1
|
Wang L, Luo N, Zhu J, Sulaiman Z, Yang W, Hu K, Ai G, Yang W, Shao X, Jin S, Zhang X, Fan Y, Deng D, Cheng Z, Gao Z. Peritoneal adipose stem cell-derived extracellular vesicles mediate the regulation of ovarian cancer cell proliferation and migration through EGFR-NF-κB signaling. Genes Dis 2025; 12:101283. [PMID: 39759123 PMCID: PMC11699730 DOI: 10.1016/j.gendis.2024.101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 01/07/2025] Open
Abstract
Peritoneal dissemination frequently develops in patients with ovarian cancer (OC) and is associated with recurrence and metastasis. However, the cellular components and mechanisms supporting OC peritoneal metastasis are poorly understood. To elucidate these, we utilized RNA sequencing to investigate the cellular composition and function. Insights from transcriptome analyses suggested that OC cells from malignant ascites persisted in a quiescent state of low metabolic activity and after metastases to the peritoneum, arrested OC cells were reactivated and induced back to the cell cycle, suggesting that the peritoneum served as a favor tumor microenvironment. To elucidate the mechanisms, we then developed long-range migration and competitive inhibition assays and showed that peritoneal adipose-derived stem cells-derived extracellular vesicles (ADSCs-EVs) mediated preferential migration of OC cells toward peritoneal ADSCs but not other representative cells from the peritoneal cavity. In line with phenotypic changes, transcriptomic analysis revealed that patient peritoneal ADSCs-EVs stimulated the expression of numerous genes associated with OC cell proliferation and migration; among them, the epidermal growth factor receptor (EGFR) and nuclear factor kappa B (NF-κB) signaling pathways were highly enriched. We also found that peritoneal ADSCs produced and secreted key EGFR signaling molecules, including EGF and EGFR, into ADSCs-EVs. Upon fusion with OC cells, ADSCs-EVs up-regulated the EGFR-NF-κB axis and promoted OC cell proliferation and migration. Interference with either ADSCs-EVs production or EGFR signaling abolished the proliferation and migration effect. The results show that ADSCs modulate OC cell proliferation and migration at multiple layers, constituting a key mechanism in OC progression.
Collapse
Affiliation(s)
- Lian Wang
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai 200444, China
| | - Ning Luo
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jihui Zhu
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zubaidan Sulaiman
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenhan Yang
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai 200444, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu 216002, China
| | - Ke Hu
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai 200444, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu 216002, China
| | - Guihai Ai
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Weihong Yang
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaowen Shao
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shengkai Jin
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai 200444, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu 216002, China
| | - Xue Zhang
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yantao Fan
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Zhongping Cheng
- Department of Gynecology and Obstetrics, Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhengliang Gao
- Department of Anesthesiology, Shanghai Gongli Hospital, Naval Military Medical University, Shanghai 200135, China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University School of Medicine, Shanghai 200444, China
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai University School of Medicine, Nantong, Jiangsu 216002, China
- China-Japan Friendship Medical Research Institute, School of Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Zhang J, Lu E, Deng L, Zhu Y, Lu X, Li X, Li F, Yan Y, Han JY, Li Y, Zhang Y. Immunological roles for resistin and related adipokines in obesity-associated tumors. Int Immunopharmacol 2024; 142:112911. [PMID: 39232363 DOI: 10.1016/j.intimp.2024.112911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Rationale Obesity is an independent risk factor for the occurrence and development of tumors. Obesity is influenced by signaling of adipokines, which are secreted factors from adipocytes and resident immune cells within adipose tissues that mediate lipid metabolism. More recently, adipokines have been implicated in chronic inflammation as well as in tumor formation and growth. Among them, resistin has received increasing attention in research related to the growth and expansion of solid tumors and hematological cancers through various signaling pathways. Objective and findings We reviewed the physiological, biochemical, and immune functions of adipose tissue, with a focus on the structure and expression of resistin and adipokines within multiple adipose cell types, their signaling pathways and putative effects on tumor cells, as well as their in vivo regulation. Current evidence indicates that adipokines such as resistin act as pro-inflammatory factors to stimulate immune cells which, in turn, promotes tumor angiogenesis, connective tissue proliferation, and matrix fibrosis. Concurrently, in states of metabolic dysfunction and lipotoxicity in obese individuals, the numbers and functions of immune cells are compromised, leading to an immunosuppressive environment that fosters tumor cell survival and weak cancer immune monitoring. Conclusion Adipokines such as resistin are important to the development of obesity-related tumors. Clarifying the roles for obesity-related factors in immune regulation and tumor progression may lead to the discovery of novel anti-tumor strategies for targeting obesity factors such as resistin to limit tumor growth and manage obesity, or both.
Collapse
Affiliation(s)
- Jingxin Zhang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Enting Lu
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Deng
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yaoxuan Zhu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaoqing Lu
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xinyuan Li
- School of Nursing, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fangmei Li
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yan Yan
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yin Li
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Yi Zhang
- Department of Gynecology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
3
|
Solsona-Vilarrasa E, Vousden KH. Obesity, white adipose tissue and cancer. FEBS J 2024. [PMID: 39496581 DOI: 10.1111/febs.17312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024]
Abstract
White adipose tissue (WAT) is crucial for whole-body energy homeostasis and plays an important role in metabolic and hormonal regulation. While healthy WAT undergoes controlled expansion and contraction to meet the body's requirements, dysfunctional WAT in conditions like obesity is characterized by excessive tissue expansion, alterations in lipid homeostasis, inflammation, hypoxia, and fibrosis. Obesity is strongly associated with an increased risk of numerous cancers, with obesity-induced WAT dysfunction influencing cancer development through various mechanisms involving both systemic and local interactions between adipose tissue and tumors. Unhealthy obese WAT affects circulating levels of free fatty acids and factors like leptin, adiponectin, and insulin, altering systemic lipid metabolism and inducing inflammation that supports tumor growth. Similar mechanisms are observed locally in an adipose-rich tumor microenvironment (TME), where WAT cells can also trigger extracellular matrix remodeling, thereby enhancing the TME's ability to promote tumor growth. Moreover, tumors reciprocally interact with WAT, creating a bidirectional communication that further enhances tumorigenesis. This review focuses on the complex interplay between obesity, WAT dysfunction, and primary tumor growth, highlighting potential targets for therapeutic intervention.
Collapse
|
4
|
De A, Chakraborty D, Agarwal I, Sarda A. Present and Future Use of Exosomes in Dermatology. Indian J Dermatol 2024; 69:461-470. [PMID: 39678744 PMCID: PMC11642453 DOI: 10.4103/ijd.ijd_491_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/01/2023] [Indexed: 12/17/2024] Open
Abstract
Exposure to external environmental stimuli can lead to skin aging, pigmentation, hair loss, and various immune-mediated as well as connective tissue diseases. Although conventional treatments are routinely used and favoured, they fail to achieve an adequate balance between clinical and cosmetic outcomes. Exosomes are vesicles with a lipid bilayer released by several cell types. These bioactive vesicles play a crucial role in intercellular communication and in several other physiological and pathological processes. They serve as vehicles for bioactive substances including lipids, nucleic acids, and proteins, making them appealing as cell-free treatments. According to studies, exosomes play a vital role in preventing scarring, and senescence, and promoting wound healing. Moreover, research on the biology of exosomes is growing, which has enabled the creation of specific guidelines and quality control methodologies to support their potential implementation in the future. In this review, we have mainly focused on the role of exosomes in various dermatological diseases, their clinical applications, and the potential for further research pertaining to this.
Collapse
Affiliation(s)
- Abhishek De
- From the Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Disha Chakraborty
- From the Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Ishad Agarwal
- Department of Dermatology, Wizderm Specialty Skin and Hair Clinic, Kolkata, West Bengal, India
| | - Aarti Sarda
- Department of Dermatology, Wizderm Specialty Skin and Hair Clinic, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Jansen J, Garmyn M, Güvenç C. The Effect of Body Mass Index on Melanoma Biology, Immunotherapy Efficacy, and Clinical Outcomes: A Narrative Review. Int J Mol Sci 2024; 25:6433. [PMID: 38928137 PMCID: PMC11204248 DOI: 10.3390/ijms25126433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Recent studies indicate that a higher body mass index (BMI) might correlate with improved responses to melanoma treatment, especially with immune checkpoint inhibitors (ICIs), despite the general association of obesity with an increased risk of cancer and higher mortality rates. This review examines the paradoxical relationship between BMI and clinical outcomes in melanoma patients by exploring molecular links, the efficacy of immunotherapy, and patient survival outcomes. Our comprehensive literature search across the PubMed and Embase databases revealed a consistent pattern: increased BMI is associated with a better prognosis in melanoma patients undergoing ICI treatment. This "obesity paradox" might be explained by the metabolic and immunological changes in obesity, which could enhance the effectiveness of immunotherapy in treating melanoma. The findings highlight the complexity of the interactions between obesity and melanoma, suggesting that adipose tissue may modulate the immune response and treatment sensitivity favorably. Our review highlights the need for personalized treatment strategies that consider the metabolic profiles of patients and calls for further research to validate BMI as a prognostic factor in clinical settings. This nuanced approach to the obesity paradox in melanoma could significantly impact treatment planning and patient management.
Collapse
Affiliation(s)
| | | | - Canan Güvenç
- Department of Dermatology, University Hospitals Leuven, 3000 Leuven, Belgium; (J.J.); (M.G.)
| |
Collapse
|
6
|
Zhong D, Wang Z, Ye Z, Wang Y, Cai X. Cancer-derived exosomes as novel biomarkers in metastatic gastrointestinal cancer. Mol Cancer 2024; 23:67. [PMID: 38561768 PMCID: PMC10983767 DOI: 10.1186/s12943-024-01948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 04/04/2024] Open
Abstract
Gastrointestinal cancer (GIC) is the most prevalent and highly metastatic malignant tumor and has a significant impact on mortality rates. Nevertheless, the swift advancement of contemporary technology has not seamlessly aligned with the evolution of detection methodologies, resulting in a deficit of innovative and efficient clinical assays for GIC. Given that exosomes are preferentially released by a myriad of cellular entities, predominantly originating from neoplastic cells, this confers exosomes with a composition enriched in cancer-specific constituents. Furthermore, exosomes exhibit ubiquitous presence across diverse biological fluids, endowing them with the inherent advantages of non-invasiveness, real-time monitoring, and tumor specificity. The unparalleled advantages inherent in exosomes render them as an ideal liquid biopsy biomarker for early diagnosis, prognosticating the potential development of GIC metastasis.In this review, we summarized the latest research progress and possible potential targets on cancer-derived exosomes (CDEs) in GIC with an emphasis on the mechanisms of exosome promoting cancer metastasis, highlighting the potential roles of CDEs as the biomarker and treatment in metastatic GIC.
Collapse
Affiliation(s)
- Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, 310016, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China.
- Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, 310016, China.
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
7
|
Zhu Q, Cao Y, Yuan J, Hu Y. Adipose-derived stem cell exosomes promote tumor characterization and immunosuppressive microenvironment in breast cancer. Cancer Immunol Immunother 2024; 73:39. [PMID: 38294569 PMCID: PMC10830720 DOI: 10.1007/s00262-023-03584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/13/2023] [Indexed: 02/01/2024]
Abstract
Adipose-derived stem cells (ASC) or autologous fat transplantation could be used to ameliorate breast cancer postoperative deformities. This study aims to explore the action of ASC and ASC-exosomes (ASC-exos) in breast cancer characterization and tumor microenvironment immunity, which provided a new method into the application of ASC-exos. ASC were extracted from human adipose tissue for the isolation and verification of ASC-exos. ASC-exos were co-cultured with CD4+T cells, CD14+ monocytes and MCF-7 cells, respectively. The tumor formation of nude mice was also constructed. Cell characterization was determined by CCK8, scratch assay, and Transwell. Hematoxylin-eosin (HE), immunohistochemistry (IHC) and immunofluorescence (IF) staining were used to observe the histopathology and protein expression. CD4+T cell and CD14+ monocytes differentiation was detected by flow cytometry. Western blot, qRT-PCR and RNAseq were used to detect the action of ASC-exos on gene and protein expression. CD4+T cells could take up ASC-exos. ASC-exos inhibited Th1 and Th17 differentiation and promoted Treg differentiation of CD4+T cells. ASC-exos inhibited M1 differentiation and promoted M2 differentiation of CD14+ monocytes. ASC-exos promoted the migration, proliferation, and invasion, while inhibited apoptosis of MCF-7 cells. ASC-exos promoted the tumor formation of breast cancer. The effect of ASC-exos on tumor microenvironment immunity was in accordance with the above in vitro results. TOX, CD4 and LYZ1 genes were upregulated, while Mettl7b and Serpinb2 genes were downregulated in ASC-exos group. Human T-cell leukemia virus 1 infection pathway was significantly enriched in ASC-exos. Thus, ASC-exos promoted breast cancer characterization and tumor microenvironment immunosuppression by regulating macrophage and T cell differentiation.
Collapse
Affiliation(s)
- Qin Zhu
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Yukun Cao
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jiaqi Yuan
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
8
|
Engin AB, Engin A. Next-Cell Hypothesis: Mechanism of Obesity-Associated Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:727-766. [PMID: 39287871 DOI: 10.1007/978-3-031-63657-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Higher body fat content is related to a higher risk of mortality, and obesity-related cancer represents approximately 40% of all cancer patients diagnosed each year. Furthermore, epigenetic mechanisms are involved in cellular metabolic memory and can determine one's predisposition to being overweight. Low-grade chronic inflammation, a well-established characteristic of obesity, is a central component of tumor development and progression. Cancer-associated adipocytes (CAA), which enhance inflammation- and metastasis-related gene sets within the cancer microenvironment, have pro-tumoral effects. Adipose tissue is a major source of the exosomal micro ribonucleic acids (miRNAs), which modulate pathways involved in the development of obesity and obesity-related comorbidities. Owing to their composition of cargo, exosomes can activate receptors at the target cell or transfer molecules to the target cells and thereby change the phenotype of these cells. Exosomes that are released into the extracellular environment are internalized with their cargo by neighboring cells. The tumor-secreted exosomes promote organ-specific metastasis of tumor cells that normally lack the capacity to metastasize to a specific organ. Therefore, the communication between neighboring cells via exosomes is defined as the "next-cell hypothesis." The reciprocal interaction between the adipocyte and tumor cell is realized through the adipocyte-derived exosomal miRNAs and tumor cell-derived oncogenic miRNAs. The cargo molecules of adipocyte-derived exosomes are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. RNA-induced silencing regulates gene expression through various mechanisms. Destabilization of DICER enzyme, which catalyzes the conversion of primary miRNA (pri-miRNA) to precursor miRNA (pre-miRNA), is an important checkpoint in cancer development and progression. Interestingly, adipose tissue in obesity and tumors share similar pathogenic features, and the local hypoxia progress in both. While hypoxia in obesity leads to the adipocyte dysfunction and metabolic abnormalities, in obesity-related cancer cases, it is associated with worsened prognosis, increased metastatic potential, and resistance to chemotherapy. Notch-interleukin-1 (IL-1)-Leptin crosstalk outcome is referred to as "NILCO effect." In this chapter, obesity-related cancer development is discussed in the context of "next-cell hypothesis," miRNA biogenesis, and "NILCO effect."
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
9
|
Neagu M, Dobre EG. New Insights into the Link Between Melanoma and Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:851-867. [PMID: 39287874 DOI: 10.1007/978-3-031-63657-8_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The significant increase in the incidence of obesity represents a global health crisis. Obesity is actually a multi-organ disease affecting the entire organism; hence, skin is no exception. As the functional alterations in the adipose tissue are contributing factors to many diseases, including cancer, recently, the link between the development of melanoma skin cancer and obesity gains increased attention. Besides several other factors, the increase of adipose stromal/stem cells (ASCs) impacts cancer progression. Moreover, increased production of cytokines and growth factors done by ASCs induces tumorigenesis and metastasis. The chronic inflammatory state that is sustained by this metabolic imbalance favors skin malignancies, melanoma included. Cutaneous melanoma, as an aggressive skin cancer, has both intrinsic and extrinsic risk factors where sun exposure and lifestyles are the main environmental factors inducing this skin cancer. With the advent of recent targeted and immune-based therapies in melanoma, the link between obesity and the efficacy of these therapies in melanoma remains controversial. A recent molecular relationship between the melanocortin pathway appending to both melanin synthesis and obesity was established. The biology of adipokines, molecules secreted by the adipose tissue, is linked to inflammation, and their molecular pathways can be involved in angiogenesis, migration, invasion, and proliferation of melanoma cells. In melanoma cells, among the most noticeable metabolic reprogramming characteristics is an increased rate of lipid synthesis. Lipid mediators impact classical oncogenic pathways, affecting melanoma progression. The chapter will tackle also the practical implications for melanoma prevention and treatment, namely, how metabolic manipulation can be exploited to overcome immunosuppression and support immune checkpoint blockade efficacy.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
- Pathology Department, Colentina University Hospital, Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Elena-Georgiana Dobre
- Immunology Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
10
|
Liu S, Benito‐Martin A, Pelissier Vatter FA, Hanif SZ, Liu C, Bhardwaj P, Sethupathy P, Farghli AR, Piloco P, Paik P, Mushannen M, Dong X, Otterburn DM, Cohen L, Bareja R, Krumsiek J, Cohen‐Gould L, Calto S, Spector JA, Elemento O, Lyden DC, Brown KA. Breast adipose tissue-derived extracellular vesicles from obese women alter tumor cell metabolism. EMBO Rep 2023; 24:e57339. [PMID: 37929643 PMCID: PMC10702795 DOI: 10.15252/embr.202357339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Breast adipose tissue is an important contributor to the obesity-breast cancer link. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we find that long-term education of breast cancer cells with EVs obtained from breast adipose tissue of women who are overweight or obese (O-EVs) results in increased proliferation. RNA-seq analysis of O-EV-educated cells demonstrates increased expression of genes involved in oxidative phosphorylation, such as ATP synthase and NADH: ubiquinone oxidoreductase. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. The mitochondrial complex I inhibitor metformin reverses O-EV-induced cell proliferation. Several miRNAs-miR-155-5p, miR-10a-3p, and miR-30a-3p-which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing metabolic reprogramming of breast cancer cells.
Collapse
Affiliation(s)
- Shuchen Liu
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- Department of Breast SurgeryThe Second Hospital of Shandong UniversityJinanChina
| | - Alberto Benito‐Martin
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- Facultad de Medicina, Unidad de Investigación BiomédicaUniversidad Alfonso X el Sabio (UAX)MadridSpain
| | | | - Sarah Z Hanif
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Catherine Liu
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Priya Bhardwaj
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary MedicineCornell UniversityIthacaNYUSA
| | - Alaa R Farghli
- Department of Biomedical Sciences, College of Veterinary MedicineCornell UniversityIthacaNYUSA
| | - Phoebe Piloco
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Paul Paik
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Malik Mushannen
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- Weill Cornell Medicine – QatarDohaQatar
| | - Xue Dong
- Department of SurgeryWeill Cornell MedicineNew YorkNYUSA
| | | | - Leslie Cohen
- Department of SurgeryWeill Cornell MedicineNew YorkNYUSA
| | - Rohan Bareja
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - Jan Krumsiek
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - Leona Cohen‐Gould
- Department of BiochemistryWeill Cornell MedicineNew YorkNYUSA
- Core Laboratories CenterWeill Cornell MedicineNew YorkNYUSA
| | - Samuel Calto
- Department of Cognitive ScienceUniversity of California San DiegoLa JollaCAUSA
| | | | - Olivier Elemento
- Department of Physiology and BiophysicsWeill Cornell MedicineNew YorkNYUSA
| | - David C Lyden
- Departments of Pediatrics and Cell and Developmental BiologyWeill Cornell MedicineNew YorkNYUSA
| | - Kristy A Brown
- Department of MedicineWeill Cornell MedicineNew YorkNYUSA
- Department of Cell Biology and PhysiologyUniversity of Kansas Medical CenterKansas CityKSUSA
- University of Kansas Cancer CenterKansas CityKSUSA
| |
Collapse
|
11
|
Zidane M, Theurich S, Schlaak M. Malignes Melanom und Adipositas: eine Übersichtsarbeit. AKTUELLE DERMATOLOGIE 2023; 49:390-398. [DOI: 10.1055/a-2086-2939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Zusammenfassung
Einleitung Die Inzidenz von Adipositas nimmt weltweit stetig zu. Übergewicht und Adipositas werden als mögliche Risikofaktoren für verschiedene Krebserkrankungen, einschließlich des malignen Melanoms, diskutiert. Dieser Review stellt die Evidenz zu der Assoziation zwischen Adipositas und dem malignen Melanom dar.
Methodik Selektive Literaturrecherche.
Ergebnisse Obwohl verschiedene Erklärungsansätze für eine mögliche Assoziation von Adipositas und dem malignen Melanom existieren, sind diese nicht vollständig bekannt und weiterhin Gegenstand der Forschung. Die Evidenz zur Assoziation zwischen Adipositas und Melanom-Outcomes für Patienten ohne Systemtherapie ist gering. Für Patienten mit Systemtherapie gibt es Evidenz, die einen protektiven Effekt unter Immuntherapien und zielgerichteten Therapien beschreibt.
Schlussfolgerung Insgesamt gibt es zu der Assoziation zwischen dem malignen Melanom und Adipositas nicht ausreichend Evidenz, um zu schlussfolgern, ob Adipositas einen unabhängigen protektiven Effekt hat oder ein Risikofaktor für die Entstehung von Melanomen darstellt. Weitere Forschung ist erforderlich, um das Wissen über diesen möglichen Zusammenhang zu vertiefen.
Collapse
Affiliation(s)
- Miriam Zidane
- Charité – Universitätsmedizin Berlin, Klinik für Dermatologie, Venerologie und Allergologie, Berlin, Deutschland, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
| | - Sebastian Theurich
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland
- LMU München, Cancer and Immunometabolism Research Group, Gene Center, München, Deutschland
- LMU Klinikum, Medizinische Klinik und Poliklinik III, München, Deutschland
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort München, Deutschland
| | - Max Schlaak
- Charité – Universitätsmedizin Berlin, Klinik für Dermatologie, Venerologie und Allergologie, Berlin, Deutschland, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort Berlin, Deutschland
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Deutschland
| |
Collapse
|
12
|
Simiczyjew A, Wądzyńska J, Pietraszek-Gremplewicz K, Kot M, Ziętek M, Matkowski R, Nowak D. Melanoma cells induce dedifferentiation and metabolic changes in adipocytes present in the tumor niche. Cell Mol Biol Lett 2023; 28:58. [PMID: 37481560 PMCID: PMC10363323 DOI: 10.1186/s11658-023-00476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/30/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND One of the factors that affect the progression of melanoma is the tumor microenvironment, which consists of cellular elements, extracellular matrix, acidification, and a hypoxic state. Adipocytes are one of the types of cell present in the niche and are localized in the deepest layer of the skin. However, the relationship between fat cells and melanoma remains unclear. METHODS We assessed the influence of melanoma cells on adipocytes using an indirect coculture system. We estimated the level of cancer-associated adipocyte (CAA) markers through quantitative PCR analysis. The fibroblastic phenotype of CAAs was confirmed by cell staining and western blotting analysis. The lipid content was estimated by lipid detection in CAAs using LipidSpot and by quantitative analysis using Oil Red O. The expression of proteins involved in lipid synthesis, delipidation, and metabolic processes were assessed through quantitative PCR or western blotting analysis. Lactate secretion was established using a Lactate-Glo™ assay. Proteins secreted by CAAs were identified in cytokine and angiogenesis arrays. The proliferation of melanoma cells cocultured with CAAs was assessed using an XTT proliferation assay. Statistical analysis was performed using a one-way ANOVA followed by Tukey's test in GraphPad Prism 7 software. RESULTS Obtained CAAs were identified by decreased levels of leptin, adiponectin, resistin, and FABP4. Adipocytes cocultured with melanoma presented fibroblastic features, such as a similar proteolytic pattern to that of 3T3L1 fibroblasts and increased levels of vimentin and TGFβRIII. Melanoma cells led to a reduction of lipid content in CAAs, possibly by downregulation of lipid synthesis pathways (lower FADS, SC4MOL, FASN) or enhancement of lipolysis (higher level of phosphorylation of ERK and STAT3). Adipocytes cocultured with melanoma cells secreted higher IL6 and SerpinE1 levels and produced less CCL2, CXCL1, and angiogenic molecules. CAAs also showed metabolic changes comprising the increased secretion of lactate and enhanced production of glucose, lactate, and ion transporters. In addition, changes in adipocytes observed following melanoma coculture resulted in a higher proliferation rate of cancer cells. CONCLUSIONS Melanoma cells led to decreased lipid content in adipocytes, which might be related to enhanced delipidation or reduction of lipid synthesis. Fibroblast-like CAAs showed metabolic changes that may be the reason for accelerated proliferation of melanoma cells.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland.
| | - Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| | | | - Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, 53-413, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, 50-383, Wroclaw, Poland
| |
Collapse
|
13
|
Zhou C, Huang YQ, Da MX, Jin WL, Zhou FH. Adipocyte-derived extracellular vesicles: bridging the communications between obesity and tumor microenvironment. Discov Oncol 2023; 14:92. [PMID: 37289328 PMCID: PMC10250291 DOI: 10.1007/s12672-023-00704-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023] Open
Abstract
By the year 2035 more than 4 billion people might be affected by obesity and being overweight. Adipocyte-derived Extracellular Vesicles (ADEVs/ADEV-singular) are essential for communication between the tumor microenvironment (TME) and obesity, emerging as a prominent mechanism of tumor progression. Adipose tissue (AT) becomes hypertrophic and hyperplastic in an obese state resulting in insulin resistance in the body. This modifies the energy supply to tumor cells and simultaneously stimulates the production of pro-inflammatory adipokines. In addition, obese AT has a dysregulated cargo content of discharged ADEVs, leading to elevated amounts of pro-inflammatory proteins, fatty acids, and carcinogenic microRNAs. ADEVs are strongly associated with hallmarks of cancer (proliferation and resistance to cell death, angiogenesis, invasion, metastasis, immunological response) and may be useful as biomarkers and antitumor therapy strategy. Given the present developments in obesity and cancer-related research, we conclude by outlining significant challenges and significant advances that must be addressed expeditiously to promote ADEVs research and clinical applications.
Collapse
Affiliation(s)
- Chuan Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou, 730000 People’s Republic of China
| | - Yu-Qian Huang
- Department of Center of Medical Cosmetology, Chengdu Second People’s Hospital, Chengdu, 610017 People’s Republic of China
| | - Ming-Xu Da
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Department of Surgical Oncology, Gansu Provincial Hospital, Lanzhou, 730000 People’s Republic of China
| | - Wei-Lin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, 730000 People’s Republic of China
| | - Feng-Hai Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 People’s Republic of China
- Department of Urology, Gansu Provincial Hospital, Lanzhou, 730000 People’s Republic of China
| |
Collapse
|
14
|
Zidane M, Theurich S, Schlaak M. Malignes Melanom und Adipositas: eine Übersichtsarbeit. TUMORDIAGNOSTIK & THERAPIE 2023; 44:202-210. [DOI: 10.1055/a-2037-1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Zusammenfassung
Einleitung Die Inzidenz von Adipositas nimmt weltweit stetig zu. Übergewicht und Adipositas werden als mögliche Risikofaktoren für verschiedene Krebserkrankungen, einschließlich des malignen Melanoms, diskutiert. Dieser Review stellt die Evidenz zu der Assoziation zwischen Adipositas und dem malignen Melanom dar.
Methodik Selektive Literaturrecherche.
Ergebnisse Obwohl verschiedene Erklärungsansätze für eine mögliche Assoziation von Adipositas und dem malignen Melanom existieren, sind diese nicht vollständig bekannt und weiterhin Gegenstand der Forschung. Die Evidenz zur Assoziation zwischen Adipositas und Melanom-Outcomes für Patienten ohne Systemtherapie ist gering. Für Patienten mit Systemtherapie gibt es Evidenz, die einen protektiven Effekt unter Immuntherapien und zielgerichteten Therapien beschreibt.
Schlussfolgerung Insgesamt gibt es zu der Assoziation zwischen dem malignen Melanom und Adipositas nicht ausreichend Evidenz, um zu schlussfolgern, ob Adipositas einen unabhängigen protektiven Effekt hat oder ein Risikofaktor für die Entstehung von Melanomen darstellt. Weitere Forschung ist erforderlich, um das Wissen über diesen möglichen Zusammenhang zu vertiefen.
Collapse
Affiliation(s)
- Miriam Zidane
- Klinik für Dermatologie, Venerologie und Allergologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
| | - Sebastian Theurich
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Gene Center, Cancer and Immunometabolism Research Group, LMU München, München, Deutschland
- Abteilung für Medizin III, LMU Klinikum, München, Deutschland
- Partnerstandort München, Deutsches Konsortium für Translationale Krebsforschung (DKTK), München, Deutschland
| | - Max Schlaak
- Klinik für Dermatologie, Venerologie und Allergologie, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
- Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Partnerstandort Berlin, Deutsches Konsortium für Translationale Krebsforschung (DKTK), Berlin, Deutschland
| |
Collapse
|
15
|
Liu S, Benito-Martin A, Pelissier Vatter FA, Hanif SZ, Liu C, Bhardwaj P, Sethupathy P, Farghli AR, Piloco P, Paik P, Mushannen M, Otterburn DM, Cohen L, Bareja R, Krumsiek J, Cohen-Gould L, Calto S, Spector JA, Elemento O, Lyden D, Brown KA. Breast adipose tissue-derived extracellular vesicles from women with obesity stimulate mitochondrial-induced dysregulated tumor cell metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527715. [PMID: 36798307 PMCID: PMC9934680 DOI: 10.1101/2023.02.08.527715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Breast adipose tissue is an important contributor to the obesity-breast cancer link. Dysregulated cell metabolism is now an accepted hallmark of cancer. Extracellular vesicles (EVs) are nanosized particles containing selective cargo, such as miRNAs, that act locally or circulate to distant sites to modulate target cell functions. Here, we found that long-term education of breast cancer cells (MCF7, T47D) with EVs from breast adipose tissue of women who are overweight or obese (O-EVs) leads to sustained increased proliferative potential. RNA-Seq of O-EV-educated cells demonstrates increased expression of genes, such as ATP synthase and NADH: ubiquinone oxidoreductase, involved in oxidative phosphorylation. O-EVs increase respiratory complex protein expression, mitochondrial density, and mitochondrial respiration in tumor cells. Mitochondrial complex I inhibitor, metformin, reverses O-EV-induced cell proliferation. Several miRNAs, miR-155-5p, miR-10a-3p, and miR-30a-3p, which promote mitochondrial respiration and proliferation, are enriched in O-EVs relative to EVs from lean women. O-EV-induced proliferation and mitochondrial activity are associated with stimulation of the Akt/mTOR/P70S6K pathway, and are reversed upon silencing of P70S6K. This study reveals a new facet of the obesity-breast cancer link with human breast adipose tissue-derived EVs causing the metabolic reprogramming of ER+ breast cancer cells.
Collapse
|
16
|
Dulgar O, Ibisoglu EO, Ay S, Uslu H, Gümüş M. Is adipose tissue metabolic activity a predictor of pathological responses to neoadjuvant treatment in breast cancer. Rev Esp Med Nucl Imagen Mol 2023; 42:10-15. [PMID: 35988844 DOI: 10.1016/j.remnie.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION AND OBJECTIVE Prediction of the pathologic response to neoadjuvant chemotherapy (NAC) in patients with locally advanced breast cancer is essential for optimal treatment strategy. The current approach of adjuvant or neoadjuvant treatment is based on the molecular subtype. Obesity may have affected chemotherapy response. This study aims to evaluate the relationship between metabolic activity of adipose tissue (AT) and pathological responses to NAC. And to define the association with body mass index (BMI) and metabolic parameters of standardized uptake value (SUV) of adipose tissue measured by positron emission computed tomography (PET/CT). MATERIAL AND METHODS One-hundred and sixteen consecutive patients with stage II and III breast cancer who underwent PET/CT before receiving NAC, were evaluated in the study. Metabolic parameters of visceral adipose tissue (VAT-SUV), subcutaneous adipose tissue (SAT-SUV), and calculated SUV of visceral-to-subcutaneous ratio (V/S-ratio) were regarded. The relationship between SUV of AT and pathologic response was evaluated from medical records retrospectively. RESULTS Univariate-analysis revealed that good pathological response was significantly associated with clinical stage (P<.001), HER-2 positivity (P<.001), VAT-SUV (P=.037), VAT-density (P=.043) and V/S-ratio (P=.003). In multivariate-analysis clinical stage, HER-2 positivity and V/S-ratio were found to have statistically effect on pathological response. VAT-volume (P<.001), VAT-SUV (P=.016), SAT-volume (P<.001) and SAT-SUV (P<.001) has positive correlation with BMI value. On the other hand, V/S-ratio (P=.039) and SAT-density (P=.003) has negative correlation with BMI. CONCLUSION Metabolic activity of AT is associated with BMI and effected chemotherapy responses. LowV/S ratio was associated with high BMI and poor pathological response to NAC. V/S ratio may be a useful marker for the prediction of NAC responses.
Collapse
Affiliation(s)
- Ozgecan Dulgar
- Istanbul Medeniyet University, Göztepe Training and Research Hospital, Department of Medical Oncology, Istanbul 34722, Turkey.
| | - Ebru Orsal Ibisoglu
- Istanbul Medeniyet University, Göztepe Training and Research Hospital, Department of Nuclear Medicine, Istanbul, Turkey
| | - Seval Ay
- Istanbul Medeniyet University, Göztepe Training and Research Hospital, Department of Medical Oncology, Istanbul 34722, Turkey
| | - Hatice Uslu
- Istanbul Medeniyet University, Göztepe Training and Research Hospital, Department of Nuclear Medicine, Istanbul, Turkey
| | - Mahmut Gümüş
- Istanbul Medeniyet University, Göztepe Training and Research Hospital, Department of Medical Oncology, Istanbul 34722, Turkey
| |
Collapse
|
17
|
Zhou X, Zhang J, Lv W, Zhao C, Xia Y, Wu Y, Zhang Q. The pleiotropic roles of adipocyte secretome in remodeling breast cancer. J Exp Clin Cancer Res 2022; 41:203. [PMID: 35701840 PMCID: PMC9199207 DOI: 10.1186/s13046-022-02408-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer is the leading female cancer type and the cause of cancer-related mortality worldwide. Adipocytes possess important functions of energy supply, metabolic regulation, and cytokine release, and are also the matrix cell that supports mammary gland tissue. In breast cancer tumor microenvironment (TME), adipocytes are the prominent stromal cells and are implicated in inflammation, metastatic formation, metabolic remodeling, and cancer susceptibility.
Main body
It is well-established that adipocyte secretome is a reservoir engaged in the regulation of tumor cell behavior by secreting a large number of cytokines (IL-6, IL-8, and chemokines), adipokines (leptin, adiponectin, autotaxin, and resistin), lipid metabolites (free fatty acids and β-hydroxybutyrate), and other exosome-encapsulated substances. These released factors influence the evolution and clinical outcome of breast cancer through complex mechanisms. The progression of breast cancer tumors revolves around the tumor-adipose stromal network, which may contribute to breast cancer aggressiveness by increasing the pro-malignant potential of TME and tumor cells themselves. Most importantly, the secretome alterations of adipocytes are regarded as distinctly important targets for breast cancer diagnosis, treatment, and drug resistance.
Conclusion
Therefore, this review will provide a comprehensive description of the specific adipocyte secretome characteristics and interactions within TME cell populations, which will enable us to better tailor strategies for tumor stratification management and treatment.
Collapse
|
18
|
¿Es la actividad metabólica del tejido adiposo un predictor de respuesta histopatológica al tratamiento neoadyuvante en el cáncer de mama? Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Harris BHL, Macaulay VM, Harris DA, Klenerman P, Karpe F, Lord SR, Harris AL, Buffa FM. Obesity: a perfect storm for carcinogenesis. Cancer Metastasis Rev 2022; 41:491-515. [PMID: 36038791 PMCID: PMC9470699 DOI: 10.1007/s10555-022-10046-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.
Collapse
Affiliation(s)
- Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS, UK.
| | - Valentine M Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
20
|
Amalinei C, Grigoraș A, Lozneanu L, Căruntu ID, Giușcă SE, Balan RA. The Interplay between Tumour Microenvironment Components in Malignant Melanoma. Medicina (B Aires) 2022; 58:medicina58030365. [PMID: 35334544 PMCID: PMC8953474 DOI: 10.3390/medicina58030365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/12/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma has shown an increasing incidence during the last two decades, exhibiting a large spectrum of locations and clinicopathological characteristics. Although current histopathological, biochemical, immunohistochemical, and molecular methods provide a deep insight into its biological behaviour and outcome, melanoma is still an unpredictable disease, with poor outcome. This review of the literature is aimed at updating the knowledge regarding melanoma’s clinicopathological and molecular hallmarks, including its heterogeneity and plasticity, involving cancer stem cells population. A special focus is given on the interplay between different cellular components and their secretion products in melanoma, considering its contribution to tumour progression, invasion, metastasis, recurrences, and resistance to classical therapy. Furthermore, the influences of the specific tumour microenvironment or “inflammasome”, its association with adipose tissue products, including the release of “extracellular vesicles”, and distinct microbiota are currently studied, considering their influences on diagnosis and prognosis. An insight into melanoma’s particular features may reveal new molecular pathways which may be exploited in order to develop innovative therapeutic approaches or tailored therapy.
Collapse
|
21
|
Cassano N, Caccavale S, Vena GA, Argenziano G. Body Mass Index and Melanoma Prognosis. Dermatol Pract Concept 2021; 11:e2021106. [PMID: 34631264 DOI: 10.5826/dpc.1104a106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 10/31/2022] Open
Abstract
Introduction Obesity has been suggested as a risk factor in the progression of malignancies, including melanoma. Most studies defined obesity using body mass index (BMI), although the index is considered an imperfect measure of body composition. Objective The aim of this article is to examine whether BMI can impact on the prognosis of cutaneous melanoma, regardless of anti-tumor therapy. The relationship between BMI and specific prognostic factors in melanoma patients has been reviewed. Methods Literature search was conducted on PubMed using the terms "melanoma" and "body mass index" or "obesity". We selected articles, published up to 30 November 2020, examining the prognostic aspects of melanoma. Articles evaluating the risk and incidence of melanoma were excluded as well as studies regarding morbidity and complications following surgical procedures, or those performed in metastatic melanoma patients treated with anti-tumor therapies. Results Mixed results have emerged from studies assessing the clinical outcomes in melanoma patients in relation to BMI. More consistent data seem to support the relationship between BMI and Breslow thickness. Conclusions Studies that focus specifically on the link between obesity and melanoma prognosis are limited; further research is needed to deepen our knowledge on this link.
Collapse
Affiliation(s)
- Nicoletta Cassano
- Dermatology and Venereology Private Practice, Bari, Italy.,Dermatology and Venereology Private Practice, Barletta, Italy
| | - Stefano Caccavale
- Dermatology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gino A Vena
- Dermatology and Venereology Private Practice, Bari, Italy.,Dermatology and Venereology Private Practice, Barletta, Italy
| | | |
Collapse
|
22
|
Leetanaporn K, Hanprasertpong J, Navakanitworakul R. Molecular insights and clinical impacts of extracellular vesicles in cancer. Oncol Rev 2021; 15:542. [PMID: 34667488 PMCID: PMC8477311 DOI: 10.4081/oncol.2021.542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022] Open
Abstract
Cell-to-cell communication is a pivotal aspect of cancer biology. Recently, extracellular vesicles (EVs)have been shown to play essential roles in intercellular communications between cancer cells and the surrounding microenvironment owing to cancer development. EVs are small membrane-bound vesicles secreted by various cells containing proteins, lipids, mRNAs, and non-coding RNAs (microRNAs and long non-coding RNAs), which contribute to cancer cell development and progression. Here, we provide an overview of current research direction on EVs, especially biomolecules in EVs, and also point out the novel diagnostics, monitoring, predicting, and therapeutic aspects using EVs against cancer.
Collapse
Affiliation(s)
| | - Jitti Hanprasertpong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | |
Collapse
|
23
|
Storti G, Scioli MG, Kim BS, Terriaca S, Fiorelli E, Orlandi A, Cervelli V. Mesenchymal Stem Cells in Adipose Tissue and Extracellular Vesicles in Ovarian Cancer Patients: A Bridge toward Metastatic Diffusion or a New Therapeutic Opportunity? Cells 2021; 10:cells10082117. [PMID: 34440886 PMCID: PMC8392703 DOI: 10.3390/cells10082117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is one of the deadliest malignancies among women. Approximately 75% of the patients with ovarian cancer are diagnosed with advanced disease that already has metastasis, particularly to the omentum. The omentum constitutes the ideal soil for ovarian cancer metastasis due to a complex intraperitoneal milieu that favors and supports the whole metastatic process. Adipose-derived stem/stromal cells (ADSCs) are part of this microenvironment and foster tumor progression via sustained paracrine secretion, including extracellular vesicles (EVs). Nonetheless, the preferential relationship between ADSCs, ADSC-derived EVs, and ovarian cancer cells could be exploited to use ADSCs and EVs as a vehicle for anti-cancer therapies. This review will analyze the strict relations between tumor progression, metastatic disease, and adipose tissue with its staminal components. In addition, we will describe the crosstalk and biologic relationship between ADSCs and tumor cells, the role of EVs in intercellular communication, the establishment of drug resistance, metastatic capacity, and ovarian cancer progression. We will analyze the new therapeutic opportunities in treating ovarian cancer offered by ADSCs and EVs as a vehicle for therapeutic molecules to target precisely tumor cells and limit the systemic adverse effects. Finally, we will discuss the limitations of these therapeutic approaches.
Collapse
Affiliation(s)
- Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy;
- Correspondence: ; Tel.: +39-06-23188514; Fax: +39-06-23188466
| | - Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Sonia Terriaca
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Elena Fiorelli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, Tor Vergata University of Rome, 00133 Rome, Italy; (M.G.S.); (S.T.); (E.F.); (A.O.)
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, Tor Vergata University of Rome, 00133 Rome, Italy;
| |
Collapse
|
24
|
Moraes JA, Encarnação C, Franco VA, Xavier Botelho LG, Rodrigues GP, Ramos-Andrade I, Barja-Fidalgo C, Renovato-Martins M. Adipose Tissue-Derived Extracellular Vesicles and the Tumor Microenvironment: Revisiting the Hallmarks of Cancer. Cancers (Basel) 2021; 13:3328. [PMID: 34283044 PMCID: PMC8268128 DOI: 10.3390/cancers13133328] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are crucial elements that sustain the communication between tumor cells and their microenvironment, and have emerged as a widespread mechanism of tumor formation and metastasis. In obesity, the adipose tissue becomes hypertrophic and hyperplastic, triggering increased production of pro-inflammatory adipokines, such as tumor necrosis factor α, interleukin 6, interleukin 1, and leptin. Furthermore, obese adipose tissue undergoes dysregulation in the cargo content of the released EVs, resulting in an increased content of pro-inflammatory proteins, fatty acids, and oncogenic microRNAs. These alterations drive obesity-associated inflammatory responses both locally and systemically. After being ignored for a long time, adipose tissues have recently received considerable attention as a major player in tumor microenvironment-linked obesity and cancer. The role of adipose tissue in the establishment and progression of cancer is reinforced by its high plasticity and inflammatory content. Such a relationship may be established by direct contact between adipocytes and cancer cells within the microenvironment or systemically, via EV-mediated cell-to-cell communication. Here, we highlight cues evidencing the influence of adipose tissue-derived EVs on the hallmarks of cancer, which are critical for tumor malignancy.
Collapse
Affiliation(s)
- João Alfredo Moraes
- Redox Biology Laboratory, Programa de Pesquisa em Farmacologia e Inflamação, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil;
| | - Carol Encarnação
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| | - Victor Aguiar Franco
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| | - Luiz Gabriel Xavier Botelho
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| | - Gabriella Pacheco Rodrigues
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| | - Isadora Ramos-Andrade
- Laboratory of Cellular and Molecular Pharmacology, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-170 Rio de Janeiro, Brazil; (I.R.-A.); (C.B.-F.)
| | - Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, 20550-170 Rio de Janeiro, Brazil; (I.R.-A.); (C.B.-F.)
| | - Mariana Renovato-Martins
- Laboratory of Inflammation and Metabolism, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, 24210-201 Niterói, Brazil; (C.E.); (V.A.F.); (L.G.X.B.); (G.P.R.)
| |
Collapse
|
25
|
Kronemberger GS, Miranda GASC, Tavares RSN, Montenegro B, Kopke ÚDA, Baptista LS. Recapitulating Tumorigenesis in vitro: Opportunities and Challenges of 3D Bioprinting. Front Bioeng Biotechnol 2021; 9:682498. [PMID: 34239860 PMCID: PMC8258101 DOI: 10.3389/fbioe.2021.682498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is considered one of the most predominant diseases in the world and one of the principal causes of mortality per year. The cellular and molecular mechanisms involved in the development and establishment of solid tumors can be defined as tumorigenesis. Recent technological advances in the 3D cell culture field have enabled the recapitulation of tumorigenesis in vitro, including the complexity of stromal microenvironment. The establishment of these 3D solid tumor models has a crucial role in personalized medicine and drug discovery. Recently, spheroids and organoids are being largely explored as 3D solid tumor models for recreating tumorigenesis in vitro. In spheroids, the solid tumor can be recreated from cancer cells, cancer stem cells, stromal and immune cell lineages. Organoids must be derived from tumor biopsies, including cancer and cancer stem cells. Both models are considered as a suitable model for drug assessment and high-throughput screening. The main advantages of 3D bioprinting are its ability to engineer complex and controllable 3D tissue models in a higher resolution. Although 3D bioprinting represents a promising technology, main challenges need to be addressed to improve the results in cancer research. The aim of this review is to explore (1) the principal cell components and extracellular matrix composition of solid tumor microenvironment; (2) the recapitulation of tumorigenesis in vitro using spheroids and organoids as 3D culture models; and (3) the opportunities, challenges, and applications of 3D bioprinting in this area.
Collapse
Affiliation(s)
- Gabriela S. Kronemberger
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Guilherme A. S. C. Miranda
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Renata S. N. Tavares
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Bianca Montenegro
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
| | - Úrsula de A. Kopke
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| | - Leandra S. Baptista
- Nucleus of Multidisciplinary Research in Biology (Numpex-Bio), Federal University of Rio de Janeiro Xerém, Duque de Caxias, Brazil
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
- Post-graduation Program of Translational Biomedicine (Biotrans), Unigranrio, Duque de Caxias, Brazil
- Post-graduation Program in Biotechnology, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Brazil
| |
Collapse
|
26
|
Álvarez-Artime A, García-Soler B, Sainz RM, Mayo JC. Emerging Roles for Browning of White Adipose Tissue in Prostate Cancer Malignant Behaviour. Int J Mol Sci 2021; 22:5560. [PMID: 34074045 PMCID: PMC8197327 DOI: 10.3390/ijms22115560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to its well-known role as an energy repository, adipose tissue is one of the largest endocrine organs in the organism due to its ability to synthesize and release different bioactive molecules. Two main types of adipose tissue have been described, namely white adipose tissue (WAT) with a classical energy storage function, and brown adipose tissue (BAT) with thermogenic activity. The prostate, an exocrine gland present in the reproductive system of most mammals, is surrounded by periprostatic adipose tissue (PPAT) that contributes to maintaining glandular homeostasis in conjunction with other cell types of the microenvironment. In pathological conditions such as the development and progression of prostate cancer, adipose tissue plays a key role through paracrine and endocrine signaling. In this context, the role of WAT has been thoroughly studied. However, the influence of BAT on prostate tumor development and progression is unclear and has received much less attention. This review tries to bring an update on the role of different factors released by WAT which may participate in the initiation, progression and metastasis, as well as to compile the available information on BAT to discuss and open a new field of knowledge about the possible protective role of BAT in prostate cancer.
Collapse
Affiliation(s)
- Alejandro Álvarez-Artime
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Belén García-Soler
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
| | - Rosa María Sainz
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Juan Carlos Mayo
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
27
|
Dogra S, Hannafon BN. Breast Cancer Microenvironment Cross Talk through Extracellular Vesicle RNAs. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1330-1341. [PMID: 33895121 DOI: 10.1016/j.ajpath.2021.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/31/2021] [Indexed: 11/25/2022]
Abstract
Exploration of extracellular communication has been at the forefront of research efforts in recent years. However, the mechanisms of cell-to-cell communication in complex tissues are poorly understood. What is clear is that cells do not exist in isolation, that they are constantly interacting and communicating with cells in the immediate vicinity and with cells at a distance. Intercellular communication by the release of small extracellular vesicles, called exosomes, loaded with RNAs is one mechanism by which cells communicate. In recent years, research has shown that exosomes, a class of extracellular vesicles, can play a major role in the pathogenesis of breast cancer. Specifically, exosomes have been demonstrated to play a role in promoting primary cancer development, invasion, metastasis, and chemotherapeutic resistance. This review summarizes what is known about the mechanisms of exosome-mediated transfer of RNAs among cells in the breast microenvironment and discusses outstanding questions and the potential for new therapeutic intervention targeted at these interactions.
Collapse
Affiliation(s)
- Samrita Dogra
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Bethany N Hannafon
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
28
|
Bongiovanni L, Andriessen A, Wauben MHM, Hoen ENMN', de Bruin A. Extracellular Vesicles: Novel Opportunities to Understand and Detect Neoplastic Diseases. Vet Pathol 2021; 58:453-471. [PMID: 33813952 PMCID: PMC8064535 DOI: 10.1177/0300985821999328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With a size range from 30 to 1000 nm, extracellular vesicles (EVs) are one of the smallest cell components able to transport biologically active molecules. They mediate intercellular communications and play a fundamental role in the maintenance of tissue homeostasis and pathogenesis in several types of diseases. In particular, EVs actively contribute to cancer initiation and progression, and there is emerging understanding of their role in creation of the metastatic niche. This fact underlies the recent exponential growth in EV research, which has improved our understanding of their specific roles in disease and their potential applications in diagnosis and therapy. EVs and their biomolecular cargo reflect the state of the diseased donor cells, and can be detected in body fluids and exploited as biomarkers in cancer and other diseases. Relatively few studies have been published on EVs in the veterinary field. This review provides an overview of the features and biology of EVs as well as recent developments in EV research including techniques for isolation and analysis, and will address the way in which the EVs released by diseased tissues can be studied and exploited in the field of veterinary pathology. Uniquely, this review emphasizes the important contribution that pathologists can make to the field of EV research: pathologists can help EV scientists in studying and confirming the role of EVs and their molecular cargo in diseased tissues and as biomarkers in liquid biopsies.
Collapse
Affiliation(s)
- Laura Bongiovanni
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Present address: Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | | | | | - Alain de Bruin
- 90051Utrecht University, Utrecht, the Netherlands.,University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
29
|
Bordanaba-Florit G, Madarieta I, Olalde B, Falcón-Pérez JM, Royo F. 3D Cell Cultures as Prospective Models to Study Extracellular Vesicles in Cancer. Cancers (Basel) 2021; 13:307. [PMID: 33467651 PMCID: PMC7830667 DOI: 10.3390/cancers13020307] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
The improvement of culturing techniques to model the environment and physiological conditions surrounding tumors has also been applied to the study of extracellular vesicles (EVs) in cancer research. EVs role is not only limited to cell-to-cell communication in tumor physiology, they are also a promising source of biomarkers, and a tool to deliver drugs and induce antitumoral activity. In the present review, we have addressed the improvements achieved by using 3D culture models to evaluate the role of EVs in tumor progression and the potential applications of EVs in diagnostics and therapeutics. The most employed assays are gel-based spheroids, often utilized to examine the cell invasion rate and angiogenesis markers upon EVs treatment. To study EVs as drug carriers, a more complex multicellular cultures and organoids from cancer stem cell populations have been developed. Such strategies provide a closer response to in vivo physiology observed responses. They are also the best models to understand the complex interactions between different populations of cells and the extracellular matrix, in which tumor-derived EVs modify epithelial or mesenchymal cells to become protumor agents. Finally, the growth of cells in 3D bioreactor-like systems is appointed as the best approach to industrial EVs production, a necessary step toward clinical translation of EVs-based therapy.
Collapse
Affiliation(s)
- Guillermo Bordanaba-Florit
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Exosomes Laboratory, Basque Research and Technology Alliance (BRTA), E48160 Derio, Spain; (G.B.-F.); (J.M.F.-P.)
| | - Iratxe Madarieta
- TECNALIA Basque Research and Technology Alliance (BRTA), E20009 Donostia San Sebastian, Spain; (I.M.); (B.O.)
| | - Beatriz Olalde
- TECNALIA Basque Research and Technology Alliance (BRTA), E20009 Donostia San Sebastian, Spain; (I.M.); (B.O.)
| | - Juan M. Falcón-Pérez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Exosomes Laboratory, Basque Research and Technology Alliance (BRTA), E48160 Derio, Spain; (G.B.-F.); (J.M.F.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), E28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, E48009 Bilbao, Spain
| | - Félix Royo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Exosomes Laboratory, Basque Research and Technology Alliance (BRTA), E48160 Derio, Spain; (G.B.-F.); (J.M.F.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), E28029 Madrid, Spain
| |
Collapse
|
30
|
Mazurkiewicz J, Simiczyjew A, Dratkiewicz E, Ziętek M, Matkowski R, Nowak D. Stromal Cells Present in the Melanoma Niche Affect Tumor Invasiveness and Its Resistance to Therapy. Int J Mol Sci 2021; 22:E529. [PMID: 33430277 PMCID: PMC7825728 DOI: 10.3390/ijms22020529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant melanoma is a highly metastatic type of cancer, which arises frequently from transformed pigment cells and melanocytes as a result of long-term UV radiation exposure. In recent years, the incidence of newly diagnosed melanoma patients reached 5% of all cancer cases. Despite the development of novel targeted therapies directed against melanoma-specific markers, patients' response to treatment is often weak or short-term due to a rapid acquisition of drug resistance. Among the factors affecting therapy effectiveness, elements of the tumor microenvironment play a major role. Melanoma niche encompasses adjacent cells, such as keratinocytes, cancer-associated fibroblasts (CAFs), adipocytes, and immune cells, as well as components of the extracellular matrix and tumor-specific physicochemical properties. In this review, we summarize the current knowledge concerning the influence of cancer-associated cells (keratinocytes, CAFs, adipocytes) on the process of melanomagenesis, tumor progression, invasiveness, and the emergence of drug resistance in melanoma. We also address how melanoma can alter the differentiation and activation status of cells present in the tumor microenvironment. Understanding these complex interactions between malignant and cancer-associated cells could improve the development of effective antitumor therapeutic strategies.
Collapse
Affiliation(s)
- Justyna Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| | - Marcin Ziętek
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; (M.Z.); (R.M.)
- Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Rafał Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, 53-413 Wroclaw, Poland; (M.Z.); (R.M.)
- Wroclaw Comprehensive Cancer Center, Plac Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (A.S.); (E.D.); (D.N.)
| |
Collapse
|
31
|
Annett S, Moore G, Robson T. Obesity and Cancer Metastasis: Molecular and Translational Perspectives. Cancers (Basel) 2020; 12:E3798. [PMID: 33339340 PMCID: PMC7766668 DOI: 10.3390/cancers12123798] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is a modern health problem that has reached pandemic proportions. It is an established risk factor for carcinogenesis, however, evidence for the contribution of adipose tissue to the metastatic behavior of tumors is also mounting. Over 90% of cancer mortality is attributed to metastasis and metastatic tumor cells must communicate with their microenvironment for survival. Many of the characteristics observed in obese adipose tissue strongly mirror the tumor microenvironment. Thus in the case of prostate, pancreatic and breast cancer and esophageal adenocarcinoma, which are all located in close anatomical proximity to an adipose tissue depot, the adjacent fat provides an ideal microenvironment to enhance tumor growth, progression and metastasis. Adipocytes provide adipokines, fatty acids and other soluble factors to tumor cells whilst immune cells infiltrate the tumor microenvironment. In addition, there are emerging studies on the role of the extracellular vesicles secreted from adipose tissue, and the extracellular matrix itself, as drivers of obesity-induced metastasis. In the present review, we discuss the major mechanisms responsible for the obesity-metastatic link. Furthermore, understanding these complex mechanisms will provide novel therapies to halt the tumor-adipose tissue crosstalk with the ultimate aim of inhibiting tumor progression and metastatic growth.
Collapse
Affiliation(s)
| | | | - Tracy Robson
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Science, 123 St Stephen’s Green, Dublin D02 YN77, Ireland; (S.A.); (G.M.)
| |
Collapse
|
32
|
Modulation of Immune Infiltration of Ovarian Cancer Tumor Microenvironment by Specific Subpopulations of Fibroblasts. Cancers (Basel) 2020; 12:cancers12113184. [PMID: 33138184 PMCID: PMC7692816 DOI: 10.3390/cancers12113184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Tumor immune infiltration plays a key role in the progression of solid tumors, including ovarian cancer, and immunotherapies are rapidly emerging as effective treatment modalities. However, the role of cancer-associated fibroblasts (CAFs), a predominant stromal constituent, in determining the tumor-immune microenvironment and modulating efficacy of immunotherapies remains poorly understood. We have conducted an extensive bioinformatic analysis of our and other publicly available ovarian cancer datasets (GSE137237, GSE132289 and GSE71340), to determine the correlation of fibroblast subtypes within the tumor microenvironment (TME) with the characteristics of tumor-immune infiltration. We identified (1) four functional modules of CAFs in ovarian cancer that are associated with the TME and metastasis of ovarian cancer, (2) immune-suppressive function of the collagen 1,3,5-expressing CAFs in primary ovarian cancer and omental metastases, and (3) consistent positive correlations between the functional modules of CAFs with anti-immune response genes and negative correlation with pro-immune response genes. Our study identifies a specific fibroblast subtype, fibroblast functional module (FFM)2, in the ovarian cancer tumor microenvironment that can potentially modulate a tumor-promoting immune microenvironment, which may be detrimental toward the effectiveness of ovarian cancer immunotherapies.
Collapse
|
33
|
Quan M, Kuang S. Exosomal Secretion of Adipose Tissue during Various Physiological States. Pharm Res 2020; 37:221. [PMID: 33063193 PMCID: PMC7953939 DOI: 10.1007/s11095-020-02941-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Exosomes are secreted extracellular vesicles containing a wide array of biologically active components. Recent studies have demonstrated that exosomes serve as an important vehicle for extracellular communication and exert systemic effects on the physiology of organisms. Adipose tissues (ATs) play a key role in balancing systemic energy homeostasis as a central hub for fatty acid metabolism. At the same time, proper endocrine function of ATs has also been shown to be crucial for regulating physiological and metabolic health. The endocrine function of ATs is partially mediated by AT-derived exosomes that regulate metabolic homeostasis, such as insulin signaling, lipolysis, and inflammation. During the pathogenesis of obesity, metabolic syndrome, and cancer, exosomes shed by the resident cells in ATs may also have a role in regulating the progression of these diseases along with associated pathologies. In this review, we summarize the contents of AT-derived exosomes and their effects on various cell populations along with possible underlying molecular mechanisms. We further discuss the potential applications of exosomes as a drug delivery tool and therapeutic target.
Collapse
Affiliation(s)
- Menchus Quan
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
34
|
Xiong M, Zhang Q, Hu W, Zhao C, Lv W, Yi Y, Wu Y, Wu M. Exosomes From Adipose-Derived Stem Cells: The Emerging Roles and Applications in Tissue Regeneration of Plastic and Cosmetic Surgery. Front Cell Dev Biol 2020; 8:574223. [PMID: 33015067 PMCID: PMC7511773 DOI: 10.3389/fcell.2020.574223] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are an important stem cell type separated from adipose tissue, with the properties of multilineage differentiation, easy availability, high proliferation potential, and self-renewal. Exosomes are novel frontiers of intercellular communication regulating the biological behaviors of cells, such as angiogenesis, immune modulation, proliferation, and migration. ASC-derived exosomes (ASC-exos) are important components released by ASCs paracrine, possessing multiple biological activities. Tissue regeneration requires coordinated “vital networks” of multiple growth factors, proteases, progenitors, and immune cells producing inflammatory cytokines. Recently, as cell-to-cell messengers, ASC-exos have received much attention for the fact that they are important paracrine mediators contributing to their suitability for tissue regeneration. ASC-exos, with distinct properties by encapsulating various types of bioactive cargoes, are endowed with great application potential in tissue regeneration, mechanically via the migration and proliferation of repair cells, facilitation of the neovascularization, and other specific functions in different tissues. Here, this article elucidated the research progress of ASC-exos about tissue regeneration in plastic and cosmetic surgery, including skin anti-aging therapy, dermatitis improvement, wound healing, scar removal, flap transplantation, bone tissue repair and regeneration, obesity prevention, fat grafting, breast cancer, and breast reconstruction. Deciphering the biological properties of ASC-exos will provide further insights for exploring novel therapeutic strategies of tissue regeneration in plastic and cosmetic surgery.
Collapse
Affiliation(s)
- Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
The influence of secreted factors and extracellular vesicles in ovarian cancer metastasis. EJC Suppl 2020; 15:38-48. [PMID: 33240441 PMCID: PMC7573474 DOI: 10.1016/j.ejcsup.2019.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/02/2019] [Accepted: 09/15/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer cells mainly metastasise within the peritoneal cavity, the lethal consequence of tumour progression in this cancer type. Classically, changes in tumour cells, such as epithelial to mesenchymal transition, involve the down-regulatinon of E-cadherin, activation of extracellular proteases and integrin-mediated adhesion. However, our current understanding of ovarian tumour progression suggests the implication of both intrinsic and extrinsic factors. It has been proposed that ovarian cancer metastases are a consequence of the crosstalk between cancer cells and the tumour microenvironment by soluble factors and extracellular vesicles. Characterisation of the alterations in both the tumour cells and the surrounding microenvironment has emerged as a new research field to understand ovarian cancer metastasis. In this mini review, we will summarise the most recent findings, focusing our attention on the role of secreted factors and extracellular vesicles in ovarian cancer metastasis. During ovarian cancer metastasis, tumour cells metastasise in the mesothelium as primarily ‘soil’ for ovarian cancer ‘seeds’. Soluble factors and extracellular vesicles secreted by tumor cells are involved in the generation of the pre-metastatic niche. Cancer-associated fibroblasts (CAFs) represent the majority of stromal cells in various types of human carcinoma, including ovarian cancer. Analysis of early metastasis to the omentum indicates that ovarian cancer cells rely on the interaction with immune cells such as macrophages. Liquid biopsy analyses in ovarian cancer may help to define novel biomarkers improving patient survival and reduce lethality.
Collapse
|
36
|
Wu B, Sun X, Yuan B, Ge F, Gupta HB, Chiang HC, Li J, Hu Y, Curiel TJ, Li R. PPARγ inhibition boosts efficacy of PD-L1 Checkpoint Blockade Immunotherapy against Murine Melanoma in a sexually dimorphic manner. Int J Biol Sci 2020; 16:1526-1535. [PMID: 32226299 PMCID: PMC7097912 DOI: 10.7150/ijbs.42966] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/19/2020] [Indexed: 01/08/2023] Open
Abstract
Immune checkpoint blockade-based immunotherapy has become standard of care for multiple cancer types. However, the overall response rates among various cancer types still remain unsatisfactory. There is a pressing clinical need to identify combination therapies to improve efficacy of anticancer immunotherapy. We previously showed that pharmacologic inhibition of PPARγ by GW9662 boosts αPD-L1 and αPD-1 antibody efficacy in treating murine mammary tumors. In addition, we defined sexually dimorphic αPD-L1 efficacy in B16 melanoma. Here, we show a sexually dimorphic response to the combination of GW9662 and αPD-L1 immunotherapy in B16 melanoma. Combination effects were observed in female, but not male hosts. Neither female oöphorectomy impairs, nor does male castration rescue the combination effects, suggesting a sex hormone-independent response to this combination therapy. In diet-induced obese females, melanoma growth remained responsive to the combination treatment, albeit less robustly than lean females. These findings are informative for future design and application of immunotherapy-related combination therapy for treating human melanoma patients by taking gender and obesity status into consideration.
Collapse
Affiliation(s)
- Bogang Wu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Xiujie Sun
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Bin Yuan
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Fei Ge
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Harshita B Gupta
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Huai-Chin Chiang
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Jingwei Li
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Yanfen Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Tyler J Curiel
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Rong Li
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
37
|
Abstract
The term "adipose tissue" represents a multicellular and multifunctional organ involved in lipid storage, in hormone and temperature regulation, and in the protection of bones and vital organs from impact-based damage. Emerging evidence now suggests a more malignant role of adipose tissue in promoting cancer onset and progression via the release of secreted factors such as interleukin-6 (IL6) and extracellular vesicles (EVs). These adipose-source factors subsequently affect various aspects of tumorigenesis and/or cancer progression by either directly enhancing the tumor cell oncogenic phenotype or indirectly by the stimulating adjacent normal cells to adopt a more pro-cancer phenotype. Due to the recent growing interest in the role of IL6 and EVs released by adipose tissue in cancer promotion and progression, we are focusing on the protumorigenic impact of fat tissue via IL6 and EV secretion.
Collapse
|
38
|
Extracellular Vesicles and Cancer: A Focus on Metabolism, Cytokines, and Immunity. Cancers (Basel) 2020; 12:cancers12010171. [PMID: 32015297 PMCID: PMC7016590 DOI: 10.3390/cancers12010171] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
A better understanding of the mechanisms of cell communication between cancer cells and the tumor microenvironment is crucial to develop personalized therapies. It has been known for a while that cancer cells are metabolically distinct from other non-transformed cells. This metabolic phenotype is not peculiar to cancer cells but reflects the characteristics of the tumor microenvironment. Recently, it has been shown that extracellular vesicles are involved in the metabolic switch occurring in cancer and tumor-stroma cells. Moreover, in an immune system, the metabolic programs of different cell subsets are distinctly associated with their immunological function, and extracellular vesicles could be a key factor in the shift of cell fate modulating cancer immunity. Indeed, during tumor progression, tumor-associated immune cells and fibroblasts acquire a tumor-supportive and anti-inflammatory phenotype due to their interaction with tumor cells and several findings suggest a role of extracellular vesicles in this phenomenon. This review aims to collect all the available evidence so far obtained on the role of extracellular vesicles in the modulation of cell metabolism and immunity. Moreover, we discuss the possibility for extracellular vesicles of being involved in drug resistance mechanisms, cancer progression and metastasis by inducing immune-metabolic effects on surrounding cells.
Collapse
|
39
|
Roles of galectin-3 in metabolic disorders and tumor cell metabolism. Int J Biol Macromol 2020; 142:463-473. [DOI: 10.1016/j.ijbiomac.2019.09.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
|
40
|
Triaca V, Carito V, Fico E, Rosso P, Fiore M, Ralli M, Lambiase A, Greco A, Tirassa P. Cancer stem cells-driven tumor growth and immune escape: the Janus face of neurotrophins. Aging (Albany NY) 2019; 11:11770-11792. [PMID: 31812953 PMCID: PMC6932930 DOI: 10.18632/aging.102499] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/17/2019] [Indexed: 05/12/2023]
Abstract
Cancer Stem Cells (CSCs) are self-renewing cancer cells responsible for expansion of the malignant mass in a dynamic process shaping the tumor microenvironment. CSCs may hijack the host immune surveillance resulting in typically aggressive tumors with poor prognosis.In this review, we focus on neurotrophic control of cellular substrates and molecular mechanisms involved in CSC-driven tumor growth as well as in host immune surveillance. Neurotrophins have been demonstrated to be key tumor promoting signaling platforms. Particularly, Nerve Growth Factor (NGF) and its specific receptor Tropomyosin related kinase A (TrkA) have been implicated in initiation and progression of many aggressive cancers. On the other hand, an active NGF pathway has been recently proven to be critical to oncogenic inflammation control and in promoting immune response against cancer, pinpointing possible pro-tumoral effects of NGF/TrkA-inhibitory therapy.A better understanding of the molecular mechanisms involved in the control of tumor growth/immunoediting is essential to identify new predictive and prognostic intervention and to design more effective therapies. Fine and timely modulation of CSCs-driven tumor growth and of peripheral lymph nodes activation by the immune system will possibly open the way to precision medicine in neurotrophic therapy and improve patient's prognosis in both TrkA- dependent and independent cancers.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | | | - Antonio Greco
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
41
|
Kersy O, Loewenstein S, Lubezky N, Sher O, Simon NB, Klausner JM, Lahat G. Omental Tissue-Mediated Tumorigenesis of Gastric Cancer Peritoneal Metastases. Front Oncol 2019; 9:1267. [PMID: 31803630 PMCID: PMC6876669 DOI: 10.3389/fonc.2019.01267] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/01/2019] [Indexed: 12/21/2022] Open
Abstract
The peritoneal cavity, especially the omentum, is a common site for gastric cancer metastasis, representing advanced disease stage and poor prognosis. Here, we studied the effects of omental tissue on gastric cancer tumor progression in vitro and in vivo. Utilizing in vitro models, we found that omental tissue secreted factors increased gastric cancer cellular growth (by 30–67%, P < 0.05), motility (>8-fold, P < 0.05), invasiveness (>7-fold, P < 0.05) and chemoresistance to platinum-based chemotherapeutic agents (>1.2-fold for oxaliplatin and >1.6-fold for cisplatin, P < 0.05). Using a robust proteomic approach, we identified numerous molecules secreted into the omental tissue conditioned medium (CM) which may promote gastric cancer cellular aggressiveness (i.e., IL-6, IL-8, MMP9, FN1, and CXCL-5). Next, an in vivo xenograft mouse model showed an increased human gastric adenocarcinoma tumor volume of cells co-cultured with human omental tissue secreted factors; 1.6 ± 0.55 vs. 0.3 ± 0.19 cm3 (P < 0.001), as well as increased angiogenesis. Finally, exosomes were isolated from human omental tissue CM of gastric cancer patients. These exosomes were taken up by gastric cancer cells enhancing their growth (>8-fold, P < 0.01) and invasiveness (>8-fold, P < 0.001). Proteomic analysis of the content of these exosomes identified several established cancer- related proteins (i.e., IL-6, IL-8, ICAM-1, CCl2, and OSM). Taken together, our findings imply that the omentum play an active role in gastric cancer metastasis. The data also describe specific cytokines that are involved in this cross talk, and that omental tissue- derived exosomes may contribute to these unique cellular interactions with gastric cancer cells. Further studies aimed at understanding the biology of gastric cancer intra peritoneal spread are warranted. Hopefully, such data will enable to develop future novel therapeutic strategies for the treatment of metastatic gastric cancer.
Collapse
Affiliation(s)
- Olga Kersy
- Laboratory of Surgical Oncology, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Division of Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Shelly Loewenstein
- Laboratory of Surgical Oncology, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Division of Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Nir Lubezky
- Division of Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Osnat Sher
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel.,Institute of Pathology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Natalie B Simon
- College of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Joseph M Klausner
- Division of Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel.,The Nikolas and Elizabeth Shlezak Cathedra for Experimental Surgery, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| | - Guy Lahat
- Laboratory of Surgical Oncology, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Division of Surgery, Tel-Aviv Sourasky Medical Center, Tel Aviv-Yafo, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
42
|
Langsten KL, Kim JH, Sarver AL, Dewhirst M, Modiano JF. Comparative Approach to the Temporo-Spatial Organization of the Tumor Microenvironment. Front Oncol 2019; 9:1185. [PMID: 31788448 PMCID: PMC6854022 DOI: 10.3389/fonc.2019.01185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The complex ecosystem in which tumor cells reside and interact, termed the tumor microenvironment (TME), encompasses all cells and components associated with a neoplasm that are not transformed cells. Interactions between tumor cells and the TME are complex and fluid, with each facet coercing the other, largely, into promoting tumor progression. While the TME in humans is relatively well-described, a compilation and comparison of the TME in our canine counterparts has not yet been described. As is the case in humans, dog tumors exhibit greater heterogeneity than what is appreciated in laboratory animal models, although the current level of knowledge on similarities and differences in the TME between dogs and humans, and the practical implications of that information, require further investigation. This review summarizes some of the complexities of the human and mouse TME and interjects with what is known in the dog, relaying the information in the context of the temporo-spatial organization of the TME. To the authors' knowledge, the development of the TME over space and time has not been widely discussed, and a comprehensive review of the canine TME has not been done. The specific topics covered in this review include cellular invasion and interactions within the TME, metabolic derangements in the TME and vascular invasion, and the involvement of the TME in tumor spread and metastasis.
Collapse
Affiliation(s)
- Kendall L Langsten
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jong Hyuk Kim
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Aaron L Sarver
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Mark Dewhirst
- Radiation Oncology Department, Duke University Medical School, Durham, NC, United States
| | - Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN, United States.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
43
|
Zimta AA, Tigu AB, Muntean M, Cenariu D, Slaby O, Berindan-Neagoe I. Molecular Links between Central Obesity and Breast Cancer. Int J Mol Sci 2019; 20:ijms20215364. [PMID: 31661891 PMCID: PMC6862548 DOI: 10.3390/ijms20215364] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023] Open
Abstract
Worldwide, breast cancer (BC) is the most common malignancy in women, in regard to incidence and mortality. In recent years, the negative role of obesity during BC development and progression has been made abundantly clear in several studies. However, the distribution of body fat may be more important to analyze than the overall body weight. In our review of literature, we reported some key findings regarding the role of obesity in BC development, but focused more on central adiposity. Firstly, the adipose microenvironment in obese people bears many similarities with the tumor microenvironment, in respect to associated cellular composition, chronic low-grade inflammation, and high ratio of reactive oxygen species to antioxidants. Secondly, the adipose tissue functions as an endocrine organ, which in obese people produces a high level of tumor-promoting hormones, such as leptin and estrogen, and a low level of the tumor suppressor hormone, adiponectin. As follows, in BC this leads to the activation of oncogenic signaling pathways: NFκB, JAK, STAT3, AKT. Moreover, overall obesity, but especially central obesity, promotes a systemic and local low grade chronic inflammation that further stimulates the increase of tumor-promoting oxidative stress. Lastly, there is a constant exchange of information between BC cells and adipocytes, mediated especially by extracellular vesicles, and which changes the transcription profile of both cell types to an oncogenic one with the help of regulatory non-coding RNAs.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine, and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Adrian Bogdan Tigu
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine, and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Babeș-Bolyai University, Faculty of Biology, and Geology, 42 Republicii Street, 400015 Cluj-Napoca, Romania.
| | - Maximilian Muntean
- Department of Plastic Surgery, University of Medicine and Pharmacy "Iuliu Hatieganu", 400337 Cluj-Napoca, Romania.
| | - Diana Cenariu
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine, and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 62100 Brno, Czech Republic.
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, 60200 Brno, Czech Republic.
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine, and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine, and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Department of Functional Genomics, and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34th street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
44
|
Adipose-Derived Mesenchymal Stem Cells Enhance Ovarian Cancer Growth and Metastasis by Increasing Thymosin Beta 4X-Linked Expression. Stem Cells Int 2019; 2019:9037197. [PMID: 31781249 PMCID: PMC6855023 DOI: 10.1155/2019/9037197] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/17/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
As shown in our previous studies, growth and metastasis of ovarian cancer can be regulated by adipose-derived mesenchymal stem cells (ADSCs). However, the underlying mechanism has not yet been revealed. In this study, a proteomics analysis was performed to compare protein expression treated with and without ADSCs in ovarian cancer cells. Protein levels were altered in ovarian cancer cells due to the treatment of ADSCs. Thymosin beta 4 X-linked (TMSB4X) levels changed dramatically, and this protein was identified as one of the most important candidate molecules contributing to the tumour-promoting effects of ADSCs. Compared with the cells that are cultured in the normal growth medium, the TMSB4X levels cultured in ADSC-conditioned medium increased significantly in ovarian cancer cells. Furthermore, the growth and invasion of cancer cells were decreased, even in the ADSC-conditioned medium treatment group (P < 0.05), by the inhibition of TMSB4X. As shown in the bioluminescence images captured in vivo, increased ovarian cancer's growth and metastasis, along with elevated TMSB4X expression, were observed in the group of ADSC-conditioned medium, and the tumour-promoting effect of ADSCs was attenuated by the inhibition of TMSB4X. Based on our findings, increased TMSB4X expression may play a role in accelerating the ADSC-mediated proliferation, invasion, and migration of ovarian cancers.
Collapse
|
45
|
Dos Santos CMM, Diniz VLS, Bachi ALL, Dos Santos de Oliveira LC, Ghazal T, Passos MEP, de Oliveira HH, Murata G, Masi LN, Martins AR, Levada-Pires AC, Curi R, Hirabara SM, Sellitti DF, Pithon-Curi TC, Gorjão R. Moderate physical exercise improves lymphocyte function in melanoma-bearing mice on a high-fat diet. Nutr Metab (Lond) 2019; 16:63. [PMID: 31528182 PMCID: PMC6739998 DOI: 10.1186/s12986-019-0394-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/06/2019] [Indexed: 02/16/2023] Open
Abstract
Background Obesity can lead to a chronic systemic inflammatory state that increases the risk of cancer development. Therefore, this study aimed to evaluate the alterations in tumor non-infiltrated lymphocytes function and melanoma growth in animals maintained on a high-fat diet and/or moderate physical exercise program in a murine model of melanoma. Methods Female mice were randomly divided into eight groups: 1) normolipidic control (N), 2) normolipidic + melanoma (NM), 3) high-fat control (H), 4) high-fat + melanoma (HM), 5) normolipidic control + physical exercise (NE), 6) normolipidic melanoma + physical exercise (NEM), 7) high-fat control + physical exercise (HE), and 8) high-fat melanoma + physical exercise (HEM). After 8 weeks of diet treatment and/or moderate physical exercise protocol, melanoma was initiated by explanting B16F10 cells into one-half of the animals. Results Animals fed a high-fat diet presented high-energy consumption (30%) and body weight gain (H and HE vs N and NE, 37%; HM and HEM vs NM and NEM, 73%, respectively), whether or not they carried melanoma explants. Although the tumor growth rate was higher in animals from the HM group than in animals from any other sedentary group, it was reduced by the addition of a physical exercise regimen. We also observed an increase in stimulated peripheral lymphocyte proliferation and a decrease in the T-helper 1 response in the HEM group. Conclusions The results of the present study support the hypothesis that altering function of tumor non-infiltrated lymphocytes via exercise-related mechanisms can slow melanoma progression, indicating that the incorporation of a regular practice of moderate-intensity exercises can be a potential strategy for current therapeutic regimens in treating advanced melanoma.
Collapse
Affiliation(s)
- Cesar Miguel Momesso Dos Santos
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Vinicius Leonardo Sousa Diniz
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - André Luis Lacerda Bachi
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil.,2Department of Otorrhynolaringology, Federal University of São Paulo, São Paulo, Brazil.,Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São Paulo, Brazil
| | - Laiane Cristina Dos Santos de Oliveira
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Tamara Ghazal
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Maria Elizabeth Pereira Passos
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Heloisa Helena de Oliveira
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Gilson Murata
- 4Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, CEP: 05508-900, Butanta, São Paulo, Brazil
| | - Laureane Nunes Masi
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Amanda Roque Martins
- 4Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, CEP: 05508-900, Butanta, São Paulo, Brazil
| | - Adriana Cristina Levada-Pires
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Rui Curi
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Sandro Massao Hirabara
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Donald F Sellitti
- 5Department of Medicine, Uniformed Services University of Health Sciences, 4301 Jones Bridge Road, Bethesda, MD USA
| | - Tania Cristina Pithon-Curi
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| | - Renata Gorjão
- 1Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, CEP: 01506 000, Liberdade, São Paulo, Brazil
| |
Collapse
|
46
|
Nakamura K, Sawada K, Kobayashi M, Miyamoto M, Shimizu A, Yamamoto M, Kinose Y, Kimura T. Role of the Exosome in Ovarian Cancer Progression and Its Potential as a Therapeutic Target. Cancers (Basel) 2019; 11:cancers11081147. [PMID: 31405096 PMCID: PMC6721530 DOI: 10.3390/cancers11081147] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/27/2022] Open
Abstract
Peritoneal dissemination is a distinct form of metastasis in ovarian cancer that precedes hematogenic or lymphatic metastasis. Exosomes are extracellular vesicles of 30–150 nm in diameter secreted by different cell types and internalized by target cells. There is emerging evidence that exosomes facilitate the peritoneal dissemination of ovarian cancer by mediating intercellular communication between cancer cells and the tumor microenvironment through the transfer of nucleic acids, proteins, and lipids. Furthermore, therapeutic applications of exosomes as drug cargo delivery are attracting research interest because exosomes are stabilized in circulation. This review highlights the functions of exosomes in each process of the peritoneal dissemination of ovarian cancer and discusses their potential for cancer therapeutics.
Collapse
Affiliation(s)
- Koji Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan.
| | - Masaki Kobayashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Mayuko Miyamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Aasa Shimizu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Misa Yamamoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
| | - Yasuto Kinose
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Biomedical Research Building II/III, 421 Curie Blvd, Philadelphia, PA 19104, USA
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
| |
Collapse
|
47
|
Inhibition of UCH-L1 Deubiquitinating Activity with Two Forms of LDN-57444 Has Anti-Invasive Effects in Metastatic Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20153733. [PMID: 31370144 PMCID: PMC6696221 DOI: 10.3390/ijms20153733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 01/28/2023] Open
Abstract
Normally ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in the central nervous and reproductive systems of adults, but its de novo expression has been detected in many human cancers. There is a growing body of evidence that UCH-L1 de-ubiquitinating (DUB) activity plays a major pro-metastatic role in certain carcinomas. Here we tested anti-metastatic effects of the small-molecule inhibitor of UCH-L1 DUB activity, LDN-57444, in cell lines from advanced oral squamous cell carcinoma (OSCC) as well as invasive nasopharyngeal (NP) cell lines expressing the major pro-metastatic gene product of Epstein–Barr virus (EBV) tumor virus, LMP1. To overcome the limited aqueous solubility of LDN-57444 we developed a nanoparticle formulation of LDN-57444 by incorporation of the compound in polyoxazoline micellear nanoparticles (LDN-POx). LDN-POx nanoparticles were equal in effects as the native compound in vitro. Our results demonstrate that inhibition of UCH-L1 DUB activity with LDN or LDN-POx inhibits secretion of exosomes and reduces levels of the pro-metastatic factor in exosomal fractions. Both forms of UCH-L1 DUB inhibitor suppress motility of metastatic squamous carcinoma cells as well as nasopharyngeal cells expressing EBV pro-metastatic Latent membrane protein 1 (LMP1) in physiological assays. Moreover, treatment with LDN and LDN-POx resulted in reduced levels of pro-metastatic markers, a decrease of carcinoma cell adhesion, as well as inhibition of extra-cellular vesicle (ECV)-mediated transfer of viral invasive factor LMP1. We suggest that soluble inhibitors of UCH-L1 such as LDN-POx offer potential forms of treatment for invasive carcinomas including EBV-positive malignancies.
Collapse
|
48
|
Kenda Suster N, Virant-Klun I. Presence and role of stem cells in ovarian cancer. World J Stem Cells 2019; 11:383-397. [PMID: 31396367 PMCID: PMC6682502 DOI: 10.4252/wjsc.v11.i7.383] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer is the deadliest gynecological malignancy. It is typically diagnosed at advanced stages of the disease, with metastatic sites disseminated widely within the abdominal cavity. Ovarian cancer treatment is challenging due to high disease recurrence and further complicated pursuant to acquired chemoresistance. Cancer stem cell (CSC) theory proposes that both tumor development and progression are driven by undifferentiated stem cells capable of self-renewal and tumor-initiation. The most recent evidence revealed that CSCs in terms of ovarian cancer are not only responsible for primary tumor growth, metastasis and relapse of disease, but also for the development of chemoresistance. As the elimination of this cell population is critical for increasing treatment success, a deeper understanding of ovarian CSCs pathobiology, including epithelial-mesenchymal transition, signaling pathways and tumor microenvironment, is needed. Finally, before introducing new therapeutic agents for ovarian cancer, targeting CSCs, accurate identification of different ovarian stem cell subpopulations, including the very small embryonic-like stem cells suggested as progenitors, is necessary. To these ends, reliable markers of ovarian CSCs should be identified. In this review, we present the current knowledge and a critical discussion concerning ovarian CSCs and their clinical role.
Collapse
Affiliation(s)
- Natasa Kenda Suster
- Department of Gynecology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Irma Virant-Klun
- Department of Human Reproduction, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
49
|
Mavridis K, Michaelidou K. The obesity paradox in lung cancer: is there a missing biological link? J Thorac Dis 2019; 11:S363-S366. [PMID: 30997222 DOI: 10.21037/jtd.2018.12.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Kleita Michaelidou
- Neurology Laboratory, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
50
|
Wu M, Wang G, Hu W, Yao Y, Yu XF. Emerging roles and therapeutic value of exosomes in cancer metastasis. Mol Cancer 2019; 18:53. [PMID: 30925925 PMCID: PMC6441156 DOI: 10.1186/s12943-019-0964-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Exosomes are cell-derived vesicles of 30 to 150 nm that contain diverse proteins, nucleic acids, and lipids. These vesicles facilitate effective intercellular communication and trigger profound environmental changes. In recent years, many studies have identified diverse roles for exosomes in tumor metastasis, a major cause of cancer-related deaths; furthermore, circulating tumor-derived exosomes can drive the initiation and progression of metastasis and determine the specific target organs affected. Fortunately, our growing understanding of exosomes and relevant modification technology have provided new ideas for potential treatment of tumor metastases. Here we review recent advances concerning the role of exosomes in metastasis, focusing on their regulatory mechanisms and therapeutic targeting in advanced cancer.
Collapse
Affiliation(s)
- Miaowei Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Guosheng Wang
- Inst Translat Med, School of Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, People's Republic of China
| | - Weilei Hu
- Inst Translat Med, School of Medicine, Zhejiang University, Hangzhou, 310029, Zhejiang, People's Republic of China
| | - Yihan Yao
- Department Surg Oncol, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Xiao-Fang Yu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
| |
Collapse
|