1
|
Cloutier A, Chan DTC, Poon ESK, Sin SYW. The genetic consequences of historic climate change on the contemporary population structure of a widespread temperate North American songbird. Mol Phylogenet Evol 2024; 201:108216. [PMID: 39384123 DOI: 10.1016/j.ympev.2024.108216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/29/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Studies of widely distributed species can inform our understanding of how past demographic events tied to historic glaciation and ongoing population genetic processes interact to shape contemporaneous patterns of biodiversity at a continental scale. In this study, we used whole-genome resequencing to investigate the current population structure and genetic signatures of past demographic events in the widespread migratory American goldfinch (Spinus tristis). Phylogenetic relationships inferred from whole mitochondrial genomes were poorly resolved. In contrast, a genome-wide panel of > 4.5 million single nucleotide polymorphisms (SNPs) strongly supported the existence of eastern and western populations separated by western mountain ranges and additional population structuring within the western clade. Demographic modeling estimated that the eastern and western populations diverged approximately one million years ago, and both populations experienced subsequent population bottlenecks during the last glacial period. Species distribution models showed a severe contraction of suitable habitat for the American goldfinch during this period, with predicted discontinuities that are consistent with multiple, isolated glacial refugia that coincide with present-day population structure. Low overall genetic differentiation between the eastern and western populations (FST ∼ 0.01) suggests ongoing gene flow accompanied divergence, and individuals with admixed genomic signatures were sampled along a potential contact zone. Nevertheless, outlier SNPs were identified near genes associated with feather color, song, and migratory behavior and provide strong candidates for further study of the mechanisms underlying reproductive isolation and speciation in birds.
Collapse
Affiliation(s)
- Alison Cloutier
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | | | - Emily Shui Kei Poon
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Simon Yung Wa Sin
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Dopman EB, Shaw KL, Servedio MR, Butlin RK, Smadja CM. Coupling of Barriers to Gene Exchange: Causes and Consequences. Cold Spring Harb Perspect Biol 2024; 16:a041432. [PMID: 38191516 PMCID: PMC11293547 DOI: 10.1101/cshperspect.a041432] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Coupling has emerged as a concept to describe the transition from differentiated populations to newly evolved species through the strengthening of reproductive isolation. However, the term has been used in multiple ways, and relevant processes have sometimes not been clearly distinguished. Here, we synthesize existing uses of the concept of coupling and find three main perspectives: (1) coupling as the build-up of linkage disequilibrium among loci underlying barriers to gene exchange, (2) coupling as the build-up of genome-wide linkage disequilibrium, and (3) coupling as the process generating a coincidence of distinct barrier effects. We compare and contrast these views, show the diverse processes involved and the complexity of the relationships among recombination, linkage disequilibrium, and reproductive isolation, and, finally, we emphasize how each perspective can guide new directions in speciation research. Although the importance of coupling for evolutionary divergence and speciation is well established, many theoretical and empirical questions remain unanswered.
Collapse
Affiliation(s)
- Erik B Dopman
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA
| | - Maria R Servedio
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Roger K Butlin
- Ecology and Evolutionary Biology, School of Biosciences, The University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
- Department of Marine Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Carole M Smadja
- Institut des Sciences de l'Evolution de Montpellier ISEM, Universite de Montpellier, CNRS, IRD, Montpellier 34095, France
| |
Collapse
|
3
|
Keggin T, Waldock C, Skeels A, Hagen O, Albouy C, Manel S, Pellissier L. Diversity across organisational scale emerges through dispersal ability and speciation dynamics in tropical fish. BMC Biol 2023; 21:282. [PMID: 38053182 PMCID: PMC10696697 DOI: 10.1186/s12915-023-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Biodiversity exists at different levels of organisation: e.g. genetic, individual, population, species, and community. These levels of organisation all exist within the same system, with diversity patterns emerging across organisational scales through several key processes. Despite this inherent interconnectivity, observational studies reveal that diversity patterns across levels are not consistent and the underlying mechanisms for variable continuity in diversity across levels remain elusive. To investigate these mechanisms, we apply a spatially explicit simulation model to simulate the global diversification of tropical reef fishes at both the population and species levels through emergent population-level processes. RESULTS We find significant relationships between the population and species levels of diversity which vary depending on both the measure of diversity and the spatial partitioning considered. In turn, these population-species relationships are driven by modelled biological trait parameters, especially the divergence threshold at which populations speciate. CONCLUSIONS To explain variation in multi-level diversity patterns, we propose a simple, yet novel, population-to-species diversity partitioning mechanism through speciation which disrupts continuous diversity patterns across organisational levels. We expect that in real-world systems this mechanism is driven by the molecular dynamics that determine genetic incompatibility, and therefore reproductive isolation between individuals. We put forward a framework in which the mechanisms underlying patterns of diversity across organisational levels are universal, and through this show how variable patterns of diversity can emerge through organisational scale.
Collapse
Affiliation(s)
- Thomas Keggin
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland.
- Unit of Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
| | - Conor Waldock
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Alexander Skeels
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
- Unit of Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
- Division of Ecology & Evolution, Research School of Biology, Australian National University Canberra, Canberra, Australia
| | - Oskar Hagen
- Evolution and Adaptation, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Ecological Modelling, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Camille Albouy
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
- Unit of Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Stéphanie Manel
- CEFE, Univ. Montpellier, CNRS, EPHE- PSL University, Montpellier, France
- Institut Universitaire de France, Paris, France
| | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zurich, Switzerland
- Unit of Land Change Science, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
4
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Wong ELY, Nevado B, Hiscock SJ, Filatov DA. Rapid evolution of hybrid breakdown following recent divergence with gene flow in Senecio species on Mount Etna, Sicily. Heredity (Edinb) 2023; 130:40-52. [PMID: 36494489 PMCID: PMC9814926 DOI: 10.1038/s41437-022-00576-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
How do nascent species evolve reproductive isolation during speciation with on-going gene flow? How do hybrid lineages become stabilised hybrid species? While commonly used genomic approaches provide an indirect way to identify species incompatibility factors, synthetic hybrids generated from interspecific crosses allow direct pinpointing of phenotypic traits involved in incompatibilities and the traits that are potentially adaptive in hybrid species. Here we report the analysis of phenotypic variation and hybrid breakdown in crosses between closely-related Senecio aethnensis and S. chrysanthemifolius, and their homoploid hybrid species, S. squalidus. The two former species represent a likely case of recent (<200 ky) speciation with gene flow driven by adaptation to contrasting conditions of high- and low-elevations on Mount Etna, Sicily. As these species form viable and fertile hybrids, it remains unclear whether they have started to evolve reproductive incompatibility. Our analysis represents the first study of phenotypic variation and hybrid breakdown involving multiple Senecio hybrid families. It revealed wide range of variation in multiple traits, including the traits previously unrecorded in synthetic hybrids. Leaf shape, highly distinct between S. aethnensis and S. chrysanthemifolius, was extremely variable in F2 hybrids, but more consistent in S. squalidus. Our study demonstrates that interspecific incompatibilities can evolve rapidly despite on-going gene flow between the species. Further work is necessary to understand the genetic bases of these incompatibilities and their role in speciation with gene flow.
Collapse
Affiliation(s)
- Edgar L. Y. Wong
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,grid.507705.0Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
| | - Bruno Nevado
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,grid.9983.b0000 0001 2181 4263Centre for Ecology, Evolution and Environmental Changes, University of Lisbon, Lisbon, Portugal
| | - Simon J. Hiscock
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK ,Oxford Botanic Garden and Arboretum, Oxford, UK
| | - Dmitry A. Filatov
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Gaertner K, Michell C, Tapanainen R, Goffart S, Saari S, Soininmäki M, Dufour E, Pohjoismäki JLO. Molecular phenotyping uncovers differences in basic housekeeping functions among closely related species of hares (
Lepus
spp., Lagomorpha: Leporidae). Mol Ecol 2022. [PMID: 36320183 DOI: 10.1111/mec.16755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Speciation is a fundamental evolutionary process, which results in genetic differentiation of populations and manifests as discrete morphological, physiological and behavioural differences. Each species has travelled its own evolutionary trajectory, influenced by random drift and driven by various types of natural selection, making the association of genetic differences between the species with the phenotypic differences extremely complex to dissect. In the present study, we have used an in vitro model to analyse in depth the genetic and gene regulation differences between fibroblasts of two closely related mammals, the arctic/subarctic mountain hare (Lepus timidus Linnaeus) and the temperate steppe-climate adapted brown hare (Lepus europaeus Pallas). We discovered the existence of a species-specific expression pattern of 1623 genes, manifesting in differences in cell growth, cell cycle control, respiration, and metabolism. Interspecific differences in the housekeeping functions of fibroblast cells suggest that speciation acts on fundamental cellular processes, even in these two interfertile species. Our results help to understand the molecular constituents of a species difference on a cellular level, which could contribute to the maintenance of the species boundary.
Collapse
Affiliation(s)
- Kateryna Gaertner
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Craig Michell
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
| | - Riikka Tapanainen
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Sina Saari
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Manu Soininmäki
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| | - Eric Dufour
- Mitochondrial Bioenergetics and Metabolism, Faculty of Medicine and Health Technology FI‐33014 Tampere University Tampere Finland
| | - Jaakko L. O. Pohjoismäki
- Department of Environmental and Biological Sciences FI‐80101 University of Eastern Finland Kuopio Finland
| |
Collapse
|
7
|
Arnqvist G, Sayadi A. A possible genomic footprint of polygenic adaptation on population divergence in seed beetles? Ecol Evol 2022; 12:e9440. [PMID: 36311399 PMCID: PMC9608792 DOI: 10.1002/ece3.9440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/14/2022] [Accepted: 09/29/2022] [Indexed: 11/25/2022] Open
Abstract
Efforts to unravel the genomic basis of incipient speciation are hampered by a mismatch between our toolkit and our understanding of the ecology and genetics of adaptation. While the former is focused on detecting selective sweeps involving few independently acting or linked speciation genes, the latter states that divergence typically occurs in polygenic traits under stabilizing selection. Here, we ask whether a role of stabilizing selection on polygenic traits in population divergence may be unveiled by using a phenotypically informed integrative approach, based on genome‐wide variation segregating in divergent populations. We compare three divergent populations of seed beetles (Callosobruchus maculatus) where previous work has demonstrated a prominent role for stabilizing selection on, and population divergence in, key life history traits that reflect rate‐dependent metabolic processes. We derive and assess predictions regarding the expected pattern of covariation between genetic variation segregating within populations and genetic differentiation between populations. Population differentiation was considerable (mean FST = 0.23–0.26) and was primarily built by genes showing high selective constraints and an imbalance in inferred selection in different populations (positive Tajima's DNS in one and negative in one), and this set of genes was enriched with genes with a metabolic function. Repeatability of relative population differentiation was low at the level of individual genes but higher at the level of broad functional classes, again spotlighting metabolic genes. Absolute differentiation (dXY) showed a very different general pattern at this scale of divergence, more consistent with an important role for genetic drift. Although our exploration is consistent with stabilizing selection on polygenic metabolic phenotypes as an important engine of genome‐wide relative population divergence and incipient speciation in our study system, we note that it is exceedingly difficult to firmly exclude other scenarios.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, EBCUppsala UniversityUppsalaSweden,Rheumatology, Department of Medical SciencesUppsala UniversityUppsalaSweden
| |
Collapse
|
8
|
Kvistad L, Falk S, Austin L. Widespread genomic signatures of reproductive isolation and sex-specific selection in the Eastern Yellow Robin, Eopsaltria australis. G3 GENES|GENOMES|GENETICS 2022; 12:6605223. [PMID: 35686912 PMCID: PMC9438485 DOI: 10.1093/g3journal/jkac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/31/2022] [Indexed: 11/16/2022]
Abstract
How new species evolve is one of the most fundamental questions in biology. Population divergence, which may lead to speciation, may be occurring in the Eastern Yellow Robin, a common passerine that lives along the eastern coast of Australia. This species is composed of 2 parapatric lineages that have highly divergent mitochondrial DNA; however, similar levels of divergence have not been observed in the nuclear genome. Here we re-examine the nuclear genomes of these mitolineages to test potential mechanisms underlying the discordance between nuclear and mitochondrial divergence. We find that nuclear admixture occurs in a narrow hybrid zone, although the majority of markers across the genome show evidence of reproductive isolation between populations of opposing mitolineages. There is an 8 MB section of a previously identified putative neo-sex chromosome that is highly diverged between allopatric but not parapatric populations, which may be the result of a chromosomal inversion. The neo-sex chromosomal nature of this region, as well as the geographic patterns in which it exhibits divergence, suggest it is unlikely to be contributing to reproductive isolation through mitonuclear incompatibilities as reported in earlier studies. In addition, there are sex differences in the number of markers that are differentiated between populations of opposite mitolineages, with greater differentiation occurring in females, which are heterozygous, than males. These results suggest that, despite the absence of previously observed assortative mating, mitolineages of Eastern Yellow Robin experience at least some postzygotic isolation from each other, in a pattern consistent with Haldane’s Rule.
Collapse
Affiliation(s)
- Lynna Kvistad
- Biological Sciences, Monash University , Clayton, VIC 3800, Australia
| | - Stephanie Falk
- Biological Sciences, Monash University , Clayton, VIC 3800, Australia
- Deep Sequencing Facility, Max Planck Institute of Immunobiology and Epigenetics , Freiburg D-79108, Germany
| | - Lana Austin
- Biological Sciences, Monash University , Clayton, VIC 3800, Australia
| |
Collapse
|
9
|
Comparative Genome Analyses of Plant Rust Pathogen Genomes Reveal a Confluence of Pathogenicity Factors to Quell Host Plant Defense Responses. PLANTS 2022; 11:plants11151962. [PMID: 35956440 PMCID: PMC9370660 DOI: 10.3390/plants11151962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022]
Abstract
Switchgrass rust caused by Puccinia novopanici (P. novopanici) has the ability to significantly affect the biomass yield of switchgrass, an important biofuel crop in the United States. A comparative genome analysis of P. novopanici with rust pathogen genomes infecting monocot cereal crops wheat, barley, oats, maize and sorghum revealed the presence of larger structural variations contributing to their genome sizes. A comparative alignment of the rust pathogen genomes resulted in the identification of collinear and syntenic relationships between P. novopanici and P. sorghi; P. graminis tritici 21–0 (Pgt 21) and P. graminis tritici Ug99 (Pgt Ug99) and between Pgt 21 and P. triticina (Pt). Repeat element analysis indicated a strong presence of retro elements among different Puccinia genomes, contributing to the genome size variation between ~1 and 3%. A comparative look at the enriched protein families of Puccinia spp. revealed a predominant role of restriction of telomere capping proteins (RTC), disulfide isomerases, polysaccharide deacetylases, glycoside hydrolases, superoxide dismutases and multi-copper oxidases (MCOs). All the proteomes of Puccinia spp. share in common a repertoire of 75 secretory and 24 effector proteins, including glycoside hydrolases cellobiohydrolases, peptidyl-propyl isomerases, polysaccharide deacetylases and protein disulfide-isomerases, that remain central to their pathogenicity. Comparison of the predicted effector proteins from Puccinia spp. genomes to the validated proteins from the Pathogen–Host Interactions database (PHI-base) resulted in the identification of validated effector proteins PgtSR1 (PGTG_09586) from P. graminis and Mlp124478 from Melampsora laricis across all the rust pathogen genomes.
Collapse
|
10
|
Huang J, Luo R, Zheng C, Cao X, Zhu Y, He T, Liu M, Yang Z, Wu X, Li X. Integrative Analyses Identify Potential Key Genes and Calcium-Signaling Pathway in Familial Atrioventricular Nodal Reentrant Tachycardia Using Whole-Exome Sequencing. Front Cardiovasc Med 2022; 9:910826. [PMID: 35924220 PMCID: PMC9339905 DOI: 10.3389/fcvm.2022.910826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 12/20/2022] Open
Abstract
Background Atrioventricular nodal reentrant tachycardia (AVNRT) is a common arrhythmia. Growing evidence suggests that family aggregation and genetic factors are involved in AVNRT. However, in families with a history of AVNRT, disease-causing genes have not been reported. Objective To investigate the genetic contribution of familial AVNRT using a whole-exome sequencing (WES) approach. Methods Blood samples were collected from 20 patients from nine families with a history of AVNRT and 100 control participants, and we systematically analyzed mutation profiles using WES. Gene-based burden analysis, integration of previous sporadic AVNRT data, pedigree-based co-segregation, protein-protein interaction network analysis, single-cell RNA sequencing, and confirmation of animal phenotype were performed. Results Among 95 related reference genes, seven candidate pathogenic genes have been identified both in sporadic and familial AVNRT, including CASQ2, AGXT, ANK2, SYNE2, ZFHX3, GJD3, and SCN4A. Among the 37 reference genes from sporadic AVNRT, five candidate pathogenic genes were identified in patients with both familial and sporadic AVNRT: LAMC1, ryanodine receptor 2 (RYR2), COL4A3, NOS1, and ATP2C2. To identify the common pathogenic mechanisms in all AVNRT cases, five pathogenic genes were identified in patients with both familial and sporadic AVNRT: LAMC1, RYR2, COL4A3, NOS1, and ATP2C2. Considering the unique internal candidate pathogenic gene within pedigrees, three genes, TRDN, CASQ2, and WNK1, were likely to be the pathogenic genes in familial AVNRT. Notably, the core calcium-signaling pathway may be closely associated with the occurrence of AVNRT, including CASQ2, RYR2, TRDN, NOS1, ANK2, and ATP2C2. Conclusion Our pedigree-based studies demonstrate that RYR2 and related calcium signaling pathway play a critical role in the pathogenesis of familial AVNRT using the WES approach.
Collapse
Affiliation(s)
- Jichang Huang
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, China
| | - Rong Luo
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, China
| | - Chenqing Zheng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Cao
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuncai Zhu
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao He
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjiang Liu
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory of Human Disease Study, Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiushan Wu
- The Center for Heart Development, Hunan Normal University, Changsha, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, China
| | - Xiaoping Li
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Xiaoping Li,
| |
Collapse
|
11
|
Roberts EK, Tardif S, Wright EA, Platt RN, Bradley RD, Hardy DM. Rapid divergence of a gamete recognition gene promoted macroevolution of Eutheria. Genome Biol 2022; 23:155. [PMID: 35821049 PMCID: PMC9275260 DOI: 10.1186/s13059-022-02721-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Speciation genes contribute disproportionately to species divergence, but few examples exist, especially in vertebrates. Here we test whether Zan, which encodes the sperm acrosomal protein zonadhesin that mediates species-specific adhesion to the egg's zona pellucida, is a speciation gene in placental mammals. RESULTS Genomic ontogeny reveals that Zan arose by repurposing of a stem vertebrate gene that was lost in multiple lineages but retained in Eutheria on acquiring a function in egg recognition. A 112-species Zan sequence phylogeny, representing 17 of 19 placental Orders, resolves all species into monophyletic groups corresponding to recognized Orders and Suborders, with <5% unsupported nodes. Three other rapidly evolving germ cell genes (Adam2, Zp2, and Prm1), a paralogous somatic cell gene (TectA), and a mitochondrial gene commonly used for phylogenetic analyses (Cytb) all yield trees with poorer resolution than the Zan tree and inferior topologies relative to a widely accepted mammalian supertree. Zan divergence by intense positive selection produces dramatic species differences in the protein's properties, with ordinal divergence rates generally reflecting species richness of placental Orders consistent with expectations for a speciation gene that acts across a wide range of taxa. Furthermore, Zan's combined phylogenetic utility and divergence exceeds those of all other genes known to have evolved in Eutheria by positive selection, including the only other mammalian speciation gene, Prdm9. CONCLUSIONS Species-specific egg recognition conferred by Zan's functional divergence served as a mode of prezygotic reproductive isolation that promoted the extraordinary adaptive radiation and success of Eutheria.
Collapse
Affiliation(s)
- Emma K. Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| | - Steve Tardif
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
- Reproductive Biology Division, JangoBio, Fitchburg, WI USA
| | - Emily A. Wright
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
| | - Roy N. Platt
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Robert D. Bradley
- Department of Biological Sciences, Texas Tech University, Lubbock, TX USA
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX USA
| | - Daniel M. Hardy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX USA
| |
Collapse
|
12
|
Pauers MJ, Grudnowski JA. Female preferences for conspecific males indicate reproductive isolation between sympatric
Labeotropheus
Ahl from Lake Malaŵi. Ethology 2022. [DOI: 10.1111/eth.13282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael J. Pauers
- Section of Vertebrate Zoology Milwaukee Public Museum Milwaukee Wisconsin USA
- Department of Mathematics and Natural Science University of Wisconsin‐Milwaukee at Waukesha Waukesha Wisconsin USA
- School of Freshwater Science University of Wisconsin‐Milwaukee Waukesha Wisconsin USA
| | - Jacob A. Grudnowski
- Department of Mathematics and Natural Science University of Wisconsin‐Milwaukee at Waukesha Waukesha Wisconsin USA
| |
Collapse
|
13
|
Triant DA, Nowick K, Shelest E. Editorial: Gene Regulation as a Driver of Adaptation and Speciation. Front Genet 2021; 12:793933. [PMID: 34868278 PMCID: PMC8633301 DOI: 10.3389/fgene.2021.793933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Deborah A Triant
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Katja Nowick
- Institute for Biology, Freie Universität Berlin, Berlin, Germany
| | - Ekaterina Shelest
- Centre for Enzyme Innovation, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
14
|
Metzler D, Knief U, Peñalba JV, Wolf JBW. Assortative mating and epistatic mating-trait architecture induce complex movement of the crow hybrid zone. Evolution 2021; 75:3154-3174. [PMID: 34694633 DOI: 10.1111/evo.14386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Abstract
Hybrid zones provide a window into the evolutionary processes governing species divergence. Yet, the contribution of mate choice to the temporal and spatial stability of hybrid zones remains poorly explored. Here, we investigate the effects of assortative mating on hybrid-zone dynamics by means of a mathematical model parameterized with phenotype and genotype data from the hybrid zone between all-black carrion and gray-coated hooded crows. In the best-fit model, narrow clines of the two mating-trait loci were maintained by a moderate degree of assortative mating inducing pre- and postzygotic isolation via positive frequency-dependent selection. Epistasis between the two loci induced hybrid-zone movement in favor of alleles conveying dark plumage followed by a shift in the opposite direction favoring gray-coated phenotypes ∼ 1 200 generations after secondary contact. Unlinked neutral loci diffused near-unimpeded across the zone. These results were generally robust to the choice of matching rule (self-referencing or parental imprinting) and effects of genetic drift. Overall, this study illustrates under which conditions assortative mating can maintain steep clines in mating-trait loci without generalizing to genome-wide reproductive isolation. It further emphasizes the importance of the genetic mating-trait architecture for spatio-temporal hybrid-zone dynamics.
Collapse
Affiliation(s)
- Dirk Metzler
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, Munich, 80539, Germany
| | - Ulrich Knief
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, Munich, 80539, Germany
| | - Joshua V Peñalba
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, Munich, 80539, Germany
| | - Jochen B W Wolf
- Faculty of Biology, Division of Evolutionary Biology, LMU Munich, Munich, 80539, Germany
| |
Collapse
|
15
|
Mass of genes rather than master genes underlie the genomic architecture of amphibian speciation. Proc Natl Acad Sci U S A 2021; 118:2103963118. [PMID: 34465621 DOI: 10.1073/pnas.2103963118] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genetic architecture of speciation, i.e., how intrinsic genomic incompatibilities promote reproductive isolation (RI) between diverging lineages, is one of the best-kept secrets of evolution. To directly assess whether incompatibilities arise in a limited set of large-effect speciation genes, or in a multitude of loci, we examined the geographic and genomic landscapes of introgression across the hybrid zones of 41 pairs of frog and toad lineages in the Western Palearctic region. As the divergence between lineages increases, phylogeographic transitions progressively become narrower, and larger parts of the genome resist introgression. This suggests that anuran speciation proceeds through a gradual accumulation of multiple barrier loci scattered across the genome, which ultimately deplete hybrid fitness by intrinsic postzygotic isolation, with behavioral isolation being achieved only at later stages. Moreover, these loci were disproportionately sex linked in one group (Hyla) but not in others (Rana and Bufotes), implying that large X-effects are not necessarily a rule of speciation with undifferentiated sex chromosomes. The highly polygenic nature of RI and the lack of hemizygous X/Z chromosomes could explain why the speciation clock ticks slower in amphibians compared to other vertebrates. The clock-like dynamics of speciation combined with the analytical focus on hybrid zones offer perspectives for more standardized practices of species delimitation.
Collapse
|
16
|
Swamy KBS, Schuyler SC, Leu JY. Protein Complexes Form a Basis for Complex Hybrid Incompatibility. Front Genet 2021; 12:609766. [PMID: 33633780 PMCID: PMC7900514 DOI: 10.3389/fgene.2021.609766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Proteins are the workhorses of the cell and execute many of their functions by interacting with other proteins forming protein complexes. Multi-protein complexes are an admixture of subunits, change their interaction partners, and modulate their functions and cellular physiology in response to environmental changes. When two species mate, the hybrid offspring are usually inviable or sterile because of large-scale differences in the genetic makeup between the two parents causing incompatible genetic interactions. Such reciprocal-sign epistasis between inter-specific alleles is not limited to incompatible interactions between just one gene pair; and, usually involves multiple genes. Many of these multi-locus incompatibilities show visible defects, only in the presence of all the interactions, making it hard to characterize. Understanding the dynamics of protein-protein interactions (PPIs) leading to multi-protein complexes is better suited to characterize multi-locus incompatibilities, compared to studying them with traditional approaches of genetics and molecular biology. The advances in omics technologies, which includes genomics, transcriptomics, and proteomics can help achieve this end. This is especially relevant when studying non-model organisms. Here, we discuss the recent progress in the understanding of hybrid genetic incompatibility; omics technologies, and how together they have helped in characterizing protein complexes and in turn multi-locus incompatibilities. We also review advances in bioinformatic techniques suitable for this purpose and propose directions for leveraging the knowledge gained from model-organisms to identify genetic incompatibilities in non-model organisms.
Collapse
Affiliation(s)
- Krishna B. S. Swamy
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Scott C. Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Head and Neck Surgery, Department of Otolaryngology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
17
|
Casas L, Saenz-Agudelo P, Villegas-Ríos D, Irigoien X, Saborido-Rey F. Genomic landscape of geographically structured colour polymorphism in a temperate marine fish. Mol Ecol 2021; 30:1281-1296. [PMID: 33455028 PMCID: PMC7986630 DOI: 10.1111/mec.15805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
The study of phenotypic variation patterns among populations is fundamental to elucidate the drivers of evolutionary processes. Empirical evidence that supports ongoing genetic divergence associated with phenotypic variation remains very limited for marine species where larval dispersal is a common homogenizing force. We present a genome‐wide analysis of a marine fish, Labrus bergylta, comprising 144 samples distributed from Norway to Spain, a large geographical area that harbours a gradient of phenotypic differentiation. We analysed 39,602 biallelic single nucleotide polymorphisms and found a clear latitudinal gradient of genomic differentiation strongly correlated with the variation in phenotypic morph frequencies observed across the North Atlantic. We also detected a strong association between the latitude and the number of loci that appear to be under divergent selection, which increased with differences in coloration but not with overall genetic differentiation. Our results demonstrate that strong reproductive isolation is occurring between sympatric colour morphs of L. bergylta found at the southern areas and provide important new insights into the genomic changes shaping early stages of differentiation that might precede speciation with gene flow.
Collapse
Affiliation(s)
- Laura Casas
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Pablo Saenz-Agudelo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - David Villegas-Ríos
- Institute of Marine Research (IIM-CSIC), Vigo, Spain.,Instituto Mediterráneo de Estudios Avanzados (IMEDEA-CSIC-UiB), Esporles, Mallorca, Spain
| | - Xabier Irigoien
- AZTI - Marine Research, Herrera Kaia, Pasaia (Gipuzkoa), Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | |
Collapse
|
18
|
Chen J, Yang L, Zhang R, Uebbing S, Zhang C, Jiang H, Lei Y, Lv W, Tian F, Zhao K, He S. Transcriptome-Wide Patterns of the Genetic and Expression Variations in Two Sympatric Schizothoracine Fishes in a Tibetan Plateau Glacier Lake. Genome Biol Evol 2020; 12:3725-3737. [PMID: 31917411 PMCID: PMC6978627 DOI: 10.1093/gbe/evz276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2019] [Indexed: 12/25/2022] Open
Abstract
Sympatric speciation remains a central focus of evolutionary biology. Although some evidence shows speciation occurring in this way, little is known about the gene expression evolution and the characteristics of population genetics as species diverge. Two closely related Gymnocypris fish (Gymnocypris chui and Gymnocypris scleracanthus), which come from a small glacier lake in the Tibetan Plateau, Lake Langcuo, exist a possible incipient sympatric adaptive ecological speciation. We generated large amounts of RNA-Seq data from multiple individuals and tissues from each of the two species and compared gene expression patterns and genetic polymorphisms between them. Ordination analysis separated samples by organ rather than by species. The degree of expression difference between organs within and between species was different. Phylogenetic analyses indicated that the two closely related taxa formed a monophyletic complex. Population structure analysis displayed two distinctly divergent clusters of G. chui and G. scleracanthus populations. By contrast, G. scleracanthus population genetic diversity is higher than that of G. chui. Considerable sites of the two populations were differentiated with a coefficient of FST = 0.25–0.50, implying that a small proportion of loci nevertheless exhibited deep divergence in two comparisons. Concomitantly, putatively selected genes during speciation revealed functional categories are enriched in bone morphogenesis, cell growth, neurogenetics, enzyme activity, and binding activity in G. chui population. In contrast, nutrition and localization were highlighted in G. scleracanthus. Collectively, morphological traits and dietary preference combine with genetic variation and expression variation, probably contributed to the incipient speciation of two sympatric populations.
Collapse
Affiliation(s)
- Juan Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liandong Yang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Renyi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Severin Uebbing
- Department of Genetics, Yale University School of Medicine, New Haven, CT
| | - Cunfang Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Haifeng Jiang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Lei
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenqi Lv
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
19
|
Changing Only Slowly: The Role of Phylogenetic Niche Conservatism in Caviidae (Rodentia) Speciation. J MAMM EVOL 2020. [DOI: 10.1007/s10914-020-09501-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Duranton M, Allal F, Valière S, Bouchez O, Bonhomme F, Gagnaire PA. The contribution of ancient admixture to reproductive isolation between European sea bass lineages. Evol Lett 2020; 4:226-242. [PMID: 32547783 PMCID: PMC7293100 DOI: 10.1002/evl3.169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/02/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding how new species arise through the progressive establishment of reproductive isolation (RI) barriers between diverging populations is a major goal in Evolutionary Biology. An important result of speciation genomics studies is that genomic regions involved in RI frequently harbor anciently diverged haplotypes that predate the reconstructed history of species divergence. The possible origins of these old alleles remain much debated, as they relate to contrasting mechanisms of speciation that are not yet fully understood. In the European sea bass (Dicentrarchus labrax), the genomic regions involved in RI between Atlantic and Mediterranean lineages are enriched for anciently diverged alleles of unknown origin. Here, we used haplotype-resolved whole-genome sequences to test whether divergent haplotypes could have originated from a closely related species, the spotted sea bass (Dicentrarchus punctatus). We found that an ancient admixture event between D. labrax and D. punctatus is responsible for the presence of shared derived alleles that segregate at low frequencies in both lineages of D. labrax. An exception to this was found within regions involved in RI between the two D. labrax lineages. In those regions, archaic tracts originating from D. punctatus locally reached high frequencies or even fixation in Atlantic genomes but were almost absent in the Mediterranean. We showed that the ancient admixture event most likely occurred between D. punctatus and the D. labrax Atlantic lineage, while Atlantic and Mediterranean D. labrax lineages were experiencing allopatric isolation. Our results suggest that local adaptive introgression and/or the resolution of genomic conflicts provoked by ancient admixture have probably contributed to the establishment of RI between the two D. labrax lineages.
Collapse
Affiliation(s)
- Maud Duranton
- ISEM Univ Montpellier, CNRS, EPHE, IRD Montpellier France
| | - François Allal
- MARBEC Université de Montpellier, Ifremer-CNRS-IRD-UM Palavas-les-Flots 34250 France
| | - Sophie Valière
- INRA, US 1426, GeT-PlaGe Genotoul Castanet-Tolosan 31326 France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe Genotoul Castanet-Tolosan 31326 France
| | | | | |
Collapse
|
21
|
Moran RL, Catchen JM, Fuller RC. Genomic Resources for Darters (Percidae: Etheostominae) Provide Insight into Postzygotic Barriers Implicated in Speciation. Mol Biol Evol 2020; 37:711-729. [PMID: 31688927 PMCID: PMC7038671 DOI: 10.1093/molbev/msz260] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Comparative genomic approaches are increasingly being used to study the evolution of reproductive barriers in nonmodel species. Although numerous studies have examined prezygotic isolation in darters (Percidae), investigations into postzygotic barriers have remained rare due to long generation times and a lack of genomic resources. Orangethroat and rainbow darters naturally hybridize and provide a remarkable example of male-driven speciation via character displacement. Backcross hybrids suffer from high mortality, which appears to promote behavioral isolation in sympatry. To investigate the genomic architecture of postzygotic isolation, we used Illumina and PacBio sequencing to generate a chromosome-level, annotated assembly of the orangethroat darter genome and high-density linkage maps for orangethroat and rainbow darters. We also analyzed genome-wide RADseq data from wild-caught adults of both species and laboratory-generated backcrosses to identify genomic regions associated with hybrid incompatibles. Several putative chromosomal translocations and inversions were observed between orangethroat and rainbow darters, suggesting structural rearrangements may underlie postzygotic isolation. We also found evidence of selection against recombinant haplotypes and transmission ratio distortion in backcross hybrid genomes, providing further insight into the genomic architecture of genetic incompatibilities. Notably, regions with high levels of genetic divergence between species were enriched for genes associated with developmental and meiotic processes, providing strong candidates for postzygotic isolating barriers. These findings mark significant contributions to our understanding of the genetic basis of reproductive isolation between species undergoing character displacement. Furthermore, the genomic resources presented here will be instrumental for studying speciation in darters, the most diverse vertebrate group in North America.
Collapse
Affiliation(s)
- Rachel L Moran
- Program in Ecology, Evolution, and Conservation Biology, Department of Animal Biology, University of Illinois at Urbana-Champaign, Champaign, IL
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN
| | - Julian M Catchen
- Program in Ecology, Evolution, and Conservation Biology, Department of Animal Biology, University of Illinois at Urbana-Champaign, Champaign, IL
| | - Rebecca C Fuller
- Program in Ecology, Evolution, and Conservation Biology, Department of Animal Biology, University of Illinois at Urbana-Champaign, Champaign, IL
| |
Collapse
|
22
|
Tobler M, Barts N, Greenway R. Mitochondria and the Origin of Species: Bridging Genetic and Ecological Perspectives on Speciation Processes. Integr Comp Biol 2020; 59:900-911. [PMID: 31004483 DOI: 10.1093/icb/icz025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria have been known to be involved in speciation through the generation of Dobzhansky-Muller incompatibilities, where functionally neutral co-evolution between mitochondrial and nuclear genomes can cause dysfunction when alleles are recombined in hybrids. We propose that adaptive mitochondrial divergence between populations can not only produce intrinsic (Dobzhansky-Muller) incompatibilities, but could also contribute to reproductive isolation through natural and sexual selection against migrants, post-mating prezygotic isolation, as well as by causing extrinsic reductions in hybrid fitness. We describe how these reproductive isolating barriers can potentially arise through adaptive divergence of mitochondrial function in the absence of mito-nuclear coevolution, a departure from more established views. While a role for mitochondria in the speciation process appears promising, we also highlight critical gaps of knowledge: (1) many systems with a potential for mitochondrially-mediated reproductive isolation lack crucial evidence directly linking reproductive isolation and mitochondrial function; (2) it often remains to be seen if mitochondrial barriers are a driver or a consequence of reproductive isolation; (3) the presence of substantial gene flow in the presence of mito-nuclear incompatibilities raises questions whether such incompatibilities are strong enough to drive speciation to completion; and (4) it remains to be tested how mitochondrial effects on reproductive isolation compare when multiple mechanisms of reproductive isolation coincide. We hope this perspective and the proposed research plans help to inform future studies of mitochondrial adaptation in a manner that links genotypic changes to phenotypic adaptations, fitness, and reproductive isolation in natural systems, helping to clarify the importance of mitochondria in the formation and maintenance of biological diversity.
Collapse
Affiliation(s)
- M Tobler
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - N Barts
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - R Greenway
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
23
|
Guerrero-Bosagna C. From epigenotype to new genotypes: Relevance of epigenetic mechanisms in the emergence of genomic evolutionary novelty. Semin Cell Dev Biol 2020; 97:86-92. [DOI: 10.1016/j.semcdb.2019.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 11/24/2022]
|
24
|
Lindsey LL, Platt RN, Phillips CD, Ray DA, Bradley RD. Differential Expression in Testis and Liver Transcriptomes from Four Species of Peromyscus (Rodentia: Cricetidae). Genome Biol Evol 2020; 12:3698-3709. [PMID: 31909812 PMCID: PMC6967398 DOI: 10.1093/gbe/evz280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
The genus Peromyscus represents a rapidly diverged clade of Cricetid rodents that contains multiple cryptic species and has a propensity for morphologic conservation across its members. The unresolved relationships in previously proposed phylogenies reflect a suspected rapid adaptive radiation. To identify functional groups of genes that may be important in reproductive isolation in a reoccurring fashion across the Peromyscus phylogeny, liver and testis transcriptomes from four species (P. attwateri, P. boylii, P. leucopus, and P. maniculatus) were generated and differential expression (DE) tests were conducted. Taxa were selected to represent members diverged from a common ancestor: P. attwateri + P. boylii (clade A), and P. leucopus + P. maniculatus (clade B). Comparison of clades (A vs. B) suggested that 252 transcripts had significant DE in the liver data set, whereas significant DE was identified for 657 transcripts in the testis data set. Further, 45 genes had DE isoforms in the 657 testis transcripts and most of these functioned in major reproductive roles such as acrosome assembly, spermatogenesis, and cell cycle processes (meiosis). DE transcripts in the liver mapped to more broad gene ontology terms (metabolic processes, catabolic processes, response to chemical, and regulatory processes), and DE transcripts in the testis mapped to gene ontology terms associated with reproductive processes, such as meiosis, sperm motility, acrosome assembly, and sperm–egg fusion. These results suggest that a suite of genes that conduct similar functions in the testes may be responsible for the adaptive radiation events and potential reoccurring speciation of Peromyscus in terms of reproduction through varying expression levels.
Collapse
Affiliation(s)
| | - Roy N Platt
- Genetics Department, Texas Biomedical Research Institute, San Antonio, Texas
| | - Caleb D Phillips
- Department of Biological Sciences, Texas Tech University.,Natural Science Research Laboratory, Museum of Texas Tech University
| | - David A Ray
- Department of Biological Sciences, Texas Tech University
| | - Robert D Bradley
- Department of Biological Sciences, Texas Tech University.,Natural Science Research Laboratory, Museum of Texas Tech University
| |
Collapse
|
25
|
Cruz MV, Mori GM, Signori-Müller C, da Silva CC, Oh DH, Dassanayake M, Zucchi MI, Oliveira RS, de Souza AP. Local adaptation of a dominant coastal tree to freshwater availability and solar radiation suggested by genomic and ecophysiological approaches. Sci Rep 2019; 9:19936. [PMID: 31882752 PMCID: PMC6934818 DOI: 10.1038/s41598-019-56469-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/07/2019] [Indexed: 12/21/2022] Open
Abstract
Local adaptation is often a product of environmental variations in geographical space and has implications for biodiversity conservation. We investigated the role of latitudinal heterogeneity in climate on the organization of genetic and phenotypic variation in the dominant coastal tree Avicennia schaueriana. In a common garden experiment, samples from an equatorial region, with pronounced seasonality in precipitation, accumulated less biomass, and showed lower stomatal conductance and transpiration, narrower xylem vessels, smaller leaves and higher reflectance of long wavelengths by the stem epidermis than samples from a subtropical region, with seasonality in temperature and no dry season. Transcriptomic differences identified between trees sampled under field conditions at equatorial and subtropical sites, were enriched in functional categories such as responses to temperature, solar radiation, water deficit, photosynthesis and cell wall biosynthesis. Remarkably, the diversity based on genome-wide SNPs revealed a north-south genetic structure and signatures of selection were identified for loci associated with photosynthesis, anthocyanin accumulation and the responses to osmotic and hypoxia stresses. Our results suggest the existence of divergence in key resource-use characteristics, likely driven by seasonality in water deficit and solar radiation. These findings provide a basis for conservation plans and for predicting coastal plants responses to climate change.
Collapse
Affiliation(s)
- Mariana Vargas Cruz
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil
- Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp), Campinas, SP, 13083-875, Brazil
| | - Gustavo Maruyama Mori
- Institute of Biosciences, São Paulo State University (Unesp), São Vicente, SP, 11330-900, Brazil
| | - Caroline Signori-Müller
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil
| | - Carla Cristina da Silva
- Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp), Campinas, SP, 13083-875, Brazil
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA, 70803, United States
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA, 70803, United States
| | | | - Rafael Silva Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil
| | - Anete Pereira de Souza
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, 13083-863, Brazil.
- Center for Molecular Biology and Genetic Engineering, University of Campinas (Unicamp), Campinas, SP, 13083-875, Brazil.
| |
Collapse
|
26
|
Cruz MV, Mori GM, Oh DH, Dassanayake M, Zucchi MI, Oliveira RS, Souza APD. Molecular responses to freshwater limitation in the mangrove tree Avicennia germinans (Acanthaceae). Mol Ecol 2019; 29:344-362. [PMID: 31834961 DOI: 10.1111/mec.15330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/31/2022]
Abstract
Environmental variation along the geographical space can shape populations by natural selection. In the context of global warming and changing precipitation regimes, it is crucial to understand the role of environmental heterogeneity in tropical trees adaptation, given their disproportional contribution to water and carbon biogeochemical cycles. Here, we investigated how heterogeneity in freshwater availability along tropical wetlands has influenced molecular variations of the black mangrove (Avicennia germinans). A total of 57 trees were sampled at seven sites differing markedly in precipitation regime and riverine freshwater inputs. Using 2,297 genome-wide single nucleotide polymorphic markers, we found signatures of natural selection by the association between variations in allele frequencies and environmental variables, including the precipitation of the warmest quarter and the annual precipitation. Additionally, we found candidate loci for selection based on statistical deviations from neutral expectations of interpopulation differentiation. Most candidate loci within transcribed sequences were functionally associated with central aspects of drought tolerance or plant response to drought. Moreover, our results suggest the occurrence of the rapid evolution of a population, probably in response to sudden and persistent limitations in plant access to soil water, following a road construction in 1974. Observations supporting rapid evolution included the reduction in tree size and changes in allele frequencies and in transcript expression associated with increased drought tolerance through the accumulation of osmoprotectants and antioxidants, biosynthesis of cuticles, protection against protein degradation, stomatal closure, photorespiration and photosynthesis. We describe a major role of spatial heterogeneity in freshwater availability in the specialization of this typically tropical tree.
Collapse
Affiliation(s)
- Mariana Vargas Cruz
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | | | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University (LSU), Louisiana, LA, USA
| | | | - Rafael Silva Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| | - Anete Pereira de Souza
- Department of Plant Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
27
|
Seidl F, Levis NA, Jones CD, Monroy-Eklund A, Ehrenreich IM, Pfennig KS. Variation in hybrid gene expression: Implications for the evolution of genetic incompatibilities in interbreeding species. Mol Ecol 2019; 28:4667-4679. [PMID: 31541560 DOI: 10.1111/mec.15246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Interbreeding species often produce low-fitness hybrids due to genetic incompatibilities between parental genomes. Whether these incompatibilities reflect fixed allelic differences between hybridizing species, or, alternatively, standing variants that segregate within them, remains unknown for many natural systems. Yet, evaluating these alternatives is important for understanding the origins and nature of species boundaries. We examined these alternatives using spadefoot toads (genus Spea), which naturally hybridize. Specifically, we contrasted patterns of gene expression in hybrids relative to pure-species types in experimentally produced tadpoles from allopatric parents versus those from sympatric parents. We evaluated the prediction that segregating variation should result in gene expression differences between hybrids derived from sympatric parents versus hybrids derived from allopatric parents, and found that 24% of the transcriptome showed such differences. Our results further suggest that gene expression in hybrids has evolved in sympatry owing to evolutionary pressures associated with ongoing hybridization. Although we did not measure hybrid incompatibilities directly, we discuss the implications of our findings for understanding the nature of hybrid incompatibilities, how they might vary across populations over time, and the resulting effects on the evolutionary maintenance - or breakdown - of reproductive barriers between species.
Collapse
Affiliation(s)
- Fabian Seidl
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Nicholas A Levis
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Corbin D Jones
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA.,Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | | | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Karin S Pfennig
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Li YS, Shih KM, Chang CT, Chung JD, Hwang SY. Testing the Effect of Mountain Ranges as a Physical Barrier to Current Gene Flow and Environmentally Dependent Adaptive Divergence in Cunninghamia konishii (Cupressaceae). Front Genet 2019; 10:742. [PMID: 31447888 PMCID: PMC6697026 DOI: 10.3389/fgene.2019.00742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/15/2019] [Indexed: 11/29/2022] Open
Abstract
Populations can be genetically isolated by differences in their ecology or environment that hampered efficient migration, or they may be isolated solely by geographic distance. Moreover, mountain ranges across a species’ distribution area might have acted as barriers to gene flow. Genetic variation was quantified using amplified fragment length polymorphism (AFLP) and 13 selective amplification primer combinations used generated a total of 482 fragments. Here, we tested the barrier effects of mountains on gene flow and environmentally dependent local adaptation of Cunninghamia konishii occur in Taiwan. A pattern of genetic isolation by distance was not found and variation partitioning revealed that environment explained a relatively larger proportion of genetic variation than geography. The effect of mountains as barriers to genetic exchange, despite low population differentiation indicating a high rate of gene flow, was found within the distribution range of C. konishii. Twelve AFLP loci were identified as potential selective outliers using genome-scan methods (BAYESCAN and DFDIST) and strongly associated with environmental variables using regression approaches (LFMM, Samβada, and rstanarm) demonstrating adaptive divergence underlying local adaptation. Annual mean temperature, annual precipitation, and slope could be the most important environmental factors causally associated with adaptive genetic variation in C. konishii. The study revealed the existence of physical barriers to current gene flow and environmentally dependent adaptive divergence, and a significant proportion of the rate of gene flow may represent a reflection of demographic history.
Collapse
Affiliation(s)
- Yi-Shao Li
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kai-Ming Shih
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Te Chang
- Department of Life Science, Tunghai University, Taichung, Taiwan
| | - Jeng-Der Chung
- Division of Silviculture, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Shih-Ying Hwang
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
29
|
Khatri BS, Goldstein RA. Biophysics and population size constrains speciation in an evolutionary model of developmental system drift. PLoS Comput Biol 2019; 15:e1007177. [PMID: 31335870 PMCID: PMC6677325 DOI: 10.1371/journal.pcbi.1007177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 08/02/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Developmental system drift is a likely mechanism for the origin of hybrid incompatibilities between closely related species. We examine here the detailed mechanistic basis of hybrid incompatibilities between two allopatric lineages, for a genotype-phenotype map of developmental system drift under stabilising selection, where an organismal phenotype is conserved, but the underlying molecular phenotypes and genotype can drift. This leads to number of emergent phenomenon not obtainable by modelling genotype or phenotype alone. Our results show that: 1) speciation is more rapid at smaller population sizes with a characteristic, Orr-like, power law, but at large population sizes slow, characterised by a sub-diffusive growth law; 2) the molecular phenotypes under weakest selection contribute to the earliest incompatibilities; and 3) pair-wise incompatibilities dominate over higher order, contrary to previous predictions that the latter should dominate. The population size effect we find is consistent with previous results on allopatric divergence of transcription factor-DNA binding, where smaller populations have common ancestors with a larger drift load because genetic drift favours phenotypes which have a larger number of genotypes (higher sequence entropy) over more fit phenotypes which have far fewer genotypes; this means less substitutions are required in either lineage before incompatibilities arise. Overall, our results indicate that biophysics and population size provide a much stronger constraint to speciation than suggested by previous models, and point to a general mechanistic principle of how incompatibilities arise the under stabilising selection for an organismal phenotype. The process of speciation is of fundamental importance to the field of evolution as it is intimately connected to understanding the immense bio-diversity of life. There is still relatively little understanding of the underlying genetic mechanisms that give rise to hybrid incompatibilities with results suggesting that divergence in transcription factor DNA binding and gene expression play an important role. A key finding from the field of evo-devo is that organismal phenotypes show developmental system drift, where species maintain the same phenotype, but diverge in developmental pathways; this is an important potential source of hybrid incompatibilities. Here, we explore a theoretical framework to understand how incompatibilities arise due to developmental system drift, using a tractable biophysically inspired genotype-phenotype for spatial gene expression. Modelling the evolution of phenotypes in this way has the key advantage that it mirrors how selection works in nature, i.e. that selection acts on phenotypes, but variation (mutation) arise at the level of genotypes. This results, as we demonstrate, in a number of non-trivial and testable predictions concerning speciation due to developmental system drift, which would not be obtainable by modelling evolution of genotypes or phenotypes alone.
Collapse
Affiliation(s)
| | - Richard A. Goldstein
- Division of Infection & Immunity, University College London, London, United Kingdom
| |
Collapse
|
30
|
McGirr JA, Martin CH. Hybrid gene misregulation in multiple developing tissues within a recent adaptive radiation of Cyprinodon pupfishes. PLoS One 2019; 14:e0218899. [PMID: 31291291 PMCID: PMC6619667 DOI: 10.1371/journal.pone.0218899] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic incompatibilities constitute the final stages of reproductive isolation and speciation, but little is known about incompatibilities that occur within recent adaptive radiations among closely related diverging populations. Crossing divergent species to form hybrids can break up coadapted variation, resulting in genetic incompatibilities within developmental networks shaping divergent adaptive traits. We crossed two closely related sympatric Cyprinodon pupfish species–a dietary generalist and a specialized molluscivore–and measured expression levels in their F1 hybrids to identify regulatory variation underlying the novel craniofacial morphology found in this recent microendemic adaptive radiation. We extracted mRNA from eight day old whole-larvae tissue and from craniofacial tissues dissected from 17–20 day old larvae to compare gene expression between a total of seven F1 hybrids and 24 individuals from parental species populations. We found 3.9% of genes differentially expressed between generalists and molluscivores in whole-larvae tissues and 0.6% of genes differentially expressed in craniofacial tissue. We found that 2.1% of genes were misregulated in whole-larvae hybrids whereas 19.1% of genes were misregulated in hybrid craniofacial tissues, after correcting for sequencing biases. We also measured allele specific expression across 15,429 heterozygous sites to identify putative compensatory regulatory mechanisms underlying differential expression between generalists and molluscivores. Together, our results highlight the importance of considering misregulation as an early indicator of genetic incompatibilities in the context of rapidly diverging adaptive radiations and suggests that compensatory regulatory divergence drives hybrid gene misregulation in developing tissues that give rise to novel craniofacial traits.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Christopher H. Martin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California, United States of America
| |
Collapse
|
31
|
Lavretsky P, DaCosta JM, Sorenson MD, McCracken KG, Peters JL. ddRAD‐seq data reveal significant genome‐wide population structure and divergent genomic regions that distinguish the mallard and close relatives in North America. Mol Ecol 2019; 28:2594-2609. [DOI: 10.1111/mec.15091] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 03/05/2019] [Accepted: 03/29/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Philip Lavretsky
- Department of Biological Sciences University of Texas at El Paso El Paso Texas
- Department of Biological Sciences Wright State University Dayton Ohio
- Department of Biology University of Miami Miami Florida
| | - Jeffrey M. DaCosta
- Biology Department Boston College Chestnut Hill Massachusetts
- Biology Department Boston College Boston Massachusetts
| | | | - Kevin G. McCracken
- Department of Biology University of Miami Miami Florida
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Sciences University of Miami Miami Florida
- Human Genetics and Genomics Hussman Institute for Human Genomics, University of Miami Miller School of Medicine Miami Florida
- Institute of Arctic Biology and University of Alaska Museum University of Alaska Fairbanks Fairbanks Alaska
| | - Jeffrey L. Peters
- Department of Biological Sciences Wright State University Dayton Ohio
| |
Collapse
|
32
|
Pértille F, Da Silva VH, Johansson AM, Lindström T, Wright D, Coutinho LL, Jensen P, Guerrero-Bosagna C. Mutation dynamics of CpG dinucleotides during a recent event of vertebrate diversification. Epigenetics 2019; 14:685-707. [PMID: 31070073 PMCID: PMC6557589 DOI: 10.1080/15592294.2019.1609868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
DNA methylation in CpGs dinucleotides is associated with high mutability and disappearance of CpG sites during evolution. Although the high mutability of CpGs is thought to be relevant for vertebrate evolution, very little is known on the role of CpG-related mutations in the genomic diversification of vertebrates. Our study analysed genetic differences in chickens, between Red Junglefowl (RJF; the living closest relative to the ancestor of domesticated chickens) and domesticated breeds, to identify genomic dynamics that have occurred during the process of their domestication, focusing particularly on CpG-related mutations. Single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) between RJF and these domesticated breeds were assessed in a reduced fraction of their genome. Additionally, DNA methylation in the same fraction of the genome was measured in the sperm of RJF individuals to identify possible correlations with the mutations found between RJF and the domesticated breeds. Our study shows that although the vast majority of CpG-related mutations found relate to CNVs, CpGs disproportionally associate to SNPs in comparison to CNVs, where they are indeed substantially under-represented. Moreover, CpGs seem to be hotspots of mutations related to speciation. We suggest that, on the one hand, CpG-related mutations in CNV regions would promote genomic ‘flexibility’ in evolution, i.e., the ability of the genome to expand its functional possibilities; on the other hand, CpG-related mutations in SNPs would relate to genomic ‘specificity’ in evolution, thus, representing mutations that would associate with phenotypic traits relevant for speciation.
Collapse
Affiliation(s)
- Fábio Pértille
- a Avian Behavioral Genomics and Physiology Group, IFM Biology , Linköping University , Linköping , Sweden.,b Animal Biotechnology Laboratory, Animal Science Department , University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ) , Piracicaba , São Paulo , Brazil
| | - Vinicius H Da Silva
- c Animal Breeding and Genomics Centre , Wageningen University & Research , Wageningen , The Netherlands.,d Department of Animal Ecology (AnE) , Netherlands Institute of Ecology (NIOO-KNAW) , Wageningen , The Netherlands.,e Department of Animal Breeding and Genetics , Swedish University of Agricultural Sciences , Uppsala , Sweden
| | - Anna M Johansson
- e Department of Animal Breeding and Genetics , Swedish University of Agricultural Sciences , Uppsala , Sweden
| | - Tom Lindström
- f Division of Theoretical Biology, IFM , Linköping University , Linköping , Sweden
| | - Dominic Wright
- a Avian Behavioral Genomics and Physiology Group, IFM Biology , Linköping University , Linköping , Sweden
| | - Luiz L Coutinho
- b Animal Biotechnology Laboratory, Animal Science Department , University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ) , Piracicaba , São Paulo , Brazil
| | - Per Jensen
- a Avian Behavioral Genomics and Physiology Group, IFM Biology , Linköping University , Linköping , Sweden
| | - Carlos Guerrero-Bosagna
- a Avian Behavioral Genomics and Physiology Group, IFM Biology , Linköping University , Linköping , Sweden
| |
Collapse
|
33
|
Cong Q, Grishin NV. Comparative analysis of swallowtail transcriptomes suggests molecular determinants for speciation and adaptation. Genome 2018; 61:843-855. [PMID: 30365901 PMCID: PMC8934176 DOI: 10.1139/gen-2018-0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genetic determinants of speciation in closely related species are poorly understood. We sequenced and analyzed transcriptomes of swallowtail butterflies Heraclides cresphontes (northeastern species) and Heraclides rumiko (southwestern species), a pair of mostly allopatric sister species whose distribution ranges overlap narrowly in central Texas. We found that the two swallowtails confidently differ (FST > 0.5 for both species) in about 5% of genes, similarly to the divergence in another pair of swallowtail species Pterourus glaucus (southern species) and Pterourus canadensis (northern species). The same genes tend to diverge in both species pairs, suggesting similar speciation paths in Heraclides and Pterourus. The most significant differences for both species pairs were found in the circadian clock genes that were conserved within each species and diverged strongly between species (P-value < 0.01 and FST > 0.7). This divergence implied that adaptations to different climates and photoperiod at different latitudes or differences in mating behavior, including mating time and copulation duration, may be possible factors in ecological or behavioral-based speciation. Finally, we suggest several nuclear DNA regions that consistently and prominently differ between the sister swallowtail species as nuclear barcodes for swallowtail identification, with the best barcode being an exon from the protein TIMELESS.
Collapse
Affiliation(s)
- Qian Cong
- a Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Nick V Grishin
- a Department of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
- b Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9050, USA
| |
Collapse
|
34
|
Prokić MD, Despotović SG, Vučić TZ, Petrović TG, Gavrić JP, Gavrilović BR, Radovanović TB, Saičić ZS. Oxidative cost of interspecific hybridization: a case study of two Triturus species and their hybrids. ACTA ACUST UNITED AC 2018; 221:jeb.182055. [PMID: 30127083 DOI: 10.1242/jeb.182055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/07/2018] [Indexed: 01/18/2023]
Abstract
Oxidative stress has most recently been suggested as one of the possible mechanisms responsible for reduced fitness of hybrids. To explore possible oxidative cost of hybridization, we examined anti-oxidant defence system parameters (superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, glutathione reductase, glutathione, SH groups), their interconnectedness (index of integration) and levels of oxidative damage [concentrations of lipid peroxides, TBARS (thiobarbituric acid reactive substances)] in laboratory-reared newt species, Triturus macedonicus and T. ivanbureschi, and their hybrid. Our results showed that parental species differed in anti-oxidant defence system parameters, but not in the levels of integration of the whole system and oxidative damage. Individuals of T. ivanbureschi had higher activities of superoxide dismutase, glutathione S-transferase and concentrations of glutathione. Hybrid individuals of crested newts displayed higher levels of the anti-oxidant defence system (higher superoxide dismutase, catalase, glutathione peroxidase activities and concentrations of SH groups), and a lower overall correlation of anti-oxidant system (lower index of integration) in comparison with both parental species, suggesting that they may possess a less efficient anti-oxidant defence system and a higher investment in maintaining oxidative balance. The higher investment in the anti-oxidant system could divert limited resources away from other functions and affect further hybrid fitness. The presented findings contribute to a better understanding of the anti-oxidant defence system of crested newts and their interspecies differences, and support the hypothesis that oxidative stress is one of the costs of interspecific hybridization.
Collapse
Affiliation(s)
- Marko D Prokić
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana Z Vučić
- Department of Evolutionary Biology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia.,Faculty of Biology, Institute for Zoology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Zorica S Saičić
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
35
|
Rafati N, Blanco-Aguiar JA, Rubin CJ, Sayyab S, Sabatino SJ, Afonso S, Feng C, Alves PC, Villafuerte R, Ferrand N, Andersson L, Carneiro M. A genomic map of clinal variation across the European rabbit hybrid zone. Mol Ecol 2018; 27:1457-1478. [PMID: 29359877 DOI: 10.1111/mec.14494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 01/02/2023]
Abstract
Speciation is a process proceeding from weak to complete reproductive isolation. In this continuum, naturally hybridizing taxa provide a promising avenue for revealing the genetic changes associated with the incipient stages of speciation. To identify such changes between two subspecies of rabbits that display partial reproductive isolation, we studied patterns of allele frequency change across their hybrid zone using whole-genome sequencing. To connect levels and patterns of genetic differentiation with phenotypic manifestations of subfertility in hybrid rabbits, we further investigated patterns of gene expression in testis. Geographic cline analysis revealed 253 regions characterized by steep changes in allele frequency across their natural region of contact. This catalog of regions is likely to be enriched for loci implicated in reproductive barriers and yielded several insights into the evolution of hybrid dysfunction in rabbits: (i) incomplete reproductive isolation is likely governed by the effects of many loci, (ii) protein-protein interaction analysis suggest that genes within these loci interact more than expected by chance, (iii) regulatory variation is likely the primary driver of incompatibilities, and (iv) large chromosomal rearrangements appear not to be a major mechanism underlying incompatibilities or promoting isolation in the face of gene flow. We detected extensive misregulation of gene expression in testis of hybrid males, but not a statistical overrepresentation of differentially expressed genes in candidate regions. Our results also did not support an X chromosome-wide disruption of expression as observed in mice and cats, suggesting variation in the mechanistic basis of hybrid male reduced fertility among mammals.
Collapse
Affiliation(s)
- Nima Rafati
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory Uppsala, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - José A Blanco-Aguiar
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Instituto de Investigacion en Recursos Cinegéticos (IREC-CSIC-UCLM-JCCM), Ciudad Real, Spain
| | - Carl J Rubin
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Shumaila Sayyab
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Research Center for Modeling and Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| | - Stephen J Sabatino
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Sandra Afonso
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Chungang Feng
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Paulo C Alves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | - Nuno Ferrand
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.,Department of Zoology, Faculty of Sciences, University of Johannesburg, Auckland, South Africa
| | - Leif Andersson
- Science for Life Laboratory Uppsala, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Miguel Carneiro
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
36
|
Van Bocxlaer B. Hierarchical structure of ecological and non-ecological processes of differentiation shaped ongoing gastropod radiation in the Malawi Basin. Proc Biol Sci 2018; 284:rspb.2017.1494. [PMID: 28904143 DOI: 10.1098/rspb.2017.1494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/07/2017] [Indexed: 02/03/2023] Open
Abstract
Ecological processes, non-ecological processes or a combination of both may cause reproductive isolation and speciation, but their specific roles and potentially complex interactions in evolutionary radiations remain poorly understood, which defines a central knowledge gap at the interface of microevolution and macroevolution. Here I examine genome scans in combination with phenotypic and environmental data to disentangle how ecological and non-ecological processes contributed to population differentiation and speciation in an ongoing radiation of Lanistes gastropods from the Malawi Basin. I found a remarkable hierarchical structure of differentiation mechanisms in space and time: neutral and mutation-order processes are older and occur mainly between regions, whereas more recent adaptive processes are the main driver of genetic differentiation and reproductive isolation within regions. The strongest differentiation occurs between habitats and between regions, i.e. when ecological and non-ecological processes act synergistically. The structured occurrence of these processes based on the specific geographical setting and ecological opportunities strongly influenced the potential for evolutionary radiation. The results highlight the importance of interactions between various mechanisms of differentiation in evolutionary radiations, and suggest that non-ecological processes are important in adaptive radiations, including those of cichlids. Insight into such interactions is critical to understanding large-scale patterns of organismal diversity.
Collapse
Affiliation(s)
- Bert Van Bocxlaer
- CNRS, Université de Lille, UMR 8198 - Evo-Eco-Paléo, 59000 Lille, France .,Limnology Unit, Department of Biology, Ghent University, 9000 Ghent, Belgium.,Department of Animal Ecology and Systematics, Justus Liebig University, 35392 Giessen, Germany
| |
Collapse
|
37
|
Shih KM, Chang CT, Chung JD, Chiang YC, Hwang SY. Adaptive Genetic Divergence Despite Significant Isolation-by-Distance in Populations of Taiwan Cow-Tail Fir ( Keteleeria davidiana var. formosana). FRONTIERS IN PLANT SCIENCE 2018; 9:92. [PMID: 29449860 PMCID: PMC5799944 DOI: 10.3389/fpls.2018.00092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 05/05/2023]
Abstract
Double digest restriction site-associated DNA sequencing (ddRADseq) is a tool for delivering genome-wide single nucleotide polymorphism (SNP) markers for non-model organisms useful in resolving fine-scale population structure and detecting signatures of selection. This study performs population genetic analysis, based on ddRADseq data, of a coniferous species, Keteleeria davidiana var. formosana, disjunctly distributed in northern and southern Taiwan, for investigation of population adaptive divergence in response to environmental heterogeneity. A total of 13,914 SNPs were detected and used to assess genetic diversity, FST outlier detection, population genetic structure, and individual assignments of five populations (62 individuals) of K. davidiana var. formosana. Principal component analysis (PCA), individual assignments, and the neighbor-joining tree were successful in differentiating individuals between northern and southern populations of K. davidiana var. formosana, but apparent gene flow between the southern DW30 population and northern populations was also revealed. Fifteen of 23 highly differentiated SNPs identified were found to be strongly associated with environmental variables, suggesting isolation-by-environment (IBE). However, multiple matrix regression with randomization analysis revealed strong IBE as well as significant isolation-by-distance. Environmental impacts on divergence were found between populations of the North and South regions and also between the two southern neighboring populations. BLASTN annotation of the sequences flanking outlier SNPs gave significant hits for three of 23 markers that might have biological relevance to mitochondrial homeostasis involved in the survival of locally adapted lineages. Species delimitation between K. davidiana var. formosana and its ancestor, K. davidiana, was also examined (72 individuals). This study has produced highly informative population genomic data for the understanding of population attributes, such as diversity, connectivity, and adaptive divergence associated with large- and small-scale environmental heterogeneity in K. davidiana var. formosana.
Collapse
Affiliation(s)
- Kai-Ming Shih
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Te Chang
- Department of Geography, National Taiwan University, Taipei, Taiwan
| | - Jeng-Der Chung
- Division of Silviculture, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Shih-Ying Hwang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
38
|
Heterogeneous Patterns of Genetic Diversity and Differentiation in European and Siberian Chiffchaff ( Phylloscopus collybita abietinus/P. tristis). G3-GENES GENOMES GENETICS 2017; 7:3983-3998. [PMID: 29054864 PMCID: PMC5714495 DOI: 10.1534/g3.117.300152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Identification of candidate genes for trait variation in diverging lineages and characterization of mechanistic underpinnings of genome differentiation are key steps toward understanding the processes underlying the formation of new species. Hybrid zones provide a valuable resource for such investigations, since they allow us to study how genomes evolve as species exchange genetic material and to associate particular genetic regions with phenotypic traits of interest. Here, we use whole-genome resequencing of both allopatric and hybridizing populations of the European (Phylloscopus collybita abietinus) and the Siberian chiffchaff (P. tristis)—two recently diverged species which differ in morphology, plumage, song, habitat, and migration—to quantify the regional variation in genome-wide genetic diversity and differentiation, and to identify candidate regions for trait variation. We find that the levels of diversity, differentiation, and divergence are highly heterogeneous, with significantly reduced global differentiation, and more pronounced differentiation peaks in sympatry than in allopatry. This pattern is consistent with regional differences in effective population size and recurrent background selection or selective sweeps reducing the genetic diversity in specific regions prior to lineage divergence, but the data also suggest that postdivergence selection has resulted in increased differentiation and fixed differences in specific regions. We find that hybridization and backcrossing is common in sympatry, and that phenotype is a poor predictor of the genomic composition of sympatric birds. The combination of a differentiation scan approach with identification of fixed differences pinpoint a handful of candidate regions that might be important for trait variation between the two species.
Collapse
|
39
|
Teng H, Zhang Y, Shi C, Mao F, Cai W, Lu L, Zhao F, Sun Z, Zhang J. Population Genomics Reveals Speciation and Introgression between Brown Norway Rats and Their Sibling Species. Mol Biol Evol 2017; 34:2214-2228. [PMID: 28482038 PMCID: PMC5850741 DOI: 10.1093/molbev/msx157] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Murine rodents are excellent models for study of adaptive radiations and speciation. Brown Norway rats (Rattus norvegicus) are successful global colonizers and the contributions of their domesticated laboratory strains to biomedical research are well established. To identify nucleotide-based speciation timing of the rat and genomic information contributing to its colonization capabilities, we analyzed 51 whole-genome sequences of wild-derived Brown Norway rats and their sibling species, R. nitidus, and identified over 20 million genetic variants in the wild Brown Norway rats that were absent in the laboratory strains, which substantially expand the reservoir of rat genetic diversity. We showed that divergence of the rat and its siblings coincided with drastic climatic changes that occurred during the Middle Pleistocene. Further, we revealed that there was a geographically widespread influx of genes between Brown Norway rats and the sibling species following the divergence, resulting in numerous introgressed regions in the genomes of admixed Brown Norway rats. Intriguing, genes related to chemical communications among these introgressed regions appeared to contribute to the population-specific adaptations of the admixed Brown Norway rats. Our data reveals evolutionary history of the Brown Norway rat, and offers new insights into the role of climatic changes in speciation of animals and the effect of interspecies introgression on animal adaptation.
Collapse
Affiliation(s)
- Huajing Teng
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yaohua Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chengmin Shi
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Fengbiao Mao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Wanshi Cai
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Liang Lu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Zhongsheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jianxu Zhang
- The State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Mandeville EG, Parchman TL, Thompson KG, Compton RI, Gelwicks KR, Song SJ, Buerkle CA. Inconsistent reproductive isolation revealed by interactions between Catostomus fish species. Evol Lett 2017; 1:255-268. [PMID: 30283654 PMCID: PMC6121845 DOI: 10.1002/evl3.29] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022] Open
Abstract
Interactions between species are central to evolution and ecology, but we do not know enough about how outcomes of interactions between species vary across geographic locations, in heterogeneous environments, or over time. Ecological dimensions of interactions between species are known to vary, but evolutionary interactions such as the establishment and maintenance of reproductive isolation are often assumed to be consistent across instances of an interaction between species. Hybridization among Catostomus fish species occurs over a large and heterogeneous geographic area and across taxa with distinct evolutionary histories, which allows us to assess consistency in species interactions. We analyzed hybridization among six Catostomus species across the Upper Colorado River basin (US mountain west) and found extreme variation in hybridization across locations. Different hybrid crosses were present in different locations, despite similar species assemblages. Within hybrid crosses, hybridization varied from only first generation hybrids to extensive hybridization with backcrossing. Variation in hybridization outcomes might result from uneven fitness of hybrids across locations, polymorphism in genetic incompatibilities, chance, unidentified historical contingencies, or some combination thereof. Our results suggest caution in assuming that one or a few instances of hybridization represent all interactions between the focal species, as species interactions vary substantially across locations.
Collapse
Affiliation(s)
| | | | | | | | | | - Se Jin Song
- Department of Ecology and Evolutionary Biology University of Colorado Boulder Colorado 80309
| | - C Alex Buerkle
- Department of Botany and Program in Ecology University of Wyoming Laramie Wyoming 82071
| |
Collapse
|
41
|
Egger B, Roesti M, Böhne A, Roth O, Salzburger W. Demography and genome divergence of lake and stream populations of an East African cichlid fish. Mol Ecol 2017; 26:5016-5030. [DOI: 10.1111/mec.14248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Bernd Egger
- Zoological Institute; University of Basel; Basel Switzerland
| | - Marius Roesti
- Zoological Institute; University of Basel; Basel Switzerland
- Department of Zoology; Biodiversity Research Centre; University of British Columbia; Vancouver BC Canada
| | - Astrid Böhne
- Zoological Institute; University of Basel; Basel Switzerland
| | - Olivia Roth
- Evolutionary Ecology of Marine Fishes; Helmholtz Zentrum für Ozeanforschung Kiel (GEOMAR); Kiel Germany
| | | |
Collapse
|
42
|
Noyszewski AK, Liu YC, Tamura K, Smith AG. Polymorphism and structure of style-specific arabinogalactan proteins as determinants of pollen tube growth in Nicotiana. BMC Evol Biol 2017; 17:186. [PMID: 28797243 PMCID: PMC5553597 DOI: 10.1186/s12862-017-1011-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pollen tube growth and fertilization are key processes in angiosperm sexual reproduction. The transmitting tract (TT) of Nicotiana tabacum controls pollen tube growth in part by secreting pistil extensin-like protein III (PELPIII), transmitting-tract-specific (TTS) protein and 120 kDa glycoprotein (120 K) into the stylar extracellular matrix. The three arabinogalactan proteins (AGP) are referred to as stylar AGPs and are the focus of this research. The transmitting tract regulates pollen tube growth, promoting fertilization or rejecting pollen tubes. RESULTS The N-terminal domain (NTD) of the stylar AGPs is proline rich and polymorphic among Nicotiana spp. The NTD was predicted to be mainly an intrinsically disordered region (IDR), making it a candidate for protein-protein interactions. The NTD is also the location for the majority of the predicted O-glycosylation sites that were variable among Nicotiana spp. The C-terminal domain (CTD) contains an Ole e 1-like domain, that was predicted to form beta-sheets that are similar in position and length among Nicotiana spp. and among stylar AGPs. The TTS protein had the greatest amino acid and predicted O-glycosylation conservation among Nicotiana spp. relative to the PELPIII and 120 K. The PELPIII, TTS and 120 K genes undergo negative selection, with dn/ds ratios of 0.59, 0.29 and 0.38 respectively. The dn/ds ratio for individual species ranged from 0.4 to 0.9 and from 0.1 to 0.8, for PELPIII and TTS genes, respectively. These data indicate that PELPIII and TTS genes are under different selective pressures. A newly discovered AGP gene, Nicotiana tabacum Proline Rich Protein (NtPRP), was found with a similar intron-exon configuration and protein structure resembling other stylar AGPs, particularly TTS. CONCLUSIONS Further studies of the NtPRP gene are necessary to elucidate its biological role. Due to its high similarity to the TTS gene, NtPRP may be involved in pollen tube guidance and growth. In contrast to TTS, both PELPIII and 120 K genes are more diverse indicating a possible role in speciation or mating preference of Nicotiana spp. We hypothesize that the stylar AGPs and NtPRP share a common origin from a single gene that duplicated and diversified into four distinct genes involved in pollen-style interactions.
Collapse
Affiliation(s)
- Andrzej K Noyszewski
- Department of Horticultural Science, University of Minnesota, 356 Alderman Hall 1970 Folwell Av., St. Paul, MN, 55108, USA.
| | - Yi-Cheng Liu
- Department of Horticultural Science, University of Minnesota, 356 Alderman Hall 1970 Folwell Av., St. Paul, MN, 55108, USA
- Present Address: Arog Pharmaceuticals, Inc, 5420 LBJ Freeway, Suite 410, Dallas, TX, 75240, USA
| | - Koichiro Tamura
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Alan G Smith
- Department of Horticultural Science, University of Minnesota, 356 Alderman Hall 1970 Folwell Av., St. Paul, MN, 55108, USA
| |
Collapse
|
43
|
Vijay N, Weissensteiner M, Burri R, Kawakami T, Ellegren H, Wolf JBW. Genomewide patterns of variation in genetic diversity are shared among populations, species and higher-order taxa. Mol Ecol 2017; 26:4284-4295. [PMID: 28570015 DOI: 10.1111/mec.14195] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/10/2017] [Accepted: 05/17/2017] [Indexed: 12/15/2022]
Abstract
Genomewide screens of genetic variation within and between populations can reveal signatures of selection implicated in adaptation and speciation. Genomic regions with low genetic diversity and elevated differentiation reflective of locally reduced effective population sizes (Ne ) are candidates for barrier loci contributing to population divergence. Yet, such candidate genomic regions need not arise as a result of selection promoting adaptation or advancing reproductive isolation. Linked selection unrelated to lineage-specific adaptation or population divergence can generate comparable signatures. It is challenging to distinguish between these processes, particularly when diverging populations share ancestral genetic variation. In this study, we took a comparative approach using population assemblages from distant clades assessing genomic parallelism of variation in Ne . Utilizing population-level polymorphism data from 444 resequenced genomes of three avian clades spanning 50 million years of evolution, we tested whether population genetic summary statistics reflecting genomewide variation in Ne would covary among populations within clades, and importantly, also among clades where lineage sorting has been completed. All statistics including population-scaled recombination rate (ρ), nucleotide diversity (π) and measures of genetic differentiation between populations (FST , PBS, dxy ) were significantly correlated across all phylogenetic distances. Moreover, genomic regions with elevated levels of genetic differentiation were associated with inferred pericentromeric and subtelomeric regions. The phylogenetic stability of diversity landscapes and stable association with genomic features support a role of linked selection not necessarily associated with adaptation and speciation in shaping patterns of genomewide heterogeneity in genetic diversity.
Collapse
Affiliation(s)
- Nagarjun Vijay
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Lab of Molecular and Genomic Evolution, Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Matthias Weissensteiner
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Reto Burri
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Department of Population Ecology, Friedrich Schiller University Jena, Jena, Germany
| | - Takeshi Kawakami
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hans Ellegren
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Jochen B W Wolf
- Department of Evolutionary Biology and SciLifeLab, Uppsala University, Uppsala, Sweden.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| |
Collapse
|
44
|
Ikawa M, Ohya E, Shimada H, Kamijo M, Fukamachi S. Establishment and maintenance of sexual preferences that cause a reproductive isolation between medaka strains in close association. Biol Open 2017; 6:244-251. [PMID: 28202469 PMCID: PMC5312102 DOI: 10.1242/bio.022285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Animals choose reproductive partners based on their sexual preferences which are established at a certain time point before, during, or after sexual maturation. The preferences are often divergent within a species, which suppresses gene flow between populations and may promote speciation. There are two strains of medaka (Oryzias latipes) that differ by a single transgene and mate assortatively depending on skin color. Here, we demonstrate that symmetrically biased (mutually exclusive) sexual preferences are (1) gradually established during growth depending on skin color and the color of surrounding fish, (2) strong enough to minimize gene flow between the strains at a population level, and (3) inflexibly retained after sexual maturation, even after weeks of daily mating with partners of the other strain. Thus, these laboratory strains of medaka are under premating isolation with the simplest genomic structure. They provide an empirical platform for assessing the complex and hypothetical mechanisms of speciation by mate choice. Summary: Two laboratory strains of medaka assortatively mate in complete sympatry, and their sexual preferences are gradually developed during growth and firmly maintained after sexual maturation.
Collapse
Affiliation(s)
- Mayuka Ikawa
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Emi Ohya
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Hiroka Shimada
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Makiko Kamijo
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Shoji Fukamachi
- Department of Chemical and Biological Sciences, Japan Women's University, Mejirodai 2-8-1, Bunkyo-ku, Tokyo 112-8681, Japan
| |
Collapse
|
45
|
Willis CG, Donohue K. The evolution of intrinsic reproductive isolation in the genus
Cakile
(Brassicaceae). J Evol Biol 2016; 30:361-376. [DOI: 10.1111/jeb.13011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 11/29/2022]
Affiliation(s)
- C. G. Willis
- Department of Biology Duke University Durham NC USA
| | - K. Donohue
- Department of Biology Duke University Durham NC USA
| |
Collapse
|
46
|
|
47
|
Vijay N, Bossu CM, Poelstra JW, Weissensteiner MH, Suh A, Kryukov AP, Wolf JBW. Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex. Nat Commun 2016; 7:13195. [PMID: 27796282 PMCID: PMC5095515 DOI: 10.1038/ncomms13195] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022] Open
Abstract
Uncovering the genetic basis of species diversification is a central goal in evolutionary biology. Yet, the link between the accumulation of genomic changes during population divergence and the evolutionary forces promoting reproductive isolation is poorly understood. Here, we analysed 124 genomes of crow populations with various degrees of genome-wide differentiation, with parallelism of a sexually selected plumage phenotype, and ongoing hybridization. Overall, heterogeneity in genetic differentiation along the genome was best explained by linked selection exposed on a shared genome architecture. Superimposed on this common background, we identified genomic regions with signatures of selection specific to independent phenotypic contact zones. Candidate pigmentation genes with evidence for divergent selection were only partly shared, suggesting context-dependent selection on a multigenic trait architecture and parallelism by pathway rather than by repeated single-gene effects. This study provides insight into how various forms of selection shape genome-wide patterns of genomic differentiation as populations diverge.
Collapse
Affiliation(s)
- Nagarjun Vijay
- Department of Evolutionary Biology and Science for Life Laboratories, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Christen M Bossu
- Department of Evolutionary Biology and Science for Life Laboratories, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden.,Department of Zoology, Population Genetics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Jelmer W Poelstra
- Department of Evolutionary Biology and Science for Life Laboratories, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Matthias H Weissensteiner
- Department of Evolutionary Biology and Science for Life Laboratories, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Alexander Suh
- Department of Evolutionary Biology and Science for Life Laboratories, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Alexey P Kryukov
- Laboratory of Evolutionary Zoology and Genetics, Institute of Biology and Soil Science, Far East Branch Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Jochen B W Wolf
- Department of Evolutionary Biology and Science for Life Laboratories, Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden.,Division of Evolutionary Biology, Ludwig Maximilian University of Munich, Grosshaderner Street 2, Planegg-Martinsried 82152, Germany
| |
Collapse
|
48
|
Wang J, Street NR, Scofield DG, Ingvarsson PK. Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens. Mol Biol Evol 2016; 33:1754-1767. [PMID: 26983554 DOI: 10.1101/029561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Despite the global economic and ecological importance of forest trees, the genomic basis of differential adaptation and speciation in tree species is still poorly understood. Populus tremula and Populus tremuloides are two of the most widespread tree species in the Northern Hemisphere. Using whole-genome re-sequencing data of 24 P. tremula and 22 P. tremuloides individuals, we find that the two species diverged ∼2.2-3.1 million years ago, coinciding with the severing of the Bering land bridge and the onset of dramatic climatic oscillations during the Pleistocene. Both species have experienced substantial population expansions following long-term declines after species divergence. We detect widespread and heterogeneous genomic differentiation between species, and in accordance with the expectation of allopatric speciation, coalescent simulations suggest that neutral evolutionary processes can account for most of the observed patterns of genetic differentiation. However, there is an excess of regions exhibiting extreme differentiation relative to those expected under demographic simulations, which is indicative of the action of natural selection. Overall genetic differentiation is negatively associated with recombination rate in both species, providing strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between species. Finally, we identify a number of candidate regions and genes that may have been subject to positive and/or balancing selection during the speciation process.
Collapse
Affiliation(s)
- Jing Wang
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, SE, Sweden
| | - Douglas G Scofield
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Uppsala, Sweden Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala, Sweden
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Umeå, SE, Sweden
| |
Collapse
|
49
|
Bull JW, Maron M. How humans drive speciation as well as extinction. Proc Biol Sci 2016; 283:20160600. [PMID: 27358365 PMCID: PMC4936035 DOI: 10.1098/rspb.2016.0600] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/26/2016] [Indexed: 12/31/2022] Open
Abstract
A central topic for conservation science is evaluating how human activities influence global species diversity. Humanity exacerbates extinction rates. But by what mechanisms does humanity drive the emergence of new species? We review human-mediated speciation, compare speciation and known extinctions, and discuss the challenges of using net species diversity as a conservation objective. Humans drive rapid evolution through relocation, domestication, hunting and novel ecosystem creation-and emerging technologies could eventually provide additional mechanisms. The number of species relocated, domesticated and hunted during the Holocene is of comparable magnitude to the number of observed extinctions. While instances of human-mediated speciation are known, the overall effect these mechanisms have upon speciation rates has not yet been quantified. We also explore the importance of anthropogenic influence upon divergence in microorganisms. Even if human activities resulted in no net loss of species diversity by balancing speciation and extinction rates, this would probably be deemed unacceptable. We discuss why, based upon 'no net loss' conservation literature-considering phylogenetic diversity and other metrics, risk aversion, taboo trade-offs and spatial heterogeneity. We conclude that evaluating speciation alongside extinction could result in more nuanced understanding of biosphere trends, clarifying what it is we actually value about biodiversity.
Collapse
Affiliation(s)
- J W Bull
- Department of Food and Resource Economics and Center for Macroecology, Evolution and Climate, University of Copenhagen, Rolighedsvej 23, 1958 Copenhagen, Denmark
| | - M Maron
- School of Geography, Planning and Environmental Management, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
50
|
Kost S, Heckel DG, Yoshido A, Marec F, Groot AT. A Z-linked sterility locus causes sexual abstinence in hybrid females and facilitates speciation in Spodoptera frugiperda. Evolution 2016; 70:1418-27. [PMID: 27149933 DOI: 10.1111/evo.12940] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/19/2016] [Indexed: 01/22/2023]
Abstract
In the fall armyworm, Spodoptera frugiperda (Lepidoptera, Noctuidae), two sympatric strains have been recognized that have been termed corn strain (C) and rice strain (R), referring to their most common host plants. Both strains are reproductively isolated via a distinct prezygotic barrier as well as via an intriguing postzygotic phenomenon: when R females have mated with C males, the resulting RC hybrid females exhibit dramatically reduced fertility independent of their mating partner. Here, we demonstrate that the reduced fertility is caused by the fact that these females refrain from mating, that is, females are behaviorally sterile. We identified a Z-chromosomally linked sterility locus that is most likely incompatible with yet to be identified autosomal (or cytoplasmic) factors, leading to the observed sexual abstinence. Within-chromosome mapping revealed the sterility locus to be located in an area of strongly reduced interstrain recombination.
Collapse
Affiliation(s)
- Silvia Kost
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07749, Jena, Germany.
| | - David G Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07749, Jena, Germany
| | - Atsuo Yoshido
- Biology Centre CAS, Institute of Entomology, Laboratory of Molecular Cytogenetics, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - František Marec
- Biology Centre CAS, Institute of Entomology, Laboratory of Molecular Cytogenetics, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Astrid T Groot
- Department of Entomology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07749, Jena, Germany.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|