1
|
Shiers S, Sahn JJ, Price TJ. MNK1 and MNK2 Expression in the Human Dorsal Root and Trigeminal Ganglion. Neuroscience 2023; 515:96-107. [PMID: 36764601 DOI: 10.1016/j.neuroscience.2023.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023]
Abstract
Mitogen activated protein kinase interacting kinases (MNK) 1 and 2 are serine/threonine protein kinases that play an important role in translation of mRNAs through their phosphorylation of the RNA 5'-cap binding protein, eukaryotic translation initiation factor (eIF) 4E. These kinases are downstream targets for mitogen activated protein kinases (MAPKs), extracellular activity regulated protein kinase (ERK) and p38. MNKs have been implicated in the sensitization of peripheral nociceptors of the dorsal root and trigeminal ganglion (DRG and TG) using transgenic mouse lines and through the use of specific inhibitors of MNK1 and MNK2. While specific knockout of the Mknk1 gene suggests that it is the key isoform for regulation of nociceptor excitability and nociceptive behaviors in mice, both MKNK1 and MKNK2 genes are expressed in the DRG and TG of mice and humans based on RNA sequencing experiments. Single cell sequencing in mice suggests that Mknk1 and Mknk2 may be expressed in different populations of nociceptors. We sought to characterize mRNA expression in human DRG and TG (N = 3 ganglia for both DRG and TG) for both MNK1 and MNK2. Our results show that both genes are expressed by nearly all neurons in both human ganglia with expression in other cell types as well. Our findings provide evidence that MNK1 and MNK2 are expressed by human nociceptors of males and females and suggest that efforts to pharmacologically target MNKs for pain would likely be translatable due its conserved expression in both species.
Collapse
Affiliation(s)
- Stephanie Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | | | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
2
|
Modeling Autism Spectrum Disorders with Induced Pluripotent Stem Cell-Derived Brain Organoids. Biomolecules 2023; 13:biom13020260. [PMID: 36830629 PMCID: PMC9953447 DOI: 10.3390/biom13020260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Autism spectrum disorders (ASD) are a group of complex neurodevelopmental disorders that affect communication and social interactions and present with restricted interests and repetitive behavior patterns. The susceptibility to ASD is strongly influenced by genetic/heritable factors; however, there is still a large gap in understanding the cellular and molecular mechanisms underlying the neurobiology of ASD. Significant progress has been made in identifying ASD risk genes and the possible convergent pathways regulated by these gene networks during development. The breakthrough of cellular reprogramming technology has allowed the generation of induced pluripotent stem cells (iPSCs) from individuals with syndromic and idiopathic ASD, providing patient-specific cell models for mechanistic studies. In the past decade, protocols for developing brain organoids from these cells have been established, leading to significant advances in the in vitro reproducibility of the early steps of human brain development. Here, we reviewed the most relevant literature regarding the application of brain organoids to the study of ASD, providing the current state of the art, and discussing the impact of such models on the field, limitations, and opportunities for future development.
Collapse
|
3
|
Recent Developments in Autism Genetic Research: A Scientometric Review from 2018 to 2022. Genes (Basel) 2022; 13:genes13091646. [PMID: 36140813 PMCID: PMC9498399 DOI: 10.3390/genes13091646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic research in Autism Spectrum Disorder (ASD) has progressed tremendously in recent decades. Dozens of genetic loci and hundreds of alterations in the genetic sequence, expression, epigenetic transformation, and interactions with other physiological and environmental systems have been found to increase the likelihood of developing ASD. There is therefore a need to represent this wide-ranging yet voluminous body of literature in a systematic manner so that this information can be synthesised and understood at a macro level. Therefore, this study made use of scientometric methods, particularly document co-citation analysis (DCA), to systematically review literature on ASD genetic research from 2018 to 2022. A total of 14,818 articles were extracted from Scopus and analyzed with CiteSpace. An optimized DCA analysis revealed that recent literature on ASD genetic research can be broadly organised into 12 major clusters representing various sub-topics. These clusters are briefly described in the manuscript and potential applications of this study are discussed.
Collapse
|
4
|
Brandão-Teles C, Zuccoli GS, Smith BJ, Vieira GM, Crunfli F. Modeling Schizophrenia In Vitro: Challenges and Insights on Studying Brain Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1400:35-51. [DOI: 10.1007/978-3-030-97182-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
St Clair D, Lang B. Schizophrenia: a classic battle ground of nature versus nurture debate. Sci Bull (Beijing) 2021; 66:1037-1046. [PMID: 36654248 DOI: 10.1016/j.scib.2021.01.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 10/13/2020] [Indexed: 01/20/2023]
Abstract
Much has been learned about the etiology and pathogenesis of schizophrenia since the term was first used by Eugene Bleuler over a century ago to describe one of the most important forms of major mental illness to affect mankind. Both nature and nurture feature prominently in our understanding of the genesis of the overall risk of developing schizophrenia. We now have a firm grasp of the broad structure of the genetic architecture and several key environmental risk factors have been identified and delineated. However, much of the heritability of schizophrenia remains unexplained and the reported environmental risk factors do not explain all the variances not attributable to genetic risk factors. The biggest problem at present is that our understanding of the causal mechanisms involved is still in its infancy. In this review, we describe the extent and limits of our knowledge of the specific genetic/constitutional and non-genetic/environmental factors that contribute to the overall risk of schizophrenia. We suggest novel methods may be required to understand the almost certainly immensely complex multi-level causal mechanisms that contribute to the generation of the schizophrenia phenotype.
Collapse
Affiliation(s)
- David St Clair
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, National Clinical Research Center for Mental Disorders, Changsha 410011, China; Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK; Bio-X Life Science Research Center, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Bing Lang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, National Clinical Research Center for Mental Disorders, Changsha 410011, China; Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
6
|
Larijani B, Parhizkar Roudsari P, Hadavandkhani M, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Sayahpour FA, Mohamadi-Jahani F, Arjmand B. Stem cell-based models and therapies: a key approach into schizophrenia treatment. Cell Tissue Bank 2021; 22:207-223. [PMID: 33387152 DOI: 10.1007/s10561-020-09888-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
Psychiatric disorders such as schizophrenia can generate distress and disability along with heavy costs on individuals and health care systems. Different genetic and environmental factors play a pivotal role in the appearance of the mentioned disorders. Since the conventional treatment options for psychiatric disorders are suboptimal, investigators are trying to find novel strategies. Herein, stem cell therapies have been recommended as novel choices. In this context, the preclinical examination of stem cell-based therapies specifically using appropriate models can facilitate passing strong filters and serious examination to ensure proper quality and safety of them as a novel treatment approach. Animal models cannot be adequately helpful to follow pathophysiological features. Nowadays, stem cell-based models, particularly induced pluripotent stem cells reflected as suitable alternative models in this field. Accordingly, the importance of stem cell-based models, especially to experiment with the regenerative medicine outcomes for schizophrenia as one of the severe typing of psychiatric disorders, is addressed here.
Collapse
Affiliation(s)
- Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Mohamadi-Jahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Stock R, Jeckel P, Kraushaar U, Wüst R, Fallgatter A, Volkmer H. The potential of induced pluripotent stem cells for discriminating neurodevelopmental disorders. Stem Cells Transl Med 2020; 10:50-56. [PMID: 32864861 PMCID: PMC7780807 DOI: 10.1002/sctm.20-0206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Studying human disease‐specific processes and mechanisms in vitro is limited by a lack of valid human test systems. Induced pluripotent stem cells (iPSCs) evolve as an important and promising tool to better understand the molecular pathology of neurodevelopmental disorders. Patient‐derived iPSCs enable analysis of unique disease mechanisms and may also serve for preclinical drug development. Here, we review the current knowledge on iPSC models for schizophrenia and autism spectrum disorders with emphasis on the discrimination between them. It appears that transcriptomic analyses and functional read‐outs are the most promising approaches to uncover specific disease mechanisms in vitro.
Collapse
Affiliation(s)
- Ricarda Stock
- Department of Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Pauline Jeckel
- Department of Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Udo Kraushaar
- Department of Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Richard Wüst
- Department of Psychiatry, University of Tübingen, Tübingen, Germany
| | | | - Hansjürgen Volkmer
- Department of Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
8
|
Crowe JA, El-Tamer A, Nagel D, Koroleva AV, Madrid-Wolff J, Olarte OE, Sokolovsky S, Estevez-Priego E, Ludl AA, Soriano J, Loza-Alvarez P, Chichkov BN, Hill EJ, Parri HR, Rafailov EU. Development of two-photon polymerised scaffolds for optical interrogation and neurite guidance of human iPSC-derived cortical neuronal networks. LAB ON A CHIP 2020; 20:1792-1806. [PMID: 32314760 DOI: 10.1039/c9lc01209e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent progress in the field of human induced pluripotent stem cells (iPSCs) has led to the efficient production of human neuronal cell models for in vitro study. This has the potential to enable the understanding of live human cellular and network function which is otherwise not possible. However, a major challenge is the generation of reproducible neural networks together with the ability to interrogate and record at the single cell level. A promising aid is the use of biomaterial scaffolds that would enable the development and guidance of neuronal networks in physiologically relevant architectures and dimensionality. The optimal scaffold material would need to be precisely fabricated with submicron resolution, be optically transparent, and biocompatible. Two-photon polymerisation (2PP) enables precise microfabrication of three-dimensional structures. In this study, we report the identification of two biomaterials that support the growth and differentiation of human iPSC-derived neural progenitors into functional neuronal networks. Furthermore, these materials can be patterned to induce alignment of neuronal processes and enable the optical interrogation of individual cells. 2PP scaffolds with tailored topographies therefore provide an effective method of producing defined in vitro human neural networks for application in influencing neurite guidance and complex network activity.
Collapse
Affiliation(s)
- J A Crowe
- School of Life and Health Sciences, Aston University, B4 7ET Birmingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sultana R, Shrestha A, Lee CC, Ogundele OM. Disc1 Carrier Mice Exhibit Alterations in Neural pIGF-1Rβ and Related Kinase Expression. Front Cell Neurosci 2020; 14:94. [PMID: 32431597 PMCID: PMC7214624 DOI: 10.3389/fncel.2020.00094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
Mutation of the disc1 gene underlies a broad range of developmental neuropsychiatric defects, including schizophrenia, depression, and bipolar disorder. The pathophysiological phenotypes linked with disc1 mutation are due to the truncation of the DISC1 primary protein structure. This leads to a defective post-synaptic scaffolding and kinase—GSK3β and Erk1/2—signaling. As a result, synaptic function and maintenance are significantly impaired in the disc1 mutant brain. Among several other pathways, GSK3β and Erk1/2 are involved in insulin-like growth factor 1 receptor (IGF-1Rβ) kinase signaling. Although disc1 mutation alters these kinases, it is unclear if the mutation impacts IGF-1R expression and activity in the brain. Here, we demonstrate that the expression of active IGF-1Rβ (pIGF-1Rβ) is altered in the hippocampus and prefrontal cortex (PFC) of disc1 mutant mice and vary with the dose of the mutation (homozygous and heterozygous). The expression of pIGF-1Rβ decreased significantly in 129S (hom, disc1−/−) brains. In contrast, 129S:B6 (het, disc1+/−) brains were characterized by an increase in pIGF-1Rβ when compared with the C57BL/6 (disc1+/+) level. The decrease in pIGF-1Rβ level for the 129S brains was accompanied by the loss of Akt activity (S473 pAkt) and decreased Ser9 phosphorylation of GSK3β (increased basal GSK3β). Additionally, hippocampal and cortical pErk1/2 activity increased in the 129S hippocampus and cortex. Although 129S:B6 recorded alterations in pIGF-1Rβ-pAkt-GSK3β (like 129S), there was no observable change in pErk1/2 activity for the heterozygote (disc1+/−) mutant. In addition to GSK3β inhibition, we conclude that pIGF-1R, pAkt, and pErk1/2 are potential targets in disc1−/− mutant brain. On the other hand, pIGF-1R and pAkt can be further explored in disc1+/− brain.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Amita Shrestha
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Charles C Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
10
|
Koszła O, Targowska-Duda KM, Kędzierska E, Kaczor AA. In Vitro and In Vivo Models for the Investigation of Potential Drugs Against Schizophrenia. Biomolecules 2020; 10:biom10010160. [PMID: 31963851 PMCID: PMC7022578 DOI: 10.3390/biom10010160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SZ) is a complex psychiatric disorder characterized by positive, negative, and cognitive symptoms, and is not satisfactorily treated by current antipsychotics. Progress in understanding the basic pathomechanism of the disease has been hampered by the lack of appropriate models. In order to develop modern drugs against SZ, efficient methods to study them in in vitro and in vivo models of this disease are required. In this review a short presentation of current hypotheses and concepts of SZ is followed by a description of current progress in the field of SZ experimental models. A critical discussion of advantages and limitations of in vitro models and pharmacological, genetic, and neurodevelopmental in vivo models for positive, negative, and cognitive symptoms of the disease is provided. In particular, this review concerns the important issue of how cellular and animal systems can help to meet the challenges of modeling the disease, which fully manifests only in humans, as experimental studies of SZ in humans are limited. Next, it is emphasized that novel clinical candidates should be evaluated in animal models for treatment-resistant SZ. In conclusion, the plurality of available in vitro and in vivo models is a consequence of the complex nature of SZ, and there are extensive possibilities for their integration. Future development of more efficient antipsychotics reflecting the pleiotropy of symptoms in SZ requires the incorporation of various models into one uniting model of the multifactorial disorder and use of this model for the evaluation of new drugs.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
| | - Katarzyna M. Targowska-Duda
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
- Correspondence:
| |
Collapse
|
11
|
Essayan-Perez S, Zhou B, Nabet AM, Wernig M, Huang YWA. Modeling Alzheimer's disease with human iPS cells: advancements, lessons, and applications. Neurobiol Dis 2019; 130:104503. [PMID: 31202913 PMCID: PMC6689423 DOI: 10.1016/j.nbd.2019.104503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/24/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
One in three people will develop Alzheimer's disease (AD) or another dementia and, despite intense research efforts, treatment options remain inadequate. Understanding the mechanisms of AD pathogenesis remains our principal hurdle to developing effective therapeutics to tackle this looming medical crisis. In light of recent discoveries from whole-genome sequencing and technical advances in humanized models, studying disease risk genes with induced human neural cells presents unprecedented advantages. Here, we first review the current knowledge of the proposed mechanisms underlying AD and focus on modern genetic insights to inform future studies. To highlight the utility of human pluripotent stem cell-based innovations, we then present an update on efforts in recapitulating the pathophysiology by induced neuronal, non-neuronal and a collection of brain cell types, departing from the neuron-centric convention. Lastly, we examine the translational potentials of such approaches, and provide our perspectives on the promise they offer to deepen our understanding of AD pathogenesis and to accelerate the development of intervention strategies for patients and risk carriers.
Collapse
Affiliation(s)
- Sofia Essayan-Perez
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Bo Zhou
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America; Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Amber M Nabet
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University Medical School, Stanford, CA 94305, United States of America
| | - Yu-Wen Alvin Huang
- Department of Molecular and Cellular Physiology, Stanford University Medical School, Stanford, CA 94305, United States of America.
| |
Collapse
|
12
|
Milton AL, Holmes EA. Of mice and mental health: facilitating dialogue and seeing further. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0022. [PMID: 29352022 DOI: 10.1098/rstb.2017.0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Abstract
The science of mental life is critical for understanding both how we function, and impairments in our functioning. However, understanding the causal mechanisms underlying mental health disorders and developing new treatments are challenges too great to be solved by any individual approach. There is a growing awareness that translational research-from laboratory to patient and back again to animal models-will be critical for the improved understanding and treatment of mental health disorders. The motivation and intention to pursue translational approaches is therefore strong in mental health research, but critically, opportunities for interaction between basic scientists and clinicians are relatively limited, and vary depending on the institution in which researchers are working. This has promoted the development of a 'culture gap' between basic and clinical scientists that limits interaction and sharing of knowledge. Here, we provide 14 examples of contemporary translational research and call for an increased collaborative approach to mental health research that spans clinical diagnoses, levels of analysis and bridges between basic to clinical mental health sciences, including, but not limited to, psychology and neuroscience. What is needed is an inclusive and integrated approach, bringing together scientists working at all levels of enquiry with clinicians providing insights on what works (and what does not). To stimulate the much-needed innovation in therapeutic techniques, an analysis of component parts is critical. Our approach suggests simplifying complex behaviours into distinct psychological components. Asking collaboratively driven scientific questions about dysfunction will also benefit our fundamental understanding of mental life.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge CB2 3EB, UK
| | - Emily A Holmes
- Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
13
|
Gozes I. ADNP Regulates Cognition: A Multitasking Protein. Front Neurosci 2018; 12:873. [PMID: 30534048 PMCID: PMC6275198 DOI: 10.3389/fnins.2018.00873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Illana Gozes
- Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
14
|
Amorim IS, Lach G, Gkogkas CG. The Role of the Eukaryotic Translation Initiation Factor 4E (eIF4E) in Neuropsychiatric Disorders. Front Genet 2018; 9:561. [PMID: 30532767 PMCID: PMC6265315 DOI: 10.3389/fgene.2018.00561] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/06/2018] [Indexed: 12/24/2022] Open
Abstract
Protein synthesis in eukaryotic cells is a complex, multi-step and tightly regulated process. Translation initiation, the rate limiting step in protein synthesis, is dependent on the activity of eukaryotic translation Initiation Factor 4E (eIF4E). eIF4E is the cap-binding protein which, in synergy with proteins such as the helicase eIF4A and the scaffolding protein eIF4G, binds to mRNA, allowing the recruitment of ribosomes and translation initiation. The function of eIF4E is tightly regulated in cells under normal physiological conditions and can be controlled by post-translational modifications, such as phosphorylation, and by the binding of inhibitory proteins, including eIF4E binding proteins (4E-BPs) and CYFIP1. Recent studies have highlighted the importance of eIF4E in normal or aberrant function of the nervous system. In this mini-review, we will highlight the role of eIF4E function and regulation in the pathophysiology of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Inês S Amorim
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gilliard Lach
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Christos G Gkogkas
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom.,The Patrick Wild Centre, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
15
|
Wolozin B. Disrupted in Dementia. Biol Psychiatry 2018; 84:474-475. [PMID: 30176990 DOI: 10.1016/j.biopsych.2018.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Neurology and Program in Neuroscience, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
16
|
Howe DG, Blake JA, Bradford YM, Bult CJ, Calvi BR, Engel SR, Kadin JA, Kaufman TC, Kishore R, Laulederkind SJF, Lewis SE, Moxon SAT, Richardson JE, Smith C. Model organism data evolving in support of translational medicine. Lab Anim (NY) 2018; 47:277-289. [PMID: 30224793 PMCID: PMC6322546 DOI: 10.1038/s41684-018-0150-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Model organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases. Thus, the mandate for model organism research and databases has now grown to include facilitating use of these data in translational applications. Challenges in meeting this opportunity include the distribution of research data across many databases and websites, a lack of data format standards for some data types, and sustainability of scale and cost for genomic database resources like MODs. The issues of widely distributed data and application of data standards are some of the challenges addressed by FAIR (Findable, Accessible, Interoperable, and Re-usable) data principles. The Alliance of Genome Resources is now moving to address these challenges by bringing together expertly curated research data from fly, mouse, rat, worm, yeast, zebrafish, and the Gene Ontology consortium. Centralized multi-species data access, integration, and format standardization will lower the data utilization barrier in comparative genomics and translational applications and will provide a framework in which sustainable scale and cost can be addressed. This article presents a brief historical perspective on how the Alliance model organisms are complementary and how they have already contributed to understanding the etiology of human diseases. In addition, we discuss four challenges for using data from MODs in translational applications and how the Alliance is working to address them, in part by applying FAIR data principles. Ultimately, combined data from these animal models are more powerful than the sum of the parts.
Collapse
Affiliation(s)
- Douglas G Howe
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| | | | - Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Stacia R Engel
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | | | | | - Ranjana Kishore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stanley J F Laulederkind
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA
| | - Suzanna E Lewis
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sierra A T Moxon
- The Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | | |
Collapse
|