1
|
Liebe S, Niediek J, Pals M, Reber TP, Faber J, Boström J, Elger CE, Macke JH, Mormann F. Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networks. Nat Neurosci 2025; 28:873-882. [PMID: 40128390 PMCID: PMC11976290 DOI: 10.1038/s41593-025-01893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/15/2025] [Indexed: 03/26/2025]
Abstract
The temporal order of a sequence of events has been thought to be reflected in the ordered firing of neurons at different phases of theta oscillations. Here we assess this by measuring single neuron activity (1,420 neurons) and local field potentials (921 channels) in the medial temporal lobe of 16 patients with epilepsy performing a working-memory task for temporal order. During memory maintenance, we observe theta oscillations, preferential firing of single neurons to theta phase and a close relationship between phase of firing and item position. However, the firing order did not match item order. Training recurrent neural networks to perform an analogous task, we also show the generation of theta oscillations, theta phase-dependent firing related to item position and, again, no match between firing and item order. Rather, our results suggest a mechanistic link between phase order, stimulus timing and oscillation frequency. In both biological and artificial neural networks, we provide evidence supporting the role of phase of firing in working-memory processing.
Collapse
Grants
- This work was supported by the German Research Foundation (DFG): SPP 2241 (PN 520287829), Germany’s Excellence Strategy (EXC-Number 2064/1)
- German Research Foundation (DFG): SFB 1089 (PN 227953431), Germany’s Excellence Strategy (EXC-Number 2064/1, PN 390727645); and the German Federal Ministry of Education and Research (BMBF) through the Tübingen AI Center, FKZ: 01IS18039 and DeepHumanVision, FKZ: 031L0197B-C.
- This work was supported by the German Research Foundation (DFG): MO 930/4-2 (PN 212842712), MO 930/15/1 (PN 545587701), SFB 1089 (PN 227953431), Germany’s Excellence Strategy (EXC-Number 2064/1, PN 390727645); and the German Federal Ministry of Education and Research (BMBF) through the Tübingen AI Center, FKZ: 01IS18039 and DeepHumanVision, FKZ: 031L0197B-C.
- This work was supported by the German Research Foundation (DFG) SFB 1089, SFB 1233 (PN 276693517), SPP 2205, the Volkswagen Foundation: 86 507; the NRW network program iBehave;
Collapse
Affiliation(s)
- Stefanie Liebe
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany.
- University Hospital Tübingen, Department of Neurology and Epileptology, Tübingen, Germany.
| | - Johannes Niediek
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Machine Learning Group, Technische Universität Berlin, Berlin, Germany
| | - Matthijs Pals
- Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Tübingen, Germany
- Tübingen AI Center, Tübingen, Germany
| | - Thomas P Reber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Jennifer Faber
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Department of Neurology, University of Bonn Medical Center, Bonn, Germany
| | - Jan Boström
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Christian E Elger
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Jakob H Macke
- Machine Learning in Science, Excellence Cluster Machine Learning, Tübingen University, Tübingen, Germany
- Tübingen AI Center, Tübingen, Germany
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany.
| |
Collapse
|
2
|
Shtoots L, Nadler A, Gamoran A, Levy DA, Doron G. Evaluating the combined effects of mobile computerized CBT and post-learning oscillatory modulation on self-esteem: a randomized controlled trial. Sci Rep 2025; 15:10934. [PMID: 40157955 PMCID: PMC11955000 DOI: 10.1038/s41598-024-83941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/18/2024] [Indexed: 04/01/2025] Open
Abstract
Self-esteem, crucial for psychological well-being, can be enhanced through targeted interventions like cognitive behavioral therapy (CBT). However, traditional CBT faces various accessibility barriers. Digital health interventions such as computerized CBT and mobile health (mHealth) applications offer potential solutions. Recent research suggests that brain oscillations, particularly theta rhythms, play a key role in memory consolidation. Combining computerized CBT with post-learning theta rhythm modulation may optimize and stabilize improvements in self-esteem and promote neuro-wellbeing. This six-month longitudinal study aimed to evaluate the synergistic effects of a computerized CBT intervention (GGSE) combined with post-training theta rhythm brain modulation on improving self-esteem in young adults with low self-esteem. Participants were randomly allocated to three groups: GGSE + theta audio-visual entrainment (AVE) with Cranio-Electro Stimulation (CES), GGSE + beta AVE + CES (active control), and GGSE only (control). The intervention lasted three weeks. Assessments of self-esteem, maladaptive beliefs, and mood were conducted at baseline, 21 days, 42 days, and six months post-baseline. Although post-treatment oscillatory entrainment did not enhance the long-term efficacy of the intervention, significant treatment effects persisted for six months across all groups. These results support the potential long-term efficacy of brief, game-like, digital CBT approaches for improving self-esteem.
Collapse
Affiliation(s)
- Limor Shtoots
- The Dina Recanati School of Medicine, Reichman University, Herzliya, 4610101, Israel
| | - Asher Nadler
- Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya, 4610101, Israel
| | - Avi Gamoran
- Department of Psychology, Ben-Gurion University of the Negev, 653, Beer Sheva, Israel
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya, 4610101, Israel
- Department of Psychology, Palo Alto University, Palo Alto, CA, 94304, USA
| | - Guy Doron
- Baruch Ivcher School of Psychology, Reichman University, HaUniversita 8, Herzliya, 4610101, Israel.
| |
Collapse
|
3
|
Sun L, Bao L. Neuronal theta oscillation of hippocampal ensemble and memory function. Behav Brain Res 2025; 481:115429. [PMID: 39800078 DOI: 10.1016/j.bbr.2025.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Memory is the ability to acquire and store information following an experience, which can be retrieved by related context exposure. Pioneering studies have demonstrated that sparsely distributed neuronal ensembles or engram cells can serve as neural substrates for storing and recalling memory traces. Many studies of neuronal ensembles have focused on the hippocampus, and increasing evidence has indicated that the neuronal oscillation is closely associated with hippocampal memory functions, including both encoding and retrieval processes. In particular, the theta synchronization of hippocampal ensembles with other brain regions mediates the retrieval of multiple types of memory. The recent progress of theta oscillations in the formation of memory engrams is reviewed, as well as the increased theta power and neurotransmitter regulation on memory function. Detailed information based on an analysis of hippocampal local theta rhythms is presented. Moreover, the hippocampus theta synchronization with the sensory cortex, prefrontal cortex and amygdala, which mediate different types of memory retrieval, are also reviewed. Together, these findings contribute to understanding the important role of hippocampal theta oscillation in the storage and recall of memory traces.
Collapse
Affiliation(s)
- Lin Sun
- School of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi Province 046013, China
| | - Lihua Bao
- Department of Neurology, Changzhi People's Hospital, Changzhi, Shanxi Province 046000, China.
| |
Collapse
|
4
|
Bonnefond M, Jensen O, Clausner T. Visual Processing by Hierarchical and Dynamic Multiplexing. eNeuro 2024; 11:ENEURO.0282-24.2024. [PMID: 39537353 PMCID: PMC11574700 DOI: 10.1523/eneuro.0282-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
The complexity of natural environments requires highly flexible mechanisms for adaptive processing of single and multiple stimuli. Neuronal oscillations could be an ideal candidate for implementing such flexibility in neural systems. Here, we present a framework for structuring attention-guided processing of complex visual scenes in humans, based on multiplexing and phase coding schemes. Importantly, we suggest that the dynamic fluctuations of excitability vary rapidly in terms of magnitude, frequency and wave-form over time, i.e., they are not necessarily sinusoidal or sustained oscillations. Different elements of single objects would be processed within a single cycle (burst) of alpha activity (7-14 Hz), allowing for the formation of coherent object representations while separating multiple objects across multiple cycles. Each element of an object would be processed separately in time-expressed as different gamma band bursts (>30 Hz)-along the alpha phase. Since the processing capacity per alpha cycle is limited, an inverse relationship between object resolution and size of attentional spotlight ensures independence of the proposed mechanism from absolute object complexity. Frequency and wave-shape of those fluctuations would depend on the nature of the object that is processed and on cognitive demands. Multiple objects would further be organized along the phase of slower fluctuations (e.g., theta), potentially driven by saccades. Complex scene processing, involving covert attention and eye movements, would therefore be associated with multiple frequency changes in the alpha and lower frequency range. This framework embraces the idea of a hierarchical organization of visual processing, independent of environmental temporal dynamics.
Collapse
Affiliation(s)
- Mathilde Bonnefond
- Lyon Neuroscience Research Center, Computation, Cognition and Neurophysiology (Cophy) team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tommy Clausner
- Lyon Neuroscience Research Center, Computation, Cognition and Neurophysiology (Cophy) team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
5
|
Duecker K, Doelling KB, Breska A, Coffey EBJ, Sivarao DV, Zoefel B. Challenges and Approaches in the Study of Neural Entrainment. J Neurosci 2024; 44:e1234242024. [PMID: 39358026 PMCID: PMC11450538 DOI: 10.1523/jneurosci.1234-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
When exposed to rhythmic stimulation, the human brain displays rhythmic activity across sensory modalities and regions. Given the ubiquity of this phenomenon, how sensory rhythms are transformed into neural rhythms remains surprisingly inconclusive. An influential model posits that endogenous oscillations entrain to external rhythms, thereby encoding environmental dynamics and shaping perception. However, research on neural entrainment faces multiple challenges, from ambiguous definitions to methodological difficulties when endogenous oscillations need to be identified and disentangled from other stimulus-related mechanisms that can lead to similar phase-locked responses. Yet, recent years have seen novel approaches to overcome these challenges, including computational modeling, insights from dynamical systems theory, sophisticated stimulus designs, and study of neuropsychological impairments. This review outlines key challenges in neural entrainment research, delineates state-of-the-art approaches, and integrates findings from human and animal neurophysiology to provide a broad perspective on the usefulness, validity, and constraints of oscillatory models in brain-environment interaction.
Collapse
Affiliation(s)
- Katharina Duecker
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Keith B Doelling
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l'Audition, Institut de l'Audition, IHU reConnect, Paris F-75012, France
| | - Assaf Breska
- Max-Planck Institute for Biological Cybernetics, D-72076 Tübingen, Germany
| | | | - Digavalli V Sivarao
- Department of Pharmaceutical Sciences, East Tennessee State University, Johnson City, Tennessee 37614
| | - Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition (CerCo), UMR 5549 CNRS - Université Paul Sabatier Toulouse III, Toulouse F-31052, France
| |
Collapse
|
6
|
Mohan UR, Jacobs J. Why does invasive brain stimulation sometimes improve memory and sometimes impair it? PLoS Biol 2024; 22:e3002894. [PMID: 39453948 PMCID: PMC11616832 DOI: 10.1371/journal.pbio.3002894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/04/2024] [Indexed: 10/27/2024] Open
Abstract
Invasive brain stimulation is used to treat individuals with episodic memory loss; however, studies to date report both enhancement and impairment of memory. This Essay discusses the sources of this variability, and suggests a path towards developing customized stimulation protocols for more consistent memory enhancement.
Collapse
Affiliation(s)
- Uma R. Mohan
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York City, New York, United States of America
- Department of Neurological Surgery, Columbia University, New York City, New York, United States of America
| |
Collapse
|
7
|
Guth TA, Brandt A, Reinacher PC, Schulze-Bonhage A, Jacobs J, Kunz L. Theta-phase locking of single neurons during human spatial memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599841. [PMID: 38948829 PMCID: PMC11212943 DOI: 10.1101/2024.06.20.599841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The precise timing of single-neuron activity in relation to local field potentials may support various cognitive functions. Extensive research in rodents, along with some evidence in humans, suggests that single-neuron activity at specific phases of theta oscillations plays a crucial role in memory processes. Our fundamental understanding of such theta-phase locking in humans and its dependency on basic electrophysiological properties of the local field potential is still limited, however. Here, using single-neuron recordings in epilepsy patients performing a spatial memory task, we thus aimed at improving our understanding of factors modulating theta-phase locking in the human brain. Combining a generalized-phase approach for frequency-adaptive theta-phase estimation with time-resolved spectral parameterization, our results show that theta-phase locking is a strong and prevalent phenomenon across human medial temporal lobe regions, both during spatial memory encoding and retrieval. Neuronal theta-phase locking increased during periods of elevated theta power, when clear theta oscillations were present, and when aperiodic activity exhibited steeper slopes. Theta-phase locking was similarly strong during successful and unsuccessful memory, and most neurons activated at similar theta phases between encoding and retrieval. Some neurons changed their preferred theta phases between encoding and retrieval, in line with the idea that different memory processes are separated within the theta cycle. Together, these results help disentangle how different properties of local field potentials and memory states influence theta-phase locking of human single neurons. This contributes to a better understanding of how interactions between single neurons and local field potentials may support human spatial memory.
Collapse
Affiliation(s)
- Tim A. Guth
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
8
|
Ding R, Ten Oever S, Martin AE. Delta-band Activity Underlies Referential Meaning Representation during Pronoun Resolution. J Cogn Neurosci 2024; 36:1472-1492. [PMID: 38652108 DOI: 10.1162/jocn_a_02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Human language offers a variety of ways to create meaning, one of which is referring to entities, objects, or events in the world. One such meaning maker is understanding to whom or to what a pronoun in a discourse refers to. To understand a pronoun, the brain must access matching entities or concepts that have been encoded in memory from previous linguistic context. Models of language processing propose that internally stored linguistic concepts, accessed via exogenous cues such as phonological input of a word, are represented as (a)synchronous activities across a population of neurons active at specific frequency bands. Converging evidence suggests that delta band activity (1-3 Hz) is involved in temporal and representational integration during sentence processing. Moreover, recent advances in the neurobiology of memory suggest that recollection engages neural dynamics similar to those which occurred during memory encoding. Integrating from these two research lines, we here tested the hypothesis that neural dynamic patterns, especially in delta frequency range, underlying referential meaning representation, would be reinstated during pronoun resolution. By leveraging neural decoding techniques (i.e., representational similarity analysis) on a magnetoencephalogram data set acquired during a naturalistic story-listening task, we provide evidence that delta-band activity underlies referential meaning representation. Our findings suggest that, during spoken language comprehension, endogenous linguistic representations such as referential concepts may be proactively retrieved and represented via activation of their underlying dynamic neural patterns.
Collapse
Affiliation(s)
- Rong Ding
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sanne Ten Oever
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Radboud University Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Andrea E Martin
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Radboud University Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| |
Collapse
|
9
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
10
|
Piza DB, Corrigan BW, Gulli RA, Do Carmo S, Cuello AC, Muller L, Martinez-Trujillo J. Primacy of vision shapes behavioral strategies and neural substrates of spatial navigation in marmoset hippocampus. Nat Commun 2024; 15:4053. [PMID: 38744848 PMCID: PMC11093997 DOI: 10.1038/s41467-024-48374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.
Collapse
Affiliation(s)
- Diego B Piza
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
| | - Benjamin W Corrigan
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | | | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lyle Muller
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Julio Martinez-Trujillo
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Western University, London, ON, Canada.
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
- Department of Psychiatry, Western University, London, ON, Canada.
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.
| |
Collapse
|
11
|
Mertens EJ, Leibner Y, Pie J, Galakhova AA, Waleboer F, Meijer J, Heistek TS, Wilbers R, Heyer D, Goriounova NA, Idema S, Verhoog MB, Kalmbach BE, Lee BR, Gwinn RP, Lein ES, Aronica E, Ting J, Mansvelder HD, Segev I, de Kock CPJ. Morpho-electric diversity of human hippocampal CA1 pyramidal neurons. Cell Rep 2024; 43:114100. [PMID: 38607921 PMCID: PMC11106460 DOI: 10.1016/j.celrep.2024.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/15/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Eline J Mertens
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Yoni Leibner
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jean Pie
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Anna A Galakhova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Femke Waleboer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Julia Meijer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Tim S Heistek
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - René Wilbers
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Djai Heyer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Natalia A Goriounova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Sander Idema
- Amsterdam UMC, location VUmc, Amsterdam 1081 HV, the Netherlands
| | - Matthijs B Verhoog
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | | | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jonathan Ting
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Huibert D Mansvelder
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands.
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Christiaan P J de Kock
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
12
|
Wischnewski M, Berger TA, Opitz A, Alekseichuk I. Causal functional maps of brain rhythms in working memory. Proc Natl Acad Sci U S A 2024; 121:e2318528121. [PMID: 38536752 PMCID: PMC10998564 DOI: 10.1073/pnas.2318528121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
Human working memory is a key cognitive process that engages multiple functional anatomical nodes across the brain. Despite a plethora of correlative neuroimaging evidence regarding the working memory architecture, our understanding of critical hubs causally controlling overall performance is incomplete. Causal interpretation requires cognitive testing following safe, temporal, and controllable neuromodulation of specific functional anatomical nodes. Such experiments became available in healthy humans with the advance of transcranial alternating current stimulation (tACS). Here, we synthesize findings of 28 placebo-controlled studies (in total, 1,057 participants) that applied frequency-specific noninvasive stimulation of neural oscillations and examined working memory performance in neurotypical adults. We use a computational meta-modeling method to simulate each intervention in realistic virtual brains and test reported behavioral outcomes against the stimulation-induced electric fields in different brain nodes. Our results show that stimulating anterior frontal and medial temporal theta oscillations and occipitoparietal gamma rhythms leads to significant dose-dependent improvement in working memory task performance. Conversely, prefrontal gamma modulation is detrimental to performance. Moreover, we found distinct spatial expression of theta subbands, where working memory changes followed orbitofrontal high-theta modulation and medial temporal low-theta modulation. Finally, all these results are driven by changes in working memory accuracy rather than processing time measures. These findings provide a fresh view of the working memory mechanisms, complementary to neuroimaging research, and propose hypothesis-driven targets for the clinical treatment of working memory deficits.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
- Department of Experimental Psychology, University of Groningen, Groningen9712TS, The Netherlands
| | - Taylor A. Berger
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
13
|
Shtoots L, Nadler A, Partouche R, Sharir D, Rothstein A, Shati L, Levy DA. Frontal midline theta transcranial alternating current stimulation enhances early consolidation of episodic memory. NPJ SCIENCE OF LEARNING 2024; 9:8. [PMID: 38365886 PMCID: PMC10873319 DOI: 10.1038/s41539-024-00222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Evidence implicating theta rhythms in declarative memory encoding and retrieval, together with the notion that both retrieval and consolidation involve memory reinstatement or replay, suggests that post-learning theta rhythm modulation can promote early consolidation of newly formed memories. Building on earlier work employing theta neurofeedback, we examined whether theta-frequency transcranial alternating stimulation (tACS) can engender effective consolidation of newly formed episodic memories, compared with beta frequency stimulation or sham control conditions. We compared midline frontal and posterior parietal theta stimulation montages and examined whether benefits to memory of theta upregulation are attributable to consolidation rather than to retrieval processes by using a washout period to eliminate tACS after-effects between stimulation and memory assessment. Four groups of participants viewed object pictures followed by a free recall test during three study-test cycles. They then engaged in tACS (frontal theta montage/parietal theta montage/frontal beta montage/sham) for a period of 20 min, followed by a 2-h break. Free recall assessments were conducted after the break, 24 h later, and 7 days later. Frontal midline theta-tACS induced significant off-line retrieval gains at all assessment time points relative to all other conditions. This indicates that theta upregulation provides optimal conditions for the consolidation of episodic memory, independent of mental-state strategies.
Collapse
Affiliation(s)
- Limor Shtoots
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Asher Nadler
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Roni Partouche
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Dorin Sharir
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Aryeh Rothstein
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Liran Shati
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel
| | - Daniel A Levy
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, 4610101, Israel.
- Department of Psychology, Palo Alto University, Palo Alto, CA, 94304, USA.
| |
Collapse
|
14
|
Rayan A, Agarwal A, Samanta A, Severijnen E, van der Meij J, Genzel L. Sleep scoring in rodents: Criteria, automatic approaches and outstanding issues. Eur J Neurosci 2024; 59:526-553. [PMID: 36479908 DOI: 10.1111/ejn.15884] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022]
Abstract
There is nothing we spend as much time on in our lives as we do sleeping, which makes it even more surprising that we currently do not know why we need to sleep. Most of the research addressing this question is performed in rodents to allow for invasive, mechanistic approaches. However, in contrast to human sleep, we currently do not have shared and agreed upon standards on sleep states in rodents. In this article, we present an overview on sleep stages in humans and rodents and a historical perspective on the development of automatic sleep scoring systems in rodents. Further, we highlight specific issues in rodent sleep that also call into question some of the standards used in human sleep research.
Collapse
Affiliation(s)
- Abdelrahman Rayan
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Anjali Agarwal
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Anumita Samanta
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Eva Severijnen
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Jacqueline van der Meij
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Lisa Genzel
- Donders Institute for Brain, Cognition, and Behavior, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Singh S, Becker S, Trappenberg T, Nunes A. Granule cells perform frequency-dependent pattern separation in a computational model of the dentate gyrus. Hippocampus 2024; 34:14-28. [PMID: 37950569 DOI: 10.1002/hipo.23585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/28/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Mnemonic discrimination (MD) may be dependent on oscillatory perforant path input frequencies to the hippocampus in a "U"-shaped fashion, where some studies show that slow and fast input frequencies support MD, while other studies show that intermediate frequencies disrupt MD. We hypothesize that pattern separation (PS) underlies frequency-dependent MD performance. We aim to study, in a computational model of the hippocampal dentate gyrus (DG), the network and cellular mechanisms governing this putative "U"-shaped PS relationship. We implemented a biophysical model of the DG that produces the hypothesized "U"-shaped input frequency-PS relationship, and its associated oscillatory electrophysiological signatures. We subsequently evaluated the network's PS ability using an adapted spatiotemporal task. We undertook systematic lesion studies to identify the network-level mechanisms driving the "U"-shaped input frequency-PS relationship. A minimal circuit of a single granule cell (GC) stimulated with oscillatory inputs was also used to study potential cellular-level mechanisms. Lesioning synapses onto GCs did not impact the "U"-shaped input frequency-PS relationship. Furthermore, GC inhibition limits PS performance for fast frequency inputs, while enhancing PS for slow frequency inputs. GC interspike interval was found to be input frequency dependent in a "U"-shaped fashion, paralleling frequency-dependent PS observed at the network level. Additionally, GCs showed an attenuated firing response for fast frequency inputs. We conclude that independent of network-level inhibition, GCs may intrinsically be capable of producing a "U"-shaped input frequency-PS relationship. GCs may preferentially decorrelate slow and fast inputs via spike timing reorganization and high frequency filtering.
Collapse
Affiliation(s)
- Selena Singh
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Suzanna Becker
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Thomas Trappenberg
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Abraham Nunes
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
16
|
Sheybani L, Vivekananda U, Rodionov R, Diehl B, Chowdhury FA, McEvoy AW, Miserocchi A, Bisby JA, Bush D, Burgess N, Walker MC. Wake slow waves in focal human epilepsy impact network activity and cognition. Nat Commun 2023; 14:7397. [PMID: 38036557 PMCID: PMC10689494 DOI: 10.1038/s41467-023-42971-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Slow waves of neuronal activity are a fundamental component of sleep that are proposed to have homeostatic and restorative functions. Despite this, their interaction with pathology is unclear and there is only indirect evidence of their presence during wakefulness. Using intracortical recordings from the temporal lobe of 25 patients with epilepsy, we demonstrate the existence of local wake slow waves (LoWS) with key features of sleep slow waves, including a down-state of neuronal firing. Consistent with a reduction in neuronal activity, LoWS were associated with slowed cognitive processing. However, we also found that LoWS showed signatures of a homeostatic relationship with interictal epileptiform discharges (IEDs): exhibiting progressive adaptation during the build-up of network excitability before an IED and reducing the impact of subsequent IEDs on network excitability. We therefore propose an epilepsy homeostasis hypothesis: that slow waves in epilepsy reduce aberrant activity at the price of transient cognitive impairment.
Collapse
Affiliation(s)
- Laurent Sheybani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Umesh Vivekananda
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Roman Rodionov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Beate Diehl
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Fahmida A Chowdhury
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Andrew W McEvoy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - Anna Miserocchi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - James A Bisby
- Division of Psychiatry, University College London, London, UK
| | - Daniel Bush
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Neil Burgess
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK.
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK.
- NIHR University College London Hospitals Biomedical Research Centre, London, UK.
| |
Collapse
|
17
|
Yun R, Rembado I, Perlmutter SI, Rao RPN, Fetz EE. Local field potentials and single unit dynamics in motor cortex of unconstrained macaques during different behavioral states. Front Neurosci 2023; 17:1273627. [PMID: 38075283 PMCID: PMC10702227 DOI: 10.3389/fnins.2023.1273627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024] Open
Abstract
Different sleep stages have been shown to be vital for a variety of brain functions, including learning, memory, and skill consolidation. However, our understanding of neural dynamics during sleep and the role of prominent LFP frequency bands remain incomplete. To elucidate such dynamics and differences between behavioral states we collected multichannel LFP and spike data in primary motor cortex of unconstrained macaques for up to 24 h using a head-fixed brain-computer interface (Neurochip3). Each 8-s bin of time was classified into awake-moving (Move), awake-resting (Rest), REM sleep (REM), or non-REM sleep (NREM) by using dimensionality reduction and clustering on the average spectral density and the acceleration of the head. LFP power showed high delta during NREM, high theta during REM, and high beta when the animal was awake. Cross-frequency phase-amplitude coupling typically showed higher coupling during NREM between all pairs of frequency bands. Two notable exceptions were high delta-high gamma and theta-high gamma coupling during Move, and high theta-beta coupling during REM. Single units showed decreased firing rate during NREM, though with increased short ISIs compared to other states. Spike-LFP synchrony showed high delta synchrony during Move, and higher coupling with all other frequency bands during NREM. These results altogether reveal potential roles and functions of different LFP bands that have previously been unexplored.
Collapse
Affiliation(s)
- Richy Yun
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Center for Neurotechnology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
| | - Irene Rembado
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Steve I. Perlmutter
- Center for Neurotechnology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Rajesh P. N. Rao
- Center for Neurotechnology, University of Washington, Seattle, WA, United States
- Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, United States
| | - Eberhard E. Fetz
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- Center for Neurotechnology, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, University of Washington, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
18
|
Maoz SLL, Stangl M, Topalovic U, Batista D, Hiller S, Aghajan ZM, Knowlton B, Stern J, Langevin JP, Fried I, Eliashiv D, Suthana N. Dynamic neural representations of memory and space during human ambulatory navigation. Nat Commun 2023; 14:6643. [PMID: 37863929 PMCID: PMC10589239 DOI: 10.1038/s41467-023-42231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
Our ability to recall memories of personal experiences is an essential part of daily life. These episodic memories often involve movement through space and thus require continuous encoding of one's position relative to the surrounding environment. The medial temporal lobe (MTL) is thought to be critically involved, based on studies in freely moving rodents and stationary humans. However, it remains unclear if and how the MTL represents both space and memory especially during physical navigation, given challenges associated with deep brain recordings in humans during movement. We recorded intracranial electroencephalographic (iEEG) activity while participants completed an ambulatory spatial memory task within an immersive virtual reality environment. MTL theta activity was modulated by successful memory retrieval or spatial positions within the environment, depending on dynamically changing behavioral goals. Altogether, these results demonstrate how human MTL oscillations can represent both memory and space in a temporally flexible manner during freely moving navigation.
Collapse
Affiliation(s)
- Sabrina L L Maoz
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Matthias Stangl
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Uros Topalovic
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Daniel Batista
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Sonja Hiller
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Zahra M Aghajan
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Barbara Knowlton
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - John Stern
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jean-Philippe Langevin
- Neurosurgery Service, Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Itzhak Fried
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Faculty of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Dawn Eliashiv
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Nanthia Suthana
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90024, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
19
|
Seger SE, Kriegel JLS, Lega BC, Ekstrom AD. Memory-related processing is the primary driver of human hippocampal theta oscillations. Neuron 2023; 111:3119-3130.e4. [PMID: 37467749 PMCID: PMC10685603 DOI: 10.1016/j.neuron.2023.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
Decades of work in rodents suggest that movement is a powerful driver of hippocampal low-frequency "theta" oscillations. Puzzlingly, such movement-related theta increases in primates are less sustained and of lower frequency, leading to questions about their functional relevance. Verbal memory encoding and retrieval lead to robust increases in low-frequency oscillations in humans, and one possibility is that memory might be a stronger driver of hippocampal theta oscillations in humans than navigation. Here, neurosurgical patients navigated routes and then immediately mentally simulated the same routes while undergoing intracranial recordings. We found that mentally simulating the same route that was just navigated elicited oscillations that were of greater power, higher frequency, and longer duration than those involving navigation. Our findings suggest that memory is a more potent driver of human hippocampal theta oscillations than navigation, supporting models of internally generated theta oscillations in the human hippocampus.
Collapse
Affiliation(s)
- Sarah E Seger
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA
| | - Jennifer L S Kriegel
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Brad C Lega
- Department of Neurosurgery, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Arne D Ekstrom
- Neuroscience Interdisciplinary Program, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Psychology Department, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA; Evelyn McKnight Brain Institute, University of Arizona, 1503 E. University Blvd., Tucson, AZ 85719, USA.
| |
Collapse
|
20
|
Shaffer C, Barrett LF, Quigley KS. Signal processing in the vagus nerve: Hypotheses based on new genetic and anatomical evidence. Biol Psychol 2023; 182:108626. [PMID: 37419401 PMCID: PMC10563766 DOI: 10.1016/j.biopsycho.2023.108626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023]
Abstract
Each organism must regulate its internal state in a metabolically efficient way as it interacts in space and time with an ever-changing and only partly predictable world. Success in this endeavor is largely determined by the ongoing communication between brain and body, and the vagus nerve is a crucial structure in that dialogue. In this review, we introduce the novel hypothesis that the afferent vagus nerve is engaged in signal processing rather than just signal relay. New genetic and structural evidence of vagal afferent fiber anatomy motivates two hypotheses: (1) that sensory signals informing on the physiological state of the body compute both spatial and temporal viscerosensory features as they ascend the vagus nerve, following patterns found in other sensory architectures, such as the visual and olfactory systems; and (2) that ascending and descending signals modulate one another, calling into question the strict segregation of sensory and motor signals, respectively. Finally, we discuss several implications of our two hypotheses for understanding the role of viscerosensory signal processing in predictive energy regulation (i.e., allostasis) as well as the role of metabolic signals in memory and in disorders of prediction (e.g., mood disorders).
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| | - Lisa Feldman Barrett
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Karen S Quigley
- Department of Psychology, College of Science, Northeastern University, Boston, MA, USA.
| |
Collapse
|
21
|
Gedankien T, Tan RJ, Qasim SE, Moore H, McDonagh D, Jacobs J, Lega B. Acetylcholine modulates the temporal dynamics of human theta oscillations during memory. Nat Commun 2023; 14:5283. [PMID: 37648692 PMCID: PMC10469188 DOI: 10.1038/s41467-023-41025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
The cholinergic system is essential for memory. While degradation of cholinergic pathways characterizes memory-related disorders such as Alzheimer's disease, the neurophysiological mechanisms linking the cholinergic system to human memory remain unknown. Here, combining intracranial brain recordings with pharmacological manipulation, we describe the neurophysiological effects of a cholinergic blocker, scopolamine, on the human hippocampal formation during episodic memory. We found that the memory impairment caused by scopolamine was coupled to disruptions of both the amplitude and phase alignment of theta oscillations (2-10 Hz) during encoding. Across individuals, the severity of theta phase disruption correlated with the magnitude of memory impairment. Further, cholinergic blockade disrupted connectivity within the hippocampal formation. Our results indicate that cholinergic circuits support memory by coordinating the temporal dynamics of theta oscillations across the hippocampal formation. These findings expand our mechanistic understanding of the neurophysiology of human memory and offer insights into potential treatments for memory-related disorders.
Collapse
Affiliation(s)
- Tamara Gedankien
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ryan Joseph Tan
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Salman Ehtesham Qasim
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Haley Moore
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - David McDonagh
- Department of Anesthesiology, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
- Department of Neurological Surgery, Columbia University, New York, NY, 10032, USA.
| | - Bradley Lega
- Department of Neurological Surgery, University of Texas Southwestern, Dallas, TX, 75390, USA.
| |
Collapse
|
22
|
Shimoju R. Cortical theta oscillations and 50-kHz ultrasonic vocalizations in response to tactile reward indicate positive emotion in rats. Neurosci Lett 2023; 810:137328. [PMID: 37295641 DOI: 10.1016/j.neulet.2023.137328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Rats emit 50-kHz ultrasonic vocalizations (USVs), which reflect positive affective states. Rhythmic stroking increases 50-kHz USVs via the mesolimbic dopaminergic system. However, little is known about the effect of tactile reward on rat brain activity. This study aimed to investigate the brain activity associated with positive emotions induced by tactile stimulation using a frontoparietal electroencephalogram (EEG) as well as through the analysis of 50-kHz USVs and behavioral activity in awake rats. During rhythmic stroking, the power of the middle theta band and harmonics calls significantly increased compared with baseline. After rhythmic stroking, fast theta oscillations significantly increased but slow theta significantly decreased, with abundant frequency-modulated (FM) calls. Light touch stimulation increased the fast theta power but decreased FM calls. However, there was no significant difference in behavior after stimulation with rhythmic stroking or light touch. These results suggest that the characteristic brain theta oscillations and 50-kHz USV profiles induced by tactile reward can detect positive affective states in rats.
Collapse
Affiliation(s)
- Rie Shimoju
- Center for Basic Medical Research, International University of Health and Welfare, Otawara, Tochigi 324-8501, Japan.
| |
Collapse
|
23
|
Gallimore CG, Ricci DA, Hamm JP. Spatiotemporal dynamics across visual cortical laminae support a predictive coding framework for interpreting mismatch responses. Cereb Cortex 2023; 33:9417-9428. [PMID: 37310190 PMCID: PMC10393498 DOI: 10.1093/cercor/bhad215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1)-a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence-a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations-and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that although basic adaptation to redundant stimuli was present early (50 ms) in layer 4 responses, DD emerged later (150-230 ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7 Hz) and high-gamma (70-80 Hz) oscillations in L2/3 and decreased beta oscillations (26-36 Hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, whereas "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.
Collapse
Affiliation(s)
- Connor G Gallimore
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - David A Ricci
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| | - Jordan P Hamm
- Neuroscience Institute, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
- Center for Behavioral Neuroscience, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Petit Science Center, 100 Piedmont Ave, Atlanta, GA 30303, United States
| |
Collapse
|
24
|
Joensen BH, Bush D, Vivekananda U, Horner AJ, Bisby JA, Diehl B, Miserocchi A, McEvoy AW, Walker MC, Burgess N. Hippocampal theta activity during encoding promotes subsequent associative memory in humans. Cereb Cortex 2023; 33:8792-8802. [PMID: 37160345 PMCID: PMC10321091 DOI: 10.1093/cercor/bhad162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Hippocampal theta oscillations have been implicated in associative memory in humans. However, findings from electrophysiological studies using scalp electroencephalography or magnetoencephalography, and those using intracranial electroencephalography are mixed. Here we asked 10 pre-surgical epilepsy patients undergoing intracranial electroencephalography recording, along with 21 participants undergoing magnetoencephalography recordings, to perform an associative memory task, and examined whether hippocampal theta activity during encoding was predictive of subsequent associative memory performance. Across the intracranial electroencephalography and magnetoencephalography studies, we observed that theta power in the hippocampus increased during encoding, and that this increase differed as a function of subsequent memory, with greater theta activity for pairs that were successfully retrieved in their entirety compared with those that were not remembered. This helps to clarify the role of theta oscillations in associative memory formation in humans, and further, demonstrates that findings in epilepsy patients undergoing intracranial electroencephalography recordings can be extended to healthy participants undergoing magnetoencephalography recordings.
Collapse
Affiliation(s)
- Bárður H Joensen
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- UCL Institute of Cognitive Neuroscience, UCL, London, WC1N 3AZ, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm 17165, Sweden
- Department of Psychology, Uppsala University, Uppsala 751 42, Sweden
| | - Daniel Bush
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, WC1E 6BT, United Kingdom
| | - Umesh Vivekananda
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Aidan J Horner
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, YO10 5DD, United Kingdom
| | - James A Bisby
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- UCL Institute of Cognitive Neuroscience, UCL, London, WC1N 3AZ, United Kingdom
- Division of Psychiatry, UCL, London, W1T 7BN, United Kingdom
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Anna Miserocchi
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Andrew W McEvoy
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Matthew C Walker
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Neil Burgess
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- UCL Institute of Cognitive Neuroscience, UCL, London, WC1N 3AZ, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, United Kingdom
| |
Collapse
|
25
|
Stangl M, Maoz SL, Suthana N. Mobile cognition: imaging the human brain in the 'real world'. Nat Rev Neurosci 2023; 24:347-362. [PMID: 37046077 PMCID: PMC10642288 DOI: 10.1038/s41583-023-00692-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 04/14/2023]
Abstract
Cognitive neuroscience studies in humans have enabled decades of impactful discoveries but have primarily been limited to recording the brain activity of immobile participants in a laboratory setting. In recent years, advances in neuroimaging technologies have enabled recordings of human brain activity to be obtained during freely moving behaviours in the real world. Here, we propose that these mobile neuroimaging methods can provide unique insights into the neural mechanisms of human cognition and contribute to the development of novel treatments for neurological and psychiatric disorders. We further discuss the challenges associated with studying naturalistic human behaviours in complex real-world settings as well as strategies for overcoming them. We conclude that mobile neuroimaging methods have the potential to bring about a new era of cognitive neuroscience in which neural mechanisms can be studied with increased ecological validity and with the ability to address questions about natural behaviour and cognitive processes in humans engaged in dynamic real-world experiences.
Collapse
Affiliation(s)
- Matthias Stangl
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Sabrina L Maoz
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
26
|
Zhang W, Xiong B, Wu Y, Xiao L, Wang W. Local field potentials in major depressive and obsessive-compulsive disorder: a frequency-based review. Front Psychiatry 2023; 14:1080260. [PMID: 37181878 PMCID: PMC10169609 DOI: 10.3389/fpsyt.2023.1080260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Objectives The purpose of this paper is to provide a mini-review covering the recent progress in human and animal studies on local field potentials (LFPs) of major depressive disorder (MDD) and obsessive-compulsive disorder (OCD). Materials and methods PubMed and EMBASE were searched to identify related studies. Inclusion criteria were (1) reported the LFPs on OCD or MDD, (2) published in English, and (3) human or animal studies. Exclusion criteria were (1) review or meta-analysis or other literature types without original data and (2) conference abstract without full text. Descriptive synthesis of data was performed. Results Eight studies on LFPs of OCD containing 22 patients and 32 rats were included: seven were observational studies with no controls, and one animal study included a randomized and controlled phase. Ten studies on LFPs of MDD containing 71 patients and 52 rats were included: seven were observational studies with no controls, one study with control, and two animal studies included a randomized and controlled phase. Conclusion The available studies revealed that different frequency bands were associated with specific symptoms. Low frequency activity seemed to be closely related to OCD symptoms, whereas LFPs findings in patients with MDD were more complicated. However, limitations of recent studies restrict the drawing of definite conclusions. Combined with other measures such as Electroencephalogram, Electrocorticography, or Magnetoencephalography and long-term recordings in various physiological states (rest state, sleep state, task state) could help to improve the understanding of potential mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Gallimore CG, Ricci D, Hamm JP. Spatiotemporal dynamics across visual cortical laminae support a predictive coding framework for interpreting mismatch responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537173. [PMID: 37131642 PMCID: PMC10153128 DOI: 10.1101/2023.04.17.537173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1) -- a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence - a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations - and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that while basic adaptation to redundant stimuli was present early (50ms) in layer 4 responses, DD emerged later (150-230ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7Hz) and high-gamma (70-80Hz) oscillations in L2/3 and decreased beta oscillations (26-36hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, while "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.
Collapse
|
28
|
Saint Amour di Chanaz L, Pérez-Bellido A, Wu X, Lonzano-Soldevilla D, Pacheco-Estefan D, Lehongre K, Conde-Blanco E, Roldan P, Adam C, Lambrecq V, Frazzini V, Donaire A, Carreño M, Navarro V, Valero-Cabré A, Fuentemilla L. Gamma amplitude is coupled to opposed hippocampal theta-phase states during the encoding and retrieval of episodic memories in humans. Curr Biol 2023; 33:1836-1843.e6. [PMID: 37060906 DOI: 10.1016/j.cub.2023.03.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 03/24/2023] [Indexed: 04/17/2023]
Abstract
Computational models and in vivo studies in rodents suggest that the emergence of gamma activity (40-140 Hz) during memory encoding and retrieval is coupled to opposed-phase states of the underlying hippocampal theta rhythm (4-9 Hz).1,2,3,4,5,6,7,8,9,10 However, direct evidence for whether human hippocampal gamma-modulated oscillatory activity in memory processes is coupled to opposed-phase states of the ongoing theta rhythm remains elusive. Here, we recorded local field potentials (LFPs) directly from the hippocampus of 10 patients with epilepsy, using depth electrodes. We used a memory encoding and retrieval task whereby trial unique sequences of pictures depicting real-life episodes were presented, and 24 h later, participants were asked to recall them upon the appearance of the first picture of the encoded episodic sequence. We found theta-to-gamma cross-frequency coupling that was specific to the hippocampus during both the encoding and retrieval of episodic memories. We also revealed that gamma was coupled to opposing theta phases during both encoding and recall processes. Additionally, we observed that the degree of theta-gamma phase opposition between encoding and recall was associated with participants' memory performance, so gamma power was modulated by theta phase for both remembered and forgotten trials, although only for remembered trials the dominant theta phase was different for encoding and recall trials. The current results offer direct empirical evidence in support of hippocampal theta-gamma phase opposition models in human long-term memory and provide fundamental insights into mechanistic predictions derived from computational and animal work, thereby contributing to establishing similarities and differences across species.
Collapse
Affiliation(s)
- Ludovico Saint Amour di Chanaz
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Alexis Pérez-Bellido
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain
| | - Xiongbo Wu
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Diego Lonzano-Soldevilla
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Crta. M40, Km. 38, Pozuelo de Alarcón, Madrid 28223, Spain
| | - Daniel Pacheco-Estefan
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Katia Lehongre
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Estefanía Conde-Blanco
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Pedro Roldan
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Claude Adam
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Virginie Lambrecq
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Valerio Frazzini
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antonio Donaire
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Mar Carreño
- Epilepsy Program, Neurology Department, Hospital Clínic de Barcelona, EpiCARE: European Reference Network for Epilepsy, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C. de Villarroel, 170, 08036 Barcelona, Spain
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Département de Neurophysiologie, Hôpital PitiéSalpêtrière, DMU Neurosciences, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France
| | - Antoni Valero-Cabré
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, 47-83, Boulevard de l'Hôpital, 75651 Paris Cedex 13, France; Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB team, CNRS UMR 7225, INSERM U1127, Paris, France; Faculty of Health and Science, Cognitive Neurolab, Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Avinguda del Tibidabo, 39-43, 08035 Barcelona, Spain; Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University School of Medicine, 72 E Concord Street, Boston, MA 02118, USA
| | - Lluís Fuentemilla
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Pg Vall Hebrón 171, 08035 Barcelona, Spain; Institute for Biomedical Research of Bellvitge, C/ Feixa Llarga, s/n - Pavelló de Govern -Edifici Modular, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| |
Collapse
|
29
|
Victorino DB, Faber J, Pinheiro DJLL, Scorza FA, Almeida ACG, Costa ACS, Scorza CA. Toward the Identification of Neurophysiological Biomarkers for Alzheimer's Disease in Down Syndrome: A Potential Role for Cross-Frequency Phase-Amplitude Coupling Analysis. Aging Dis 2023; 14:428-449. [PMID: 37008053 PMCID: PMC10017148 DOI: 10.14336/ad.2022.0906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Cross-frequency coupling (CFC) mechanisms play a central role in brain activity. Pathophysiological mechanisms leading to many brain disorders, such as Alzheimer's disease (AD), may produce unique patterns of brain activity detectable by electroencephalography (EEG). Identifying biomarkers for AD diagnosis is also an ambition among research teams working in Down syndrome (DS), given the increased susceptibility of people with DS to develop early-onset AD (DS-AD). Here, we review accumulating evidence that altered theta-gamma phase-amplitude coupling (PAC) may be one of the earliest EEG signatures of AD, and therefore may serve as an adjuvant tool for detecting cognitive decline in DS-AD. We suggest that this field of research could potentially provide clues to the biophysical mechanisms underlying cognitive dysfunction in DS-AD and generate opportunities for identifying EEG-based biomarkers with diagnostic and prognostic utility in DS-AD.
Collapse
Affiliation(s)
- Daniella B Victorino
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Jean Faber
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Daniel J. L. L Pinheiro
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Fulvio A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| | - Antônio C. G Almeida
- Department of Biosystems Engineering, Federal University of São João Del Rei, Minas Gerais, MG, Brazil.
| | - Alberto C. S Costa
- Division of Psychiatry, Case Western Reserve University, Cleveland, OH, United States.
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH, United States.
| | - Carla A Scorza
- Discipline of Neuroscience, Department of Neurology and Neurosurgery, Federal University of São Paulo / Paulista Medical School, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
Ponzi A, Dura-Bernal S, Migliore M. Theta-gamma phase amplitude coupling in a hippocampal CA1 microcircuit. PLoS Comput Biol 2023; 19:e1010942. [PMID: 36952558 PMCID: PMC10072417 DOI: 10.1371/journal.pcbi.1010942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2023] [Accepted: 02/13/2023] [Indexed: 03/25/2023] Open
Abstract
Phase amplitude coupling (PAC) between slow and fast oscillations is found throughout the brain and plays important functional roles. Its neural origin remains unclear. Experimental findings are often puzzling and sometimes contradictory. Most computational models rely on pairs of pacemaker neurons or neural populations tuned at different frequencies to produce PAC. Here, using a data-driven model of a hippocampal microcircuit, we demonstrate that PAC can naturally emerge from a single feedback mechanism involving an inhibitory and excitatory neuron population, which interplay to generate theta frequency periodic bursts of higher frequency gamma. The model suggests the conditions under which a CA1 microcircuit can operate to elicit theta-gamma PAC, and highlights the modulatory role of OLM and PVBC cells, recurrent connectivity, and short term synaptic plasticity. Surprisingly, the results suggest the experimentally testable prediction that the generation of the slow population oscillation requires the fast one and cannot occur without it.
Collapse
Affiliation(s)
- Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States of America
| | - Michele Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
31
|
Alexander AS, Place R, Starrett MJ, Chrastil ER, Nitz DA. Rethinking retrosplenial cortex: Perspectives and predictions. Neuron 2023; 111:150-175. [PMID: 36460006 PMCID: PMC11709228 DOI: 10.1016/j.neuron.2022.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/09/2022] [Accepted: 11/06/2022] [Indexed: 12/03/2022]
Abstract
The last decade has produced exciting new ideas about retrosplenial cortex (RSC) and its role in integrating diverse inputs. Here, we review the diversity in forms of spatial and directional tuning of RSC activity, temporal organization of RSC activity, and features of RSC interconnectivity with other brain structures. We find that RSC anatomy and dynamics are more consistent with roles in multiple sensorimotor and cognitive processes than with any isolated function. However, two more generalized categories of function may best characterize roles for RSC in complex cognitive processes: (1) shifting and relating perspectives for spatial cognition and (2) prediction and error correction for current sensory states with internal representations of the environment. Both functions likely take advantage of RSC's capacity to encode conjunctions among sensory, motor, and spatial mapping information streams. Together, these functions provide the scaffold for intelligent actions, such as navigation, perspective taking, interaction with others, and error detection.
Collapse
Affiliation(s)
- Andrew S Alexander
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Ryan Place
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael J Starrett
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Elizabeth R Chrastil
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Cognitive Sciences, University of California, Irvine, Irvine, CA 92697, USA.
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Jeung S, Hilton C, Berg T, Gehrke L, Gramann K. Virtual Reality for Spatial Navigation. Curr Top Behav Neurosci 2023; 65:103-129. [PMID: 36512288 DOI: 10.1007/7854_2022_403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immersive virtual reality (VR) allows its users to experience physical space in a non-physical world. It has developed into a powerful research tool to investigate the neural basis of human spatial navigation as an embodied experience. The task of wayfinding can be carried out by using a wide range of strategies, leading to the recruitment of various sensory modalities and brain areas in real-life scenarios. While traditional desktop-based VR setups primarily focus on vision-based navigation, immersive VR setups, especially mobile variants, can efficiently account for motor processes that constitute locomotion in the physical world, such as head-turning and walking. When used in combination with mobile neuroimaging methods, immersive VR affords a natural mode of locomotion and high immersion in experimental settings, designing an embodied spatial experience. This in turn facilitates ecologically valid investigation of the neural underpinnings of spatial navigation.
Collapse
Affiliation(s)
- Sein Jeung
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christopher Hilton
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
| | - Timotheus Berg
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
| | - Lukas Gehrke
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
| | - Klaus Gramann
- Department of Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany.
- Center for Advanced Neurological Engineering, University of California, San Diego, CA, USA.
| |
Collapse
|
33
|
Chiffi G, Grandgirard D, Stöckli S, Valente LG, Adamantidis A, Leib SL. Tick-borne encephalitis affects sleep–wake behavior and locomotion in infant rats. Cell Biosci 2022; 12:121. [PMID: 35918749 PMCID: PMC9344439 DOI: 10.1186/s13578-022-00859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/21/2022] [Indexed: 03/05/2025] Open
Abstract
Background/Aims Tick-borne encephalitis (TBE) is a disease affecting the central nervous system. Over the last decade, the incidence of TBE has steadily increased in Europe and Asia despite the availably of effective vaccines. Up to 50% of patients after TBE suffer from post-encephalitic syndrome that may develop into long-lasting morbidity. Altered sleep–wake functions have been reported by patients after TBE. The mechanisms causing these disorders in TBE are largely unknown to date. As a first step toward a better understanding of the pathology of TBEV-inducing sleep dysfunctions, we assessed parameters of sleep structure in an established infant rat model of TBE. Methods 13-day old Wistar rats were infected with 1 × 106 FFU Langat virus (LGTV). On day 4, 9, and 21 post infection, Rotarod (balance and motor coordination) and open field tests (general locomotor activity) were performed and brains from representative animals were collected in each subgroup. On day 28 the animals were implanted with a telemetric EEG/EMG system. Sleep recording was continuously performed for 24 consecutive hours starting at day 38 post infection and visually scored for Wake, NREM, and REM in 4 s epochs. Results As a novelty of this study, infected animals showed a significant larger percentage of time spend awake during the dark phase and less NREM and REM compared to the control animals (p < 0.01 for all comparisons). Furthermore, it was seen, that during the dark phase the wake bout length in infected animals was prolonged (p = 0.043) and the fragmentation index decreased (p = 0.0085) in comparison to the control animals. LGTV-infected animals additionally showed a reduced rotarod performance ability at day 4 (p = 0.0011) and day 9 (p = 0.0055) and day 21 (p = 0.0037). A lower locomotor activity was also seen at day 4 (p = 0.0196) and day 9 (p = 0.0473). Conclusion Our data show that experimental TBE in infant rats affects sleep–wake behavior, leads to decreased spontaneous locomotor activity, and impaired moto-coordinative function. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00859-7.
Collapse
|
34
|
Kerrén C, van Bree S, Griffiths BJ, Wimber M. Phase separation of competing memories along the human hippocampal theta rhythm. eLife 2022; 11:e80633. [PMID: 36394367 PMCID: PMC9671495 DOI: 10.7554/elife.80633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
Competition between overlapping memories is considered one of the major causes of forgetting, and it is still unknown how the human brain resolves such mnemonic conflict. In the present magnetoencephalography (MEG) study, we empirically tested a computational model that leverages an oscillating inhibition algorithm to minimise overlap between memories. We used a proactive interference task, where a reminder word could be associated with either a single image (non-competitive condition) or two competing images, and participants were asked to always recall the most recently learned word-image association. Time-resolved pattern classifiers were trained to detect the reactivated content of target and competitor memories from MEG sensor patterns, and the timing of these neural reactivations was analysed relative to the phase of the dominant hippocampal 3 Hz theta oscillation. In line with our pre-registered hypotheses, target and competitor reactivations locked to different phases of the hippocampal theta rhythm after several repeated recalls. Participants who behaviourally experienced lower levels of interference also showed larger phase separation between the two overlapping memories. The findings provide evidence that the temporal segregation of memories, orchestrated by slow oscillations, plays a functional role in resolving mnemonic competition by separating and prioritising relevant memories under conditions of high interference.
Collapse
Affiliation(s)
- Casper Kerrén
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Research Group Adaptive Memory and Decision Making, Max Planck Institute for Human DevelopmentBerlinGermany
| | - Sander van Bree
- Centre for Cognitive Neuroimaging, School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Benjamin J Griffiths
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Maria Wimber
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Centre for Cognitive Neuroimaging, School of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
35
|
Mao D. Neural Correlates of Spatial Navigation in Primate Hippocampus. Neurosci Bull 2022; 39:315-327. [PMID: 36319893 PMCID: PMC9905402 DOI: 10.1007/s12264-022-00968-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/16/2022] [Indexed: 11/07/2022] Open
Abstract
The hippocampus has been extensively implicated in spatial navigation in rodents and more recently in bats. Numerous studies have revealed that various kinds of spatial information are encoded across hippocampal regions. In contrast, investigations of spatial behavioral correlates in the primate hippocampus are scarce and have been mostly limited to head-restrained subjects during virtual navigation. However, recent advances made in freely-moving primates suggest marked differences in spatial representations from rodents, albeit some similarities. Here, we review empirical studies examining the neural correlates of spatial navigation in the primate (including human) hippocampus at the levels of local field potentials and single units. The lower frequency theta oscillations are often intermittent. Single neuron responses are highly mixed and task-dependent. We also discuss neuronal selectivity in the eye and head coordinates. Finally, we propose that future studies should focus on investigating both intrinsic and extrinsic population activity and examining spatial coding properties in large-scale hippocampal-neocortical networks across tasks.
Collapse
Affiliation(s)
- Dun Mao
- Center for Excellence in Brain Science and Intelligent Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Moore H, Lega BC, Konopka G. Riding brain "waves" to identify human memory genes. Curr Opin Cell Biol 2022; 78:102118. [PMID: 35947942 DOI: 10.1016/j.ceb.2022.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/31/2023]
Abstract
While there is extensive research on memory-related oscillations and brain gene expression, the relationship between oscillations and gene expression has rarely been studied. Recently, progress has been made to identify specific genes associated with oscillations that are correlated with episodic memory. Neocortical regions, in particular the temporal pole, have been examined in this line of research due to their accessibility during neurosurgical procedures. By harnessing this accessibility, a unique and powerful study design has allowed gene expression and intracranial oscillatory data to be sourced from the same human patients. These studies have identified a plethora of understudied gene targets that should be further characterized with respect to human brain function. Future work should extend to other brain regions to increase our understanding of the genetic signatures of oscillations and, ultimately, human cognition.
Collapse
Affiliation(s)
- Haley Moore
- Department of Neuroscience, UT Southwestern Medical Center, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, USA; Department of Neurosurgery, UT Southwestern Medical Center, USA
| | - Bradley C Lega
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, USA; Department of Neurosurgery, UT Southwestern Medical Center, USA.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, USA; Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, USA.
| |
Collapse
|
37
|
Arski ON, Wong SM, Warsi NM, Pang E, Kerr E, Smith ML, Taylor MJ, Dunkley BT, Ochi A, Otsubo H, Sharma R, Yau I, Jain P, Donner EJ, Snead OC, Ibrahim GM. Epilepsy disrupts hippocampal phase precision and impairs working memory. Epilepsia 2022; 63:2583-2596. [PMID: 35778973 DOI: 10.1111/epi.17357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Working memory deficits are prevalent in childhood epilepsy. Working memory processing is thought to be supported by the phase of hippocampal neural oscillations. Disruptions in working memory have previously been linked to the occurrence of transient epileptic activity. This study aimed to resolve the associations between oscillatory neural activity, transient epileptiform events, and working memory in children with epilepsy. METHODS Intracranial recordings were acquired from stereotactically-implanted electrodes in the hippocampi, epileptogenic zones, and working memory-related networks of children with drug-resistant epilepsy during a 1-back working memory task. Interictal epileptic activity was captured using automated detectors. Hippocampal phase and interregional connectivity within working memory networks were indexed by Rayleigh Z and the phase difference derivative respectively. Trials with and without transient epileptiform events were compared. RESULTS Twelve children (mean age of 14.3 ± 2.8 years) with drug-resistant epilepsy were included in the study. In the absence of transient epileptic activity, significant delta and theta hippocampal phase resetting occurred in response to working memory stimulus presentation (Rz = 9, Rz = 8). Retrieval trials that were in-phase with the preferred phase angle were associated with faster reaction times (p = 0.01, p = 0.03). Concurrently, delta and theta coordinated interactions between the hippocampi and working memory-related networks were enhanced (PDD z-scores = 6-11). During retrieval trials with pre-encoding or pre-retrieval transient epileptic activity, phase resetting was attenuated (Rz = 5, Rz = 1), interregional connectivity was altered (PDD z-scores = 1-3), and reaction times were prolonged (p = 0.01, p = 0.03). SIGNIFICANCE This work highlights the role of hippocampal phase in working memory. We observe post-stimulus hippocampal phase resetting coincident with enhanced interregional connectivity. The precision of hippocampal phase predicts optimal working memory processing, and transient epileptic activity prolongs working memory processing. These findings can help guide future treatments aimed at restoring memory function in this patient population.
Collapse
Affiliation(s)
- Olivia N Arski
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Simeon M Wong
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada
| | - Nebras M Warsi
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Elizabeth Pang
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elizabeth Kerr
- Department of Psychology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mary Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Psychology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Margot J Taylor
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | | | - Ayako Ochi
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Hiroshi Otsubo
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Roy Sharma
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Ivanna Yau
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Puneet Jain
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Elizabeth J Donner
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - O Carter Snead
- Division of Neurology, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, Canada.,Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, Canada.,Division of Neurosurgery, Hospital for Sick Children, Department of Surgery, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
38
|
Ranasinghe KG, Verma P, Cai C, Xie X, Kudo K, Gao X, Lerner H, Mizuiri D, Strom A, Iaccarino L, La Joie R, Miller BL, Gorno-Tempini ML, Rankin KP, Jagust WJ, Vossel K, Rabinovici GD, Raj A, Nagarajan SS. Altered excitatory and inhibitory neuronal subpopulation parameters are distinctly associated with tau and amyloid in Alzheimer's disease. eLife 2022; 11:e77850. [PMID: 35616532 PMCID: PMC9217132 DOI: 10.7554/elife.77850] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Neuronal- and circuit-level abnormalities of excitation and inhibition are shown to be associated with tau and amyloid-beta (Aβ) in preclinical models of Alzheimer's disease (AD). These relationships remain poorly understood in patients with AD. Methods Using empirical spectra from magnetoencephalography and computational modeling (neural mass model), we examined excitatory and inhibitory parameters of neuronal subpopulations and investigated their specific associations to regional tau and Aβ, measured by positron emission tomography, in patients with AD. Results Patients with AD showed abnormal excitatory and inhibitory time-constants and neural gains compared to age-matched controls. Increased excitatory time-constants distinctly correlated with higher tau depositions while increased inhibitory time-constants distinctly correlated with higher Aβ depositions. Conclusions Our results provide critical insights about potential mechanistic links between abnormal neural oscillations and cellular correlates of impaired excitatory and inhibitory synaptic functions associated with tau and Aβ in patients with AD. Funding This study was supported by the National Institutes of Health grants: K08AG058749 (KGR), F32AG050434-01A1 (KGR), K23 AG038357 (KAV), P50 AG023501, P01 AG19724 (BLM), P50-AG023501 (BLM and GDR), R01 AG045611 (GDR); AG034570, AG062542 (WJ); NS100440 (SSN), DC176960 (SSN), DC017091 (SSN), AG062196 (SSN); a grant from John Douglas French Alzheimer's Foundation (KAV); grants from Larry L. Hillblom Foundation: 2015-A-034-FEL (KGR), 2019-A-013-SUP (KGR); grants from the Alzheimer's Association: AARG-21-849773 (KGR); PCTRB-13-288476 (KAV), and made possible by Part the CloudTM (ETAC-09-133596); a grant from Tau Consortium (GDR and WJJ), and a gift from the S. D. Bechtel Jr. Foundation.
Collapse
Affiliation(s)
- Kamalini G Ranasinghe
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Parul Verma
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Chang Cai
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Xihe Xie
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Kiwamu Kudo
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
- Medical Imaging Business Center, Ricoh CompanyKanazawaJapan
| | - Xiao Gao
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Hannah Lerner
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Amelia Strom
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Katherine P Rankin
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Keith Vossel
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Mary S. Easton Center for Alzheimer’s Disease Research, Department of Neurology, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
39
|
Anterior Cingulate Cortex Signals the Need to Control Intrusive Thoughts during Motivated Forgetting. J Neurosci 2022; 42:4342-4359. [PMID: 35437275 PMCID: PMC9145231 DOI: 10.1523/jneurosci.1711-21.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/07/2021] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
How do people limit awareness of unwanted memories? When such memories intrude, a control process engages the right DLPFC (rDLPFC) to inhibit hippocampal activity and stop retrieval. It remains unknown how the need for control is detected, and whether control operates proactively to prevent unwelcome memories from being retrieved, or responds reactively, to counteract intrusions. We hypothesized that dorsal ACC (dACC) detects the emergence of an unwanted trace in awareness and transmits the need for inhibitory control to rDLPFC. During a memory suppression task, we measured in humans (both sexes) trial-by-trial variations in the theta power and N2 amplitude of dACC, two EEG markers that are thought to reflect the need for control. With simultaneous EEG-fMRI recordings, we tracked interactions among dACC, rDLPFC, and hippocampus during suppression. We found a clear role of dACC in detecting the need for memory control and upregulating prefrontal inhibition. Importantly, we identified distinct early (300-450 ms) and late (500-700 ms) dACC contributions, suggesting both proactive control before recollection and reactive control in response to intrusions. Stronger early activity was associated with reduced hippocampal activity and diminished BOLD signal in dACC and rDLPFC, suggesting that preempting retrieval reduced overall control demands. In the later window, dACC activity was larger, and effective connectivity analyses revealed robust communication from dACC to rDLPFC and from rDLPFC to hippocampus, which are tied to successful forgetting. Together, our findings support a model in which dACC detects the emergence of unwanted content, triggering top-down inhibitory control, and in which rDLPFC countermands intruding thoughts that penetrate awareness.SIGNIFICANCE STATEMENT Preventing unwanted memories from coming to mind is an adaptive ability of humans. This ability relies on inhibitory control processes in the prefrontal cortex to modulate hippocampal retrieval processes. How and when reminders to unwelcome memories come to trigger prefrontal control mechanisms remains unknown. Here we acquired neuroimaging data with both high spatial and temporal resolution as participants suppressed specific memories. We found that the anterior cingulate cortex detects the need for memory control, responding both proactively to early warning signals about unwelcome content and reactively to intrusive thoughts themselves. When unwanted traces emerge in awareness, anterior cingulate communicates with prefrontal cortex and triggers top-down inhibitory control over the hippocampus through specific neural oscillatory networks.
Collapse
|
40
|
Nadasdy Z, Howell DHP, Török Á, Nguyen TP, Shen JY, Briggs DE, Modur PN, Buchanan RJ. Phase coding of spatial representations in the human entorhinal cortex. SCIENCE ADVANCES 2022; 8:eabm6081. [PMID: 35507662 PMCID: PMC9067922 DOI: 10.1126/sciadv.abm6081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
The grid-like activity pattern of cells in the mammalian entorhinal cortex provides an internal reference frame for allocentric self-localization. The same neurons maintain robust phase couplings with local field oscillations. We found that neurons of the human entorhinal cortex display consistent spatial and temporal phase locking between spikes and slow gamma band local field potentials (LFPs) during virtual navigation. The phase locking maintained an environment-specific map over time. The phase tuning of spikes to the slow gamma band LFP revealed spatially periodic phase grids with environment-dependent scaling and consistent alignment with the environment. Using a Bayesian decoding model, we could predict the avatar's position with near perfect accuracy and, to a lesser extent, that of heading direction as well. These results imply that the phase of spikes relative to spatially modulated gamma oscillations encode allocentric spatial positions. We posit that a joint spatiotemporal phase code can implement the combined neural representation of space and time in the human entorhinal cortex.
Collapse
Affiliation(s)
- Zoltan Nadasdy
- Zeto Inc., Santa Clara, CA 95054, USA
- Department of Psychology, The University of Texas at Austin at Austin, Austin, TX 78712, USA
- Department of Cognitive Psychology, Eötvös Loránd University, 1064 Budapest, Hungary
| | - Daniel H. P. Howell
- Department of Psychology, The University of Texas at Austin at Austin, Austin, TX 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ágoston Török
- Systems and Control Laboratory, Institute for Computer Science and Control, Hungarian Academy of Sciences, 1111 Budapest, Hungary
| | - T. Peter Nguyen
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason Y. Shen
- Seton Brain and Spine Institute, Austin, TX 78701, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Deborah E. Briggs
- Seton Brain and Spine Institute, Austin, TX 78701, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Pradeep N. Modur
- Seton Brain and Spine Institute, Austin, TX 78701, USA
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert J. Buchanan
- Department of Psychology, The University of Texas at Austin at Austin, Austin, TX 78712, USA
- Seton Brain and Spine Institute, Austin, TX 78701, USA
- Department of Surgery, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Psychiatry, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
41
|
Penner C, Minxha J, Chandravadia N, Mamelak AN, Rutishauser U. Properties and hemispheric differences of theta oscillations in the human hippocampus. Hippocampus 2022; 32:335-341. [PMID: 35231153 PMCID: PMC9067167 DOI: 10.1002/hipo.23412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/11/2022]
Abstract
The left and right primate hippocampi (LH and RH) are thought to support distinct functions, but little is known about differences between the hemispheres at the neuronal level. We recorded single-neuron and local field potentials from the human hippocampus in epilepsy patients implanted with depth electrodes. We detected theta-frequency bouts of oscillatory activity while patients performed a visual recognition memory task. Theta appeared in bouts of 3.16 cycles, with sawtooth-shaped oscillations that had a prolonged downswing period. Outside the seizure onset zone, the average frequency of theta bouts was higher in the RH compared to the LH (6.0 vs. 5.3 Hz). LH theta bouts had lower amplitudes and a higher prevalence compared to the RH (26% vs. 21% of total time). Additionally, the RH contained a population of thin spiking visually tuned neurons that were not present in the LH. These data show that human theta appears in short oscillatory bouts whose properties vary between hemispheres, thereby revealing neurophysiological properties of the hippocampus that differ between the hemispheres.
Collapse
Affiliation(s)
- Cooper Penner
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Juri Minxha
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nand Chandravadia
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
42
|
Yi Y, Billor N, Liang M, Cao X, Ekstrom A, Zheng J. Classification of EEG signals: An interpretable approach using functional data analysis. J Neurosci Methods 2022; 376:109609. [PMID: 35483504 DOI: 10.1016/j.jneumeth.2022.109609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/25/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022]
Abstract
Electroencephalography (EEG) is a noninvasive method to record electrical activity of the brain. The EEG data is continuous flow of voltages, in this paper, we consider them as functional data, and propose a three-stage algorithm based on functional data analysis, with the advantage of interpretability. Specifically, the time and frequency information are extracted by wavelet transform in the first stage. Then, functional testing is utilized to select EEG channels and frequencies that show significant differences for different human behaviors. In the third stage, we propose to use penalized multiple functional logistic regression to interpretably classify human behaviors. With simulation and a scalp EEG data as validation set, we show that the proposed three-stage algorithm provides an interpretable classification of the scalp EEG signals.
Collapse
Affiliation(s)
- Yuyan Yi
- Department of Mathematics and Statistics, Auburn University, USA.
| | - Nedret Billor
- Department of Mathematics and Statistics, Auburn University, USA.
| | - Mingli Liang
- Department of Psychiatry, Department of Neurosurgery, Yale University, USA.
| | - Xuan Cao
- Department of Mathematical Sciences, University of Cincinnati, USA.
| | - Arne Ekstrom
- Department of Psychology, University of Arizona, USA.
| | - Jingyi Zheng
- Department of Mathematics and Statistics, Auburn University, USA.
| |
Collapse
|
43
|
Papazoglou A, Arshaad MI, Henseler C, Daubner J, Broich K, Hescheler J, Ehninger D, Haenisch B, Weiergräber M. Ca v3 T-Type Voltage-Gated Ca 2+ Channels and the Amyloidogenic Environment: Pathophysiology and Implications on Pharmacotherapy and Pharmacovigilance. Int J Mol Sci 2022; 23:3457. [PMID: 35408817 PMCID: PMC8998330 DOI: 10.3390/ijms23073457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/07/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) were reported to play a crucial role in neurotransmitter release, dendritic resonance phenomena and integration, and the regulation of gene expression. In the septohippocampal system, high- and low-voltage-activated (HVA, LVA) Ca2+ channels were shown to be involved in theta genesis, learning, and memory processes. In particular, HVA Cav2.3 R-type and LVA Cav3 T-type Ca2+ channels are expressed in the medial septum-diagonal band of Broca (MS-DBB), hippocampal interneurons, and pyramidal cells, and ablation of both channels was proven to severely modulate theta activity. Importantly, Cav3 Ca2+ channels contribute to rebound burst firing in septal interneurons. Consequently, functional impairment of T-type Ca2+ channels, e.g., in null mutant mouse models, caused tonic disinhibition of the septohippocampal pathway and subsequent enhancement of hippocampal theta activity. In addition, impairment of GABA A/B receptor transcription, trafficking, and membrane translocation was observed within the septohippocampal system. Given the recent findings that amyloid precursor protein (APP) forms complexes with GABA B receptors (GBRs), it is hypothesized that T-type Ca2+ current reduction, decrease in GABA receptors, and APP destabilization generate complex functional interdependence that can constitute a sophisticated proamyloidogenic environment, which could be of potential relevance in the etiopathogenesis of Alzheimer's disease (AD). The age-related downregulation of T-type Ca2+ channels in humans goes together with increased Aβ levels that could further inhibit T-type channels and aggravate the proamyloidogenic environment. The mechanistic model presented here sheds new light on recent reports about the potential risks of T-type Ca2+ channel blockers (CCBs) in dementia, as observed upon antiepileptic drug application in the elderly.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Muhammad Imran Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
| | - Jürgen Hescheler
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| | - Dan Ehninger
- Translational Biogerontology, German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany;
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
- Center for Translational Medicine, Medical Faculty, University of Bonn, 53113 Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (A.P.); (M.I.A.); (C.H.); (J.D.)
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany; (K.B.); (B.H.)
- Faculty of Medicine, Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany;
- Center of Physiology and Pathophysiology, Faculty of Medicine, University of Cologne, Robert-Koch-Str. 39, 50931 Cologne, Germany
| |
Collapse
|
44
|
Ibarra-Lecue I, Haegens S, Harris AZ. Breaking Down a Rhythm: Dissecting the Mechanisms Underlying Task-Related Neural Oscillations. Front Neural Circuits 2022; 16:846905. [PMID: 35310550 PMCID: PMC8931663 DOI: 10.3389/fncir.2022.846905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
A century worth of research has linked multiple cognitive, perceptual and behavioral states to various brain oscillations. However, the mechanistic roles and circuit underpinnings of these oscillations remain an area of active study. In this review, we argue that the advent of optogenetic and related systems neuroscience techniques has shifted the field from correlational to causal observations regarding the role of oscillations in brain function. As a result, studying brain rhythms associated with behavior can provide insight at different levels, such as decoding task-relevant information, mapping relevant circuits or determining key proteins involved in rhythmicity. We summarize recent advances in this field, highlighting the methods that are being used for this purpose, and discussing their relative strengths and limitations. We conclude with promising future approaches that will help unravel the functional role of brain rhythms in orchestrating the repertoire of complex behavior.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| | - Saskia Haegens
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Alexander Z. Harris
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
| |
Collapse
|
45
|
Jacobs LF. How the evolution of air breathing shaped hippocampal function. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200532. [PMID: 34957846 PMCID: PMC8710879 DOI: 10.1098/rstb.2020.0532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
To make maps from airborne odours requires dynamic respiratory patterns. I propose that this constraint explains the modulation of memory by nasal respiration in mammals, including murine rodents (e.g. laboratory mouse, laboratory rat) and humans. My prior theories of limbic system evolution offer a framework to understand why this occurs. The answer begins with the evolution of nasal respiration in Devonian lobe-finned fishes. This evolutionary innovation led to adaptive radiations in chemosensory systems, including the emergence of the vomeronasal system and a specialization of the main olfactory system for spatial orientation. As mammals continued to radiate into environments hostile to spatial olfaction (air, water), there was a loss of hippocampal structure and function in lineages that evolved sensory modalities adapted to these new environments. Hence the independent evolution of echolocation in bats and toothed whales was accompanied by a loss of hippocampal structure (whales) and an absence of hippocampal theta oscillations during navigation (bats). In conclusion, models of hippocampal function that are divorced from considerations of ecology and evolution fall short of explaining hippocampal diversity across mammals and even hippocampal function in humans. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Lucia F. Jacobs
- Department of Psychology, University of California, 2121 Berkeley Way, Berkeley, CA 94720-1650, USA
| |
Collapse
|
46
|
Scalp recorded theta activity is modulated by reward, direction, and speed during virtual navigation in freely moving humans. Sci Rep 2022; 12:2041. [PMID: 35132101 PMCID: PMC8821620 DOI: 10.1038/s41598-022-05955-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Theta oscillations (~ 4–12 Hz) are dynamically modulated by speed and direction in freely moving animals. However, due to the paucity of electrophysiological recordings of freely moving humans, this mechanism remains poorly understood. Here, we combined mobile-EEG with fully immersive virtual-reality to investigate theta dynamics in 22 healthy adults (aged 18–29 years old) freely navigating a T-maze to find rewards. Our results revealed three dynamic periods of theta modulation: (1) theta power increases coincided with the participants’ decision-making period; (2) theta power increased for fast and leftward trials as subjects approached the goal location; and (3) feedback onset evoked two phase-locked theta bursts over the right temporal and frontal-midline channels. These results suggest that recording scalp EEG in freely moving humans navigating a simple virtual T-maze can be utilized as a powerful translational model by which to map theta dynamics during “real-life” goal-directed behavior in both health and disease.
Collapse
|
47
|
Roehri N, Bréchet L, Seeber M, Pascual-Leone A, Michel CM. Phase-Amplitude Coupling and Phase Synchronization Between Medial Temporal, Frontal and Posterior Brain Regions Support Episodic Autobiographical Memory Recall. Brain Topogr 2022; 35:191-206. [PMID: 35080692 PMCID: PMC8860804 DOI: 10.1007/s10548-022-00890-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023]
Abstract
Episodic autobiographical memory (EAM) is a complex cognitive function that emerges from the coordination of specific and distant brain regions. Specific brain rhythms, namely theta and gamma oscillations and their synchronization, are thought of as putative mechanisms enabling EAM. Yet, the mechanisms of inter-regional interaction in the EAM network remain unclear in humans at the whole brain level. To investigate this, we analyzed EEG recordings of participants instructed to retrieve autobiographical episodes. EEG recordings were projected in the source space, and time-courses of atlas-based brain regions-of-interest (ROIs) were derived. Directed phase synchrony in high theta (7–10 Hz) and gamma (30–80 Hz) bands and high theta-gamma phase-amplitude coupling were computed between each pair of ROIs. Using network-based statistics, a graph-theory method, we found statistically significant networks for each investigated mechanism. In the gamma band, two sub-networks were found, one between the posterior cingulate cortex (PCC) and the medial temporal lobe (MTL) and another within the medial frontal areas. In the high theta band, we found a PCC to ventromedial prefrontal cortex (vmPFC) network. In phase-amplitude coupling, we found the high theta phase of the left MTL biasing the gamma amplitude of posterior regions and the vmPFC. Other regions of the temporal lobe and the insula were also phase biasing the vmPFC. These findings suggest that EAM, rather than emerging from a single mechanism at a single frequency, involves precise spatio-temporal signatures mapping on distinct memory processes. We propose that the MTL orchestrates activity in vmPFC and PCC via precise phase-amplitude coupling, with vmPFC and PCC interaction via high theta phase synchrony and gamma synchronization contributing to bind information within the PCC-MTL sub-network or valuate the candidate memory within the medial frontal sub-network.
Collapse
Affiliation(s)
- Nicolas Roehri
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Campus Biotech, University of Geneva, 9 chemin des Mines, 1211, Geneva, Switzerland
| | - Lucie Bréchet
- Center for Biomedical Imaging (CIBM), Lausanne and Geneva, 1015, Lausanne, Switzerland.,Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Martin Seeber
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Campus Biotech, University of Geneva, 9 chemin des Mines, 1211, Geneva, Switzerland
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Guttmann Brain Health Institute, Institut Guttman de Neurorehabilitació, Barcelona, Spain
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Fundamental Neurosciences, Campus Biotech, University of Geneva, 9 chemin des Mines, 1211, Geneva, Switzerland. .,Center for Biomedical Imaging (CIBM), Lausanne and Geneva, 1015, Lausanne, Switzerland.
| |
Collapse
|
48
|
Deep brain electrophysiology in freely moving sheep. Curr Biol 2022; 32:763-774.e4. [PMID: 35030329 DOI: 10.1016/j.cub.2021.12.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/05/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
Abstract
Although rodents are arguably the easiest animals to use for studying brain function, relying on them as model species for translational research comes with its own set of limitations. Here, we propose sheep as a practical large animal species to use for in vivo brain function studies performed in naturalistic settings. We conducted proof-of-principle deep brain electrophysiological recording experiments using unrestrained sheep during behavioral testing. Recordings were made from cortex and hippocampus, both while sheep performed goal-directed behaviors (two-choice discrimination tasks) and across states of vigilance, including sleep. Hippocampal and cortical oscillatory rhythms were consistent with those seen in rodents and non-human primates, and included cortical alpha oscillations and hippocampal sharp wave ripple oscillations (∼150 Hz) during immobility and hippocampal theta oscillations (5-6 Hz) during locomotion. Recordings were conducted over a period of many months during which time the animals participated willingly in the experiments. Over 3,000 putative neurons were identified, including examples whose activity was modulated by task, speed of locomotion, spatial position, reward and vigilance states, and one whose firing rate was potentially modulated by the sight of the investigator. Together, these experiments demonstrate that sheep are excellent experimental animals to use for longitudinal studies requiring a large-brained mammal and/or large-scale recordings across distributed neuronal networks. Sheep could be used safely for studying not only neural encoding of decision-making and spatial-mapping in naturalistic environments outside the confines of the traditional laboratory but also the neural basis of both intra- and inter-species social interactions.
Collapse
|
49
|
Roux F, Parish G, Chelvarajah R, Rollings DT, Sawlani V, Hamer H, Gollwitzer S, Kreiselmeyer G, ter Wal MJ, Kolibius L, Staresina BP, Wimber M, Self MW, Hanslmayr S. Oscillations support short latency co-firing of neurons during human episodic memory formation. eLife 2022; 11:78109. [PMID: 36448671 PMCID: PMC9731574 DOI: 10.7554/elife.78109] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Theta and gamma oscillations in the medial temporal lobe are suggested to play a critical role for human memory formation via establishing synchrony in neural assemblies. Arguably, such synchrony facilitates efficient information transfer between neurons and enhances synaptic plasticity, both of which benefit episodic memory formation. However, to date little evidence exists from humans that would provide direct evidence for such a specific role of theta and gamma oscillations for episodic memory formation. Here, we investigate how oscillations shape the temporal structure of neural firing during memory formation in the medial temporal lobe. We measured neural firing and local field potentials in human epilepsy patients via micro-wire electrode recordings to analyze whether brain oscillations are related to co-incidences of firing between neurons during successful and unsuccessful encoding of episodic memories. The results show that phase-coupling of neurons to faster theta and gamma oscillations correlates with co-firing at short latencies (~20-30 ms) and occurs during successful memory formation. Phase-coupling at slower oscillations in these same frequency bands, in contrast, correlates with longer co-firing latencies and occurs during memory failure. Thus, our findings suggest that neural oscillations play a role for the synchronization of neural firing in the medial temporal lobe during the encoding of episodic memories.
Collapse
Affiliation(s)
- Frédéric Roux
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| | - George Parish
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| | - Ramesh Chelvarajah
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,Complex Epilepsy and Surgery Service, Neuroscience Department, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - David T Rollings
- Complex Epilepsy and Surgery Service, Neuroscience Department, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Vijay Sawlani
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,Complex Epilepsy and Surgery Service, Neuroscience Department, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Hajo Hamer
- Epilepsy Center, Department of Neurology, University Hospital ErlangenErlangenGermany
| | - Stephanie Gollwitzer
- Epilepsy Center, Department of Neurology, University Hospital ErlangenErlangenGermany
| | - Gernot Kreiselmeyer
- Epilepsy Center, Department of Neurology, University Hospital ErlangenErlangenGermany
| | - Marije J ter Wal
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom
| | - Luca Kolibius
- School of Psychology and Neuroscience, Centre for Cognitive Neuroimaging, University of GlasgowGlasgowUnited Kingdom
| | - Bernhard P Staresina
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
| | - Maria Wimber
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,School of Psychology and Neuroscience, Centre for Cognitive Neuroimaging, University of GlasgowGlasgowUnited Kingdom
| | - Matthew W Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Art and SciencesAmsterdamNetherlands
| | - Simon Hanslmayr
- School of Psychology, Centre for Human Brain Health, University of BirminghamBirminghamUnited Kingdom,School of Psychology and Neuroscience, Centre for Cognitive Neuroimaging, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
50
|
Jenkins BW, Buckhalter S, Perreault ML, Khokhar JY. Cannabis Vapor Exposure Alters Neural Circuit Oscillatory Activity in a Neurodevelopmental Model of Schizophrenia: Exploring the Differential Impact of Cannabis Constituents. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgab052. [PMID: 35036917 PMCID: PMC8752653 DOI: 10.1093/schizbullopen/sgab052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cannabis use is highly prevalent in patients with schizophrenia and worsens the course of the disorder. To understand how exposure to cannabis changes schizophrenia-related oscillatory disruptions, we investigated the impact of administering cannabis vapor containing either Δ9-tetrahydrocannabinol (THC) or balanced THC/cannabidiol (CBD) on oscillatory activity in the neonatal ventral hippocampal lesion (NVHL) rat model of schizophrenia. Male Sprague Dawley rats underwent lesion or sham surgeries on postnatal day 7. In adulthood, electrodes were implanted targeting the cingulate cortex (Cg), the prelimbic cortex (PrLC), the hippocampus (HIP), and the nucleus accumbens (NAc). Local field potential recordings were obtained after rats were administered either the "THC-only" cannabis vapor (8-18% THC/0% CBD) or the "Balanced THC:CBD" cannabis vapor (4-11% THC/8.5-15.5% CBD) in a cross-over design with a 2-week wash-out period between exposures. Compared to controls, NVHL rats had reduced baseline gamma power in the Cg, HIP, and NAc, and reduced HIP-Cg high-gamma coherence. THC-only vapor exposure broadly suppressed oscillatory power and coherence, even beyond the baseline reductions observed in NHVL rats. Balanced THC:CBD vapor, however, did not suppress oscillatory power and coherence, and in some instances enhanced power. For NVHL rats, THC-only vapor normalized the baseline HIP-Cg high-gamma coherence deficits. NHVL rats demonstrated a 20 ms delay in HIP theta to high-gamma phase coupling, which was not apparent in the PrLC and NAc after both exposures. In conclusion, cannabis vapor exposure has varying impacts on oscillatory activity in NVHL rats, and the relative composition of naturally occurring cannabinoids may contribute to this variability.
Collapse
Affiliation(s)
- Bryan W Jenkins
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Shoshana Buckhalter
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|