous air exposure in supratidal snails. Despite selective pressure for phenotypic divergence, and reproductive isolation of the populations in either zone, their mitochondrial COI gene sequences confirmed that they represent a single species. Speciation in our study case is probably constrained by the limitation on activity, mating and reproduction of supratidal snails, such that their populations can only be sustained through intertidal pelagic larval recruitment. Comparisons with other studies suggest that supratidal speciation and specialization for life in this zone probably require moderation of the abiotic (desiccative) conditions, to facilitate greater activity and interaction of animals during air exposure.
Collapse
Affiliation(s)
- David J Marshall
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Brunei Darussalam
| | - Hussein Taha
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Brunei Darussalam
| | - Amalina Brahim
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Brunei Darussalam
| | | |
Collapse
|
28
|
Kess T, Brachmann M, Boulding EG. Putative chromosomal rearrangements are associated primarily with ecotype divergence rather than geographic separation in an intertidal, poorly dispersing snail. J Evol Biol 2020; 34:193-207. [PMID: 33108001 DOI: 10.1111/jeb.13724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Littorina saxatilis is becoming a model system for understanding the genomic basis of ecological speciation. The parallel formation of crab-adapted ecotypes that exhibit partial reproductive isolation from wave-adapted ecotypes has enabled genomic investigation of conspicuous shell traits. Recent genomic studies suggest that chromosomal rearrangements may enable ecotype divergence by reducing gene flow. However, the genomic architecture of traits that are divergent between ecotypes remains poorly understood. Here, we use 11,504 single nucleotide polymorphism (SNP) markers called using the recently released L. saxatilis genome to genotype 462 crab ecotype, wave ecotype and phenotypically intermediate Spanish L. saxatilis individuals with scored phenotypes. We used redundancy analysis to study the genetic architecture of loci associated with shell shape, shape corrected for size, shell size and shell ornamentation, and to compare levels of co-association among different traits. We discovered 341 SNPs associated with shell traits. Loci associated with trait divergence between ecotypes were often located inside putative chromosomal rearrangements recently characterized in Swedish L. saxatilis. In contrast, we found that shell shape corrected for size varied primarily by geographic site rather than by ecotype and showed little association with these putative rearrangements. We conclude that genomic regions of elevated divergence inside putative rearrangements were associated with divergence of L. saxatilis ecotypes along steep environmental axes-consistent with models of adaptation with gene flow-but were not associated with divergence among the three geographical sites. Our findings support predictions from models indicating the importance of genomic regions of reduced recombination allowing co-association of loci during ecological speciation with ongoing gene flow.
Collapse
Affiliation(s)
- Tony Kess
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Matthew Brachmann
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
29
|
Galindo J, Carvalho J, Sotelo G, Duvetorp M, Costa D, Kemppainen P, Panova M, Kaliontzopoulou A, Johannesson K, Faria R. Genetic and morphological divergence between Littorina fabalis ecotypes in Northern Europe. J Evol Biol 2020; 34:97-113. [PMID: 32935387 DOI: 10.1111/jeb.13705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/15/2020] [Accepted: 09/07/2020] [Indexed: 01/21/2023]
Abstract
Low dispersal marine intertidal species facing strong divergent selective pressures associated with steep environmental gradients have a great potential to inform us about local adaptation and reproductive isolation. Among these, gastropods of the genus Littorina offer a unique system to study parallel phenotypic divergence resulting from adaptation to different habitats related with wave exposure. In this study, we focused on two Littorina fabalis ecotypes from Northern European shores and compared patterns of habitat-related phenotypic and genetic divergence across three different geographic levels (local, regional and global). Geometric morphometric analyses revealed that individuals from habitats moderately exposed to waves usually present a larger shell size with a wider aperture than those from sheltered habitats. The phenotypic clustering of L. fabalis by habitat across most locations (mainly in terms of shell size) support an important role of ecology in morphological divergence. A genome scan based on amplified fragment length polymorphisms (AFLPs) revealed a heterogeneous pattern of differentiation across the genome between populations from the two different habitats, suggesting ecotype divergence in the presence of gene flow. The contrasting patterns of genetic structure between nonoutlier and outlier loci, and the decreased sharing of outlier loci with geographic distance among locations are compatible with parallel evolution of phenotypic divergence, with an important contribution of gene flow and/or ancestral variation. In the future, model-based inference studies based on sequence data across the entire genome will help unravelling these evolutionary hypotheses, improving our knowledge about adaptation and its influence on diversification within the marine realm.
Collapse
Affiliation(s)
- Juan Galindo
- Department of Biochemistry, Genetics and Immunology, Universidade de Vigo, Vigo, Spain.,Centro de Investigación Mariña (CIM-UVIGO), Vigo, Spain
| | - João Carvalho
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Portugal
| | - Graciela Sotelo
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Mårten Duvetorp
- Department of Marine Sciences -Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Diana Costa
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Petri Kemppainen
- Ecological Genetics Research Unit, Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marina Panova
- Department of Marine Sciences -Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Antigoni Kaliontzopoulou
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Kerstin Johannesson
- Department of Marine Sciences -Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| |
Collapse
|
30
|
Stankowski S, Westram AM, Zagrodzka ZB, Eyres I, Broquet T, Johannesson K, Butlin RK. The evolution of strong reproductive isolation between sympatric intertidal snails. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190545. [PMID: 32654639 DOI: 10.1098/rstb.2019.0545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of strong reproductive isolation (RI) is fundamental to the origins and maintenance of biological diversity, especially in situations where geographical distributions of taxa broadly overlap. But what is the history behind strong barriers currently acting in sympatry? Using whole-genome sequencing and single nucleotide polymorphism genotyping, we inferred (i) the evolutionary relationships, (ii) the strength of RI, and (iii) the demographic history of divergence between two broadly sympatric taxa of intertidal snail. Despite being cryptic, based on external morphology, Littorina arcana and Littorina saxatilis differ in their mode of female reproduction (egg-laying versus brooding), which may generate a strong post-zygotic barrier. We show that egg-laying and brooding snails are closely related, but genetically distinct. Genotyping of 3092 snails from three locations failed to recover any recent hybrid or backcrossed individuals, confirming that RI is strong. There was, however, evidence for a very low level of asymmetrical introgression, suggesting that isolation remains incomplete. The presence of strong, asymmetrical RI was further supported by demographic analysis of these populations. Although the taxa are currently broadly sympatric, demographic modelling suggests that they initially diverged during a short period of geographical separation involving very low gene flow. Our study suggests that some geographical separation may kick-start the evolution of strong RI, facilitating subsequent coexistence of taxa in sympatry. The strength of RI needed to achieve sympatry and the subsequent effect of sympatry on RI remain open questions. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Sean Stankowski
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Anja M Westram
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Zuzanna B Zagrodzka
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Isobel Eyres
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Thomas Broquet
- CNRS and Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
31
|
On the causes of geographically heterogeneous parallel evolution in sticklebacks. Nat Ecol Evol 2020; 4:1105-1115. [DOI: 10.1038/s41559-020-1222-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/14/2020] [Indexed: 12/22/2022]
|
32
|
Perini S, Rafajlović M, Westram AM, Johannesson K, Butlin RK. Assortative mating, sexual selection, and their consequences for gene flow in Littorina. Evolution 2020; 74:1482-1497. [PMID: 32472616 DOI: 10.1111/evo.14027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 01/01/2023]
Abstract
When divergent populations are connected by gene flow, the establishment of complete reproductive isolation usually requires the joint action of multiple barrier effects. One example where multiple barrier effects are coupled consists of a single trait that is under divergent natural selection and also mediates assortative mating. Such multiple-effect traits can strongly reduce gene flow. However, there are few cases where patterns of assortative mating have been described quantitatively and their impact on gene flow has been determined. Two ecotypes of the coastal marine snail, Littorina saxatilis, occur in North Atlantic rocky-shore habitats dominated by either crab predation or wave action. There is evidence for divergent natural selection acting on size, and size-assortative mating has previously been documented. Here, we analyze the mating pattern in L. saxatilis with respect to size in intensively sampled transects across boundaries between the habitats. We show that the mating pattern is mostly conserved between ecotypes and that it generates both assortment and directional sexual selection for small male size. Using simulations, we show that the mating pattern can contribute to reproductive isolation between ecotypes but the barrier to gene flow is likely strengthened more by sexual selection than by assortment.
Collapse
Affiliation(s)
- Samuel Perini
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, 45296, Sweden
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, 40530, Sweden
| | | | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, 45296, Sweden
| | - Roger K Butlin
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, 45296, Sweden.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S102TN, United Kingdom
| |
Collapse
|
33
|
Glasheen PM, Burks RL, Campos SR, Hayes KA. First evidence of introgressive hybridization of apple snails ( Pomacea spp.) in their native range. THE JOURNAL OF MOLLUSCAN STUDIES 2020; 86:96-103. [PMID: 32362703 PMCID: PMC7182095 DOI: 10.1093/mollus/eyz035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/13/2019] [Accepted: 11/20/2019] [Indexed: 06/11/2023]
Abstract
Genetic variation facilitates both natural range expansions and anthropogenic invasions. Contrary to expectations, hybridization does not always impact negatively on biodiversity. Increasing evidence indicates advantageous roles for introgressive hybridization in maintaining standing genetic variation. Hypothesizing that hybridization may contribute to the evolutionary and invasive success of a diverse group of freshwater snails (Ampullariidae, commonly known as apple snails), we estimated the frequency of hybridization between two globally invasive species of Pomacea, Pomacea canaliculata (Lamarck, 1822) and P. maculata Perry, 1810, in their native range. While previous work in Asia has uncovered the occurrence of extensive hybridization, we provide the first phylogenetic evidence of a high degree of hybridization (30%) between these species in Uruguay and Brazil. Hybrids carried both heterozygous and homozygous combinations of elongation factor 1-α (EF1α) nuclear alleles in both mating directions, indicating that hybridization has occurred over multiple generations and likely preceded introductions outside the native range. Among the five sites in Brazil previously documented as containing only P. maculata, one far northern population (Careiro Castanho), which is thousands of kilometres from the northern range of P. canaliculata, unexpectedly contained hybrids. This may be the result of human-facilitated introductions. Together with recent work from Asia, our investigations in the native range of apple snails support a reframing of historical perspectives of hybridization as a driver of extinction and diversity loss towards a modern paradigm where hybridization may promote diversification and contribute to the survival of evolutionary lineages such as molluscs.
Collapse
Affiliation(s)
- Paul M Glasheen
- Department of Biology, Southwestern University, 1011 East University Avenue, Georgetown, TX 78626, USA
| | - Romi L Burks
- Department of Biology, Southwestern University, 1011 East University Avenue, Georgetown, TX 78626, USA
| | - Sofia R Campos
- Department of Biology, Southwestern University, 1011 East University Avenue, Georgetown, TX 78626, USA
| | - Kenneth A Hayes
- Bernice Pauahi Bishop Museum, 1525 Bernice St., Honolulu, HI 96817, USA
- National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
34
|
Maltseva AL, Varfolomeeva MA, Lobov AA, Tikanova P, Panova M, Mikhailova NA, Granovitch AI. Proteomic similarity of the Littorinid snails in the evolutionary context. PeerJ 2020; 8:e8546. [PMID: 32095363 PMCID: PMC7024583 DOI: 10.7717/peerj.8546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/10/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The introduction of DNA-based molecular markers made a revolution in biological systematics. However, in cases of very recent divergence events, the neutral divergence may be too slow, and the analysis of adaptive part of the genome is more informative to reconstruct the recent evolutionary history of young species. The advantage of proteomics is its ability to reflect the biochemical machinery of life. It may help both to identify rapidly evolving genes and to interpret their functions. METHODS Here we applied a comparative gel-based proteomic analysis to several species from the gastropod family Littorinidae. Proteomes were clustered to assess differences related to species, geographic location, sex and body part, using data on presence/absence of proteins in samples and data on protein occurrence frequency in samples of different species. Cluster support was assessed using multiscale bootstrap resampling and the stability of clustering-using cluster-wise index of cluster stability. Taxon-specific protein markers were derived using IndVal method. Proteomic trees were compared to consensus phylogenetic tree (based on neutral genetic markers) using estimates of the Robinson-Foulds distance, the Fowlkes-Mallows index and cophenetic correlation. RESULTS Overall, the DNA-based phylogenetic tree and the proteomic similarity tree had consistent topologies. Further, we observed some interesting deviations of the proteomic littorinid tree from the neutral expectations. (1) There were signs of molecular parallelism in two Littoraria species that phylogenetically are quite distant, but live in similar habitats. (2) Proteome divergence was unexpectedly high between very closely related Littorina fabalis and L. obtusata, possibly reflecting their ecology-driven divergence. (3) Conservative house-keeping proteins were usually identified as markers for cryptic species groups ("saxatilis" and "obtusata" groups in the Littorina genus) and for genera (Littoraria and Echinolittorina species pairs), while metabolic enzymes and stress-related proteins (both potentially adaptively important) were often identified as markers supporting species branches. (4) In all five Littorina species British populations were separated from the European mainland populations, possibly reflecting their recent phylogeographic history. Altogether our study shows that proteomic data, when interpreted in the context of DNA-based phylogeny, can bring additional information on the evolutionary history of species.
Collapse
Affiliation(s)
- Arina L. Maltseva
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Marina A. Varfolomeeva
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Arseniy A. Lobov
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Polina Tikanova
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Marina Panova
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Sweden
| | - Natalia A. Mikhailova
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
- Centre of Cell Technologies, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrei I. Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
35
|
Larsson J, Westram AM, Bengmark S, Lundh T, Butlin RK. A developmentally descriptive method for quantifying shape in gastropod shells. J R Soc Interface 2020. [PMCID: PMC7061706 DOI: 10.1098/rsif.2019.0721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The growth of snail shells can be described by simple mathematical rules. Variation in a few parameters can explain much of the diversity of shell shapes seen in nature. However, empirical studies of gastropod shell shape variation typically use geometric morphometric approaches, which do not capture this growth pattern. We have developed a way to infer a set of developmentally descriptive shape parameters based on three-dimensional logarithmic helicospiral growth and using landmarks from two-dimensional shell images as input. We demonstrate the utility of this approach, and compare it to the geometric morphometric approach, using a large set of Littorina saxatilis shells in which locally adapted populations differ in shape. Our method can be modified easily to make it applicable to a wide range of shell forms, which would allow for investigations of the similarities and differences between and within many different species of gastropods.
Collapse
Affiliation(s)
- J. Larsson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | - S. Bengmark
- Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - T. Lundh
- Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - R. K. Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- Department of Marine Sciences, University of Gothenburg, Stömstad, Sweden
| |
Collapse
|
36
|
Jiménez‐Mena B, Le Moan A, Christensen A, van Deurs M, Mosegaard H, Hemmer‐Hansen J, Bekkevold D. Weak genetic structure despite strong genomic signal in lesser sandeel in the North Sea. Evol Appl 2020; 13:376-387. [PMID: 31993083 PMCID: PMC6976957 DOI: 10.1111/eva.12875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Sandeels are an ecologically important group of fishes; they are a key part of the food chain serving as food for marine mammals, seabirds and fish. Sandeels are further targeted by a large industrial fishery, which has led to concern about ecosystem effects. In the North Sea, the lesser sandeel Ammodytes marinus is by far the most prevalent species of sandeel in the fishery. Management of sandeel in the North Sea plus the Kattegat is currently divided into seven geographical areas, based on subtle differences in demography, population dynamics and results from simulations of larval dispersal. However, little is known about the underlying genetic population structure. In this study, we used 2,522 SNPs derived from restriction site-associated DNA sequencing (RADseq) typed in 429 fish representing four main sandeel management areas. Our main results showed (a) a lack of a clear spatially defined genetic structure across the majority of genetic markers and (b) the existence of a group of at least 13 SNPs under strong linkage disequilibrium which together separate North Sea sandeel into three haplotype clusters, suggestive of one or more structural variants in the genome. Analyses of the spatial distribution of these putative structural variants suggest at least partial reproductive isolation of sandeel in the western management area along the Scottish coast, supporting a separate management. Our results highlight the importance of the application of a large number of markers to be able to detect weak patterns of differentiation. This study contributes to increasing the genetic knowledge of this important exploited species, and results can be used to improve our understanding of population dynamics and stock structure.
Collapse
Affiliation(s)
- Belén Jiménez‐Mena
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Alan Le Moan
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Asbjørn Christensen
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Mikael van Deurs
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Henrik Mosegaard
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Jakob Hemmer‐Hansen
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Dorte Bekkevold
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| |
Collapse
|
37
|
Johannesson K, Zagrodzka Z, Faria R, Marie Westram A, Butlin RK. Is embryo abortion a post-zygotic barrier to gene flow between Littorina ecotypes? J Evol Biol 2019; 33:342-351. [PMID: 31724256 PMCID: PMC7079066 DOI: 10.1111/jeb.13570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 11/25/2022]
Abstract
Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis, divergent selection forms strong barriers to gene flow, while the role of post‐zygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Post‐zygotic barriers might include genetic incompatibilities (e.g. Dobzhansky–Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1,011 embryos (mean 130 ± 123), and abortion rates varied between 0% and 100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterized female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index, and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant post‐zygotic barriers contributing to ecotype divergence, and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females.
Collapse
Affiliation(s)
- Kerstin Johannesson
- Department of Marine Sciences at Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Zuzanna Zagrodzka
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Rui Faria
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | | | - Roger K Butlin
- Department of Marine Sciences at Tjärnö, University of Gothenburg, Strömstad, Sweden.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
38
|
Morales HE, Faria R, Johannesson K, Larsson T, Panova M, Westram AM, Butlin RK. Genomic architecture of parallel ecological divergence: Beyond a single environmental contrast. SCIENCE ADVANCES 2019; 5:eaav9963. [PMID: 31840052 PMCID: PMC6892616 DOI: 10.1126/sciadv.aav9963] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
The study of parallel ecological divergence provides important clues to the operation of natural selection. Parallel divergence often occurs in heterogeneous environments with different kinds of environmental gradients in different locations, but the genomic basis underlying this process is unknown. We investigated the genomics of rapid parallel adaptation in the marine snail Littorina saxatilis in response to two independent environmental axes (crab-predation versus wave-action and low-shore versus high-shore). Using pooled whole-genome resequencing, we show that sharing of genomic regions of high differentiation between environments is generally low but increases at smaller spatial scales. We identify different shared genomic regions of divergence for each environmental axis and show that most of these regions overlap with candidate chromosomal inversions. Several inversion regions are divergent and polymorphic across many localities. We argue that chromosomal inversions could store shared variation that fuels rapid parallel adaptation to heterogeneous environments, possibly as balanced polymorphism shared by adaptive gene flow.
Collapse
Affiliation(s)
- Hernán E. Morales
- Centre for Marine Evolutionary Biology, Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | - Rui Faria
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Kerstin Johannesson
- Centre for Marine Evolutionary Biology, Department of Marine Sciences at Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Tomas Larsson
- Centre for Marine Evolutionary Biology, Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Husargatan 3, SE-752 37 Uppsala, Sweden
| | - Marina Panova
- Centre for Marine Evolutionary Biology, Department of Marine Sciences at Tjärnö, University of Gothenburg, Strömstad, Sweden
| | - Anja M. Westram
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Roger K. Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
- Centre for Marine Evolutionary Biology, Department of Marine Sciences at Tjärnö, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
39
|
Ekimova I, Valdés Á, Chichvarkhin A, Antokhina T, Lindsay T, Schepetov D. Diet-driven ecological radiation and allopatric speciation result in high species diversity in a temperate-cold water marine genus Dendronotus (Gastropoda: Nudibranchia). Mol Phylogenet Evol 2019; 141:106609. [PMID: 31494182 DOI: 10.1016/j.ympev.2019.106609] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/11/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
While the majority nudibranch clades are more species rich in the tropics, the genus Dendronotus is mainly represented in Arctic and boreal regions. This distribution pattern remains poorly understood. An integrative approach and novel data provided valuable insights into processes driving Dendronotus radiation and speciation. We propose an evolutionary scenario based on molecular phylogenetics and morphological, ecological, ontogenetic data, combined with data on complex geology and paleoclimatology of this region. Estimated phylogenetic relationships based on four molecular markers (COI, 16S, H3 and 28S) shows strong correlation with radular morphology, diet and biogeographical pattern. Ancestral area reconstruction (AAR) provides evidence for a tropical Pacific origin of the genus. Based on AAR and divergence time estimates we conclude that the evolution of Dendronotus has been shaped by different processes: initial migration out of the tropics, diet-driven adaptive radiation in the North Pacific influenced by Miocene climate change, and subsequent allopatric speciation resulting from successive closings of the Bering strait and cooling of the Arctic Ocean during the Pliocene-Pleistocene. At the same time, contemporary amphiboreal species appear to have dispersed into the Atlantic fairly recently.
Collapse
Affiliation(s)
- Irina Ekimova
- Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; Far Eastern Federal University, Sukhanova str., 8, 690950 Vladivostok, Russia.
| | - Ángel Valdés
- Department of Biological Sciences, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Anton Chichvarkhin
- Far Eastern Federal University, Sukhanova str., 8, 690950 Vladivostok, Russia; A.V. Zhirmunsky Institute of Marine Biology, Russian Academy of Sciences, Palchevskogo 17, 690041 Vladivostok, Russia
| | - Tatiana Antokhina
- A.N. Severstov Institute of Ecology and Evolution, Leninskiy prosp. 33, 119071 Moscow, Russia
| | - Tabitha Lindsay
- Department of Biology, South Seattle Community College, 6000 16th Ave SW, Seattle, WA 98106, USA
| | - Dimitry Schepetov
- Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; N.K. Koltzov Institute of Developmental Biology RAS, Vavilov Str. 26, 119334 Moscow, Russia; National Research University Higher School of Economics, Myasnitskaya Str. 20, 101000 Moscow, Russia
| |
Collapse
|
40
|
Kess T, Boulding EG. Genome-wide association analyses reveal polygenic genomic architecture underlying divergent shell morphology in Spanish Littorina saxatilis ecotypes. Ecol Evol 2019; 9:9427-9441. [PMID: 31534666 PMCID: PMC6745682 DOI: 10.1002/ece3.5378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Gene flow between diverging populations experiencing dissimilar ecological conditions can theoretically constrain adaptive evolution. To minimize the effect of gene flow, alleles underlying traits essential for local adaptation are predicted to be located in linked genome regions with reduced recombination. Local reduction in gene flow caused by selection is expected to produce elevated divergence in these regions. The highly divergent crab-adapted and wave-adapted ecotypes of the marine snail Littorina saxatilis present a model system to test these predictions. We used genome-wide association (GWA) analysis of geometric morphometric shell traits associated with microgeographic divergence between the two L. saxatilis ecotypes within three separate sampling sites. A total of 477 snails that had individual geometric morphometric data and individual genotypes at 4,066 single nucleotide polymorphisms (SNPs) were analyzed using GWA methods that corrected for population structure among the three sites. This approach allowed dissection of the genomic architecture of shell shape divergence between ecotypes across a wide geographic range, spanning two glacial lineages. GWA revealed 216 quantitative trait loci (QTL) with shell size or shape differences between ecotypes, with most loci explaining a small proportion of phenotypic variation. We found that QTL were evenly distributed across 17 linkage groups, and exhibited elevated interchromosomal linkage, suggesting a genome-wide response to divergent selection on shell shape between the two ecotypes. Shell shape trait-associated loci showed partial overlap with previously identified outlier loci under divergent selection between the two ecotypes, supporting the hypothesis of diversifying selection on these genomic regions. These results suggest that divergence in shell shape between the crab-adapted and wave-adapted ecotypes is produced predominantly by a polygenic genomic architecture with positive linkage disequilibrium among loci of small effect.
Collapse
Affiliation(s)
- Tony Kess
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
- Present address:
Fisheries and Oceans CanadaSt. John'sNLCanada
| | | |
Collapse
|
41
|
Riquet F, Liautard-Haag C, Woodall L, Bouza C, Louisy P, Hamer B, Otero-Ferrer F, Aublanc P, Béduneau V, Briard O, El Ayari T, Hochscheid S, Belkhir K, Arnaud-Haond S, Gagnaire PA, Bierne N. Parallel pattern of differentiation at a genomic island shared between clinal and mosaic hybrid zones in a complex of cryptic seahorse lineages. Evolution 2019; 73:817-835. [PMID: 30854632 DOI: 10.1111/evo.13696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/02/2023]
Abstract
Diverging semi-isolated lineages either meet in narrow clinal hybrid zones, or have a mosaic distribution associated with environmental variation. Intrinsic reproductive isolation is often emphasized in the former and local adaptation in the latter, although both reduce gene flow between groups. Rarely are these two patterns of spatial distribution reported in the same study system. Here, we report that the long-snouted seahorse Hippocampus guttulatus is subdivided into discrete panmictic entities by both types of hybrid zones. Along the European Atlantic coasts, a northern and a southern lineage meet in the southwest of France where they coexist in sympatry-i.e., in the same geographical zone-with little hybridization. In the Mediterranean Sea, two lineages have a mosaic distribution, associated with lagoon-like and marine habitats. A fifth lineage was identified in the Black Sea. Genetic homogeneity over large spatial scales contrasts with isolation maintained in sympatry or close parapatry at a fine scale. A high variation in locus-specific introgression rates provides additional evidence that partial reproductive isolation must be maintaining the divergence. We find that fixed differences between lagoon and marine populations in the Mediterranean Sea belong to the most differentiated SNPs between the two Atlantic lineages, against the genome-wide pattern of structure that mostly follow geography. These parallel outlier SNPs cluster on a single chromosome-wide island of differentiation. Since Atlantic lineages do not map to lagoon-sea habitat variation, genetic parallelism at the genomic island suggests a shared genetic barrier contributes to reproductive isolation in contrasting contexts-i.e., spatial versus ecological. We discuss how a genomic hotspot of parallel differentiation could have evolved and become associated both with space and with a patchy environment in a single study system.
Collapse
Affiliation(s)
- Florentine Riquet
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Cathy Liautard-Haag
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Lucy Woodall
- Department of Zoology, University of Oxford, Wytham, OX2 8QJ, United Kingdom.,Natural History Museum, London, SW7 5BD, United Kingdom
| | - Carmen Bouza
- Department of Genetics, Faculty of Veterinary Science, Universidade de Santiago de Compostela, Lugo, Spain
| | - Patrick Louisy
- ECOMERS Laboratory, University of Nice Sophia Antipolis, Faculty of Sciences, Parc Valrose, Nice, France.,Association Peau-Bleue, 46 rue des Escais, Agde, France
| | - Bojan Hamer
- Center for Marine Research, Ruder Boskovic Institute, Giordano Paliaga 5, 52210, Rovinj, Croatia
| | - Francisco Otero-Ferrer
- Grupo en Biodiversidad y Conservación, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214, Telde, Spain
| | - Philippe Aublanc
- Institut océanographique Paul Ricard, Ile des Embiez, Six-Fours-les-Plages, France
| | - Vickie Béduneau
- Océarium du Croisic, Avenue de Saint Goustan, Le Croisic, France
| | - Olivier Briard
- Aquarium de Biarritz, Biarritz Océan, Plateau de l'Atalaye, Biarritz, France
| | - Tahani El Ayari
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Sandra Hochscheid
- Stazione Zoologica Anton Dohrn, Department Research Infrastructures for Marine Biological Resources, Aquarium Unit, Napoli, Italy
| | - Khalid Belkhir
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Sophie Arnaud-Haond
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,Ifremer-MARine Biodiversity, Exploitation and Conservation, UMR 9190 IRD-IFREMER-UM-CNRS, Sète, France
| | - Pierre-Alexandre Gagnaire
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier, Montpellier, France.,CNRS Institut des Sciences de l'Evolution, UMR5554 UM-CNRS-IRD-EPHE, Sète, France
| |
Collapse
|
42
|
Faria R, Chaube P, Morales HE, Larsson T, Lemmon AR, Lemmon EM, Rafajlović M, Panova M, Ravinet M, Johannesson K, Westram AM, Butlin RK. Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Mol Ecol 2019; 28:1375-1393. [PMID: 30537056 PMCID: PMC6518922 DOI: 10.1111/mec.14972] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients.
Collapse
Affiliation(s)
- Rui Faria
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Pragya Chaube
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hernán E Morales
- Department of Marine Sciences, Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Tomas Larsson
- Department of Marine Sciences, Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, Florida
| | - Emily M Lemmon
- Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Marina Rafajlović
- Department of Marine Sciences, Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marina Panova
- Department of Marine Sciences at Tjärnö, Centre for Marine Evolutionary Biology, University of Gothenburg, Strömstad, Sweden
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Kerstin Johannesson
- Department of Marine Sciences at Tjärnö, Centre for Marine Evolutionary Biology, University of Gothenburg, Strömstad, Sweden
| | - Anja M Westram
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,IST Austria, Klosterneuburg, Austria
| | - Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences at Tjärnö, Centre for Marine Evolutionary Biology, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
43
|
Abstract
Empirical data suggest that inversions in many species contain genes important for intraspecific divergence and speciation, yet mechanisms of evolution remain unclear. While genes inside an inversion are tightly linked, inversions are not static but evolve separately from the rest of the genome by new mutations, recombination within arrangements, and gene flux between arrangements. Inversion polymorphisms are maintained by different processes, for example, divergent or balancing selection, or a mix of multiple processes. Moreover, the relative roles of selection, drift, mutation, and recombination will change over the lifetime of an inversion and within its area of distribution. We believe inversions are central to the evolution of many species, but we need many more data and new models to understand the complex mechanisms involved.
Collapse
|
44
|
El Ayari T, Trigui El Menif N, Hamer B, Cahill AE, Bierne N. The hidden side of a major marine biogeographic boundary: a wide mosaic hybrid zone at the Atlantic-Mediterranean divide reveals the complex interaction between natural and genetic barriers in mussels. Heredity (Edinb) 2019; 122:770-784. [PMID: 30675016 DOI: 10.1038/s41437-018-0174-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 01/26/2023] Open
Abstract
The Almeria-Oran Front (AOF) is a recognised hotspot of genetic differentiation in the sea, with genetic discontinuities reported in more than 50 species. The AOF is a barrier to dispersal and an ecological boundary; both can determine the position of these genetic breaks. However, the maintenance of genetic differentiation is likely reinforced by genetic barriers. A general drawback of previous studies is an insufficient density of sampling sites at the transition zone, with a conspicuous lack of samples from the southern coastline. We analysed the fine-scale genetic structure in the mussel Mytilus galloprovincialis using a few ancestry-informative loci previously identified from genome scans. We discovered a 600-km-wide mosaic hybrid zone eastward of the AOF along the Algerian coasts. This mosaic zone provides a new twist to our understanding of the Atlantic-Mediterranean transition because it demonstrates that the two lineages can live in sympatry with ample opportunities to interbreed in a large area, but they hardly do so. This implies that some form of reproductive isolation must exist to maintain the two genetic backgrounds locally cohesive. The mosaic zone ends with an abrupt genetic shift at a barrier to dispersal in the Gulf of Bejaia, Eastern Algeria. Simulations of endogenous or exogenous selection in models that account for the geography and hydrodynamic features of the region support the hypothesis that sister hybrid zones could have been differentially trapped at two alternative barriers to dispersal and/or environmental boundaries, at Almeria in the north and Bejaia in the south. A preponderantly unidirectional north-south gene flow next to the AOF can also maintain a patch of intrinsically maintained genetic background in the south and the mosaic structure, even in the absence of local adaptation. Our results concur with the coupling hypothesis that suggests that natural barriers can explain the position of genetic breaks, while their maintenance depends on genetic barriers.
Collapse
Affiliation(s)
- Tahani El Ayari
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Faculty of Sciences of Bizerta, Laboratory of Environment Bio-monitoring, University of Carthage, 7021, Zarzouna, Bizerta, Tunisia
| | - Najoua Trigui El Menif
- Faculty of Sciences of Bizerta, Laboratory of Environment Bio-monitoring, University of Carthage, 7021, Zarzouna, Bizerta, Tunisia
| | - Bojan Hamer
- Ruđer Bošković Institute, Center for Marine and Environmental Research, Grad Zagreb, Croatia
| | | | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
| |
Collapse
|
45
|
Rivas MJ, Saura M, Pérez-Figueroa A, Panova M, Johansson T, André C, Caballero A, Rolán-Alvarez E, Johannesson K, Quesada H. Population genomics of parallel evolution in gene expression and gene sequence during ecological adaptation. Sci Rep 2018; 8:16147. [PMID: 30385764 PMCID: PMC6212547 DOI: 10.1038/s41598-018-33897-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022] Open
Abstract
Natural selection often produces parallel phenotypic changes in response to a similar adaptive challenge. However, the extent to which parallel gene expression differences and genomic divergence underlie parallel phenotypic traits and whether they are decoupled or not remains largely unexplored. We performed a population genomic study of parallel ecological adaptation among replicate ecotype pairs of the rough periwinkle (Littorina saxatilis) at a regional geographical scale (NW Spain). We show that genomic changes underlying parallel phenotypic divergence followed a complex pattern of both repeatable differences and of differences unique to specific ecotype pairs, in which parallel changes in expression or sequence are restricted to a limited set of genes. Yet, the majority of divergent genes were divergent either for gene expression or coding sequence, but not for both simultaneously. Overall, our findings suggest that divergent selection significantly contributed to the process of parallel molecular differentiation among ecotype pairs, and that changes in expression and gene sequence underlying phenotypic divergence could, at least to a certain extent, be considered decoupled processes.
Collapse
Affiliation(s)
- María José Rivas
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310, Vigo, Spain
| | - María Saura
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310, Vigo, Spain
| | - Andrés Pérez-Figueroa
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310, Vigo, Spain
| | - Marina Panova
- Department of Marine Sciences, Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden
| | - Tomas Johansson
- Department of Biology, University of Lund, SE-223 62, Lund, Sweden
| | - Carl André
- Department of Marine Sciences, Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden
| | - Armando Caballero
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310, Vigo, Spain
| | - Emilio Rolán-Alvarez
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310, Vigo, Spain
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö, University of Gothenburg, SE-452 96, Strömstad, Sweden
| | - Humberto Quesada
- Departamento de Bioquímica, Genética e Inmunología, Universidad de Vigo, 36310, Vigo, Spain.
| |
Collapse
|
46
|
Van Belleghem SM, Vangestel C, De Wolf K, De Corte Z, Möst M, Rastas P, De Meester L, Hendrickx F. Evolution at two time frames: Polymorphisms from an ancient singular divergence event fuel contemporary parallel evolution. PLoS Genet 2018; 14:e1007796. [PMID: 30422983 PMCID: PMC6258555 DOI: 10.1371/journal.pgen.1007796] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/27/2018] [Accepted: 10/30/2018] [Indexed: 01/12/2023] Open
Abstract
When environments change, populations may adapt surprisingly fast, repeatedly and even at microgeographic scales. There is increasing evidence that such cases of rapid parallel evolution are fueled by standing genetic variation, but the source of this genetic variation remains poorly understood. In the saltmarsh beetle Pogonus chalceus, short-winged 'tidal' and long-winged 'seasonal' ecotypes have diverged in response to contrasting hydrological regimes and can be repeatedly found along the Atlantic European coast. By analyzing genomic variation across the beetles' distribution, we reveal that alleles selected in the tidal ecotype are spread across the genome and evolved during a singular and, likely, geographically isolated divergence event, within the last 190 Kya. Due to subsequent admixture, the ancient and differentially selected alleles are currently polymorphic in most populations across its range, which could potentially allow for the fast evolution of one ecotype from a small number of random individuals, as low as 5 to 15, from a population of the other ecotype. Our results suggest that cases of fast parallel ecological divergence can be the result of evolution at two different time frames: divergence in the past, followed by repeated selection on the same divergently evolved alleles after admixture. These findings highlight the importance of an ancient and, likely, allopatric divergence event for driving the rate and direction of contemporary fast evolution under gene flow. This mechanism is potentially driven by periods of geographic isolation imposed by large-scale environmental changes such as glacial cycles.
Collapse
Affiliation(s)
- Steven M. Van Belleghem
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
- Department of Biology, University of Puerto Rico, Rio Piedras, Puerto Rico
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Carl Vangestel
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Katrien De Wolf
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | - Zoë De Corte
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Markus Möst
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Pasi Rastas
- Ecological Genetics Research Unit, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium
| | - Frederik Hendrickx
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
- Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| |
Collapse
|
47
|
Ecomorphology of a generalist freshwater gastropod: complex relations of shell morphology, habitat, and fecundity. ORG DIVERS EVOL 2018. [DOI: 10.1007/s13127-018-0377-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Westram AM, Rafajlović M, Chaube P, Faria R, Larsson T, Panova M, Ravinet M, Blomberg A, Mehlig B, Johannesson K, Butlin R. Clines on the seashore: The genomic architecture underlying rapid divergence in the face of gene flow. Evol Lett 2018; 2:297-309. [PMID: 30283683 PMCID: PMC6121805 DOI: 10.1002/evl3.74] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 06/14/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Adaptive divergence and speciation may happen despite opposition by gene flow. Identifying the genomic basis underlying divergence with gene flow is a major task in evolutionary genomics. Most approaches (e.g., outlier scans) focus on genomic regions of high differentiation. However, not all genomic architectures potentially underlying divergence are expected to show extreme differentiation. Here, we develop an approach that combines hybrid zone analysis (i.e., focuses on spatial patterns of allele frequency change) with system-specific simulations to identify loci inconsistent with neutral evolution. We apply this to a genome-wide SNP set from an ideally suited study organism, the intertidal snail Littorina saxatilis, which shows primary divergence between ecotypes associated with different shore habitats. We detect many SNPs with clinal patterns, most of which are consistent with neutrality. Among non-neutral SNPs, most are located within three large putative inversions differentiating ecotypes. Many non-neutral SNPs show relatively low levels of differentiation. We discuss potential reasons for this pattern, including loose linkage to selected variants, polygenic adaptation and a component of balancing selection within populations (which may be expected for inversions). Our work is in line with theory predicting a role for inversions in divergence, and emphasizes that genomic regions contributing to divergence may not always be accessible with methods purely based on allele frequency differences. These conclusions call for approaches that take spatial patterns of allele frequency change into account in other systems.
Collapse
Affiliation(s)
- Anja M. Westram
- Department of Animal and Plant SciencesUniversity of SheffieldUK
- Current address: IST AustriaAm Campus 13400KlosterneuburgAustria
| | - Marina Rafajlović
- Department of Marine SciencesUniversity of Gothenburg40530GothenburgSweden
- Department of PhysicsUniversity of Gothenburg41296GothenburgSweden
| | - Pragya Chaube
- Department of Animal and Plant SciencesUniversity of SheffieldUK
| | - Rui Faria
- Department of Animal and Plant SciencesUniversity of SheffieldUK
| | - Tomas Larsson
- Department of Marine SciencesUniversity of Gothenburg40530GothenburgSweden
| | - Marina Panova
- Department of Marine Sciences ‐ TjärnöUniversity of Gothenburg45296StrömstadSweden
| | - Mark Ravinet
- CEES (Centre for Ecological and Evolutionary Synthesis)University of OsloOslo0316Norway
| | - Anders Blomberg
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg40530GothenburgSweden
| | - Bernhard Mehlig
- Department of PhysicsUniversity of Gothenburg41296GothenburgSweden
| | - Kerstin Johannesson
- Department of Marine Sciences ‐ TjärnöUniversity of Gothenburg45296StrömstadSweden
| | - Roger Butlin
- Department of Animal and Plant SciencesUniversity of SheffieldUK
- Department of Marine Sciences ‐ TjärnöUniversity of Gothenburg45296StrömstadSweden
| |
Collapse
|
49
|
Kess T, Galindo J, Boulding EG. Genomic divergence between Spanish Littorina saxatilis ecotypes unravels limited admixture and extensive parallelism associated with population history. Ecol Evol 2018; 8:8311-8327. [PMID: 30250705 PMCID: PMC6145028 DOI: 10.1002/ece3.4304] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/14/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022] Open
Abstract
The rough periwinkle, Littorina saxatilis, is a model system for studying parallel ecological speciation in microparapatry. Phenotypically parallel wave-adapted and crab-adapted ecotypes that hybridize within the middle shore are replicated along the northwestern coast of Spain and have likely arisen from two separate glacial refugia. We tested whether greater geographic separation corresponding to reduced opportunity for contemporary or historical gene flow between parallel ecotypes resulted in less parallel genomic divergence. We sequenced double-digested restriction-associated DNA (ddRAD) libraries from individual snails from upper, mid, and low intertidal levels of three separate sites colonized from two separate refugia. Outlier analysis of 4256 SNP markers identified 34.4% sharing of divergent loci between two geographically close sites; however, these sites each shared only 9.9%-15.1% of their divergent loci with a third more-distant site. STRUCTURE analysis revealed that genotypes from only three of 166 phenotypically intermediate mid-shore individuals appeared to result from recent hybridization, suggesting that hybrids cannot be reliably identified using shell traits. Hierarchical AMOVA indicated that the primary source of genomic differentiation was geographic separation, but also revealed greater similarity of the same ecotype across the two geographically close sites than previously estimated with dominant markers. These results from a model system for ecological speciation suggest that genomic parallelism is affected by the opportunity for historical or contemporary gene flow between populations.
Collapse
Affiliation(s)
- Tony Kess
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Juan Galindo
- Departamento de BioquímicaGenética e InmunologíaFacultad de BiologíaUniversidade de VigoVigoSpain
- Centro de Investigación Mariña da Universidade de Vigo (CIM‐UVIGO)VigoSpain
| | | |
Collapse
|
50
|
Ravinet M. Notes from a snail island: Littorinid evolution and adaptation. Mol Ecol 2018; 27:2781-2789. [PMID: 29802775 DOI: 10.1111/mec.14730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/01/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
Abstract
The most successful study systems are built on a foundation of decades of research on the basic biology, ecology and life history of the organisms in question. Combined with new technologies, this can provide a formidable means to address important issues in evolutionary biology and molecular ecology. Littorinid marine snails are a good example of this, with a rich literature on their taxonomy, speciation, thermal tolerance and behavioural adaptations. In August 2017, an international meeting on Littorinid evolution was held at the Tjärnö Marine Research Laboratory in Western Sweden. In this meeting review, I provide a summary of some of the exciting work on parallel evolution, sexual selection and adaptation to environmental stress presented there. I argue that newly available genomic resources present an opportunity for integrating the traditionally divergent fields of speciation and environmental adaptation in Littorinid research.
Collapse
Affiliation(s)
- Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|