1
|
Milosavljevic S, Kauai F, Mortier F, Van de Peer Y, Bonte D. A metabolic perspective on polyploid invasion and the emergence of life histories: Insights from a mechanistic model. AMERICAN JOURNAL OF BOTANY 2024; 111:e16387. [PMID: 39113228 PMCID: PMC7616395 DOI: 10.1002/ajb2.16387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
PREMISE Whole-genome duplication (WGD, polyploidization) has been identified as a driver of genetic and phenotypic novelty, having pervasive consequences for the evolution of lineages. While polyploids are widespread, especially among plants, the long-term establishment of polyploids is exceedingly rare. Genome doubling commonly results in increased cell sizes and metabolic expenses, which may be sufficient to modulate polyploid establishment in environments where their diploid ancestors thrive. METHODS We developed a mechanistic simulation model of photosynthetic individuals to test whether changes in size and metabolic efficiency allow autopolyploids to coexist with, or even invade, ancestral diploid populations. Central to the model is metabolic efficiency, which determines how energy obtained from size-dependent photosynthetic production is allocated to basal metabolism as opposed to somatic and reproductive growth. We expected neopolyploids to establish successfully if they have equal or higher metabolic efficiency as diploids or to adapt their life history to offset metabolic inefficiency. RESULTS Polyploid invasion was observed across a wide range of metabolic efficiency differences between polyploids and diploids. Polyploids became established in diploid populations even when they had a lower metabolic efficiency, which was facilitated by recurrent formation. Competition for nutrients is a major driver of population dynamics in this model. Perenniality did not qualitatively affect the relative metabolic efficiency from which tetraploids tended to establish. CONCLUSIONS Feedback between size-dependent metabolism and energy allocation generated size and age differences between plants with different ploidies. We demonstrated that even small changes in metabolic efficiency are sufficient for the establishment of polyploids.
Collapse
Affiliation(s)
- Silvija Milosavljevic
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052Ghent, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Karel Lodewijk Ledeganckstraat 35, BE-9000Ghent, Belgium
| | - Felipe Kauai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052Ghent, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Karel Lodewijk Ledeganckstraat 35, BE-9000Ghent, Belgium
| | - Frederik Mortier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052Ghent, Belgium
- Department of Biology, Terrestrial Ecology Unit, Ghent University, Karel Lodewijk Ledeganckstraat 35, BE-9000Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Dries Bonte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, VIB - UGent Center for Plant Systems Biology, B-9052Ghent, Belgium
| |
Collapse
|
2
|
Xiang X, Zhou X, Zi H, Wei H, Cao D, Zhang Y, Zhang L, Hu J. Populus cathayana genome and population resequencing provide insights into its evolution and adaptation. HORTICULTURE RESEARCH 2024; 11:uhad255. [PMID: 38274646 PMCID: PMC10809908 DOI: 10.1093/hr/uhad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Populus cathayana Rehder, an indigenous poplar species of ecological and economic importance, is widely distributed in a high-elevation range from southwest to northeast China. Further development of this species as a sustainable poplar resource has been hindered by a lack of genome information the at the population level. Here, we produced a chromosome-level genome assembly of P. cathayana, covering 406.55 Mb (scaffold N50 = 20.86 Mb) and consisting of 19 chromosomes, with 35 977 protein-coding genes. Subsequently, we made a genomic variation atlas of 438 wild individuals covering 36 representative geographic areas of P. cathayana, which were divided into four geographic groups. It was inferred that the Northwest China regions served as the genetic diversity centers and a population bottleneck happened during the history of P. cathayana. By genotype-environment association analysis, 947 environment-association loci were significantly associated with temperature, solar radiation, precipitation, and altitude variables. We identified local adaptation genes involved in DNA repair and UV radiation response, among which UVR8, HY5, and CUL4 had key roles in high-altitude adaptation of P. cathayana. Predictions of adaptive potential under future climate conditions showed that P. cathayana populations in areas with drastic climate change were anticipated to have greater maladaptation risk. These results provide comprehensive insights for understanding wild poplar evolution and optimizing adaptive potential in molecular breeding.
Collapse
Affiliation(s)
- Xiaodong Xiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xinglu Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hailing Zi
- Novogene Bioinformatics Institute, Beijing 100083, China
| | - Hantian Wei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Demei Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yahong Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
3
|
Yang Y, Xu T, Conant G, Kishino H, Thorne JL, Ji X. Interlocus Gene Conversion, Natural Selection, and Paralog Homogenization. Mol Biol Evol 2023; 40:msad198. [PMID: 37675606 PMCID: PMC10503786 DOI: 10.1093/molbev/msad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/07/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023] Open
Abstract
Following a duplication, the resulting paralogs tend to diverge. While mutation and natural selection can accelerate this process, they can also slow it. Here, we quantify the paralog homogenization that is caused by point mutations and interlocus gene conversion (IGC). Among 164 duplicated teleost genes, the median percentage of postduplication codon substitutions that arise from IGC rather than point mutation is estimated to be between 7% and 8%. By differentiating between the nonsynonymous codon substitutions that homogenize the protein sequences of paralogs and the nonhomogenizing nonsynonymous substitutions, we estimate the homogenizing nonsynonymous rates to be higher for 163 of the 164 teleost data sets as well as for all 14 data sets of duplicated yeast ribosomal protein-coding genes that we consider. For all 14 yeast data sets, the estimated homogenizing nonsynonymous rates exceed the synonymous rates.
Collapse
Affiliation(s)
- Yixuan Yang
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Tanchumin Xu
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Gavin Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hirohisa Kishino
- AI/Data Science Social Implementation Laboratory, Chuo University, Tokyo, Japan
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Xiang Ji
- Department of Mathematics, Tulane University, New Orleans, LA, USA
| |
Collapse
|
4
|
Areej A, Nawaz H, Aslam I, Danial M, Qayyum Z, Rasool UA, Asif J, Khalid A, Serfraz S, Saleem F, Mubin M, Shoaib M, Shahnawaz-ul-Rehman M, Nahid N, Alkahtani S. Investigation of NLR Genes Reveals Divergent Evolution on NLRome in Diploid and Polyploid Species in Genus Trifolium. Genes (Basel) 2023; 14:genes14040867. [PMID: 37107625 PMCID: PMC10138078 DOI: 10.3390/genes14040867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Crop wild relatives contain a greater variety of phenotypic and genotypic diversity compared to their domesticated counterparts. Trifolium crop species have limited genetic diversity to cope with biotic and abiotic stresses due to artificial selection for consumer preferences. Here, we investigated the distribution and evolution of nucleotide-binding site leucine-rich repeat receptor (NLR) genes in the genus of Trifolium with the objective to identify reference NLR genes. We identified 412, 350, 306, 389 and 241 NLR genes were identified from Trifolium. subterraneum, T. pratense, T. occidentale, subgenome-A of T. repens and subgenome-B of T. repens, respectively. Phylogenetic and clustering analysis reveals seven sub-groups in genus Trifolium. Specific subgroups such as G4-CNL, CCG10-CNL and TIR-CNL show distinct duplication patterns in specific species, which suggests subgroup duplications that are the hallmarks of their divergent evolution. Furthermore, our results strongly suggest the overall expansion of NLR repertoire in T. subterraneum is due to gene duplication events and birth of gene families after speciation. Moreover, the NLRome of the allopolyploid species T. repens has evolved asymmetrically, with the subgenome -A showing expansion, while the subgenome-B underwent contraction. These findings provide crucial background data for comprehending NLR evolution in the Fabaceae family and offer a more comprehensive analysis of NLR genes as disease resistance genes.
Collapse
Affiliation(s)
- Amna Areej
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Hummera Nawaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore 55210, Pakistan
| | - Iqra Aslam
- Department of Botany, Division of Science and Technology, University of Education, Lahore 55210, Pakistan
| | - Muhammad Danial
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zohaib Qayyum
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Usama Akhtar Rasool
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Jehanzaib Asif
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Afia Khalid
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saad Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fozia Saleem
- Metabolomics Innovative Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Muhammad Mubin
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Shoaib
- Institute of Health Sciences Islamabad, Khyber Medical University, Peshawar 25000, Pakistan
| | | | - Nazia Nahid
- Department of Biotechnology and Bioinformatics, Government College University, Faisalabad 54000, Pakistan
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Bartish IV, Bonnefoi S, Aïnouche A, Bruelheide H, Bartish M, Prinzing A. Fewer chromosomes, more co-occurring species within plant lineages: A likely effect of local survival and colonization. AMERICAN JOURNAL OF BOTANY 2023; 110:e16139. [PMID: 36758168 DOI: 10.1002/ajb2.16139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Plant lineages differ markedly in species richness globally, regionally, and locally. Differences in whole-genome characteristics (WGCs) such as monoploid chromosome number, genome size, and ploidy level may explain differences in global species richness through speciation or global extinction. However, it is unknown whether WGCs drive species richness within lineages also in a recent, postglacial regional flora or in local plant communities through local extinction or colonization and regional species turnover. METHODS We tested for relationships between WGCs and richness of angiosperm families across the Netherlands/Germany/Czechia as a region, and within 193,449 local vegetation plots. RESULTS Families that are species-rich across the region have lower ploidy levels and small monoploid chromosomes numbers or both (interaction terms), but the relationships disappear after accounting for continental and local richness of families. Families that are species-rich within occupied localities have small numbers of polyploidy and monoploid chromosome numbers or both, independent of their own regional richness and the local richness of all other locally co-occurring species in the plots. Relationships between WGCs and family species-richness persisted after accounting for niche characteristics and life histories. CONCLUSIONS Families that have few chromosomes, either monoploid or holoploid, succeed in maintaining many species in local communities and across a continent and, as indirect consequence of both, across a region. We suggest evolutionary mechanisms to explain how small chromosome numbers and ploidy levels might decrease rates of local extinction and increase rates of colonization. The genome of a macroevolutionary lineage may ultimately control whether its species can ecologically coexist.
Collapse
Affiliation(s)
- Igor V Bartish
- Université de Rennes 1, CNRS Research Unit Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
- Department of Genetic Ecology, Institute of Botany, Academy of Sciences, CZ-25243 Pruhonice 1, Czech Republic
| | - Salomé Bonnefoi
- Université de Rennes 1, CNRS Research Unit Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| | - Abdelkader Aïnouche
- Université de Rennes 1, CNRS Research Unit Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| | - Helge Bruelheide
- Institute of Biology/Geobotany & Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Mark Bartish
- Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| | - Andreas Prinzing
- Université de Rennes 1, CNRS Research Unit Ecosystèmes Biodiversité Evolution (ECOBIO), Campus de Beaulieu, 35042, Rennes, France
| |
Collapse
|
6
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
7
|
Das Laha S, Das D, Ghosh T, Podder S. Enrichment of intrinsically disordered residues in ohnologs facilitates abiotic stress resilience in Brassica rapa. JOURNAL OF PLANT RESEARCH 2023; 136:239-251. [PMID: 36607467 DOI: 10.1007/s10265-022-01432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Arabidopsis thaliana and Brassica rapa are in the same evolutionary lineage, although the latter experienced an additional whole genome triplication event. Therefore, it would be intriguing to investigate the traits that gene duplication imposes to mediate plant stress tolerance. Here, we noticed that B. rapa abiotic stress resistance (ASR) genes which code at least one stress responsive domain have a significantly higher number of paralogs than A. thaliana. Analysing the disordered content of the ASR genes in both species, we found that intrinsically disordered residues (IDR) are specifically enriched in whole genome duplication (WGD) derived paralogs. Subsequently, domain similarity analysis between WGD pairs of both species has revealed that majority of WGD pairs in B. rapa did not share domains with each other. Furthermore, domain enrichment analysis has shown that B. rapa paralogs contain 36 distinct stress responsive enriched domains, significantly higher than A. thaliana paralogs. Next, we performed MSA to investigate the domain conservation between orthologs and ohnologs pairs, we found that 80.13% of B. rapa ohnologs acquire new domains, depicting the fact that ohnologs play a significant role in stress-related behaviours. The average IDR content of the ohnologs enriching new domains after gene duplication in B. rapa (0.19), is also significantly higher than A. thaliana (0.04). Interestingly, we also found that all of these attributes i.e., exhibiting higher number of WGD paralogs and enhancement of IDR in ASR genes of B. rapa compared to A. thaliana is exclusive for ASR genes only. No such significant differences were observed in randomly selected non-ASR genes between the two species. Together these results provide strong support for the hypothesis that augmentation of IDR content followed by a whole genome duplication event imposes the stress resistance potentiality in B. rapa. This research will shed light on the mechanism of how B. rapa is able to successfully adapt to stress over the evolutionary timescale.
Collapse
Affiliation(s)
- Shayani Das Laha
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| | - Deepyaman Das
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
| | - Tapash Ghosh
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, India
- Department of Bioinformatics, Bose Institute, Kolkata, West Bengal, India
| | - Soumita Podder
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, India.
| |
Collapse
|
8
|
Zhao L, Yang YY, Qu XJ, Ma H, Hu Y, Li HT, Yi TS, Li DZ. Phylotranscriptomic analyses reveal multiple whole-genome duplication events, the history of diversification and adaptations in the Araceae. ANNALS OF BOTANY 2023; 131:199-214. [PMID: 35671385 PMCID: PMC9904356 DOI: 10.1093/aob/mcac062] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS The Araceae are one of the most diverse monocot families with numerous morphological and ecological novelties. Plastid and mitochondrial genes have been used to investigate the phylogeny and to interpret shifts in the pollination biology and biogeography of the Araceae. In contrast, the role of whole-genome duplication (WGD) in the evolution of eight subfamilies remains unclear. METHODS New transcriptomes or low-depth whole-genome sequences of 65 species were generated through Illumina sequencing. We reconstructed the phylogenetic relationships of Araceae using concatenated and species tree methods, and then estimated the age of major clades using TreePL. We inferred the WGD events by Ks and gene tree methods. We investigated the diversification patterns applying time-dependent and trait-dependent models. The expansions of gene families and functional enrichments were analysed using CAFE and InterProScan. KEY RESULTS Gymnostachydoideae was the earliest diverging lineage followed successively by Orontioideae, Lemnoideae and Lasioideae. In turn, they were followed by the clade of 'bisexual climbers' comprised of Pothoideae and Monsteroideae, which was resolved as the sister to the unisexual flowers clade of Zamioculcadoideae and Aroideae. A special WGD event ψ (psi) shared by the True-Araceae clade occurred in the Early Cretaceous. Net diversification rates first declined and then increased through time in the Araceae. The best diversification rate shift along the stem lineage of the True-Araceae clade was detected, and net diversification rates were enhanced following the ψ-WGD. Functional enrichment analyses revealed that some genes, such as those encoding heat shock proteins, glycosyl hydrolase and cytochrome P450, expanded within the True-Araceae clade. CONCLUSIONS Our results improve our understanding of aroid phylogeny using the large number of single-/low-copy nuclear genes. In contrast to the Proto-Araceae group and the lemnoid clade adaption to aquatic environments, our analyses of WGD, diversification and functional enrichment indicated that WGD may play a more important role in the evolution of adaptations to tropical, terrestrial environments in the True-Araceae clade. These insights provide us with new resources to interpret the evolution of the Araceae.
Collapse
Affiliation(s)
- Lei Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ying-Ying Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong 250014, China
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Yi Hu
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Hong-Tao Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | | | | |
Collapse
|
9
|
Clark JW, Donoghue PCJ. Constraining Whole-Genome Duplication Events in Geological Time. Methods Mol Biol 2023; 2545:139-154. [PMID: 36720811 DOI: 10.1007/978-1-0716-2561-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The timing of whole-genome duplication (WGD) events is crucial to understanding their role in evolution and underpins many hypotheses linking WGD to increased diversity and complexity. As such, means of estimating the timing of the WGD events relative to their macroevolutionary outcomes are of considerable importance. Molecular clock methods facilitate direct estimation of the absolute timing of WGD events, integrating information on the rate of sequence evolution between species while accommodating the uncertainty inherent to the fossil record. We present an explanation of the best practice for constructing fossil calibrations and estimating the age of WGD events via molecular clock methods in the program MCMCtree, with an example dataset based on a well-characterized WGD event within the flowering dogwoods (Cornus). The approach presented herein allows for the estimation of the age of WGD events and subsequent speciation events, allowing the relationship between WGD and the macroevolutionary outcomes to be explored. In our example, we show that in the case of flowering dogwoods, the WGD event long predates the end-Cretaceous mass extinction and that the two events may be independent.
Collapse
Affiliation(s)
- James W Clark
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
10
|
Chang J, Duong TA, Schoeman C, Ma X, Roodt D, Barker N, Li Z, Van de Peer Y, Mizrachi E. The genome of the king protea, Protea cynaroides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:262-276. [PMID: 36424853 PMCID: PMC10107735 DOI: 10.1111/tpj.16044] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 05/07/2023]
Abstract
The king protea (Protea cynaroides), an early-diverging eudicot, is the most iconic species from the Megadiverse Cape Floristic Region, and the national flower of South Africa. Perhaps best known for its iconic flower head, Protea is a key genus for the South African horticulture industry and cut-flower market. Ecologically, the genus and the family Proteaceae are important models for radiation and adaptation, particularly to soils with limited phosphorus bio-availability. Here, we present a high-quality chromosome-scale assembly of the P. cynaroides genome as the first representative of the fynbos biome. We reveal an ancestral whole-genome duplication event that occurred in the Proteaceae around the late Cretaceous that preceded the divergence of all crown groups within the family and its extant diversity in all Southern continents. The relatively stable genome structure of P. cynaroides is invaluable for comparative studies and for unveiling paleopolyploidy in other groups, such as the distantly related sister group Ranunculales. Comparative genomics in sequenced genomes of the Proteales shows loss of key arbuscular mycorrhizal symbiosis genes likely ancestral to the family, and possibly the order. The P. cynaroides genome empowers new research in plant diversification, horticulture and adaptation, particularly to nutrient-poor soils.
Collapse
Affiliation(s)
- Jiyang Chang
- Department of Plant Biotechnology and BioinformaticsGhent University and VIB Center for Plant Systems BiologyGhentBelgium
| | - Tuan A. Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Cassandra Schoeman
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Xiao Ma
- Department of Plant Biotechnology and BioinformaticsGhent University and VIB Center for Plant Systems BiologyGhentBelgium
| | - Danielle Roodt
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| | - Nigel Barker
- Department of Plant and Soil SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Zhen Li
- Department of Plant Biotechnology and BioinformaticsGhent University and VIB Center for Plant Systems BiologyGhentBelgium
| | - Yves Van de Peer
- Department of Plant Biotechnology and BioinformaticsGhent University and VIB Center for Plant Systems BiologyGhentBelgium
- Department of Biochemistry, Genetics and MicrobiologyCentre for Microbial Ecology and Genomics, University of PretoriaPretoriaSouth Africa
- College of Horticulture, Academy for Advanced Interdisciplinary StudiesNanjing Agricultural UniversityNanjingChina
| | - Eshchar Mizrachi
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
11
|
Ben Hsouna A, Michalak M, Kukula-Koch W, Ben Saad R, ben Romdhane W, Zeljković SĆ, Mnif W. Evaluation of Halophyte Biopotential as an Unused Natural Resource: The Case of Lobularia maritima. Biomolecules 2022; 12:1583. [PMID: 36358933 PMCID: PMC9687265 DOI: 10.3390/biom12111583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/15/2023] Open
Abstract
Halophytes are plant species widely distributed in saline habitats, such as beaches, postindustrial wastelands, irrigated lands, salt flats, and others. Excessive salt level, known to limit plant growth, is not harmful to halophytes, which have developed a variety of defense mechanisms allowing them to colonize harsh environments. Plants under stress are known to respond with several morpho-anatomical adaptations, but also to enhance the production of secondary metabolites to better cope with difficult conditions. Owing to these adaptations, halophytes are an interesting group of undemanding plants with a high potential for application in the food and pharmaceutical industries. Therefore, this review aims to present the characteristics of halophytes, describe changes in their gene expression, and discuss their synthesized metabolites of pharmacognostic and pharmacological significance. Lobularia maritima is characterized as a widely spread halophyte that has been shown to exhibit various pharmacological properties in vitro and in vivo. It is concluded that halophytes may become important sources of natural products for the treatment of various ailments and for supplementing the human diet with necessary non-nutrients and minerals. However, extensive studies are needed to deepen the knowledge of their biological potential in vivo, so that they can be introduced to the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Anis Ben Hsouna
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir-Tunisia, Monastir 5000, Tunisia
| | - Monika Michalak
- Collegium Medicum, Jan Kochanowski University, IX WiekówKielc 19, 35-317 Kielce, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | - Rania Ben Saad
- Laboratory of Biotechnology and Plant Improvement, Centre of Biotechnology of Sfax, University of Sfax, Sfax 3018, Tunisia
| | - Walid ben Romdhane
- Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha 61922, Saudi Arabia
- ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, University of Manouba, Ariana 2020, Tunisia
| |
Collapse
|
12
|
Clo J. Polyploidization: Consequences of genome doubling on the evolutionary potential of populations. AMERICAN JOURNAL OF BOTANY 2022; 109:1213-1220. [PMID: 35862788 DOI: 10.1002/ajb2.16029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Whole-genome duplication is common in plants and is considered to have a broad range of effects on individuals' phenotypes and genomes and to be an important driver of plant adaptation and speciation. Despite their increased capacity to cope with challenging environments, polyploid lineages are generally as prone to extinction, and sometimes more prone, than their diploid progenitors. Although several explanations have been proposed to explain the short- and long-term disadvantages of polyploidy on the survival probability of populations, the consequences of whole-genome doubling on the heritable variance remain poorly studied. Whole-genome doubling can have major effects not only on the genetics, but also on the ecology and life history of the populations. Modifications of other properties of populations can reverse the effects of polyploidization per se on heritable variance. In this synthesis, I summarize the empirical and theoretical knowledge about the multifarious consequences of genome doubling on the heritable variance of quantitative traits and on the evolutionary potential of polyploid populations compared to their diploid progenitors. I propose several ways to decipher the consequences of whole-genome doubling on survival probability and to study the further consequences of shifting the ecological niche and life-history traits of a population. I also highlight some practical considerations for comparing the heritable variance of a trait among different cytotypes. Such investigations appear to be timely and necessary to understand more about the paradoxical aspects of polyploidization and to understand the evolutionary potential of polyploid lineages in a global warming context.
Collapse
Affiliation(s)
- Josselin Clo
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01, Prague, Czech Republic
| |
Collapse
|
13
|
Clo J, Padilla-García N, Kolář F. Polyploidization as an opportunistic mutation: The role of unreduced gametes formation and genetic drift in polyploid establishment. J Evol Biol 2022; 35:1099-1109. [PMID: 35770884 DOI: 10.1111/jeb.14055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023]
Abstract
It is broadly assumed that polyploidy success reflects an increase in fitness associated with whole-genome duplication (WGD), due to higher tolerance to stressful conditions. Nevertheless, WGD also arises with several costs in neo-polyploid lineages, like genomic instability, or cellular mis-management. In addition to these costs, neo-polyploid individuals also face frequency dependent selection because of frequent low-fitness triploids formed by cross-ploidy pollinations when tetraploids are primarily rare in the population. Interestingly, the idea that polyploidy can be fixed by genetic drift as a neutral or deleterious mutation is currently underexplored in the literature. To test how and when polyploidy can fix in a population by chance, we built a theoretical model in which autopolyploidization occurs through the production of unreduced gametes, a trait modelled as a quantitative trait that is allowed to vary through time. We found that when tetraploid individuals are less or as fit as their diploid progenitors, fixation of polyploidy is only possible when genetic drift is stronger than natural selection. The necessity of drift for tetraploid fixation holds even when polyploidy confers a selective advantage, except for scenarios where tetraploids are much fitter than diploids. Finally, we found that self-fertilization is less beneficial for tetraploid establishment than previously thought, notably when polyploids harbour an initial decrease in fitness. Our results bring a novel, non-exclusive explanation for the unequal temporal and spatial distribution of polyploid species.
Collapse
Affiliation(s)
- Josselin Clo
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Nélida Padilla-García
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Filip Kolář
- Department of Botany, Faculty of Science, Charles University in Prague, Prague, Czech Republic.,Institute of Botany of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Tomasello S, Oberprieler C. Reticulate Evolution in the Western Mediterranean Mountain Ranges: The Case of the Leucanthemopsis Polyploid Complex. FRONTIERS IN PLANT SCIENCE 2022; 13:842842. [PMID: 35783934 PMCID: PMC9247603 DOI: 10.3389/fpls.2022.842842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Polyploidization is one of the most common speciation mechanisms in plants. This is particularly relevant in high mountain environments and/or in areas heavily affected by climatic oscillations. Although the role of polyploidy and the temporal and geographical frameworks of polyploidization have been intensively investigated in the alpine regions of the temperate and arctic biomes, fewer studies are available with a specific focus on the Mediterranean region. Leucanthemopsis (Asteraceae) consists of six to ten species with several infraspecific entities, mainly distributed in the western Mediterranean Basin. It is a polyploid complex including montane, subalpine, and strictly alpine lineages, which are locally distributed in different mountain ranges of Western Europe and North Africa. We used a mixed approach including Sanger sequencing and (Roche-454) high throughput sequencing of amplicons to gather information from single-copy nuclear markers and plastid regions. Nuclear regions were carefully tested for recombinants/PCR artifacts and for paralogy. Coalescent-based methods were used to infer the number of polyploidization events and the age of formation of polyploid lineages, and to reconstruct the reticulate evolution of the genus. Whereas the polyploids within the widespread Leucanthemopsis alpina are autopolyploids, the situation is more complex among the taxa endemic to the western Mediterranean. While the hexaploid, L. longipectinata, confined to the northern Moroccan mountain ranges (north-west Africa), is an autopolyploid, the Iberian polyploids are clearly of allopolyploid origins. At least two different polyploidization events gave rise to L. spathulifolia and to all other tetraploid Iberian taxa, respectively. The formation of the Iberian allopolyploids took place in the early Pleistocene and was probably caused by latitudinal and elevational range shifts that brought into contact previously isolated Leucanthemopsis lineages. Our study thus highlights the importance of the Pleistocene climatic oscillations and connected polyploidization events for the high plant diversity in the Mediterranean Basin.
Collapse
Affiliation(s)
- Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (With Herbarium), University of Göttingen, Göttingen, Germany
| | - Christoph Oberprieler
- Evolutionary and Systematic Botany Group, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Buxus and Tetracentron genomes help resolve eudicot genome history. Nat Commun 2022; 13:643. [PMID: 35110570 PMCID: PMC8810787 DOI: 10.1038/s41467-022-28312-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/14/2022] [Indexed: 01/15/2023] Open
Abstract
Ancient whole-genome duplications (WGDs) characterize many large angiosperm lineages, including angiosperms themselves. Prominently, the core eudicot lineage accommodates 70% of all angiosperms and shares ancestral hexaploidy, termed gamma. Gamma arose via two WGDs that occurred early in eudicot history; however, the relative timing of these is unclear, largely due to the lack of high-quality genomes among early-diverging eudicots. Here, we provide complete genomes for Buxus sinica (Buxales) and Tetracentron sinense (Trochodendrales), representing the lineages most closely related to core eudicots. We show that Buxus and Tetracentron are both characterized by independent WGDs, resolve relationships among early-diverging eudicots and their respective genomes, and use the RACCROCHE pipeline to reconstruct ancestral genome structure at three key phylogenetic nodes of eudicot diversification. Our reconstructions indicate genome structure remained relatively stable during early eudicot diversification, and reject hypotheses of gamma arising via inter-lineage hybridization between ancestral eudicot lineages, involving, instead, only stem lineage core eudicot ancestors. Gamma triplication arises via two whole-genome duplications early in eudicot history, but the relative timing of these is unclear. Here, the authors report the genomes of Buxales and Trochodendrales and reject the hypothesis of gamma arising via inter-lineage hybridization between ancestral eudicot lineages.
Collapse
|
16
|
Tossi VE, Martínez Tosar LJ, Laino LE, Iannicelli J, Regalado JJ, Escandón AS, Baroli I, Causin HF, Pitta-Álvarez SI. Impact of polyploidy on plant tolerance to abiotic and biotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:869423. [PMID: 36072313 PMCID: PMC9441891 DOI: 10.3389/fpls.2022.869423] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/25/2022] [Indexed: 05/04/2023]
Abstract
Polyploidy, defined as the coexistence of three or more complete sets of chromosomes in an organism's cells, is considered as a pivotal moving force in the evolutionary history of vascular plants and has played a major role in the domestication of several crops. In the last decades, improved cultivars of economically important species have been developed artificially by inducing autopolyploidy with chemical agents. Studies on diverse species have shown that the anatomical and physiological changes generated by either natural or artificial polyploidization can increase tolerance to abiotic and biotic stresses as well as disease resistance, which may positively impact on plant growth and net production. The aim of this work is to review the current literature regarding the link between plant ploidy level and tolerance to abiotic and biotic stressors, with an emphasis on the physiological and molecular mechanisms responsible for these effects, as well as their impact on the growth and development of both natural and artificially generated polyploids, during exposure to adverse environmental conditions. We focused on the analysis of those types of stressors in which more progress has been made in the knowledge of the putative morpho-physiological and/or molecular mechanisms involved, revealing both the factors in common, as well as those that need to be addressed in future research.
Collapse
Affiliation(s)
- Vanesa E. Tossi
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Leandro J. Martínez Tosar
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biotecnología, Alimentos, Agro y Ambiental (DEBAL), Facultad de Ingeniería y Ciencias Exactas, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Leandro E. Laino
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Jesica Iannicelli
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - José Javier Regalado
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
| | - Alejandro Salvio Escandón
- Instituto Nacional de Tecnología, Agropecuaria (INTA), Instituto de Genética “Ewald A. Favret”, Buenos Aires, Argentina
| | - Irene Baroli
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental (IBBEA), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Irene Baroli,
| | - Humberto Fabio Causin
- Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Humberto Fabio Causin,
| | - Sandra Irene Pitta-Álvarez
- Laboratorio de Cultivo Experimental de Plantas y Microalgas, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Universidad de Buenos Aires, Instituto de Micología y Botánica (INMIBO), Ciudad Universitaria, Int. Güiraldes y Cantilo, Buenos Aires, Argentina
- *Correspondence: Sandra Irene Pitta-Álvarez, ;
| |
Collapse
|
17
|
Wang Y, Chen F, Ma Y, Zhang T, Sun P, Lan M, Li F, Fang W. An ancient whole-genome duplication event and its contribution to flavor compounds in the tea plant (Camellia sinensis). HORTICULTURE RESEARCH 2021; 8:176. [PMID: 34333548 PMCID: PMC8325681 DOI: 10.1038/s41438-021-00613-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 05/14/2023]
Abstract
Tea, coffee, and cocoa are the three most popular nonalcoholic beverages in the world and have extremely high economic and cultural value. The genomes of four tea plant varieties have recently been sequenced, but there is some debate regarding the characterization of a whole-genome duplication (WGD) event in tea plants. Whether the WGD in the tea plant is shared with other plants in order Ericales and how it contributed to tea plant evolution remained unanswered. Here we re-analyzed the tea plant genome and provided evidence that tea experienced only WGD event after the core-eudicot whole-genome triplication (WGT) event. This WGD was shared by the Polemonioids-Primuloids-Core Ericales (PPC) sections, encompassing at least 17 families in the order Ericales. In addition, our study identified eight pairs of duplicated genes in the catechins biosynthesis pathway, four pairs of duplicated genes in the theanine biosynthesis pathway, and one pair of genes in the caffeine biosynthesis pathway, which were expanded and retained following this WGD. Nearly all these gene pairs were expressed in tea plants, implying the contribution of the WGD. This study shows that in addition to the role of the recent tandem gene duplication in the accumulation of tea flavor-related genes, the WGD may have been another main factor driving the evolution of tea flavor.
Collapse
Affiliation(s)
- Ya Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Taikui Zhang
- College of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Meifang Lan
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063099, China
| | - Fang Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Zhang C, Huang CH, Liu M, Hu Y, Panero JL, Luebert F, Gao T, Ma H. Phylotranscriptomic insights into Asteraceae diversity, polyploidy, and morphological innovation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1273-1293. [PMID: 33559953 DOI: 10.1111/jipb.13078] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/08/2021] [Indexed: 05/29/2023]
Abstract
Biodiversity is not evenly distributed among related groups, raising questions about the factors contributing to such disparities. The sunflower family (Asteraceae, >26,000 species) is among the largest and most diverse plant families, but its species diversity is concentrated in a few subfamilies, providing an opportunity to study the factors affecting biodiversity. Phylotranscriptomic analyses here of 244 transcriptomes and genomes produced a phylogeny with strong support for the monophyly of Asteraceae and the monophyly of most subfamilies and tribes. This phylogeny provides a reference for detecting changes in diversification rates and possible factors affecting Asteraceae diversity, which include global climate shifts, whole-genome duplications (WGDs), and morphological evolution. The origin of Asteraceae was estimated at ~83 Mya, with most subfamilies having diverged before the Cretaceous-Paleocene boundary. Phylotranscriptomic analyses supported the existence of 41 WGDs in Asteraceae. Changes to herbaceousness and capitulescence with multiple flower-like capitula, often with distinct florets and scaly pappus/receptacular bracts, are associated with multiple upshifts in diversification rate. WGDs might have contributed to the survival of early Asteraceae by providing new genetic materials to support morphological transitions. The resulting competitive advantage for adapting to different niches would have increased biodiversity in Asteraceae.
Collapse
Affiliation(s)
- Caifei Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennslyvania, 16802, USA
| | - Mian Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennslyvania, 16802, USA
| | - Jose L Panero
- Department of Integrative Biology, The University of Texas, University Station C0930, Austin, Texas, 78712, USA
| | - Federico Luebert
- Institut für Bodiversität der Pflanzen, Universität Bonn, Bonn, D - 53115, Germany
- Department of Silviculture and Nature Conservation, University of Chile, Santiago, 9206, Chile
| | - Tiangang Gao
- State Key Laboratory of Evolutionary and Systematic Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Hong Ma
- Department of Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, Pennslyvania, 16802, USA
| |
Collapse
|
19
|
Cai X, Chang L, Zhang T, Chen H, Zhang L, Lin R, Liang J, Wu J, Freeling M, Wang X. Impacts of allopolyploidization and structural variation on intraspecific diversification in Brassica rapa. Genome Biol 2021; 22:166. [PMID: 34059118 PMCID: PMC8166115 DOI: 10.1186/s13059-021-02383-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite the prevalence and recurrence of polyploidization in the speciation of flowering plants, its impacts on crop intraspecific genome diversification are largely unknown. Brassica rapa is a mesopolyploid species that is domesticated into many subspecies with distinctive morphotypes. RESULTS Herein, we report the consequences of the whole-genome triplication (WGT) on intraspecific diversification using a pan-genome analysis of 16 de novo assembled and two reported genomes. Among the genes that derive from WGT, 13.42% of polyploidy-derived genes accumulate more transposable elements and non-synonymous mutations than other genes during individual genome evolution. We denote such genes as being "flexible." We construct the Brassica rapa ancestral genome and observe the continuing influence of the dominant subgenome on intraspecific diversification in B. rapa. The gene flexibility is biased to the more fractionated subgenomes (MFs), in contrast to the more intact gene content of the dominant LF (least fractionated) subgenome. Furthermore, polyploidy-derived flexible syntenic genes are implicated in the response to stimulus and the phytohormone auxin; this may reflect adaptation to the environment. Using an integrated graph-based genome, we investigate the structural variation (SV) landscapes in 524 B. rapa genomes. We observe that SVs track morphotype domestication. Four out of 266 candidate genes for Chinese cabbage domestication are speculated to be involved in the leafy head formation. CONCLUSIONS This pan-genome uncovers the possible contributions of allopolyploidization on intraspecific diversification and the possible and underexplored role of SVs in favorable trait domestication. Collectively, our work serves as a rich resource for genome-based B. rapa improvement.
Collapse
Affiliation(s)
- Xu Cai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing, 100081, China
| | - Lichun Chang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing, 100081, China
| | - Tingting Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing, 100081, China
| | - Haixu Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing, 100081, China
| | - Lei Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing, 100081, China
| | - Runmao Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing, 100081, China
| | - Jianli Liang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing, 100081, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing, 100081, China
| | - Michael Freeling
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, No.12, Haidian District, Beijing, 100081, China.
| |
Collapse
|
20
|
Szövényi P, Gunadi A, Li FW. Charting the genomic landscape of seed-free plants. NATURE PLANTS 2021; 7:554-565. [PMID: 33820965 DOI: 10.1038/s41477-021-00888-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/25/2021] [Indexed: 05/02/2023]
Abstract
During the past few years several high-quality genomes has been published from Charophyte algae, bryophytes, lycophytes and ferns. These genomes have not only elucidated the origin and evolution of early land plants, but have also provided important insights into the biology of the seed-free lineages. However, critical gaps across the phylogeny remain and many new questions have been raised through comparing seed-free and seed plant genomes. Here, we review the reference genomes available and identify those that are missing in the seed-free lineages. We compare patterns of various levels of genome and epigenomic organization found in seed-free plants to those of seed plants. Some genomic features appear to be fundamentally different. For instance, hornworts, Selaginella and most liverworts are devoid of whole-genome duplication, in stark contrast to other land plants. In addition, the distribution of genes and repeats appear to be less structured in seed-free genomes than in other plants, and the levels of gene body methylation appear to be much lower. Finally, we highlight the currently available (or needed) model systems, which are crucial to further our understanding about how changes in genes translate into evolutionary novelties.
Collapse
Affiliation(s)
- Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich and Zurich-Basel Plant Science Center, Zurich, Switzerland.
| | | | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA
- Plant Biology Section, Cornell University, Ithaca, NY, USA
| |
Collapse
|
21
|
Farminhão JNM, Verlynde S, Kaymak E, Droissart V, Simo-Droissart M, Collobert G, Martos F, Stévart T. Rapid radiation of angraecoids (Orchidaceae, Angraecinae) in tropical Africa characterised by multiple karyotypic shifts under major environmental instability. Mol Phylogenet Evol 2021; 159:107105. [PMID: 33601026 DOI: 10.1016/j.ympev.2021.107105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
Angraecoid orchids present a remarkable diversity of chromosome numbers, which makes them a highly suitable system for exploring the impact of karyotypic changes on cladogenesis, diversification and morphological differentiation. We compiled an annotated cytotaxonomic checklist for 126 species of Angraecinae, which was utilised to reconstruct chromosomal evolution using a newly-produced, near-comprehensive phylogenetic tree that includes 245 angraecoid taxa. In tandem with this improved phylogenetic framework, using combined Bayesian, maximum likelihood and parsimony approaches on ITS-1 and five plastid markers, we propose a new cladistic nomenclature for the angraecoids, and we estimate a new timeframe for angraecoid radiation based on a secondary calibration, and calculate diversification rates using a Bayesian approach. Coincident divergence dates between clades with identical geographical distributions in the angraecoids and the pantropical orchid genus Bulbophyllum suggest that the same events may have intervened in the dispersal of these two epiphytic groups between Asia, continental Africa, Madagascar and the Neotropics. The major angraecoid lineages probably began to differentiate in the Middle Miocene, and most genera and species emerged respectively around the Late Miocene-Pliocene boundary and the Pleistocene. Ancestral state reconstruction using maximum likelihood estimation revealed an eventful karyotypic history dominated by descending dysploidy. Karyotypic shifts seem to have paralleled cladogenesis in continental tropical Africa, where approximately 90% of the species have descended from at least one inferred transition from n = 17-18 to n = 25 during the Middle Miocene Climatic Transition, followed by some clade-specific descending and ascending dysploidy from the Late Miocene to the Pleistocene. Conversely, detected polyploidy is restricted to a few species lineages mostly originating during the Pleistocene. No increases in net diversification could be related to chromosome number changes, and the apparent net diversification was found to be highest in Madagascar, where karyotypic stasis predominates. Finally, shifts in chromosome number appear to have paralleled the evolution of rostellum structure, leaflessness, and conspicuous changes in floral colour.
Collapse
Affiliation(s)
- João N M Farminhão
- Herbarium and Library of African Botany, C.P. 265, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe 1050, Brussels, Belgium; Plant Ecology and Biogeochemistry, C.P. 244, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, 1050, Brussels, Belgium.
| | - Simon Verlynde
- Cullman Program for Molecular Systematics, New York Botanical Garden, Bronx, NY 10458-5126, USA; PhD Program in Biology, Graduate Center, City University of New York, 365 5th Ave., New York, NY 10016, USA
| | - Esra Kaymak
- Evolutionary Biology and Ecology, Faculté des Sciences, C.P. 160/12, Université Libre de Bruxelles, 50 Avenue F. Roosevelt, BE-1050 Brussels, Belgium
| | - Vincent Droissart
- Herbarium and Library of African Botany, C.P. 265, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe 1050, Brussels, Belgium; AMAP Lab, Univ Montpellier, IRD, CNRS, INRAE, CIRAD, Montpellier, France; Missouri Botanical Garden, Africa and Madagascar Department, 4344 Shaw Blvd., St. Louis, MO 63110, USA; Plant Systematics and Ecology Laboratory, Higher Teachers' Training College, University of Yaoundé I, P. O. Box 047, Yaoundé, Cameroon
| | - Murielle Simo-Droissart
- Plant Systematics and Ecology Laboratory, Higher Teachers' Training College, University of Yaoundé I, P. O. Box 047, Yaoundé, Cameroon
| | - Géromine Collobert
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, 75005 Paris, France
| | - Florent Martos
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP 39, 57 rue Cuvier, 75005 Paris, France
| | - Tariq Stévart
- Herbarium and Library of African Botany, C.P. 265, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe 1050, Brussels, Belgium; Missouri Botanical Garden, Africa and Madagascar Department, 4344 Shaw Blvd., St. Louis, MO 63110, USA; Meise Botanic Garden, Domein van Bouchout, Nieuwelaan 38, B-1860 Meise, Belgium
| |
Collapse
|
22
|
Cheng J, Chen J, Liu X, Li X, Zhang W, Dai Z, Lu L, Zhou X, Cai J, Zhang X, Jiang H, Ma Y. The origin and evolution of the diosgenin biosynthetic pathway in yam. PLANT COMMUNICATIONS 2021; 2:100079. [PMID: 33511341 PMCID: PMC7816074 DOI: 10.1016/j.xplc.2020.100079] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/25/2020] [Accepted: 05/29/2020] [Indexed: 05/21/2023]
Abstract
Diosgenin, mainly produced by Dioscorea species, is a traditional precursor of most hormonal drugs in the pharmaceutical industry. The mechanisms that underlie the origin and evolution of diosgenin biosynthesis in plants remain unclear. After sequencing the whole genome of Dioscorea zingiberensis, we revealed the evolutionary trajectory of the diosgenin biosynthetic pathway in Dioscorea and demonstrated the de novo biosynthesis of diosgenin in a yeast cell factory. First, we found that P450 gene duplication and neo-functionalization, driven by positive selection, played important roles in the origin of the diosgenin biosynthetic pathway. Subsequently, we found that the enrichment of diosgenin in the yam lineage was regulated by CpG islands, which evolved to regulate gene expression in the diosgenin pathway and balance the carbon flux between the biosynthesis of diosgenin and starch. Finally, by integrating genes from plants, animals, and yeast, we heterologously synthesized diosgenin to 10 mg/l in genetically-engineered yeast. Our study not only reveals the origin and evolutionary mechanisms of the diosgenin biosynthetic pathway in Dioscorea, but also introduces an alternative approach for the production of diosgenin through synthetic biology.
Collapse
Affiliation(s)
- Jian Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jing Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaonan Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiangchen Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weixiong Zhang
- Research Center for Ecology and Environmental Sciences, Northwestern Polytechnical University, Xian, China
| | - Zhubo Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lina Lu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiang Zhou
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, China
| | - Jing Cai
- Research Center for Ecology and Environmental Sciences, Northwestern Polytechnical University, Xian, China
- Corresponding author
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Corresponding author
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Corresponding author
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
23
|
Huang L, Ma Y, Jiang J, Li T, Yang W, Zhang L, Wu L, Feng L, Xi Z, Xu X, Liu J, Hu Q. A chromosome-scale reference genome of Lobularia maritima, an ornamental plant with high stress tolerance. HORTICULTURE RESEARCH 2020; 7:197. [PMID: 33328471 PMCID: PMC7705659 DOI: 10.1038/s41438-020-00422-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/21/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
Lobularia maritima (L.) Desv. is an ornamental plant cultivated across the world. It belongs to the family Brassicaceae and can tolerate dry, poor and contaminated habitats. Here, we present a chromosome-scale, high-quality genome assembly of L. maritima based on integrated approaches combining Illumina short reads and Hi-C chromosome conformation data. The genome was assembled into 12 pseudochromosomes with a 197.70 Mb length, and it includes 25,813 protein-coding genes. Approximately 41.94% of the genome consists of repetitive sequences, with abundant long terminal repeat transposable elements. Comparative genomic analysis confirmed that L. maritima underwent a species-specific whole-genome duplication (WGD) event ~22.99 million years ago. We identified ~1900 species-specific genes, 25 expanded gene families, and 50 positively selected genes in L. maritima. Functional annotations of these genes indicated that they are mainly related to stress tolerance. These results provide new insights into the stress tolerance of L. maritima, and this genomic resource will be valuable for further genetic improvement of this important ornamental plant.
Collapse
Affiliation(s)
- Li Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Yazhen Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Jiebei Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Ting Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Lei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Lei Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Landi Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Zhenxiang Xi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Xiaoting Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou University, Lanzhou, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, 610065, Chengdu, China.
| |
Collapse
|
24
|
Caperta AD, Róis AS, Teixeira G, Garcia-Caparros P, Flowers TJ. Secretory structures in plants: Lessons from the Plumbaginaceae on their origin, evolution and roles in stress tolerance. PLANT, CELL & ENVIRONMENT 2020; 43:2912-2931. [PMID: 32542760 DOI: 10.1111/pce.13825] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The Plumbaginaceae (non-core Caryophyllales) is a family well known for species adapted to a wide range of arid and saline habitats. Of its salt-tolerant species, at least 45 are in the genus Limonium; two in each of Aegialitis, Limoniastrum and Myriolimon, and one each in Psylliostachys, Armeria, Ceratostigma, Goniolimon and Plumbago. All the halophytic members of the family have salt glands and salt glands are also common in the closely related Tamaricaceae and Frankeniaceae. The halophytic species of the three families can secrete a range of ions (Na+ , K+ , Ca2+ , Mg2+ , Cl- , HCO3- , SO42- ) and other elements (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn). Salt glands are, however, absent in salt-tolerant members of the sister family Polygonaceae. We describe the structure of the salt glands in the three families and consider whether glands might have arisen as a means to avoid the toxicity of Na+ and/or Cl- or to regulate Ca2+ concentrations with the leaves. We conclude that the establishment of lineages with salt glands took place after the split between the Polygonaceae and its sister group the Plumbaginaceae.
Collapse
Affiliation(s)
- Ana D Caperta
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Róis
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
- School of Psychology and Life Sciences, Universidade Lusófona de Humanidades e Tecnologias (ULHT), Lisboa, Portugal
| | - Generosa Teixeira
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Garcia-Caparros
- Agronomy Department of Superior School Engineering, University of Almeria, CIAIMBITAL, Agrifood Campus of International Excellence ceiA3, Almería, Spain
| | | |
Collapse
|
25
|
Erwin DH. A conceptual framework of evolutionary novelty and innovation. Biol Rev Camb Philos Soc 2020; 96:1-15. [PMID: 32869437 DOI: 10.1111/brv.12643] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
Since 1990 the recognition of deep homologies among metazoan developmental processes and the spread of more mechanistic approaches to developmental biology have led to a resurgence of interest in evolutionary novelty and innovation. Other evolutionary biologists have proposed central roles for behaviour and phenotypic plasticity in generating the conditions for the construction of novel morphologies, or invoked the accessibility of new regions of vast sequence spaces. These approaches contrast with more traditional emphasis on the exploitation of ecological opportunities as the primary source of novelty. This definitional cornucopia reflects differing stress placed on three attributes of novelties: their radical nature, the generation of new taxa, and ecological and evolutionary impact. Such different emphasis has led to conflating four distinct issues: the origin of novel attributes (genes, developmental processes, phenotypic characters), new functions, higher clades and the ecological impact of new structures and functions. Here I distinguish novelty (the origin of new characters, deep character transformations, or new combinations) from innovation, the ecological and evolutionary success of clades. Evidence from the fossil record of macroevolutionary lags between the origin of a novelty and its ecological success demonstrates that novelty may be decoupled from innovation, and only definitions of novelty based on radicality (rather than generativity or consequentiality) can be assessed without reference to the subsequent history of the clade to which a novelty belongs. These considerations suggest a conceptual framework for novelty and innovation, involving: (i) generation of the potential for novelty; (ii) the formation of novel attributes; (iii) refinement of novelties through adaptation; (iv) exploitation of novelties by a clade, which may coincide with a new round of ecological or environmental potentiation; followed by (v) the establishment of innovations through ecological processes. This framework recognizes that there is little empirical support for either the dominance of ecological opportunity, nor abrupt discontinuities (often caricatured as 'hopeful monsters'). This general framework may be extended to aspects of cultural and social innovation.
Collapse
Affiliation(s)
- Douglas H Erwin
- Department of Paleobiology, MRC-121 National Museum of Natural History, PO Box 37012, Washington, DC, 20013-7012, U.S.A.,Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, U.S.A
| |
Collapse
|
26
|
Comparative Genomic Analyses and a Novel Linkage Map for Cisco ( Coregonus artedi) Provide Insights into Chromosomal Evolution and Rediploidization Across Salmonids. G3-GENES GENOMES GENETICS 2020; 10:2863-2878. [PMID: 32611547 PMCID: PMC7407451 DOI: 10.1534/g3.120.401497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whole-genome duplication (WGD) is hypothesized to be an important evolutionary mechanism that can facilitate adaptation and speciation. Genomes that exist in states of both diploidy and residual tetraploidy are of particular interest, as mechanisms that maintain the ploidy mosaic after WGD may provide important insights into evolutionary processes. The Salmonidae family exhibits residual tetraploidy, and this, combined with the evolutionary diversity formed after an ancestral autotetraploidization event, makes this group a useful study system. In this study, we generate a novel linkage map for cisco (Coregonus artedi), an economically and culturally important fish in North America and a member of the subfamily Coregoninae, which previously lacked a high-density haploid linkage map. We also conduct comparative genomic analyses to refine our understanding of chromosomal fusion/fission history across salmonids. To facilitate this comparative approach, we use the naming strategy of protokaryotype identifiers (PKs) to associate duplicated chromosomes to their putative ancestral state. The female linkage map for cisco contains 20,292 loci, 3,225 of which are likely within residually tetraploid regions. Comparative genomic analyses revealed that patterns of residual tetrasomy are generally conserved across species, although interspecific variation persists. To determine the broad-scale retention of residual tetrasomy across the salmonids, we analyze sequence similarity of currently available genomes and find evidence of residual tetrasomy in seven of the eight chromosomes that have been previously hypothesized to show this pattern. This interspecific variation in extent of rediploidization may have important implications for understanding salmonid evolutionary histories and informing future conservation efforts.
Collapse
|
27
|
Guo J, Xu W, Hu Y, Huang J, Zhao Y, Zhang L, Huang CH, Ma H. Phylotranscriptomics in Cucurbitaceae Reveal Multiple Whole-Genome Duplications and Key Morphological and Molecular Innovations. MOLECULAR PLANT 2020; 13:1117-1133. [PMID: 32445889 DOI: 10.1016/j.molp.2020.05.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/03/2020] [Accepted: 05/18/2020] [Indexed: 05/04/2023]
Abstract
The ability of climbing plants to grow upward along others to reach the canopy for photosynthesis is hypothesized as a key innovation in flowering plants. Most members of the Cucurbitaceae, a family containing ∼1000 species and many important crops, are climbers and have characteristic tendrils and pepo fruits. Here, we present 127 newly sequenced transcriptomes and genomes along with other datasets for a total of 136 cucurbits representing all tribes to establish a robust Cucurbitaceae phylogeny containing eight highly resolved major clades. We analyzed whole-genome duplication, diversification dynamics, and ancestral morphologies, and found that after early genome duplication event(s), a burst of diversification and morphological innovations in flower, fruit, and root characters occurred under the climate optimum in the Early Eocene. Species radiation during the Mid-Eocene Climatic Optimum also coincided with several morphological changes shared by 80% of cucurbits. We found that the cucurbit-specific tendril identity gene TEN originated from a paleo-polyploidization event at the origin of the family. Our results support the hypothesis that cucurbit diversifications were probably driven by increased genetic diversity following polyploidizations and by trait morphological innovations under paleo-climate upheavals. Our study provides a phylogenetic framework and new insights into morphological and genomic changes underlying the adaptive evolution of Cucurbitaceae.
Collapse
Affiliation(s)
- Jing Guo
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Weibin Xu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
| | - Yi Hu
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA 16802, USA
| | - Jie Huang
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yiyong Zhao
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Lin Zhang
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Chien-Hsun Huang
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | - Hong Ma
- Department of Biology, the Huck Institutes of Life Sciences, the Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
28
|
Nieto Feliner G, Casacuberta J, Wendel JF. Genomics of Evolutionary Novelty in Hybrids and Polyploids. Front Genet 2020; 11:792. [PMID: 32849797 PMCID: PMC7399645 DOI: 10.3389/fgene.2020.00792] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
It has long been recognized that hybridization and polyploidy are prominent processes in plant evolution. Although classically recognized as significant in speciation and adaptation, recognition of the importance of interspecific gene flow has dramatically increased during the genomics era, concomitant with an unending flood of empirical examples, with or without genome doubling. Interspecific gene flow is thus increasingly thought to lead to evolutionary innovation and diversification, via adaptive introgression, homoploid hybrid speciation and allopolyploid speciation. Less well understood, however, are the suite of genetic and genomic mechanisms set in motion by the merger of differentiated genomes, and the temporal scale over which recombinational complexity mediated by gene flow might be expressed and exposed to natural selection. We focus on these issues here, considering the types of molecular genetic and genomic processes that might be set in motion by the saltational event of genome merger between two diverged species, either with or without genome doubling, and how these various processes can contribute to novel phenotypes. Genetic mechanisms include the infusion of new alleles and the genesis of novel structural variation including translocations and inversions, homoeologous exchanges, transposable element mobilization and novel insertional effects, presence-absence variation and copy number variation. Polyploidy generates massive transcriptomic and regulatory alteration, presumably set in motion by disrupted stoichiometries of regulatory factors, small RNAs and other genome interactions that cascade from single-gene expression change up through entire networks of transformed regulatory modules. We highlight both these novel combinatorial possibilities and the range of temporal scales over which such complexity might be generated, and thus exposed to natural selection and drift.
Collapse
Affiliation(s)
- Gonzalo Nieto Feliner
- Department of Biodiversity and Conservation, Real Jardín Botánico, CSIC, Madrid, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Barcelona, Spain
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
29
|
Wang Y, Nie F, Shahid MQ, Baloch FS. Molecular footprints of selection effects and whole genome duplication (WGD) events in three blueberry species: detected by transcriptome dataset. BMC PLANT BIOLOGY 2020; 20:250. [PMID: 32493212 PMCID: PMC7268529 DOI: 10.1186/s12870-020-02461-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/24/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Both selection effects and whole genome duplication played very important roles in plant speciation and evolution, and to decipher the corresponding molecular footprint has always been a central task of geneticists. Vaccinium is species rich genus that comprised of about 450 species, and blueberry is one of the most important species of Vaccinium genus, which is gaining popularity because of high healthful value. In this article, we aimed to decipher the molecular footprints of natural selection on the single copy genes and WGD events occur in the evolutionary history of blueberry species. RESULTS We identified 30,143, 29,922 and 28,891 putative protein coding sequences from 45,535, 42,914 and 43,630 unigenes assembled from the leaves' transcriptome assembly of 19 rabbiteye (T1), 13 southern highbush (T2) and 22 northern highbush (T3) blueberry cultivars. A total of 17, 21 and 27 single copy orthologs were found to undergone positive selection in T1 versus T2, T1 versus T3, and T2 versus T3, respectively, and these orthologs were enriched in metabolic pathways including "Terpenoid backbone biosynthesis", "Valine, leucine and isoleucine biosynthesis", "Butanoate metabolism", "C5-Branched dibasic acid metabolism" "Pantothenate and CoA biosynthesis". We also detected significant molecular footprints of a recent (about 9.04 MYA), medium (about 43.44 MYA) and an ancient (about 116.39 MYA) WGD events that occurred in the evolutionary history of three blueberry species. CONCLUSION Some important functional genes revealed positive selection effect in blueberry. At least three rounds of WGD events were detected in the evolutionary history of blueberry species. Our work provides insights about the genetic mechanism of adaptive evolution in blueberry and species radiation of Vaccinium in short geological scale time.
Collapse
Affiliation(s)
- Yunsheng Wang
- College of Health and Life Science, Kaili University, Kaili City, 556011 Guizhou Province China
| | - Fei Nie
- Biological institute of Guizhou Province, Guiyang City, 556000 Guizhou Province China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642 Guangdong Province China
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Sciences, Abant İzzet Baysal University, Bolu, Turkey
| |
Collapse
|
30
|
Huang CH, Qi X, Chen D, Qi J, Ma H. Recurrent genome duplication events likely contributed to both the ancient and recent rise of ferns. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:433-455. [PMID: 31628713 DOI: 10.1111/jipb.12877] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/17/2019] [Indexed: 05/07/2023]
Abstract
Ferns, the second largest group of vascular plants, originated ~400 million years ago (Mya). They became dominant in the ancient Earth landscape before the angiosperms and are still important in current ecosystems. Many ferns have exceptionally high chromosome numbers, possibly resulting from whole-genome duplications (WGDs). However, WGDs have not been investigated molecularly across fern diversity. Here we detected and dated fern WGDs using a phylogenomic approach and by calculating synonymous substitution rates (Ks). We also investigated a possible correlation between proposed WGDs and shifts in species diversification rates. We identified 19 WGDs: three ancient events along the fern phylogenetic backbone that are shared by 66%-97% of extant ferns, with additional lineage-specific WGDs for eight orders, providing strong evidence for recurring genome duplications across fern evolutionary history. We also observed similar Ks peak values for more than half of these WGDs, with multiple WGDs occurring close to the Cretaceous (~145-66 Mya). Despite the repeated WGD events, the biodiversity of ferns declined during the Cretaceous, implying that other factors probably contributed to the floristic turnover from ferns to angiosperms. This study provides molecular evidence for recurring WGDs in ferns and offers important clues to the genomic evolutionary history of ferns.
Collapse
Affiliation(s)
- Chien-Hsun Huang
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xinping Qi
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Duoyuan Chen
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ji Qi
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
31
|
Azibi T, Hadj-Arab H, Lodé M, Ferreira de Carvalho J, Trotoux G, Nègre S, Gilet MM, Boutte J, Lucas J, Vekemans X, Chèvre AM, Rousseau-Gueutin M. Impact of whole genome triplication on the evolutionary history and the functional dynamics of regulatory genes involved in Brassica self-incompatibility signalling pathway. PLANT REPRODUCTION 2020; 33:43-58. [PMID: 32080762 DOI: 10.1007/s00497-020-00385-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Polyploidy or whole genome duplication is a frequent and recurrent phenomenon in flowering plants that has played a major role in their diversification, adaptation and speciation. The adaptive success of polyploids relates to the different evolutionary fates of duplicated genes. In this study, we explored the impact of the whole genome triplication (WGT) event in the Brassiceae tribe on the genes involved in the self-incompatibility (SI) signalling pathway, a mechanism allowing recognition and rejection of self-pollen in hermaphrodite plants. By taking advantage of the knowledge acquired on this pathway as well as of several reference genomes in Brassicaceae species, we determined copy number of the different genes involved in this pathway and investigated their structural and functional evolutionary dynamics. We could infer that whereas most genes involved in the SI signalling returned to single copies after the WGT event (i.e. ARC1, JDP1, THL1, THL2, Exo70A01) in diploid Brassica species, a few were retained in duplicated (GLO1 and PLDα) or triplicated copies (MLPK). We also carefully studied the gene structure of these latter duplicated genes (including the conservation of functional domains and active sites) and tested their transcription in the stigma to identify which copies seem to be involved in the SI signalling pathway. By taking advantage of these analyses, we then explored the putative origin of a contrasted SI phenotype between two Brassica rapa varieties that have been fully sequenced and shared the same S-allele (S60).
Collapse
Affiliation(s)
- Thanina Azibi
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Houria Hadj-Arab
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria.
| | - Maryse Lodé
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Gwenn Trotoux
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Sylvie Nègre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Julien Boutte
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Jérémy Lucas
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, 59000, Lille, France
| | - Anne-Marie Chèvre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | |
Collapse
|
32
|
Azibi T, Hadj-Arab H, Lodé M, Ferreira de Carvalho J, Trotoux G, Nègre S, Gilet MM, Boutte J, Lucas J, Vekemans X, Chèvre AM, Rousseau-Gueutin M. Impact of whole genome triplication on the evolutionary history and the functional dynamics of regulatory genes involved in Brassica self-incompatibility signalling pathway. PLANT REPRODUCTION 2020. [PMID: 32080762 DOI: 10.1007/s00697-020-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polyploidy or whole genome duplication is a frequent and recurrent phenomenon in flowering plants that has played a major role in their diversification, adaptation and speciation. The adaptive success of polyploids relates to the different evolutionary fates of duplicated genes. In this study, we explored the impact of the whole genome triplication (WGT) event in the Brassiceae tribe on the genes involved in the self-incompatibility (SI) signalling pathway, a mechanism allowing recognition and rejection of self-pollen in hermaphrodite plants. By taking advantage of the knowledge acquired on this pathway as well as of several reference genomes in Brassicaceae species, we determined copy number of the different genes involved in this pathway and investigated their structural and functional evolutionary dynamics. We could infer that whereas most genes involved in the SI signalling returned to single copies after the WGT event (i.e. ARC1, JDP1, THL1, THL2, Exo70A01) in diploid Brassica species, a few were retained in duplicated (GLO1 and PLDα) or triplicated copies (MLPK). We also carefully studied the gene structure of these latter duplicated genes (including the conservation of functional domains and active sites) and tested their transcription in the stigma to identify which copies seem to be involved in the SI signalling pathway. By taking advantage of these analyses, we then explored the putative origin of a contrasted SI phenotype between two Brassica rapa varieties that have been fully sequenced and shared the same S-allele (S60).
Collapse
Affiliation(s)
- Thanina Azibi
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Houria Hadj-Arab
- University of Sciences and Technology Houari Boumedienne USTHB, Faculty of Biological Sciences FSB, Laboratory of Biology and Physiology of Organisms LBPO, Bab-Ezzouar, El-Alia, BP 32, 16111, Algiers, Algeria.
| | - Maryse Lodé
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Gwenn Trotoux
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Sylvie Nègre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | | - Julien Boutte
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Jérémy Lucas
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, 59000, Lille, France
| | - Anne-Marie Chèvre
- INRAE, Agrocampus Ouest, Université de Rennes, UMR IGEPP, 35650, Le Rheu, France
| | | |
Collapse
|
33
|
Law J, Ng K, Windram OPF. The Phenotype Paradox: Lessons From Natural Transcriptome Evolution on How to Engineer Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:75. [PMID: 32133018 PMCID: PMC7040092 DOI: 10.3389/fpls.2020.00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Plants have evolved genome complexity through iterative rounds of single gene and whole genome duplication. This has led to substantial expansion in transcription factor numbers following preferential retention and subsequent functional divergence of these regulatory genes. Here we review how this simple evolutionary network rewiring process, regulatory gene duplication followed by functional divergence, can be used to inspire synthetic biology approaches that seek to develop novel phenotypic variation for future trait based breeding programs in plants.
Collapse
Affiliation(s)
- Justin Law
- Grand Challenges in Ecosystems and the Environment, Imperial College London, Ascot, United Kingdom
| | - Kangbo Ng
- The Francis Crick Institute, London, United Kingdom
- Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Oliver P. F. Windram
- Grand Challenges in Ecosystems and the Environment, Imperial College London, Ascot, United Kingdom
| |
Collapse
|
34
|
Phukela B, Geeta R, Das S, Tandon R. Ancestral segmental duplication in Solanaceae is responsible for the origin of CRCa-CRCb paralogues in the family. Mol Genet Genomics 2020; 295:563-577. [PMID: 31912236 DOI: 10.1007/s00438-019-01641-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/18/2019] [Indexed: 01/03/2023]
Abstract
CRABS CLAW (CRC), a member of YABBY transcription factor family, has been previously reported to be principally involved in carpel development across angiosperms, and nectary development in core eudicots. Most of the studies suggest that CRC exists as a single copy gene, except in the Solanaceae where CRC occurs as paralogous pairs-CRCa-CRCb in Solanum lycopersicum, and CRC1-CRC2 in Petunia hybrida. In spite of their crucial role in carpel and nectary development, there is no information about the evolutionary history of the CRC paralogy in Solanaceae and whether the paralogy extends beyond Solanaceae. We analyzed homologues of CRC across angiosperms including genome sequence of fourteen species of Solanaceae available at Sol Genomics Network database, Phytozome and NCBI, to address the questions. Our phylogenetic reconstruction across angiosperms combined with comparative genomic, microsynteny and genome-fractionation analyses across the Solanaceae genomes revealed that (1) the CRCa-CRCb lineage is represented by a single copy in other flowering plants; (2) putative homologues of CRCa and CRCb are present in all the Solanaceae genomes studied; (3) the CRCa-CRCb paralogy in Solanaceae is associated with a large segmental duplication within Solanaceae (perhaps in its common ancestor), and (4) the duplicated segments have undergone different degrees of retention and loss of genes. Also, the CRC gene lineage expanded in Solanaceae following Solanaceae-α hexaploidy event and that two CRC duplicate copies were subsequently retained during the course of evolution. Besides the first detailed description of CRC evolution in Solanaceae, the study identifies potential candidate genes for future functional investigations.
Collapse
Affiliation(s)
- Banisha Phukela
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - R Geeta
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110 007, India
| | - Rajesh Tandon
- Department of Botany, University of Delhi, Delhi, 110 007, India.
| |
Collapse
|
35
|
Huang XC, German DA, Koch MA. Temporal patterns of diversification in Brassicaceae demonstrate decoupling of rate shifts and mesopolyploidization events. ANNALS OF BOTANY 2020; 125:29-47. [PMID: 31314080 PMCID: PMC6948214 DOI: 10.1093/aob/mcz123] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/16/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Whole-genome duplication (WGD) events are considered important driving forces of diversification. At least 11 out of 52 Brassicaceae tribes had independent mesopolyploid WGDs followed by diploidization processes. However, the association between mesopolyploidy and subsequent diversification is equivocal. Herein we show the results from a family-wide diversification analysis on Brassicaceae, and elaborate on the hypothesis that polyploidization per se is a fundamental driver in Brassicaceae evolution. METHODS We established a time-calibrated chronogram based on whole plastid genomes comprising representative Brassicaceae taxa and published data spanning the entire Rosidae clade. This allowed us to set multiple calibration points and anchored various Brassicaceae taxa for subsequent downstream analyses. All major splits among Brassicaceae lineages were used in BEAST analyses of 48 individually analysed tribes comprising 2101 taxa in total using the internal transcribed spacers of nuclear ribosomal DNA. Diversification patterns were investigated on these tribe-wide chronograms using BAMM and were compared with family-wide data on genome size variation and species richness. KEY RESULTS Brassicaceae diverged 29.9 million years ago (Mya) during the Oligocene, and the majority of tribes started diversification in the Miocene with an average crown group age of about 12.5 Mya. This matches the cooling phase right after the Mid Miocene climatic optimum. Significant rate shifts were detected in 12 out of 52 tribes during the Mio- and Pliocene, decoupled from preceding mesopolyploid WGDs. Among the various factors analysed, the combined effect of tribal crown group age and net diversification rate (speciation minus extinction) is likely to explain sufficiently species richness across Brassicaceae tribes. CONCLUSIONS The onset of the evolutionary splits among tribes took place under cooler and drier conditions. Pleistocene glacial cycles may have contributed to the maintenance of high diversification rates. Rate shifts are not consistently associated with mesopolyploid WGD. We propose, therefore, that WGDs in general serve as a constant 'pump' for continuous and high species diversification.
Collapse
Affiliation(s)
- Xiao-Chen Huang
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany
| | - Dmitry A German
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany
| | - Marcus A Koch
- Department of Biodiversity and Plant Systematics, Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, D-69120 Heidelberg, Germany
- For correspondence. E-mail
| |
Collapse
|
36
|
De La Torre AR, Piot A, Liu B, Wilhite B, Weiss M, Porth I. Functional and morphological evolution in gymnosperms: A portrait of implicated gene families. Evol Appl 2020; 13:210-227. [PMID: 31892953 PMCID: PMC6935586 DOI: 10.1111/eva.12839] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/25/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Gymnosperms diverged from their sister plant clade of flowering plants 300 Mya. Morphological and functional divergence between the two major seed plant clades involved significant changes in their reproductive biology, water-conducting systems, secondary metabolism, stress defense mechanisms, and small RNA-mediated epigenetic silencing. The relatively recent sequencing of several gymnosperm genomes and the development of new genomic resources have enabled whole-genome comparisons within gymnosperms, and between angiosperms and gymnosperms. In this paper, we aim to understand how genes and gene families have contributed to the major functional and morphological differences in gymnosperms, and how this information can be used for applied breeding and biotechnology. In addition, we have analyzed the angiosperm versus gymnosperm evolution of the pleiotropic drug resistance (PDR) gene family with a wide range of functionalities in plants' interaction with their environment including defense mechanisms. Some of the genes reviewed here are newly studied members of gene families that hold potential for biotechnological applications related to commercial and pharmacological value. Some members of conifer gene families can also be exploited for their potential in phytoremediation applications.
Collapse
Affiliation(s)
| | - Anthony Piot
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| | - Bobin Liu
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
- College of ForestryFujian Agricultural and Forestry UniversityFuzhouFujianChina
| | | | - Matthew Weiss
- School of ForestryNorthern Arizona UniversityFlagstaffAZUSA
| | - Ilga Porth
- Department of Wood and Forest SciencesLaval UniversityQuebec CityQuebecCanada
- Institute for System and Integrated Biology (IBIS)Laval UniversityQuebec CityQuebecCanada
- Centre for Forest Research (CEF)Laval UniversityQuebec CityQuebecCanada
| |
Collapse
|
37
|
Abstract
A gene duplication can lead to all sorts of problems in a cell. However, it can also lead to all sorts of benefits. Beneficial or not, the gene duplicates might be kept in the genome because of several different reasons. For instance, if natural selection works towards optimizing one function of a gene at the expense of another, then gene duplication could resolve this conflict by separating the functions in two genes. Here, we outline evolutionary incentives to keep a duplicated gene in the genome, focusing on divergence in expression and trade-off resolution as featured in a new and exciting paper published in this edition of PLOS Biology.
Collapse
Affiliation(s)
- Johan Hallin
- Département de biochimie, microbiologie et bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- PROTEO, Le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
| | - Christian R. Landry
- Département de biochimie, microbiologie et bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- PROTEO, Le réseau québécois de recherche sur la fonction, la structure et l’ingénierie des protéines, Université Laval, Québec, Canada
- Centre de Recherche en Données Massives (CRDM), Université Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
38
|
Clark JW, Puttick MN, Donoghue PCJ. Origin of horsetails and the role of whole-genome duplication in plant macroevolution. Proc Biol Sci 2019; 286:20191662. [PMID: 31662084 DOI: 10.1098/rspb.2019.1662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Whole-genome duplication (WGD) has occurred commonly in land plant evolution and it is often invoked as a causal agent in diversification, phenotypic and developmental innovation, as well as conferring extinction resistance. The ancient and iconic lineage of Equisetum is no exception, where WGD has been inferred to have occurred prior to the Cretaceous-Palaeogene (K-Pg) boundary, coincident with WGD events in angiosperms. In the absence of high species diversity, WGD in Equisetum is interpreted to have facilitated the long-term survival of the lineage. However, this characterization remains uncertain as these analyses of the Equisetum WGD event have not accounted for fossil diversity. Here, we analyse additional available transcriptomes and summarize the fossil record. Our results confirm support for at least one WGD event shared among the majority of extant Equisetum species. Furthermore, we use improved dating methods to constrain the age of gene duplication in geological time and identify two successive Equisetum WGD events. The two WGD events occurred during the Carboniferous and Triassic, respectively, rather than in association with the K-Pg boundary. WGD events are believed to drive high rates of trait evolution and innovations, but analysed trends of morphological evolution across the historical diversity of Equisetum provide little evidence for further macroevolutionary consequences following WGD. WGD events cannot have conferred extinction resistance to the Equisetum lineage through the K-Pg boundary since the ploidy events occurred hundreds of millions of years before this mass extinction and we find evidence of extinction among fossil polyploid Equisetum lineages. Our findings precipitate the need for a review of the proposed roles of WGDs in biological innovation and extinction survival in angiosperm and non-angiosperm lineages alike.
Collapse
Affiliation(s)
- James W Clark
- School of Earth Sciences, University of Bristol, Bristol BS8 1TQ, UK.,Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Mark N Puttick
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.,Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Philip C J Donoghue
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
39
|
Abstract
Green plants (Viridiplantae) include around 450,000-500,000 species1,2 of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
Collapse
|
40
|
Using digital organisms to study the evolutionary consequences of whole genome duplication and polyploidy. PLoS One 2019; 14:e0220257. [PMID: 31365541 PMCID: PMC6668904 DOI: 10.1371/journal.pone.0220257] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022] Open
Abstract
The potential role of whole genome duplication (WGD) in evolution is controversial. Whereas some view WGD mainly as detrimental and an evolutionary ‘dead end’, there is growing evidence that the long-term establishment of polyploidy might be linked to environmental change, stressful conditions, or periods of extinction. However, despite much research, the mechanistic underpinnings of why and how polyploids might be able to outcompete non-polyploids at times of environmental upheaval remain indefinable. Here, we improved our recently developed bio-inspired framework, combining an artificial genome with an agent-based system, to form a population of so-called Digital Organisms (DOs), to examine the impact of WGD on evolution under different environmental scenarios mimicking extinction events of varying strength and frequency. We found that, under stable environments, DOs with non-duplicated genomes formed the majority, if not all, of the population, whereas the numbers of DOs with duplicated genomes increased under dramatically challenging environments. After tracking the evolutionary trajectories of individual genomes in terms of sequence and encoded gene regulatory networks (GRNs), we propose that duplicated GRNs might provide polyploids with better chances to acquire the drastic changes necessary to adapt to challenging conditions, thus endowing DOs with increased adaptive potential under extinction events. In contrast, under stable environments, random mutations might easily render the GRN less well adapted to such environments, a phenomenon that is exacerbated in duplicated, more complex GRNs. We believe that our results provide some additional insights into how genome duplication and polyploidy might help organisms to compete for novel niches and survive ecological turmoil, and confirm the usefulness of our computational simulation in studying the role of WGD in evolution and adaptation, helping to overcome some of the traditional limitations of evolution experiments with model organisms.
Collapse
|
41
|
Tuteja R, McKeown PC, Ryan P, Morgan CC, Donoghue MTA, Downing T, O'Connell MJ, Spillane C. Paternally Expressed Imprinted Genes under Positive Darwinian Selection in Arabidopsis thaliana. Mol Biol Evol 2019; 36:1239-1253. [PMID: 30913563 PMCID: PMC6526901 DOI: 10.1093/molbev/msz063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon where autosomal genes display uniparental expression depending on whether they are maternally or paternally inherited. Genomic imprinting can arise from parental conflicts over resource allocation to the offspring, which could drive imprinted loci to evolve by positive selection. We investigate whether positive selection is associated with genomic imprinting in the inbreeding species Arabidopsis thaliana. Our analysis of 140 genes regulated by genomic imprinting in the A. thaliana seed endosperm demonstrates they are evolving more rapidly than expected. To investigate whether positive selection drives this evolutionary acceleration, we identified orthologs of each imprinted gene across 34 plant species and elucidated their evolutionary trajectories. Increased positive selection was sought by comparing its incidence among imprinted genes with nonimprinted controls. Strikingly, we find a statistically significant enrichment of imprinted paternally expressed genes (iPEGs) evolving under positive selection, 50.6% of the total, but no such enrichment for positive selection among imprinted maternally expressed genes (iMEGs). This suggests that maternally- and paternally expressed imprinted genes are subject to different selective pressures. Almost all positively selected amino acids were fixed across 80 sequenced A. thaliana accessions, suggestive of selective sweeps in the A. thaliana lineage. The imprinted genes under positive selection are involved in processes important for seed development including auxin biosynthesis and epigenetic regulation. Our findings support a genomic imprinting model for plants where positive selection can affect paternally expressed genes due to continued conflict with maternal sporophyte tissues, even when parental conflict is reduced in predominantly inbreeding species.
Collapse
Affiliation(s)
- Reetu Tuteja
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,Center for Genomics and Systems Biology, New York University, New York, NY
| | - Peter C McKeown
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Pat Ryan
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Claire C Morgan
- School of Biotechnology, Faculty of Biological Sciences, Dublin City University, Dublin, Ireland.,Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Mark T A Donoghue
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland.,Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tim Downing
- School of Biotechnology, Faculty of Biological Sciences, Dublin City University, Dublin, Ireland
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, United Kingdom.,Computational and Molecular Evolutionary Biology Group, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Charles Spillane
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), School of Natural Sciences, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
42
|
Walczyk AM, Hersch-Green EI. Impacts of soil nitrogen and phosphorus levels on cytotype performance of the circumboreal herb Chamerion angustifolium: implications for polyploid establishment. AMERICAN JOURNAL OF BOTANY 2019; 106:906-921. [PMID: 31283844 DOI: 10.1002/ajb2.1321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Although polyploidy commonly occurs in angiosperms, not all polyploidization events lead to successful lineages, and environmental conditions could influence cytotype dynamics and polyploid success. Low soil nitrogen and/or phosphorus concentrations often limit ecosystem primary productivity, and changes in these nutrients might differentially favor some cytotypes over others, thereby influencing polyploid establishment. METHODS We grew diploid, established tetraploid, and neotetraploid Chamerion angustifolium (fireweed) in a greenhouse under low and high soil nitrogen and phosphorus conditions and different competition treatments and measured plant performance (height, biomass, flower production, and root bud production) and insect damage responses. By comparing neotetraploids to established tetraploids, we were able to examine traits and responses that might directly arise from polyploidization before they are modified by natural selection and/or genetic drift. RESULTS We found that (1) neopolyploids were the least likely to survive and flower and experienced the most herbivore damage, regardless of nutrient conditions; (2) both neo- and established tetraploids had greater biomass and root bud production under nutrient-enriched conditions, whereas diploid biomass and root bud production was not significantly affected by nutrients; and (3) intra-cytotype competition more negatively affected diploids and established tetraploids than it did neotetraploids. CONCLUSIONS Following polyploidization, biomass and clonal growth might be more immediately affected by environmental nutrient availabilities than plant survival, flowering, and/or responses to herbivory, which could influence competitive dynamics. Specifically, polyploids might have competitive and colonizing advantages over diploids under nutrient-enriched conditions favoring their establishment, although establishment may also depend upon the density and occurrences of other related cytotypes in a population.
Collapse
Affiliation(s)
- Angela M Walczyk
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA
| | - Erika I Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, 49931, USA
| |
Collapse
|
43
|
Vogt G, Dorn NJ, Pfeiffer M, Lukhaup C, Williams BW, Schulz R, Schrimpf A. The dimension of biological change caused by autotriploidy: A meta-analysis with triploid crayfish Procambarus virginalis and its diploid parent Procambarus fallax. ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
44
|
Griffiths AG, Moraga R, Tausen M, Gupta V, Bilton TP, Campbell MA, Ashby R, Nagy I, Khan A, Larking A, Anderson C, Franzmayr B, Hancock K, Scott A, Ellison NW, Cox MP, Asp T, Mailund T, Schierup MH, Andersen SU. Breaking Free: The Genomics of Allopolyploidy-Facilitated Niche Expansion in White Clover. THE PLANT CELL 2019; 31:1466-1487. [PMID: 31023841 PMCID: PMC6635854 DOI: 10.1105/tpc.18.00606] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/15/2019] [Accepted: 04/22/2019] [Indexed: 05/18/2023]
Abstract
The merging of distinct genomes, allopolyploidization, is a widespread phenomenon in plants. It generates adaptive potential through increased genetic diversity, but examples demonstrating its exploitation remain scarce. White clover (Trifolium repens) is a ubiquitous temperate allotetraploid forage crop derived from two European diploid progenitors confined to extreme coastal or alpine habitats. We sequenced and assembled the genomes and transcriptomes of this species complex to gain insight into the genesis of white clover and the consequences of allopolyploidization. Based on these data, we estimate that white clover originated ∼15,000 to 28,000 years ago during the last glaciation when alpine and coastal progenitors were likely colocated in glacial refugia. We found evidence of progenitor diversity carryover through multiple hybridization events and show that the progenitor subgenomes have retained integrity and gene expression activity as they traveled within white clover from their original confined habitats to a global presence. At the transcriptional level, we observed remarkably stable subgenome expression ratios across tissues. Among the few genes that show tissue-specific switching between homeologous gene copies, we found flavonoid biosynthesis genes strongly overrepresented, suggesting an adaptive role of some allopolyploidy-associated transcriptional changes. Our results highlight white clover as an example of allopolyploidy-facilitated niche expansion, where two progenitor genomes, adapted and confined to disparate and highly specialized habitats, expanded to a ubiquitous global presence after glaciation-associated allopolyploidization.
Collapse
Affiliation(s)
- Andrew G Griffiths
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Roger Moraga
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Marni Tausen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Timothy P Bilton
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Matthew A Campbell
- Bioinformatics and Statistics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Rachael Ashby
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Istvan Nagy
- Department of Molecular Biology and Genetics, Aarhus University, 200 Slagelse, Denmark
| | - Anar Khan
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Anna Larking
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Craig Anderson
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Benjamin Franzmayr
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Kerry Hancock
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Alicia Scott
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Nick W Ellison
- AgResearch, Grasslands Research Centre, Palmerston North 4442, New Zealand
| | - Murray P Cox
- Bioinformatics and Statistics Group, Institute of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Torben Asp
- Department of Molecular Biology and Genetics, Aarhus University, 200 Slagelse, Denmark
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, 8000 Aarhus C, Denmark
| | - Mikkel H Schierup
- AgResearch, Invermay Agricultural Centre, Mosgiel 9053, New Zealand
- Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
45
|
Tan S, Debellé F, Gamas P, Frugier F, Brault M. Diversification of cytokinin phosphotransfer signaling genes in Medicago truncatula and other legume genomes. BMC Genomics 2019; 20:373. [PMID: 31088345 PMCID: PMC6518804 DOI: 10.1186/s12864-019-5724-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/22/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Legumes can establish on nitrogen-deprived soils a symbiotic interaction with Rhizobia bacteria, leading to the formation of nitrogen-fixing root nodules. Cytokinin phytohormones are critical for triggering root cortical cell divisions at the onset of nodule initiation. Cytokinin signaling is based on a Two-Component System (TCS) phosphorelay cascade, involving successively Cytokinin-binding Histidine Kinase receptors, phosphorelay proteins shuttling between the cytoplasm and the nucleus, and Type-B Response Regulator (RRB) transcription factors activating the expression of cytokinin primary response genes. Among those, Type-A Response Regulators (RRA) exert a negative feedback on the TCS signaling. To determine whether the legume plant nodulation capacity is linked to specific features of TCS proteins, a genome-wide identification was performed in six legume genomes (Cajanus cajan, pigeonpea; Cicer arietinum, chickpea; Glycine max, soybean; Phaseolus vulgaris, common bean; Lotus japonicus; Medicago truncatula). The diversity of legume TCS proteins was compared to the one found in two non-nodulating species, Arabidopsis thaliana and Vitis vinifera, which are references for functional analyses of TCS components and phylogenetic analyses, respectively. RESULTS A striking expansion of non-canonical RRBs was identified, notably leading to the emergence of proteins where the conserved phosphor-accepting aspartate residue is replaced by a glutamate or an asparagine. M. truncatula genome-wide expression datasets additionally revealed that only a limited subset of cytokinin-related TCS genes is highly expressed in different organs, namely MtCHK1/MtCRE1, MtHPT1, and MtRRB3, suggesting that this "core" module potentially acts in most plant organs including nodules. CONCLUSIONS Further functional analyses are required to determine the relevance of these numerous non-canonical TCS RRBs in symbiotic nodulation, as well as of canonical MtHPT1 and MtRRB3 core signaling elements.
Collapse
Affiliation(s)
- Sovanna Tan
- IPS2 (Institute of Plant Sciences Paris-Saclay), CNRS, Université Paris-Sud, Université Paris-Diderot, INRA, Université d’Evry, Université Paris-Saclay, Rue de Noetzlin, 91190 Gif-sur-Yvette, France
| | - Frédéric Debellé
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Pascal Gamas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Florian Frugier
- IPS2 (Institute of Plant Sciences Paris-Saclay), CNRS, Université Paris-Sud, Université Paris-Diderot, INRA, Université d’Evry, Université Paris-Saclay, Rue de Noetzlin, 91190 Gif-sur-Yvette, France
| | - Mathias Brault
- IPS2 (Institute of Plant Sciences Paris-Saclay), CNRS, Université Paris-Sud, Université Paris-Diderot, INRA, Université d’Evry, Université Paris-Saclay, Rue de Noetzlin, 91190 Gif-sur-Yvette, France
| |
Collapse
|
46
|
McCarthy EW, Landis JB, Kurti A, Lawhorn AJ, Chase MW, Knapp S, Le Comber SC, Leitch AR, Litt A. Early consequences of allopolyploidy alter floral evolution in Nicotiana (Solanaceae). BMC PLANT BIOLOGY 2019; 19:162. [PMID: 31029077 PMCID: PMC6486959 DOI: 10.1186/s12870-019-1771-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/10/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Polyploidy has played a major role in angiosperm evolution. Previous studies have examined polyploid phenotypes in comparison to their extant progenitors, but not in context of predicted progenitor phenotypes at allopolyploid origin. In addition, differences in the trends of polyploid versus diploid evolution have not been investigated. We use ancestral character-state reconstructions to estimate progenitor phenotype at allopolyploid origin to determine patterns of polyploid evolution leading to morphology of the extant species. We also compare trends in diploid versus allopolyploid evolution to determine if polyploidy modifies floral evolutionary patterns. RESULTS Predicting the ancestral phenotype of a nascent allopolyploid from reconstructions of diploid phenotypes at the time of polyploid formation generates different phenotype predictions than when extant diploid phenotypes are used, the outcome of which can alter conclusions about polyploid evolution; however, most analyses yield the same results. Using ancestral reconstructions of diploid floral phenotypes indicate that young polyploids evolve shorter, wider corolla tubes, but older polyploids and diploids do not show any detectable evolutionary trends. Lability of the traits examined (floral shape, corolla tube length, and corolla tube width) differs across young and older polyploids and diploids. Corolla length is more evolutionarily labile in older polyploids and diploids. Polyploids do not display unique suites of floral characters based on both morphological and color traits, but some suites of characters may be evolving together and seem to have arisen multiple times within Nicotiana, perhaps due to the influence of pollinators. CONCLUSIONS Young polyploids display different trends in floral evolution (shorter, wider corolla tubes, which may result in more generalist pollination) than older polyploids and diploids, suggesting that patterns of divergence are impacted by the early consequences of allopolyploidy, perhaps arising from genomic shock and/or subsequent genome stabilization associated with diploidization. Convergent evolution in floral morphology and color in Nicotiana can be consistent with pollinator preferences, suggesting that pollinators may have shaped floral evolution in Nicotiana.
Collapse
Affiliation(s)
- Elizabeth W. McCarthy
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
- Present address: Department of Biological Sciences, SUNY Cortland, Cortland, NY 13045 USA
| | - Jacob B. Landis
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
- Department of Biology, University of Florida, Gainesville, FL 32611 USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 USA
| | - Amelda Kurti
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
| | - Amber J. Lawhorn
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
| | - Mark W. Chase
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS UK
- Department of Environment and Agriculture, Curtin University, Bentley, Western Australia 6102 Australia
| | | | - Steven C. Le Comber
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Andrew R. Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS UK
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521 USA
| |
Collapse
|
47
|
Li M, Yang S, Xu W, Pu Z, Feng J, Wang Z, Zhang C, Peng M, Du C, Lin F, Wei C, Qiao S, Zou H, Zhang L, Li Y, Yang H, Liao A, Song W, Zhang Z, Li J, Wang K, Zhang Y, Lin H, Zhang J, Tan W. The wild sweetpotato (Ipomoea trifida) genome provides insights into storage root development. BMC PLANT BIOLOGY 2019; 19:119. [PMID: 30935381 PMCID: PMC6444543 DOI: 10.1186/s12870-019-1708-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/11/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Sweetpotato (Ipomoea batatas (L.) Lam.) is the seventh most important crop in the world and is mainly cultivated for its underground storage root (SR). The genetic studies of this species have been hindered by a lack of high-quality reference sequence due to its complex genome structure. Diploid Ipomoea trifida is the closest relative and putative progenitor of sweetpotato, which is considered a model species for sweetpotato, including genetic, cytological, and physiological analyses. RESULTS Here, we generated the chromosome-scale genome sequence of SR-forming diploid I. trifida var. Y22 with high heterozygosity (2.20%). Although the chromosome-based synteny analysis revealed that the I. trifida shared conserved karyotype with Ipomoea nil after the separation, I. trifida had a much smaller genome than I. nil due to more efficient eliminations of LTR-retrotransposons and lack of species-specific amplification bursts of LTR-RTs. A comparison with four non-SR-forming species showed that the evolution of the beta-amylase gene family may be related to SR formation. We further investigated the relationship of the key gene BMY11 (with identity 47.12% to beta-amylase 1) with this important agronomic trait by both gene expression profiling and quantitative trait locus (QTL) mapping. And combining SR morphology and structure, gene expression profiling and qPCR results, we deduced that the products of the activity of BMY11 in splitting starch granules and be recycled to synthesize larger granules, contributing to starch accumulation and SR swelling. Moreover, we found the expression pattern of BMY11, sporamin proteins and the key genes involved in carbohydrate metabolism and stele lignification were similar to that of sweetpotato during the SR development. CONCLUSIONS We constructed the high-quality genome reference of the highly heterozygous I. trifida through a combined approach and this genome enables a better resolution of the genomics feature and genome evolutions of this species. Sweetpotato SR development genes can be identified in I. trifida and these genes perform similar functions and patterns, showed that the diploid I. trifida var. Y22 with typical SR could be considered an ideal model for the studies of sweetpotato SR development.
Collapse
Affiliation(s)
- Ming Li
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 Sichuan People’s Republic of China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Songtao Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan People’s Republic of China
| | - Wei Xu
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Zhigang Pu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 Sichuan People’s Republic of China
| | - Junyan Feng
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 Sichuan People’s Republic of China
| | - Zhangying Wang
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong People’s Republic of China
| | - Cong Zhang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 Sichuan People’s Republic of China
| | - Meifang Peng
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 Sichuan People’s Republic of China
| | - Chunguang Du
- Department of Biology, Montclair State University, Montclair, NJ 07043 USA
| | - Feng Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610061 Sichuan People’s Republic of China
| | - Changhe Wei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Shuai Qiao
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan People’s Republic of China
| | - Hongda Zou
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong People’s Republic of China
| | - Lei Zhang
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Yan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Huan Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Anzhong Liao
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan People’s Republic of China
| | - Wei Song
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan People’s Republic of China
| | - Zhongren Zhang
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Ji Li
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Kai Wang
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Yizheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan People’s Republic of China
| | - Jinbo Zhang
- Novogene Bioinformatics Institute, Beijing, 100083 People’s Republic of China
| | - Wenfang Tan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 Sichuan People’s Republic of China
| |
Collapse
|
48
|
Histology versus phylogeny: Viewing plant embryogenesis from an evo-devo perspective. Curr Top Dev Biol 2019; 131:545-564. [DOI: 10.1016/bs.ctdb.2018.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
49
|
Maheepala DC, Emerling CA, Rajewski A, Macon J, Strahl M, Pabón-Mora N, Litt A. Evolution and Diversification of FRUITFULL Genes in Solanaceae. FRONTIERS IN PLANT SCIENCE 2019; 10:43. [PMID: 30846991 PMCID: PMC6394111 DOI: 10.3389/fpls.2019.00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/11/2019] [Indexed: 05/12/2023]
Abstract
Ecologically and economically important fleshy edible fruits have evolved from dry fruit numerous times during angiosperm diversification. However, the molecular mechanisms that underlie these shifts are unknown. In the Solanaceae there has been a major shift to fleshy fruits in the subfamily Solanoideae. Evidence suggests that an ortholog of FRUITFULL (FUL), a transcription factor that regulates cell proliferation and limits the dehiscence zone in the silique of Arabidopsis, plays a similar role in dry-fruited Solanaceae. However, studies have shown that FUL orthologs have taken on new functions in fleshy fruit development, including regulating elements of tomato ripening such as pigment accumulation. FUL belongs to the core eudicot euFUL clade of the angiosperm AP1/FUL gene lineage. The euFUL genes fall into two paralogous clades, euFULI and euFULII. While most core eudicots have one gene in each clade, Solanaceae have two: FUL1 and FUL2 in the former, and MBP10 and MBP20 in the latter. We characterized the evolution of the euFUL genes to identify changes that might be correlated with the origin of fleshy fruit in Solanaceae. Our analyses revealed that the Solanaceae FUL1 and FUL2 clades probably originated through an early whole genome multiplication event. By contrast, the data suggest that the MBP10 and MBP20 clades are the result of a later tandem duplication event. MBP10 is expressed at weak to moderate levels, and its atypical short first intron lacks putative transcription factor binding sites, indicating possible pseudogenization. Consistent with this, our analyses show that MBP10 is evolving at a faster rate compared to MBP20. Our analyses found that Solanaceae euFUL gene duplications, evolutionary rates, and changes in protein residues and expression patterns are not correlated with the shift in fruit type. This suggests deeper analyses are needed to identify the mechanism underlying the change in FUL ortholog function.
Collapse
Affiliation(s)
- Dinusha C. Maheepala
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Christopher A. Emerling
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, École Pratique des Hautes Études, Montpellier, France
| | - Alex Rajewski
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jenna Macon
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Maya Strahl
- The New York Botanical Garden, Bronx, NY, United States
| | | | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Amy Litt,
| |
Collapse
|
50
|
Liu B, Sun G. Transcriptome and miRNAs analyses enhance our understanding of the evolutionary advantages of polyploidy. Crit Rev Biotechnol 2018; 39:173-180. [PMID: 30372634 DOI: 10.1080/07388551.2018.1524824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyploid organisms have more than two sets of chromosomes, including autopolyploid via intraspecific genome doubling, and allopolyploid via merging genomes of distinct species by hybridization. Polyploid organisms are widespread in plants, indicating that polyploidy has some evolutionary advantages over its diploid ancestor. Actually, polyploidy is always tightly associated with hybrid vigor and adaptation to adverse environmental conditions. However, why polyploidy can develop such advantages is poorly known. MicroRNAs (miRNAs) are endogenous ∼21 nt small RNAs which can play important regulatory roles in animals and plants by targeting mRNAs for cleavage or translational repression. MicroRNAs are essential for cell development, differentiation, signal transduction, and show an adaptive response to biotic and abiotic stresses. Environmental stresses cause plants to over- or under-express certain miRNAs or synthesize new miRNAs to cope with stress. We have here reviewed our current knowledge on the molecular mechanisms, which can account for the evolutionary advantages of polyploidy over its diploid ancestor from genome-wide gene expression and microRNAs expression perspectives.
Collapse
Affiliation(s)
- Beibei Liu
- a Biology Department , Saint Mary's University , Halifax , Canada
| | - Genlou Sun
- a Biology Department , Saint Mary's University , Halifax , Canada
| |
Collapse
|