1
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Mekky AEM, Sanad SMH. New Bis(pyrazolo[5,1-b]quinazolines) and Bis(9H-xanthenediones) Linked to Alkane Cores: One-Pot Synthesis, Antibacterial Screening, and SAR Study. Chem Biodivers 2024:e202401700. [PMID: 39284770 DOI: 10.1002/cbdv.202401700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/04/2024] [Indexed: 10/27/2024]
Abstract
Effective one-pot methods were used to synthesize some new alkane-linked bis(pyrazolo[5,1-b]quinazolines) and bis(9H-xanthenediones). The first series was produced, in 80-88 % yields, via the reaction of one equivalent of the appropriate bis(aldehydes) with two equivalents of 1H-pyrazole-3,5-diamine and dimedone in DMF at 150 °C for 5-6 h. The second series was prepared, in 82-89 % yields, via the reaction one equivalent of the appropriate bis(aldehydes) with four equivalents of dimedone in acetic acid at 120 °C for 4-5 h. The new products displayed a broad range of antibacterial activity against different bacterial strains. Generally, the antibacterial activity of the alkane-linked bis(pyrazolo[5,1-b]quinazoline) units is more than 2-fold their bis(9H-xanthenedione) analogues. The (p-tolylthio)methyl)-linked bis(pyrazolo[5,1-b]quinazolines) demonstrate the best antibacterial activity with MIC/MBC values up to 3.3/6.6 μM.
Collapse
Affiliation(s)
- Ahmed E M Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sherif M H Sanad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
3
|
Elneairy MAA, Youssef EGN, Ebrahim SAA, Mohammad NEM, Abd El-Rahman NMS, Elhewaty ASM, Sanad SMH, Mekky AEM. MRSA Inhibitory Activity of Some New Pyrazolo[1,5-a]pyrimidines Linked to Arene and/or Furan or Thiophene Units. Chem Biodivers 2024:e202402031. [PMID: 39284766 DOI: 10.1002/cbdv.202402031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/16/2024] [Indexed: 11/02/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major contributor to hospital-acquired infections and is highly resistant to treatment. Ongoing research focuses on developing new antimicrobial medications to prevent the spread of resistance. A facile method was employed to efficiently synthesize new pyrazolo[1,5-a]pyrimidines in 84-93 % yields by reacting 4-benzyl-1H-pyrazole-3,5-diamine with the respective α,β-unsaturated ketones. The reaction was carried out in ethanol containing 1.2 equivalents of potassium hydroxide at reflux for 5-6 h. The new products are attached to a para-substituted aryl group with variable electronic properties at pyrazolopyrimidine-C5, in addition to one of three units at C7, namely phenyl, thiophen-2-yl, or furan-2-yl units. A wide spectrum of antibacterial activity was displayed by the new pyrimidines against six different bacterial strains. In general, pyrimidines attached to furan-2-yl units at C7, in addition to another aryl unit at C5, attached to 4-Me or 4-OMe groups, demonstrate significant antibacterial activity, particularly against S. aureus strain. They had MIC/MBC of 2.5/5.1 and 2.4/4.9 μM, respectively, which exceeded that of ciprofloxacin. Moreover, they demonstrate more effective MRSA inhibitory activity than linezolid, with MIC/MBC values up to 4.9/19.7 and 2.4/19.7 μM against MRSA ATCC:33591 and ATCC:43300 strains, respectively.
Collapse
Affiliation(s)
| | - Emad G N Youssef
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sama A A Ebrahim
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Nour E M Mohammad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Ahmed S M Elhewaty
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sherif M H Sanad
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed E M Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
4
|
Moreth D, Stevens-Cullinane L, Rees TW, Müller VVL, Pasquier A, Song OR, Warchal S, Howell M, Hess J, Schatzschneider U. Antibacterial activity of Au(I), Pt(II), and Ir(III) biotin conjugates prepared by the iClick reaction: influence of the metal coordination sphere on the biological activity. J Biol Inorg Chem 2024; 29:573-582. [PMID: 39198276 PMCID: PMC7616682 DOI: 10.1007/s00775-024-02073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024]
Abstract
A series of biotin-functionalized transition metal complexes was prepared by iClick reaction from the corresponding azido complexes with a novel alkyne-functionalized biotin derivative ([Au(triazolatoR,R')(PPh3)], [Pt(dpb)(triazolatoR,R')], [Pt(triazolatoR,R')(terpy)]PF6, and [Ir(ppy)(triazolatoR,R')(terpy)]PF6 with dpb = 1,3-di(2-pyridyl)benzene, ppy = 2-phenylpyridine, and terpy = 2,2':6',2''-terpyridine and R = C6H5, R' = biotin). The complexes were compared to reference compounds lacking the biotin moiety. The binding affinity toward avidin and streptavidin was evaluated with the HABA assay as well as isothermal titration calorimetry (ITC). All compounds exhibit the same binding stoichiometry of complex-to-avidin of 4:1, but the ITC results show that the octahedral Ir(III) compound exhibits a higher binding affinity than the square-planar Pt(II) complex. The antibacterial activity of the compounds was evaluated on a series of Gram-negative and Gram-positive bacterial strains. In particular, the neutral Au(I) and Pt(II) complexes showed significant antibacterial activity against Staphylococcus aureus and Enterococcus faecium at very low micromolar concentrations. The cytotoxicity against a range of eukaryotic cell lines was studied and revealed that the octahedral Ir(III) complex was non-toxic, while the square-planar Pt(II) and linear Au(I) complexes displayed non-selective micromolar activity.
Collapse
Affiliation(s)
- Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Lars Stevens-Cullinane
- Biological Inorganic Chemistry Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Thomas W Rees
- Biological Inorganic Chemistry Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Adrien Pasquier
- High Throughput Screening Science and Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Ok-Ryul Song
- High Throughput Screening Science and Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Scott Warchal
- High Throughput Screening Science and Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Michael Howell
- High Throughput Screening Science and Technology Platform, The Francis Crick Institute, London, NW1 1AT, UK
| | - Jeannine Hess
- Biological Inorganic Chemistry Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London, SE1 1DB, UK
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany.
| |
Collapse
|
5
|
Bernardoni BL, D'Agostino I, La Motta C, Angeli A. An insight into the last 5-year patents on Porphyromonas gingivalis and Streptococcus mutans, the pivotal pathogens in the oral cavity. Expert Opin Ther Pat 2024; 34:433-463. [PMID: 38684444 DOI: 10.1080/13543776.2024.2349739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION The oral cavity harbors an extensive array of over 700 microorganisms, forming the most complex biome of the entire human body, with bacterial species being the most abundant. Oral diseases, e.g. periodontitis and caries, are strictly associated with bacterial dysbiosis. Porphyromonas gingivalis and Streptococcus mutans stand out among bacteria colonizing the oral cavity. AREAS COVERED After a brief overview of the bacterial populations in the oral cavity and their roles in regulating (flora) oral cavity or causing diseases like periodontal and cariogenic pathogens, we focused our attention on P. gingivalis and S. mutans, searching for the last-5-year patents dealing with the proposal of new strategies to fight their infections. Following the PRISMA protocol, we filtered the results and analyzed over 100 applied/granted patents, to provide an in-depth insight into this R&D scenario. EXPERT OPINION Several antibacterial proposals have been patented in this period, from both chemical - peptides and small molecules - and biological - probiotics and antibodies - sources, along with natural extracts, polymers, and drug delivery systems. Most of the inventors are from China and Korea and their studies also investigated anti-inflammatory and antioxidant effects, being beneficial to oral health through a prophylactic, protective, or curative effect.
Collapse
Affiliation(s)
| | | | | | - Andrea Angeli
- Neurofarba Department, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Zhou Y, Zhou Z, Zheng L, Gong Z, Li Y, Jin Y, Huang Y, Chi M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int J Mol Sci 2023; 24:10537. [PMID: 37445714 DOI: 10.3390/ijms241310537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Mingyan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| |
Collapse
|
7
|
Almeida MC, Szemerédi N, Durães F, Long S, Resende DISP, Martins da Costa P, Pinto M, Spengler G, Sousa E. Effect of Indole-Containing Pyrazino[2,1- b]quinazoline-3,6-diones in the Virulence of Resistant Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12050922. [PMID: 37237825 DOI: 10.3390/antibiotics12050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Drug resistance is rising to alarming levels, constituting one of the major threats to global health. The overexpression of efflux pumps and the formation of biofilms constitute two of the most common resistance mechanisms, favoring the virulence of bacteria. Therefore, the research and development of effective antimicrobial agents that can also counteract resistance mechanisms are extremely important. Pyrazino[2,1-b]quinazoline-3,6-diones, from marine and terrestrial organisms and simpler synthetic analogues, were recently disclosed by us as having relevant antimicrobial properties. In this study, using a multi-step approach, it was possible to synthesize new pyrazino[2,1-b]quinazoline-3,6-diones focusing on compounds with fluorine substituents since, to the best of our knowledge, the synthesis of fluorinated fumiquinazoline derivatives had not been attempted before. The new synthesized derivatives were screened for antibacterial activity and, along with previously synthetized pyrazino[2,1-b]quinazoline-3,6-diones, were characterized for their antibiofilm and efflux-pump-inhibiting effects against representative bacterial species and relevant resistant clinical strains. Several compounds showed relevant antibacterial activity against the tested Gram-positive bacterial species with MIC values in the range of 12.5-77 μM. Furthermore, some derivatives showed promising results as antibiofilm agents in a crystal violet assay. The results of the ethidium bromide accumulation assay suggested that some compounds could potentially inhibit bacterial efflux pumps.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR--Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Nikoletta Szemerédi
- Department of Medical Microbiology, Albert Szent-Gyorgyi Health Center and Albert Szent-Gyorgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary
| | - Fernando Durães
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR--Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Solida Long
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Department of Bioengineering, Royal University of Phnom Penh, Russian Confederation Blvd, Phnom Penh 12156, Cambodia
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR--Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Paulo Martins da Costa
- CIIMAR--Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR--Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Gyorgyi Health Center and Albert Szent-Gyorgyi Medical School, University of Szeged, Semmelweis utca 6, 6725 Szeged, Hungary
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CIIMAR--Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
8
|
Sanad SMH, Mekky AEM. Three-component regioselective synthesis and antibacterial evaluation of new arene-linked bis(pyrazolo[1,5- a]pyrimidine) hybrids. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2191854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Guevara YAS, Santos MHC, Gomes FIR, Mesquita FP, Souza PFN. A historical, economic, and technical-scientific approach to the current crisis in the development of antibacterial drugs: Promising role of antibacterial peptides in this scenario. Microb Pathog 2023; 179:106108. [PMID: 37044203 DOI: 10.1016/j.micpath.2023.106108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
The emergence of antibiotic resistance (AMR) is a global public health problem. According to estimates, drug-resistant bacteria infect 2 million patients and perish 23,000 annually. To overcome this problem, antimicrobial peptides became a potential solution based on a new mechanism of action against bacteria. This article addresses the phenomenon of antibacterial resistance in most of its nuances, responding to historical, technical-scientific, and economic aspects. Likewise, it explores new therapeutic approaches to combat multi-resistant pathogens, specifically concerning antibacterial peptides, as a potential therapeutic tool to mitigate the current crisis of antibacterial drugs. It is expected that, with technological advances, especially with the advent and adoption of artificial intelligence, there will be an increase in diversified synthetic peptide production, which can face the challenges that we have in terms of antibacterial drugs.
Collapse
Affiliation(s)
- Yeimer A S Guevara
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Maria H C Santos
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisco I R Gomes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Felipe P Mesquita
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Pedro F N Souza
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
10
|
Nasi GI, Georgakopoulou KI, Theodoropoulou MK, Papandreou NC, Chrysina ED, Tsiolaki PL, Iconomidou VA. Bacterial Lectin FimH and Its Aggregation Hot-Spots: An Alternative Strategy against Uropathogenic Escherichia coli. Pharmaceutics 2023; 15:pharmaceutics15031018. [PMID: 36986878 PMCID: PMC10058141 DOI: 10.3390/pharmaceutics15031018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Type I fimbriae are the main adhesive organelles of uropathogenic Escherichia coli (UPEC), consisting of four different subunits. Their component with the most important role in establishing bacterial infections is the FimH adhesin located at the fimbrial tip. This two-domain protein mediates adhesion to host epithelial cells through interaction with terminal mannoses on epithelial glycoproteins. Here, we propose that the amyloidogenic potential of FimH can be exploited for the development of therapeutic agents against Urinary Tract Infections (UTIs). Aggregation-prone regions (APRs) were identified via computational methods, and peptide-analogues corresponding to FimH lectin domain APRs were chemically synthesized and studied with the aid of both biophysical experimental techniques and molecular dynamic simulations. Our findings indicate that these peptide-analogues offer a promising set of antimicrobial candidate molecules since they can either interfere with the folding process of FimH or compete for the mannose-binding pocket.
Collapse
Affiliation(s)
- Georgia I Nasi
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Konstantina I Georgakopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Marilena K Theodoropoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Nikos C Papandreou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Evangelia D Chrysina
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Paraskevi L Tsiolaki
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Vassiliki A Iconomidou
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
11
|
Santos AM, Carvalho Santana Júnior C, Nascimento Júnior JAC, Andrade TDA, Shanmugam S, Thangaraj P, Frank LA, Serafini MR. Antibacterial drugs and cyclodextrin inclusion complexes: a patent review. Expert Opin Drug Deliv 2023; 20:349-366. [PMID: 36722254 DOI: 10.1080/17425247.2023.2175815] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Bacterial antibiotic resistance occurs when bacteria mutate and escape the effect of antibiotics, which makes the antibiotics no longer effective in treating infections. New solutions for bacterial infections are a persistent need including the identification of drugs with better pharmacological profiles, more potent, and safer. Cyclodextrins inclusion complexes have been able to improve the physicochemical and pharmacological properties of the formulation molecules, resulting in new alternatives with better efficacy. AREAS COVERED The patents analyzed in the review used treatments based on antibiotics already on the market, natural products, and synthesized molecules composed of the formulation with cyclodextrins. The combination between cyclodextrin and nanostructures also were presented in the patents review process. Moreover, inclusion complexes have been an alternative in developing treatment mainly in China by the pharmaceutical industries in several countries such as Germany, Hungary, the United States of America, Japan and China. EXPERT OPINION This review is broad and complete since it considers the first patent involving cyclodextrins and antibacterial drugs. Therefore, the various inclusion complexes and antibacterial drugs alternatives presented in this review offer therapeutic options to fight bacterial infections. If shown to be effective, these drugs may be extremely important in the current clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil.,Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
12
|
Tang J, Ouyang Q, Li Y, Zhang P, Jin W, Qu S, Yang F, He Z, Qin M. Nanomaterials for Delivering Antibiotics in the Therapy of Pneumonia. Int J Mol Sci 2022; 23:ijms232415738. [PMID: 36555379 PMCID: PMC9779065 DOI: 10.3390/ijms232415738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/14/2022] Open
Abstract
Bacterial pneumonia is one of the leading causes of death worldwide and exerts a significant burden on health-care resources. Antibiotics have long been used as first-line drugs for the treatment of bacterial pneumonia. However, antibiotic therapy and traditional antibiotic delivery are associated with important challenges, including drug resistance, low bioavailability, and adverse side effects; the existence of physiological barriers further hampers treatment. Fortunately, these limitations may be overcome by the application of nanotechnology, which can facilitate drug delivery while improving drug stability and bioavailability. This review summarizes the challenges facing the treatment of bacterial pneumonia and also highlights the types of nanoparticles that can be used for antibiotic delivery. This review places a special focus on the state-of-the-art in nanomaterial-based approaches to the delivery of antibiotics for the treatment of pneumonia.
Collapse
Affiliation(s)
- Jie Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Qiuhong Ouyang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- Correspondence: (Z.H.); (M.Q.)
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (Z.H.); (M.Q.)
| |
Collapse
|
13
|
Schuch R, Cassino C, Vila-Farres X. Direct Lytic Agents: Novel, Rapidly Acting Potential Antimicrobial Treatment Modalities for Systemic Use in the Era of Rising Antibiotic Resistance. Front Microbiol 2022; 13:841905. [PMID: 35308352 PMCID: PMC8928733 DOI: 10.3389/fmicb.2022.841905] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022] Open
Abstract
Direct lytic agents (DLAs) are novel antimicrobial compounds with unique mechanisms of action based on rapid cell wall destabilization and bacteriolysis. DLAs include two classes of purified polypeptides—lysins (peptidoglycan hydrolase enzymes) and amurins (outer membrane targeting peptides). Their intended use is to kill bacteria in a manner that is complimentary to and synergistic with traditional antibiotics without selection for DLA resistance. Lysins were originally described as having activity against Gram-positive pathogens and of those, exebacase, is the first to have advanced into Phase 3 of clinical development. Recently, both engineered and native DLAs have now been described with potent bactericidal activity against a range of Gram-negative pathogens, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Importantly, novel DLAs targeting Gram-negatives, including the lysin CF-370 and the amurin peptides, are active in biological matrices (blood/serum) and, as such, offer promise for therapeutic use as systemically administered agents for the treatment of life-threatening invasive infections. In this review, DLAs are discussed as potential new classes of antimicrobial biologics that can be used to treat serious systemic infections.
Collapse
|
14
|
Marouf R, Mbarga JM, Ermolaev A, Podoprigora I, Smirnova I, Yashina N, Zhigunova A, Martynenkova A. Antibacterial activity of medicinal plants against uropathogenic Escherichia coli. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2022; 14:1-12. [PMID: 35784103 PMCID: PMC9245916 DOI: 10.4103/jpbs.jpbs_124_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/04/2022] Open
Abstract
Urinary tract infections (UTIs) are one of the most common bacterial infections with uropathogenic Escherichia coli (UPEC) being the most prevalent causative agent in both complicated and uncomplicated UTIs. Antibiotic resistance among UPEC has been already demonstrated against a wide variety of antibiotics and the situation is continuing to deteriorate increasing the rate of recurrence and the difficulty of treatment and prophylaxis. Recently, a big attention has been paid to non-antibiotic approaches as an alternative to conventional antibiotics. Among many strategies, phytotherapy has gained a special attention worldwide. Herbal remedies have been used in traditional medicine since ancient times and they are well known for their effectiveness in treating many health conditions including UTIs. Researches are conducted continuously to validate the use of many medicinal plants against UPEC, investigate their mechanisms of action, and determine their active constituents. Our extensive review of the recent literature revealed that many phytochemicals are shown to target and inhibit a wide variety of bioprocesses in UPEC, such as adhesion, motility, biofilm formation, and quorum sensing. Such natural approaches are very promising in confronting the antibiotic resistance of UPEC and can be further used to develop plant-based strategies and pharmaceutical products to treat and prevent UTIs caused by UPEC.
Collapse
|
15
|
Liu G, Thomsen LE, Olsen JE. Antimicrobial-induced horizontal transfer of antimicrobial resistance genes in bacteria: a mini-review. J Antimicrob Chemother 2021; 77:556-567. [PMID: 34894259 DOI: 10.1093/jac/dkab450] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The emergence and spread of antimicrobial resistance (AMR) among pathogenic bacteria constitute an accelerating crisis for public health. The selective pressures caused by increased use and misuse of antimicrobials in medicine and livestock production have accelerated the overall selection of resistant bacteria. In addition, horizontal gene transfer (HGT) plays an important role in the spread of resistance genes, for example mobilizing reservoirs of AMR from commensal bacteria into pathogenic ones. Antimicrobials, besides antibacterial function, also result in undesirable effects in the microbial populations, including the stimulation of HGT. The main aim of this narrative review was to present an overview of the current knowledge of the impact of antimicrobials on HGT in bacteria, including the effects of transformation, transduction and conjugation, as well as other less well-studied mechanisms of HGT. It is widely accepted that conjugation plays a major role in the spread of AMR in bacteria, and the focus of this review is therefore mainly on the evidence provided that antimicrobial treatment affects this process. Other mechanisms of HGT have so far been deemed less important in this respect; however, recent discoveries suggest their role may be larger than previously thought, and the review provides an update on the rather limited knowledge currently available regarding the impact of antimicrobial treatment on these processes as well. A conclusion from the review is that there is an urgent need to investigate the mechanisms of antimicrobial-induced HGT, since this will be critical for developing new strategies to combat the spread of AMR.
Collapse
Affiliation(s)
- Gang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Line Elnif Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| |
Collapse
|
16
|
Nowak MG, Skwarecki AS, Milewska MJ. Amino Acid Based Antimicrobial Agents - Synthesis and Properties. ChemMedChem 2021; 16:3513-3544. [PMID: 34596961 PMCID: PMC9293202 DOI: 10.1002/cmdc.202100503] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Structures of several dozen of known antibacterial, antifungal or antiprotozoal agents are based on the amino acid scaffold. In most of them, the amino acid skeleton is of a crucial importance for their antimicrobial activity, since very often they are structural analogs of amino acid intermediates of different microbial biosynthetic pathways. Particularly, some aminophosphonate or aminoboronate analogs of protein amino acids are effective enzyme inhibitors, as structural mimics of tetrahedral transition state intermediates. Synthesis of amino acid antimicrobials is a particular challenge, especially in terms of the need for enantioselective methods, including the asymmetric synthesis. All these issues are addressed in this review, summing up the current state‐of‐the‐art and presenting perspectives fur further progress.
Collapse
Affiliation(s)
- Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
17
|
Srivastava S, Thomas T, Howe D, Malinga L, Raj P, Alffenaar JW, Gumbo T. Cefdinir and β-Lactamase Inhibitor Independent Efficacy Against Mycobacterium tuberculosis. Front Pharmacol 2021; 12:677005. [PMID: 34163361 PMCID: PMC8215380 DOI: 10.3389/fphar.2021.677005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background: There is renewed interest in repurposing β-lactam antibiotics for treatment of tuberculosis (TB). We investigated efficacy of cefdinir, that withstand the β-lactamase enzyme present in many bacteria, against drug-susceptible and multi-drug resistant (MDR) Mycobacterium tuberculosis (Mtb). Methods: Minimum inhibitory concentration (MIC) experiments were performed with Mtb H37Ra, eight drug-susceptible, and 12 MDR-TB clinical isolates with and without the β-lactamase inhibitor, avibactam at 15 mg/L final concentration. Next, we performed dose-response study with Mtb H37Ra in test-tubes followed by a sterilizing activity study in the pre-clinical hollow fiber model of tuberculosis (HFS-TB) study using an MDR-TB clinical strain. Inhibitory sigmoid Emax model was used to describe the relationship between the drug exposure and bacterial burden. Results: Cefdinir MIC for Mtb H37Ra was 4 and 2 mg/L with or without avibactam, respectively. The MIC of the clinical strains ranged between 0.5 and 16 mg/L. In the test-tube experiments, cefdinir killed 4.93 + 0.07 log10 CFU/ml Mtb H37Ra in 7 days. In the HFS-TB studies, cefdinir showed dose-dependent killing of MDR-TB, without combination of avibactam. The cefdinir PK/PD index linked to the Mtb sterilizing efficacy was identified as the ratio of area under the concentration-time curve to MIC (AUC0–24/MIC) and optimal exposure was calculated as AUC0–24/MIC of 578.86. There was no resistance emergence to cefdinir in the HFS-TB. Conclusion: In the HFS-TB model, cefdinir showed efficacy against both drug susceptible and MDR-TB without combination of β-lactamase inhibitor. However, clinical validation of these findings remains to be determined.
Collapse
Affiliation(s)
- Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Centre, Tyler, TX, United States.,Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Tania Thomas
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Dave Howe
- Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc., Dallas, TX, United States
| | - Lesibana Malinga
- Department of Internal Medicine, University of Pretoria, Pretoria, South Africa
| | - Prithvi Raj
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jan-Willem Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia.,Westmead Hospital, Sydney, NSW, Australia.,Marie Bashir Institute of Infectious Diseases, The University of Sydney, Sydney, NSW, Australia
| | - Tawanda Gumbo
- Quantitative Preclinical and Clinical Sciences Department, Praedicare Inc., Dallas, TX, United States.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Pelegrin AC, Palmieri M, Mirande C, Oliver A, Moons P, Goossens H, van Belkum A. Pseudomonas aeruginosa: a clinical and genomics update. FEMS Microbiol Rev 2021; 45:6273131. [PMID: 33970247 DOI: 10.1093/femsre/fuab026] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global medical priority that needs urgent resolution. Pseudomonas aeruginosa is a versatile, adaptable bacterial species with widespread environmental occurrence, strong medical relevance, a diverse set of virulence genes and a multitude of intrinsic and possibly acquired antibiotic resistance traits. P. aeruginosa causes a wide variety of infections and has an epidemic-clonal population structure. Several of its dominant global clones have collected a wide variety of resistance genes rendering them multi-drug resistant (MDR) and particularly threatening groups of vulnerable individuals including surgical patients, immunocompromised patients, Caucasians suffering from cystic fibrosis (CF) and more. AMR and MDR especially are particularly problematic in P. aeruginosa significantly complicating successful antibiotic treatment. In addition, antimicrobial susceptibility testing (AST) of P. aeruginosa can be cumbersome due to its slow growth or the massive production of exopolysaccharides and other extracellular compounds. For that reason, phenotypic AST is progressively challenged by genotypic methods using whole genome sequences (WGS) and large-scale phenotype databases as a framework of reference. We here summarize the state of affairs and the quality level of WGS-based AST for P. aeruginosa mostly from clinical origin.
Collapse
Affiliation(s)
- Andreu Coello Pelegrin
- bioMérieux, Data Analytics Unit, 3 Route du Port Michaud, 38390 La Balme les Grottes, France
| | - Mattia Palmieri
- bioMérieux, Data Analytics Unit, 3 Route du Port Michaud, 38390 La Balme les Grottes, France
| | - Caroline Mirande
- bioMérieux, R&D Microbiology, Route du Port Michaud, 38390 La Balme-les-Grottes, France
| | - Antonio Oliver
- Servicio de Microbiología, Módulo J, segundo piso, Hospital Universitario Son Espases, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Ctra. Valldemossa, 79, 07120 Palma de Mallorca, Spain
| | - Pieter Moons
- Laboratory of Medical Microbiology, University of Antwerp, Universiteitsplein 1, building S, 2610 Wilrijk, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Alex van Belkum
- bioMérieux, Open Innovation and Partnerships, 3 Route du Port Michaud, 38390 La Balme Les Grottes, France
| |
Collapse
|
19
|
Mosselhy DA, Assad M, Sironen T, Elbahri M. Nanotheranostics: A Possible Solution for Drug-Resistant Staphylococcus aureus and their Biofilms? NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E82. [PMID: 33401760 PMCID: PMC7824312 DOI: 10.3390/nano11010082] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a notorious pathogen that colonizes implants (orthopedic and breast implants) and wounds with a vicious resistance to antibiotic therapy. Methicillin-resistant S. aureus (MRSA) is a catastrophe mainly restricted to hospitals and emerged to community reservoirs, acquiring resistance and forming biofilms. Treating biofilms is problematic except via implant removal or wound debridement. Nanoparticles (NPs) and nanofibers could combat superbugs and biofilms and rapidly diagnose MRSA. Nanotheranostics combine diagnostics and therapeutics into a single agent. This comprehensive review is interpretative, utilizing mainly recent literature (since 2016) besides the older remarkable studies sourced via Google Scholar and PubMed. We unravel the molecular S. aureus resistance and complex biofilm. The diagnostic properties and detailed antibacterial and antibiofilm NP mechanisms are elucidated in exciting stories. We highlight the challenges of bacterial infections nanotheranostics. Finally, we discuss the literature and provide "three action appraisals". (i) The first appraisal consists of preventive actions (two wings), avoiding unnecessary hospital visits, hand hygiene, and legislations against over-the-counter antibiotics as the general preventive wing. Our second recommended preventive wing includes preventing the adverse side effects of the NPs from resistance and toxicity by establishing standard testing procedures. These standard procedures should provide breakpoints of bacteria's susceptibility to NPs and a thorough toxicological examination of every single batch of synthesized NPs. (ii) The second appraisal includes theranostic actions, using nanotheranostics to diagnose and treat MRSA, such as what we call "multifunctional theranostic nanofibers. (iii) The third action appraisal consists of collaborative actions.
Collapse
Affiliation(s)
- Dina A. Mosselhy
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, Dokki, Giza 12618, Egypt
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland;
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Mhd Assad
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
| | - Tarja Sironen
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland;
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Mady Elbahri
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
- Nanochemistry and Nanoengineering, Institute for Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
- Center for Nanotechnology, Zewail City of Science and Technology, Sheikh Zayed District, Giza 12588, Egypt
| |
Collapse
|
20
|
Dhingra S, Rahman NAA, Peile E, Rahman M, Sartelli M, Hassali MA, Islam T, Islam S, Haque M. Microbial Resistance Movements: An Overview of Global Public Health Threats Posed by Antimicrobial Resistance, and How Best to Counter. Front Public Health 2020; 8:535668. [PMID: 33251170 PMCID: PMC7672122 DOI: 10.3389/fpubh.2020.535668] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Antibiotics changed medical practice by significantly decreasing the morbidity and mortality associated with bacterial infection. However, infectious diseases remain the leading cause of death in the world. There is global concern about the rise in antimicrobial resistance (AMR), which affects both developed and developing countries. AMR is a public health challenge with extensive health, economic, and societal implications. This paper sets AMR in context, starting with the history of antibiotics, including the discovery of penicillin and the golden era of antibiotics, before exploring the problems and challenges we now face due to AMR. Among the factors discussed is the low level of development of new antimicrobials and the irrational prescribing of antibiotics in developed and developing countries. A fundamental problem is the knowledge, attitude, and practice (KAP) regarding antibiotics among medical practitioners, and we explore this aspect in some depth, including a discussion on the KAP among medical students. We conclude with suggestions on how to address this public health threat, including recommendations on training medical students about antibiotics, and strategies to overcome the problems of irrational antibiotic prescribing and AMR.
Collapse
Affiliation(s)
- Sameer Dhingra
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Nor Azlina A. Rahman
- Department of Physical Rehabilitation Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Ed Peile
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Motiur Rahman
- Oxford University Clinical Research Unit, Wellcome Trust Asia Programme, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| | - Massimo Sartelli
- Department of General and Emergency Surgery, Macerata Hospital, Macerata, Italy
| | - Mohamed Azmi Hassali
- The Discipline of Social and Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | | | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Parsley NC, Smythers AL, Hicks LM. Implementation of Microfluidics for Antimicrobial Susceptibility Assays: Issues and Optimization Requirements. Front Cell Infect Microbiol 2020; 10:547177. [PMID: 33042872 PMCID: PMC7527609 DOI: 10.3389/fcimb.2020.547177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/13/2020] [Indexed: 12/26/2022] Open
Abstract
Despite the continuous emergence of multi-drug resistant pathogens, the number of new antimicrobials reaching the market is critically low. Natural product peptides are a rich source of bioactive compounds, and advances in mass spectrometry have achieved unprecedented capabilities for the discovery and characterization of novel molecular species. However, traditional bioactivity assay formats hinder the discovery and biochemical characterization of natural product antimicrobial peptides (AMPs), necessitating large sample quantities and significant optimization of experimental parameters to achieve accurate/consistent activity measurements. Microfluidic devices offer a promising alternative to bulk assay systems. Herein, a microfluidics-based bioassay was compared to the traditional 96-well plate format in respective commercially-available hardware. Bioactivity in each assay type was compared using a Viola inconspicua peptide library screened against E. coli ATCC 25922. Brightfield microcopy was used to determine bioactivity in microfluidic channels while both common optical and fluorescence-based measurements of cell viability were critically assessed in plate-based assays. Exhibiting some variation in optical density and fluorescence-based measurements, all plate-based assays conferred bioactivity in late eluting V. inconspicua library fractions. However, significant differences in the bioactivity profiles of plate-based and microfluidic assays were found, and may be derived from the materials comprising each assay device or the growth/assay conditions utilized in each format. While new technologies are necessary to overcome the limitations of traditional bioactivity assays, we demonstrate that off-the-shelf implementation of microfluidic devices is non-trivial and significant method development/optimization is required before conventional use can be realized for sensitive and rapid detection of AMPs in natural product matrices.
Collapse
Affiliation(s)
- Nicole C Parsley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amanda L Smythers
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
22
|
Sanad SMH, Mekky AEM. Novel Nicotinonitriles and Thieno[2,3‐
b
]pyridines as Potent Biofilm and COX‐2 Inhibitors: Synthesis, In Vitro and In Silico Studies. ChemistrySelect 2020. [DOI: 10.1002/slct.202001208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sherif M. H. Sanad
- Chemistry DepartmentFaculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed E. M. Mekky
- Chemistry DepartmentFaculty of Science, Cairo University Giza 12613 Egypt
| |
Collapse
|
23
|
Novel bis(pyrazole-benzofuran) hybrids possessing piperazine linker: Synthesis of potent bacterial biofilm and MurB inhibitors. Bioorg Chem 2020; 102:104094. [PMID: 32711085 DOI: 10.1016/j.bioorg.2020.104094] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/26/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022]
Abstract
Novel 1,4-bis[(2-(3-(dimethylamino)-1-oxoprop-2-en-1-yl)benzofuran-5-yl)methyl]piperazine was prepared and used as a key synthon for the this study. Therefore, 1,3-dipolar cycloaddition of this synthon with the appropriate hydrazonyl chlorides afforded a new series of bis(1,3,4-trisubstituted pyrazoles), linked via piperazine moiety. Furthermore, it reacted with hydrazine hydrate and phenyl hydrazine individually to afford the corresponding 1,4-bis[(2-(1H-pyrazolyl)benzofuran-5-yl)methyl]piperazines. Different bacterial strains and cell lines were selected to study the in-vitro antibacterial and cytotoxic activities for the new derivatives. 1,4-Bis[((2-(3-acetyl-1-(4-nitrophenyl)-1H-pyrazole-4-yl)carbonyl)benzofuran-5-yl)methyl]piperazine 5e showed the best antibacterial efficacies with MIC/MBC values of 1.2/1.2, 1.2/2.4 and 1.2/2.4 μM against each of E. coli, S. aureus and S. mutans strains, respectively. In addition, the inhibitory activity of some new bis(pyrazoles) as MRSA and VRE inhibitors were studied. Compound 5e gave the best inhibitory activity with MIC/MBC values of 18.1/36.2, 9.0/18.1 and 18.1/18.1 µM, respectively, against MRSA (ATCC:33591 and ATCC:43300) and VRE (ATCC:51575) bacterial strains, respectively. Compound 5e showed more effective biofilm inhibition activities than the reference Ciprofloxacin. It showed IC50 values of 3.0 ± 0.05, 3.2 ± 0.08 and 3.3 ± 0.07 μM against S. aureus, S. mutans and E. coli strains, respectively. Furthermore, experimental study showed excellent inhibitory activities of 1,4-bis[((2-(3-substituted-1-aryl-1H-pyrazole-4-yl)carbonyl)benzofuran-5-yl)methyl]piperazine derivatives, attached to p-NO2 or p-Cl groups, against MurB enzyme. Compound 5e gave the best MurB inhibitory activity with IC50 value of 3.1 μM. The in-silico study was performed to predict the capability of new derivatives as potential inhibitors of MurB enzyme.
Collapse
|
24
|
Sharma RK, Singh V, Tiwari N, Butcher R, Katiyar D. Synthesis, antimicrobial and chitinase inhibitory activities of 3-amidocoumarins. Bioorg Chem 2020; 98:103700. [DOI: 10.1016/j.bioorg.2020.103700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/30/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
|
25
|
Hoffman PS. Antibacterial Discovery: 21st Century Challenges. Antibiotics (Basel) 2020; 9:antibiotics9050213. [PMID: 32353943 PMCID: PMC7277910 DOI: 10.3390/antibiotics9050213] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
It has been nearly 50 years since the golden age of antibiotic discovery (1945–1975) ended; yet, we still struggle to identify novel drug targets and to deliver new chemical classes of antibiotics to replace those rendered obsolete by drug resistance. Despite herculean efforts utilizing a wide range of antibiotic discovery platform strategies, including genomics, bioinformatics, systems biology and postgenomic approaches, success has been at best incremental. Obviously, finding new classes of antibiotics is really hard, so repeating the old strategies, while expecting different outcomes, seems to boarder on insanity. The key questions dealt with in this review include: (1) If mutation based drug resistance is the major challenge to any new antibiotic, is it possible to find drug targets and new chemical entities that can escape this outcome; (2) Is the number of novel chemical classes of antibacterials limited by the number of broad spectrum drug targets; and (3) If true, then should we focus efforts on subgroups of pathogens like Gram negative or positive bacteria only, anaerobic bacteria or other group where the range of common essential genes is likely greater?. This review also provides some examples of existing drug targets that appear to escape the specter of mutation based drug resistance, and provides examples of some intermediate spectrum strategies as well as modern molecular and genomic approaches likely to improve the odds of delivering 21st century medicines to combat multidrug resistant pathogens.
Collapse
Affiliation(s)
- Paul S Hoffman
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
26
|
Trabelsi K, Ciriminna R, Albo Y, Pagliaro M. SilverSil: A New Class of Antibacterial Materials of Broad Scope. ChemistryOpen 2020; 9:459-463. [PMID: 32280580 PMCID: PMC7143115 DOI: 10.1002/open.202000016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/11/2020] [Indexed: 11/30/2022] Open
Abstract
Consisting of organically modified silica (ORMOSIL) physically doped with Ag nanoparticles, the SilverSil new class of antibacterial materials of broad scope reported herein shows remarkably high and stable activity against representative Gram-positive and Gram-negative bacteria. The low cost, ease of application and excellent health and environmental profile of SilverSil hybrid glassy coatings open the route to their widespread utilization across domestic, hospital, school, industrial and commercial environments and in consumer products.
Collapse
Affiliation(s)
- Keren Trabelsi
- Department Chemical Engineering, Materials and BiotechnologyThe Center for Radical ReactionsAriel UniversityJerusalemIsrael
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNRvia U. La Malfa 15390146PalermoItaly
| | - Yael Albo
- Department Chemical Engineering, Materials and BiotechnologyThe Center for Radical ReactionsAriel UniversityJerusalemIsrael
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNRvia U. La Malfa 15390146PalermoItaly
| |
Collapse
|
27
|
Sanad SMH, Ahmed AAM, Mekky AEM. Synthesis, in-vitro and in-silico study of novel thiazoles as potent antibacterial agents and MurB inhibitors. Arch Pharm (Weinheim) 2020; 353:e1900309. [PMID: 31967349 DOI: 10.1002/ardp.201900309] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 11/07/2022]
Abstract
Efficient procedures are herein reported for the synthesis of novel hybrid thiazoles via a one-pot three-component protocol. The protocol involves the reaction of novel aldehyde, thiosemicarbazide and halogen-containing reagents in solvent- and catalyst-free conditions. The structures of the new thiazoles were elucidated by elemental analyses and spectroscopic data. The in-vitro antibacterial screening and MurB enzyme inhibition assays were performed for the novel thiazoles. The thiazol-4(5H)-one derivative 6d, with p-MeO, exhibits the best antibacterial activities with minimum inhibitory concentration values of 3.9, 3.9, 7.8, and 15.6 μg/ml against Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus mutans, and Escherichia coli, respectively, as compared to the reference antibiotic drugs. It also exhibits the highest inhibition of the MurB enzyme with an IC50 of 8.1 μM. The structure-activity relationship was studied to determine the effect of the structures of the newly prepared molecules on the strength of the antibacterial activities. Molecular docking was also performed to predict the binding modes of the new thiazoles in the active sites of the E. coli MurB enzyme.
Collapse
Affiliation(s)
- Sherif M H Sanad
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A M Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt.,Basic Science Department, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Ahmed E M Mekky
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
28
|
Webale MK, Wanjala C, Guyah B, Shaviya N, Munyekenye GO, Nyanga PL, Marwa IN, Kagoiyo S, Wangai LN, Webale SK, Kamau K, Kitungulu N. Epidemiological patterns and antimicrobial resistance of bacterial diarrhea among children in Nairobi City, Kenya. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2020; 13:238-246. [PMID: 32821354 PMCID: PMC7417493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AIM Determine the prevalence of enteric bacterial pathogens and their antimicrobial resistance among diarrheic children in Nairobi City, Kenya. BACKGROUND Regardless of enteric bacterial pathogens being a major cause of gastroenteritis in children, their occurrence and antimicrobial resistance patterns reveals regional spatial and temporal variation. METHODS In a cross-sectional study, a total of 374 children below five years presenting with diarrhea at Mbagathi County Hospital were recruited. Stool microbiology test was used to detect enteric bacterial infection. Antimicrobial resistance was determined using the disk diffusion method. RESULTS Diarrheagenic E. coli (36.4%) was the leading species followed by Shigella (3.2%), Salmonella (2.4%), Campylobacter (1.6%), Yersinia (1.3%) and Aeromonas (1.1%) species. Escherichia coli pathotyping revealed that 20.9%, 4.0%, 10.2% and 0.5% of the study participants were infected with enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC) and enteroinvasive E. coli (EIEC) pure isolates while the prevalence of mixed pathotype infections was 0.3% for EAEC/EPEC/ETEC and 0.5% for EAEC/ETEC. Shigella sero-grouping revealed that 0.5%, 0.3%, 1.9%, and 0.5% were infected with Shigella boydii, Shigella dysentriae, Shigella flexneri and Shigella sonnei pure isolates. Shigella species and E. coli co-infection was detected in 2.4% of the children, specifically, 1.1% for EAEC/Shigella boydii, 0.5% for EAEC/Shigella dysentriae and 0.3% in each case of EAEC/Shigella sonnei, EPEC/Shigella flexneri and ETEC/Shigella flexneri co-infections. Most of the isolates were resistant to commonly prescribed antibiotics. CONCLUSION There was a high prevalence of enteric bacterial pathogens and co-infection alters epidemiological dynamics of bacterial diarrhea in children. Continuous antibiotic resistance surveillance is justified because the pathogens were highly resistant to commonly prescribed antimicrobials.
Collapse
Affiliation(s)
| | - Christine Wanjala
- School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Bernard Guyah
- School of Public Health, Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Nathan Shaviya
- School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | | | | | | | - Sammy Kagoiyo
- School of Health Sciences, Kirinyaga University, Kutus, Kenya
| | | | - Sella K. Webale
- School of Public Health, Biomedical Sciences and Technology, Maseno University, Maseno, Kenya
| | - Kenny Kamau
- School of Health Sciences, Kirinyaga University, Kutus, Kenya
| | - Nicholas Kitungulu
- School of Biological Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| |
Collapse
|
29
|
Betts JW, Roth P, Pattrick CA, Southam HM, La Ragione RM, Poole RK, Schatzschneider U. Antibacterial activity of Mn(I) and Re(I) tricarbonyl complexes conjugated to a bile acid carrier molecule. Metallomics 2020; 12:1563-1575. [PMID: 32856674 DOI: 10.1039/d0mt00142b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A bifunctional cholic acid-bis(2-pyridylmethyl)amine (bpa) ligand featuring an amide linker was coordinated to a manganese(i) or rhenium(i) tricarbonyl moiety to give [M(bpacholamide)(CO)3] with M = Mn, Re in good yield and very high purity. Strong antibacterial activity was observed against four strains of methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) Staphylococcus aureus, with minimum inhibitory concentrations (MICs) in the range of 2-3.5 μM. No difference in response was observed for the MSSA vs. MRSA strains. Activity was also independent of the nature of the metal center, as the Mn and Re complexes showed essentially identical MIC values. In contrast to some other metal carbonyl complexes, the activity seems to be unrelated to the release of carbon monoxide, as photoactivation of the Mn complex reduced the potency by a factor of 2-8. Both metal complexes were non-toxic in Galleria mellonella larvae at concentrations of up to 100× the MIC value. In vivo testing in Galleria larvae infected with MRSA/MSSA demonstrated a significant increase in overall survival rates from 46% in the control to 88% in the group treated with the metal complexes. ICP-MS analysis showed that the Mn and Re cholamide complexes are efficiently internalized by E. coli cells and do not interfere with membrane integrity, as evident from a lack of release of intracellular ATP. An increased sensitivity was observed in acrB, acrD, and mdt mutants that are defective in multidrug exporters, indicating that the compounds have an intracellular mechanism of action. Furthermore, E. coli mntP mutants defective in the gene encoding an Mn exporter were more sensitive than the wildtype, while inactivation of the regulator that controls expression of the Mn uptake proteins MntP and MntH slightly increased sensitivity to the compound. Single knockout mutants defective in genes linked to bile salt and oxidative stress response (dinF, yiaH, sodA, katE, and soxS) did not show increased sensitivity relative to the wild type. Overall, neither the cholic acid moiety nor the metal-carbonyl fragment alone appear to be responsible for the biological activity observed and thus the search for the primary intracellular target continues.
Collapse
Affiliation(s)
- Jono W Betts
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Patrick Roth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| | - Calum A Pattrick
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | - Hannah M Southam
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, UK
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
30
|
Nichol D, Robertson-Tessi M, Anderson ARA, Jeavons P. Model genotype-phenotype mappings and the algorithmic structure of evolution. J R Soc Interface 2019; 16:20190332. [PMID: 31690233 PMCID: PMC6893500 DOI: 10.1098/rsif.2019.0332] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Cancers are complex dynamic systems that undergo evolution and selection. Personalized medicine approaches in the clinic increasingly rely on predictions of tumour response to one or more therapies; these predictions are complicated by the inevitable evolution of the tumour. Despite enormous amounts of data on the mutational status of cancers and numerous therapies developed in recent decades to target these mutations, many of these treatments fail after a time due to the development of resistance in the tumour. The emergence of these resistant phenotypes is not easily predicted from genomic data, since the relationship between genotypes and phenotypes, termed the genotype-phenotype (GP) mapping, is neither injective nor functional. We present a review of models of this mapping within a generalized evolutionary framework that takes into account the relation between genotype, phenotype, environment and fitness. Different modelling approaches are described and compared, and many evolutionary results are shown to be conserved across studies despite using different underlying model systems. In addition, several areas for future work that remain understudied are identified, including plasticity and bet-hedging. The GP-mapping provides a pathway for understanding the potential routes of evolution taken by cancers, which will be necessary knowledge for improving personalized therapies.
Collapse
Affiliation(s)
- Daniel Nichol
- Department of Computer Science, University of Oxford, Oxford, UK
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alexander R. A. Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Peter Jeavons
- Department of Computer Science, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Calixto GMF, de Annunzio SR, Victorelli FD, Frade ML, Ferreira PS, Chorilli M, Fontana CR. Chitosan-Based Drug Delivery Systems for Optimization of Photodynamic Therapy: a Review. AAPS PharmSciTech 2019; 20:253. [PMID: 31309346 DOI: 10.1208/s12249-019-1407-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/26/2019] [Indexed: 02/08/2023] Open
Abstract
Drug delivery systems (DDS) can be designed to enrich the pharmacological and therapeutic properties of several drugs. Many of the initial obstacles that impeded the clinical applications of conventional DDS have been overcome with nanotechnology-based DDS, especially those formed by chitosan (CS). CS is a linear polysaccharide obtained by the deacetylation of chitin, which has potential properties such as biocompatibility, hydrophilicity, biodegradability, non-toxicity, high bioavailability, simplicity of modification, aqueous solubility, and excellent chemical resistance. Furthermore, CS can prepare several DDS as films, gels, nanoparticles, and microparticles to improve delivery of drugs, such as photosensitizers (PS). Thus, CS-based DDS are broadly investigated for photodynamic therapy (PDT) of cancer and fungal and bacterial diseases. In PDT, a PS is activated by light of a specific wavelength, which provokes selective damage to the target tissue and its surrounding vasculature, but most PS have low water solubility and cutaneous photosensitivity impairing the clinical use of PDT. Based on this, the application of nanotechnology using chitosan-based DDS in PDT may offer great possibilities in the treatment of diseases. Therefore, this review presents numerous applications of chitosan-based DDS in order to improve the PDT for cancer and fungal and bacterial diseases.
Collapse
|
32
|
Koehbach J, Craik DJ. The Vast Structural Diversity of Antimicrobial Peptides. Trends Pharmacol Sci 2019; 40:517-528. [DOI: 10.1016/j.tips.2019.04.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 01/08/2023]
|
33
|
Bio-nanobactericides: an emanating class of nanoparticles towards combating multi-drug resistant pathogens. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0715-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
34
|
Venter H. Reversing resistance to counter antimicrobial resistance in the World Health Organisation's critical priority of most dangerous pathogens. Biosci Rep 2019; 39:BSR20180474. [PMID: 30910848 PMCID: PMC6465202 DOI: 10.1042/bsr20180474] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
The speed at which bacteria develop antimicrobial resistance far outpace drug discovery and development efforts resulting in untreatable infections. The World Health Organisation recently released a list of pathogens in urgent need for the development of new antimicrobials. The organisms that are listed as the most critical priority are all Gram-negative bacteria resistant to the carbapenem class of antibiotics. Carbapenem resistance in these organisms is typified by intrinsic resistance due to the expression of antibiotic efflux pumps and the permeability barrier presented by the outer membrane, as well as by acquired resistance due to the acquisition of enzymes able to degrade β-lactam antibiotics. In this perspective article we argue the case for reversing resistance by targeting these resistance mechanisms - to increase our arsenal of available antibiotics and drastically reduce antibiotic discovery times - as the most effective way to combat antimicrobial resistance in these high priority pathogens.
Collapse
Affiliation(s)
- Henrietta Venter
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
35
|
Belete TM. Novel targets to develop new antibacterial agents and novel alternatives to antibacterial agents. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.humic.2019.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Rivera-Chávez J, Caesar L, Garcia-Salazar JJ, Raja HA, Cech NB, Pearce CJ, Oberlies NH. Mycopyranone: a 8,8'-binaphthopyranone with potent anti-MRSA activity from the fungus Phialemoniopsis sp. Tetrahedron Lett 2019; 60:594-597. [PMID: 31598014 PMCID: PMC6785197 DOI: 10.1016/j.tetlet.2019.01.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A new 8,8'-binaphthopyranone (mycopyranone, 1) was isolated from a solid fermentation of Phialemoniopsis sp. (fungal strain MSX61662), and the structure was elucidated via analysis of the NMR and HRESIMS data. The axial chirality of 1 was determined to be M by ECD. The central chirality at C-4/C-4' was assigned through a modified Mosher's method, while the absolute configuration at C-3/C-3' was deduced based on analysis of the 3 J H-3-H-4 values and NOESY correlations. Compound 1 was evaluated for its antimicrobial properties against Staphylococcus aureus SA1199 and a clinically relevant methicillin-resistant S. aureus strain (MRSA USA300 LAC strain AH1263). Compound 1 inhibited the growth of both strains in a concentration dependent manner with IC50 values in the low μM range. Molecular docking indicated that compound 1 binds to the FtsZ (tubulin-like) protein in the same pocket as viriditoxin (2), suggesting that 1 targets bacterial cell division.
Collapse
Affiliation(s)
- José Rivera-Chávez
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, USA
| | - Lindsay Caesar
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, USA
| | - Juan J Garcia-Salazar
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, USA
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, USA
| | - Nadja B Cech
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, USA
| | - Cedric J Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina, 27278, USA
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, USA
| |
Collapse
|
37
|
Grammatikova NE, George L, Ahmed Z, Candeias NR, Durandin NA, Efimov A. Zinc phthalocyanine activated by conventional indoor light makes a highly efficient antimicrobial material from regular cellulose. J Mater Chem B 2019. [DOI: 10.1039/c9tb01095e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A phthalocyanine-cellulose material quickly inactivates drug-resistant microbes under indoor light.
Collapse
Affiliation(s)
| | - Lijo George
- Faculty of Engineering and Natural Sciences
- Tampere University
- Tampere
- Finland
| | - Zafar Ahmed
- Faculty of Engineering and Natural Sciences
- Tampere University
- Tampere
- Finland
| | - Nuno R. Candeias
- Faculty of Engineering and Natural Sciences
- Tampere University
- Tampere
- Finland
| | - Nikita A. Durandin
- Faculty of Engineering and Natural Sciences
- Tampere University
- Tampere
- Finland
| | - Alexander Efimov
- Faculty of Engineering and Natural Sciences
- Tampere University
- Tampere
- Finland
| |
Collapse
|
38
|
Wilkes S, van Berlo I, Ten Oever J, Jansman F, Ter Heine R. Population pharmacokinetic modelling of total and unbound flucloxacillin in non-critically ill patients to devise a rational continuous dosing regimen. Int J Antimicrob Agents 2018; 53:310-317. [PMID: 30472288 DOI: 10.1016/j.ijantimicag.2018.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/01/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study's objective was to describe the population pharmacokinetics of total and unbound flucloxacillin in non-critically ill patients, and to devise a rational continuous dosing regimen for this population. METHODS Total and unbound flucloxacillin pharmacokinetics in 30 non-critically ill patients receiving intravenous flucloxacillin were analysed using non-linear mixed-effects modelling. Monte Carlo simulation was used to assess the fraction of the population reaching effective unbound flucloxacillin levels and the fraction reaching potential neurotoxic exposure for various continuous dosing regimens. RESULTS The observed protein binding varied between 64.6-97.1%. The unbound fraction was significantly associated with serum albumin and was concentration-dependent. The parameter estimates of the final model were: Cltotal 122 L/h, Clrenal 1.41 L/h, Vc 190 L, Vp 33.9 L, Q 16.8 L/h, Kd 9.63 mg/L, θBmax 177 mg/L,θalb 0.054. A continuous dose of 6 g/24 hours was sufficient for 100% of the population to obtain a unbound concentration of > 0.25 mg/L. With 14 g/24 h, 91.2% of the population was predicted to reach concentrations of > 2 mg/L, the clinical breakpoint for Staphylococcus aureus. Potential toxic unbound flucloxacillin levels were reached in 2.0% of the population with 6 g/24 h, and 24.1% with 14 g/24 h. CONCLUSIONS This study showed that a continuous infusion of 6 g/24 h flucloxacillin is sufficient to treat most infections in non-critically ill patients. With this dosing regimen, an unbound serum concentration flucloxacillin > 0.25 mg/L was reached in 100% of the patients, with minimal chance of neurotoxicity.
Collapse
Affiliation(s)
- Sarah Wilkes
- Department of Clinical Pharmacy, Deventer Hospital, Deventer, The Netherlands.
| | - Inge van Berlo
- Department of Clinical Pharmacy, Deventer Hospital, Deventer, The Netherlands
| | - Jaap Ten Oever
- Department of Internal Medicine and Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank Jansman
- Department of Clinical Pharmacy, Deventer Hospital, Deventer, The Netherlands; Unit of PharmacoTherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Groningen, The Netherlands
| | - Rob Ter Heine
- Department of Clinical Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
39
|
Investigating the potential use of an Antarctic variant of Janthinobacterium lividum for tackling antimicrobial resistance in a One Health approach. Sci Rep 2018; 8:15272. [PMID: 30323184 PMCID: PMC6189184 DOI: 10.1038/s41598-018-33691-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 10/02/2018] [Indexed: 01/16/2023] Open
Abstract
The aim of this paper is to describe a new variant of Janthinobacterium lividum - ROICE173, isolated from Antarctic snow, and to investigate the antimicrobial effect of the crude bacterial extract against 200 multi-drug resistant (MDR) bacteria of both clinical and environmental origin, displaying various antibiotic resistance patterns. ROICE173 is extremotolerant, grows at high pH (5.5–9.5), in high salinity (3%) and in the presence of different xenobiotic compounds and various antibiotics. The best violacein yield (4.59 ± 0.78 mg·g−1 wet biomass) was obtained at 22 °C, on R2 broth supplemented with 1% glycerol. When the crude extract was tested for antimicrobial activity, a clear bactericidal effect was observed on 79 strains (40%), a bacteriostatic effect on 25 strains (12%) and no effect in the case of 96 strains (48%). A very good inhibitory effect was noticed against numerous MRSA, MSSA, Enterococci, and Enterobacteriaceae isolates. For several environmental E. coli strains, the bactericidal effect was encountered at a violacein concentration below of what was previously reported. A different effect (bacteriostatic vs. bactericidal) was observed in the case of Enterobacteriaceae isolated from raw vs. treated wastewater, suggesting that the wastewater treatment process may influence the susceptibility of MDR bacteria to violacein containing bacterial extracts.
Collapse
|
40
|
Mhlwatika Z, Aderibigbe BA. Application of Dendrimers for the Treatment of Infectious Diseases. Molecules 2018; 23:E2205. [PMID: 30200314 PMCID: PMC6225509 DOI: 10.3390/molecules23092205] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/14/2023] Open
Abstract
Dendrimers are drug delivery systems that are characterized by a three-dimensional, star-shaped, branched macromolecular network. They possess ideal properties such as low polydispersity index, biocompatibility and good water solubility. They are made up of the interior and the exterior layers. The exterior layer consists of functional groups that are useful for conjugation of drugs and targeting moieties. The interior layer exhibits improved drug encapsulation efficiency, reduced drug toxicity, and controlled release mechanisms. These unique properties make them useful for drug delivery. Dendrimers have attracted considerable attention as drug delivery system for the treatment of infectious diseases. The treatment of infectious diseases is hampered severely by drug resistance. Several properties of dendrimers such as their ability to overcome drug resistance, toxicity and control the release mechanism of the encapsulated drugs make them ideal systems for the treatment of infectious disease. The aim of this review is to discuss the potentials of dendrimers for the treatment of viral and parasitic infections.
Collapse
Affiliation(s)
- Zandile Mhlwatika
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| | - Blessing Atim Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice Campus, Eastern Cape 5700, South Africa.
| |
Collapse
|
41
|
Afolabi MO. A Global Ethical Framework for Public Health Disasters. PUBLIC HEALTH DISASTERS: A GLOBAL ETHICAL FRAMEWORK 2018; 12. [PMCID: PMC7123572 DOI: 10.1007/978-3-319-92765-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Public health disasters reflect a class of global problems that generate moral quandaries and challenges. As such, they demand a global bioethical response involving an approach that is sufficiently nuanced at the local, trans-national, and global domains. Using the overlapping ethical issues engendered by Ebola and pandemic influenza outbreaks, atypical drug-resistant tuberculosis, and earthquakes, this chapter develops a global ethical framework for engaging PHDs. This framework exhibits sufficient responsiveness to local, global, microbial, and metaphysical realities as well as scientific concerns.
Collapse
Affiliation(s)
- Michael Olusegun Afolabi
- 0000 0001 2364 3111grid.255272.5International Journal of Ethics Education, Center for Healthcare Ethics, Duquesne University, Pittsburgh, PA USA
| |
Collapse
|
42
|
Krammer EM, de Ruyck J, Roos G, Bouckaert J, Lensink MF. Targeting Dynamical Binding Processes in the Design of Non-Antibiotic Anti-Adhesives by Molecular Simulation-The Example of FimH. Molecules 2018; 23:E1641. [PMID: 29976867 PMCID: PMC6099838 DOI: 10.3390/molecules23071641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Located at the tip of type I fimbria of Escherichia coli, the bacterial adhesin FimH is responsible for the attachment of the bacteria to the (human) host by specifically binding to highly-mannosylated glycoproteins located on the exterior of the host cell wall. Adhesion represents a necessary early step in bacterial infection and specific inhibition of this process represents a valuable alternative pathway to antibiotic treatments, as such anti-adhesive drugs are non-intrusive and are therefore unlikely to induce bacterial resistance. The currently available anti-adhesives with the highest affinities for FimH still feature affinities in the nanomolar range. A prerequisite to develop higher-affinity FimH inhibitors is a molecular understanding of the FimH-inhibitor complex formation. The latest insights in the formation process are achieved by combining several molecular simulation and traditional experimental techniques. This review summarizes how molecular simulation contributed to the current knowledge of the molecular function of FimH and the importance of dynamics in the inhibitor binding process, and highlights the importance of the incorporation of dynamical aspects in (future) drug-design studies.
Collapse
Affiliation(s)
- Eva-Maria Krammer
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Jerome de Ruyck
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Goedele Roos
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Julie Bouckaert
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| | - Marc F Lensink
- Unite de Glycobiologie Structurale et Fonctionnelle, UMR 8576 of the Centre National de la Recherche Scientifique and the University of Lille, 50 Avenue de Halley, 59658 Villeneuve d'Ascq, France.
| |
Collapse
|
43
|
Speck PG, Wormald PJ. Is phage therapy suitable for treating chronic sinusitis Staphylococcus aureus infection? Future Microbiol 2018; 13:605-608. [PMID: 29792517 DOI: 10.2217/fmb-2017-0264] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Peter G Speck
- College of Science & Engineering, Flinders University, Bedford Park, South Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head & Neck Surgery, University of Adelaide, Adelaide, South Australia
| |
Collapse
|
44
|
Muñoz AJ, Alasino RV, Garro AG, Heredia V, García NH, Cremonezzi DC, Beltramo DM. High Concentrations of Sodium Chloride Improve Microbicidal Activity of Ibuprofen against Common Cystic Fibrosis Pathogens. Pharmaceuticals (Basel) 2018; 11:ph11020047. [PMID: 29772761 PMCID: PMC6026927 DOI: 10.3390/ph11020047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 11/22/2022] Open
Abstract
Ibuprofen (IBU-H), a widely used anti-inflammatory, also shows a marked antimicrobial effect against several bacterial species, including those involved in cystic fibrosis such as Pseudomona aeruginosa, methicillin resistant Staphylococcus aureus and Burkholderia cepacia complex. Additionally, our results show significant synergy between water soluble Na-ibuprofen (IBU-Na) and ionic strength. Salt concentrations above 0.5 M modify the zeta potential promoting the action of Na-IBU; thus, with 1 M sodium chloride, IBU-Na is ten times more efficient than in the absence of ionic strength, and the minimum effective contact time is reduced from hours to minutes. In short time periods, where neither IBU-Na nor controls with 1 M NaCl show activity, the combination of both leads to a reduction in the bacterial load. We also analyzed whether the changes caused by salt on the bacterial membrane also promoted the activity of other microbicide compounds used in cystic fibrosis like gentamicin, tobramycin and phosphomycin. The results show that the presence of ionic strength only enhanced the bactericidal activity of the amphipathic molecule of IBU-Na. In this respect, the effect of saline concentration was also reflected in the surface properties of IBU-Na, where, in addition to the clear differences observed between 145 mM and 1 M, singular behaviors were also found, different in each condition. The combination of anti-inflammatory activity and this improved bactericidal effect of Na-IBU in hypertonic solution provides a new alternative for the treatment of respiratory infections of fibrotic patients based on known and widely used compounds.
Collapse
Affiliation(s)
- Adrián J Muñoz
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina.
| | - Roxana V Alasino
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz 2290, C1425FQB CABA, Argentina.
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Ministerio de Ciencia y Tecnología de Córdoba Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina.
| | - Ariel G Garro
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina.
| | - Valeria Heredia
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina.
| | - Néstor H García
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz 2290, C1425FQB CABA, Argentina.
- Instituto de Investigaciones en Ciencias de la Salud-FCM (INICSA-CONICET), Córdoba C 5000, Argentina.
| | - David C Cremonezzi
- Departamento de Salud y Educación Cátedra de Patología, Universidad Nacional de La Rioja, La Rioja C 5300, Argentina.
- Cátedra de Patología, Universidad Nacional de Córdoba, Córdoba C 5000, Argentina.
| | - Dante M Beltramo
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz 2290, C1425FQB CABA, Argentina.
- Centro de Excelencia en Productos y Procesos de Córdoba (CEPROCOR), Ministerio de Ciencia y Tecnología de Córdoba Pabellón CEPROCOR, Santa María de Punilla, Córdoba CP 5164, Argentina.
- Cátedra de Biotecnología, Facultad de Ciencias Químicas, Universidad Católica de Córdoba, Córdoba C 5000, Argentina.
| |
Collapse
|
45
|
Ahangar MS, Furze CM, Guy CS, Cooper C, Maskew KS, Graham B, Cameron AD, Fullam E. Structural and functional determination of homologs of the Mycobacterium tuberculosis N-acetylglucosamine-6-phosphate deacetylase (NagA). J Biol Chem 2018; 293:9770-9783. [PMID: 29728457 PMCID: PMC6016474 DOI: 10.1074/jbc.ra118.002597] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/30/2018] [Indexed: 12/23/2022] Open
Abstract
The Mycobacterium tuberculosis (Mtb) pathogen encodes a GlcNAc-6-phosphate deacetylase enzyme, NagA (Rv3332), that belongs to the amidohydrolase superfamily. NagA enzymes catalyze the deacetylation of GlcNAc-6-phosphate (GlcNAc6P) to glucosamine-6-phosphate (GlcN6P). NagA is a potential antitubercular drug target because it represents the key enzymatic step in the generation of essential amino-sugar precursors required for Mtb cell wall biosynthesis and also influences recycling of cell wall peptidoglycan fragments. Here, we report the structural and functional characterization of NagA from Mycobacterium smegmatis (MSNagA) and Mycobacterium marinum (MMNagA), close relatives of Mtb. Using a combination of X-ray crystallography, site-directed mutagenesis, and biochemical and biophysical assays, we show that these mycobacterial NagA enzymes are selective for GlcNAc6P. Site-directed mutagenesis studies revealed crucial roles of conserved residues in the active site that underpin stereoselective recognition, binding, and catalysis of substrates. Moreover, we report the crystal structure of MSNagA in both ligand-free form and in complex with the GlcNAc6P substrate at 2.6 and 2.0 Å resolutions, respectively. The GlcNAc6P complex structure disclosed the precise mode of GlcNAc6P binding and the structural framework of the active site, including two divalent metals located in the α/β binuclear site. Furthermore, we observed a cysteine residue located on a flexible loop region that occludes the active site. This cysteine is unique to mycobacteria and may represent a unique subsite for targeting mycobacterial NagA enzymes. Our results provide critical insights into the structural and mechanistic properties of mycobacterial NagA enzymes having an essential role in amino-sugar and nucleotide metabolism in mycobacteria.
Collapse
Affiliation(s)
| | | | - Collette S Guy
- From the School of Life Sciences and.,the Department of Chemistry, University of Warwick, Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | - Ben Graham
- the Department of Chemistry, University of Warwick, Warwick, Coventry CV4 7AL, United Kingdom
| | | | | |
Collapse
|
46
|
Wu XD, Xu W, Liu MM, Hu KJ, Sun YY, Yang XF, Zhu GQ, Wang ZW, Huang W. Efficacy of prophylactic probiotics in combination with antibiotics versus antibiotics alone for colorectal surgery: A meta-analysis of randomized controlled trials. J Surg Oncol 2018; 117:1394-1404. [PMID: 29572838 DOI: 10.1002/jso.25038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/12/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Xiang-Dong Wu
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Wei Xu
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Meng-Meng Liu
- Department of Pathology; Anhui Medical University; Hefei Anhui Province China
| | - Ke-Jia Hu
- Department of Neurosurgery; Massachusetts General Hospital; Harvard Medical School; Boston, Massachusetts
- Harvard-MIT Health Sciences and Technology; Cambridge, Massachusetts
- Department of Microsurgery; Huashan Hospital; Fudan University; Shanghai China
| | - Ya-Ying Sun
- Department of Sports Medicine; Huashan Hospital; Fudan University; Shanghai China
| | - Xue-Fei Yang
- Department of Endocrinology; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Gui-Qi Zhu
- Liver Cancer Institute; Zhongshan Hospital; Fudan University, Key Labolatory of Carcinogenesis and Cancer Invasion, Fudan University; Ministry of Education; Shanghai China
| | - Zi-Wei Wang
- Department of Gastrointestinal Surgery; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| | - Wei Huang
- Department of Orthopaedic Surgery; The First Affiliated Hospital of Chongqing Medical University; Chongqing China
| |
Collapse
|
47
|
Potentiation effects by usnic acid in combination with antibiotics on clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). Med Chem Res 2018. [DOI: 10.1007/s00044-018-2161-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Harvey JM, Sibelli A, Chalder T, Everitt H, Moss-Morris R, Bishop FL. Desperately seeking a cure: Treatment seeking and appraisal in irritable bowel syndrome. Br J Health Psychol 2018; 23:561-579. [PMID: 29508539 PMCID: PMC6175452 DOI: 10.1111/bjhp.12304] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/01/2018] [Indexed: 12/13/2022]
Abstract
Objectives Irritable bowel syndrome (IBS) is common and adversely affects patients' quality of life. Multiple potential treatment options exist for patients (and clinicians) to choose from, with limited evidence to inform treatment selection. The aim was to explore how patients with IBS go about seeking and appraising different treatment modalities, with a view to elucidating the psychological processes involved and identifying opportunities to improve clinical practice. Design Qualitative study nested within a randomized controlled trial of therapist‐delivered and web‐based cognitive behavioural therapy versus treatment‐as‐usual for IBS. Methods A total of 52 people participated in semi‐structured interviews about their prior experiences of treatments for IBS. Transcripts were analysed using inductive thematic analysis. Results Key themes (desperation for a cure, disappointment at lack of cure, appraising the effects of diverse treatments, and hope for positive effects) clustered around an overarching theme of being trapped within a vicious cycle of hope and despair on treatment seeking. A desperation and willingness drove interviewees to try any treatment modality available that might potentially offer relief. Coming to accept there is no cure for IBS helped interviewees escape the vicious cycle. Treatments were appraised for their effects on symptoms and quality of life while also considering, but rarely prioritizing, other aspects including convenience of the regimen itself, whether it addressed the perceived root causes of IBS, perceived side‐effects, and cost. Conclusion Treatment seeking in IBS can be challenging for patients. Supportive discussions with health care professionals about illness perceptions, treatment beliefs, and goals could improve patients' experiences. Statement of contribution What is already known on this subject? Irritable bowel syndrome (IBS) is a highly prevalent chronic relapsing functional gastrointestinal disorder. Studies show few treatment modalities provide complete symptom relief. IBS is associated with emotional and physical distress, and negatively impacts personal, social, and professional aspects of quality of life.
What does this study add? Patients appraise IBS treatments for impact on quality of life and treatment characteristics. Developing acceptance and coping strategies helps escape treatment‐seeking vicious cycles of hope and despair. Clinicians could better support patients by discussing their illness perceptions, treatment goals, and values.
Collapse
Affiliation(s)
- J Matthew Harvey
- Centre for Clinical and Community Applications of Health Psychology, Department of Psychology, Faculty of Social Human and Mathematical Sciences, University of Southampton, UK
| | - Alice Sibelli
- Health Psychology Section, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK
| | - Trudie Chalder
- Academic Department of Psychological Medicine, Kings College London, UK
| | - Hazel Everitt
- Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, UK
| | - Rona Moss-Morris
- Health Psychology Section, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, UK
| | - Felicity L Bishop
- Centre for Clinical and Community Applications of Health Psychology, Department of Psychology, Faculty of Social Human and Mathematical Sciences, University of Southampton, UK
| |
Collapse
|
49
|
de Annunzio SR, de Freitas LM, Blanco AL, da Costa MM, Carmona-Vargas CC, de Oliveira KT, Fontana CR. Susceptibility of Enterococcus faecalis and Propionibacterium acnes to antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 178:545-550. [PMID: 29253813 DOI: 10.1016/j.jphotobiol.2017.11.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/24/2017] [Accepted: 11/26/2017] [Indexed: 12/31/2022]
Abstract
Bacterial resistance to available antibiotics nowadays is a global threat leading researchers around the world to study new treatment modalities for infections. Antimicrobial photodynamic therapy (aPDT) has been considered an effective and promising therapeutic alternative in this scenario. Briefly, this therapy is based on the activation of a non-toxic photosensitizing agent, known as photosensitizer (PS), by light at a specific wavelength generating cytotoxic singlet oxygen and free radicals. Virtually all studies related to aPDT involve a huge screening to identify ideal PS concentration and light dose combinations, a laborious and time-consuming process that is hardly disclosed in the literature. Herein, we describe an antimicrobial Photodynamic Therapy (aPDT) study against Enterococcus faecalis and Propionibacterium acnes employing methylene blue, chlorin-e6 or curcumin as PS. Similarities and discrepancies between the two bacterial species were pointed out in an attempt to speed up and facilitate futures studies against those clinical relevant strains. Susceptibility tests were performed by the broth microdilution method. Our results demonstrate that aPDT mediated by the three above-mentioned PS was effective in eliminating both gram-positive bacteria, although P. acnes showed remarkably higher susceptibility to aPDT when compared to E. faecalis. PS uptake assays revealed that P. acnes is 80 times more efficient than E. faecalis in internalizing all three PS molecules. Our results evidence that the cell wall structure is not a limiting feature when predicting bacterial susceptibility to aPDT treatment.
Collapse
Affiliation(s)
- Sarah Raquel de Annunzio
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara. Rodovia Araraquara-Jaú, Km1, Campus Ville, Araraquara, SP, CEP 14800-903, Brazil
| | - Laura Marise de Freitas
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara. Rodovia Araraquara-Jaú, Km1, Campus Ville, Araraquara, SP, CEP 14800-903, Brazil
| | - Ana Lígia Blanco
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara. Rodovia Araraquara-Jaú, Km1, Campus Ville, Araraquara, SP, CEP 14800-903, Brazil
| | - Mardoqueu Martins da Costa
- Universidade Brasil (UniBrasil), Departamento de Engenharia Biomédica, Rua Carolina Fonseca, 235, Vila Santana, São Paulo, SP CEP: 08230-030, Brazil.
| | - Christian C Carmona-Vargas
- Universidade Federal de São Carlos (UFSCar), Departamento de Química, Laboratório de Química Bioorgânica, Rodovia Washington Luis, Km 235 - SP-310, São Carlos, SP, CEP 13565-905, Brazil
| | - Kleber Thiago de Oliveira
- Universidade Federal de São Carlos (UFSCar), Departamento de Química, Laboratório de Química Bioorgânica, Rodovia Washington Luis, Km 235 - SP-310, São Carlos, SP, CEP 13565-905, Brazil.
| | - Carla Raquel Fontana
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Farmacêuticas, Araraquara. Rodovia Araraquara-Jaú, Km1, Campus Ville, Araraquara, SP, CEP 14800-903, Brazil.
| |
Collapse
|
50
|
Cole ST. Inhibiting Mycobacterium tuberculosis within and without. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0506. [PMID: 27672155 DOI: 10.1098/rstb.2015.0506] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2016] [Indexed: 01/05/2023] Open
Abstract
Tuberculosis remains a scourge of global health with shrinking treatment options due to the spread of drug-resistant strains of Mycobacterium tuberculosis Intensive efforts have been made in the past 15 years to find leads for drug development so that better, more potent drugs inhibiting new targets could be produced and thus shorten treatment duration. Initial attempts focused on repurposing drugs that had been developed for other therapeutic areas but these agents did not meet their goals in clinical trials. Attempts to find new lead compounds employing target-based screens were unsuccessful as the leads were inactive against M. tuberculosis Greater success was achieved using phenotypic screening against live tubercle bacilli and this gave rise to the drugs bedaquiline, pretomanid and delamanid, currently in phase III trials. Subsequent phenotypic screens also uncovered new leads and targets but several of these targets proved to be promiscuous and inhibited by a variety of seemingly unrelated pharmacophores. This setback sparked an interest in alternative screening approaches that mimic the disease state more accurately. Foremost among these were cell-based screens, often involving macrophages, as these should reflect the bacterium's niche in the host more faithfully. A major advantage of this approach is its ability to uncover functions that are central to infection but not necessarily required for growth in vitro For instance, inhibition of virulence functions mediated by the ESX-1 secretion system severely attenuates intracellular M. tuberculosis, preventing intercellular spread and ultimately limiting tissue damage. Cell-based screens have highlighted the druggability of energy production via the electron transport chain and cholesterol metabolism. Here, I review the scientific progress and the pipeline, but warn against over-optimism due to the lack of industrial commitment for tuberculosis drug development and other socio-economic factors.This article is part of the themed issue 'The new bacteriology'.
Collapse
Affiliation(s)
- Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
| |
Collapse
|