1
|
Fournier L, Guarnera E, Kolmar H, Becker S. Allosteric antibodies: a novel paradigm in drug discovery. Trends Pharmacol Sci 2024:S0165-6147(24)00218-9. [PMID: 39562213 DOI: 10.1016/j.tips.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024]
Abstract
Allostery represents a fundamental mechanism in protein regulation, enabling modulation of protein function from sites distal to the active site. While traditionally explored in the context of small molecules, allosteric modulation is gaining traction as a main mode of action in the realm of antibodies, which offer enhanced specificity and reduced toxicity. This review delves into the rapidly growing field of allosteric antibodies, highlighting recent therapeutic advancements and novel druggability avenues. We also explore the potential of these antibodies as innovative tools in drug discovery and discuss contemporary strategies for designing novel allosteric antibodies, leveraging state-of-the-art computational approaches.
Collapse
Affiliation(s)
- Léxane Fournier
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Darmstadt, Germany; Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Enrico Guarnera
- Antibody Discovery and Protein Engineering, Merck Healthcare KGaA, Darmstadt, Germany.
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Stefan Becker
- Early Protein Supply and Characterization, Merck Healthcare KGaA, Darmstadt, Germany.
| |
Collapse
|
2
|
Braunscheidel KM, Voren G, Fowler CD, Lu Q, Kuryatov A, Cameron MD, Ibañez-Tallon I, Lindstrom JM, Kamenecka TM, Kenny PJ. SR9883 is a novel small-molecule enhancer of α4β2* nicotinic acetylcholine receptor signaling that decreases intravenous nicotine self-administration in rats. Front Mol Neurosci 2024; 17:1459098. [PMID: 39346680 PMCID: PMC11428108 DOI: 10.3389/fnmol.2024.1459098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024] Open
Abstract
Background Most smokers attempting to quit will quickly relapse to tobacco use even when treated with the most efficacious smoking cessation agents currently available. This highlights the need to develop effective new smoking cessation medications. Evidence suggests that positive allosteric modulators (PAM) and other enhancers of nicotinic acetylcholine receptor (nAChR) signaling could have therapeutic utility as smoking cessation agents. Methods 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283) was used as a starting point for medical chemistry efforts to develop novel small molecule enhancers of α4β2* nAChR stoichiometries containing a low-affinity agonist binding site at the interface of α4/α4 and α4/α5 subunits. Results The NS9283 derivative SR9883 enhanced the effect of nicotine on α4β2* nAChR stoichiometries containing low-affinity agonist binding sites, with EC50 values from 0.2-0.4 μM. SR9883 had no effect on α3β2* or α3β4* nAChRs. SR9883 was bioavailable after intravenous (1 mg kg-1) and oral (10-20 mg kg-1) administration and penetrated into the brain. When administered alone, SR9883 (5-10 mg kg-1) had no effect on locomotor activity or intracranial self-stimulation (ICSS) thresholds in mice. When co-administered with nicotine, SR9883 enhanced locomotor suppression and elevations of ICSS thresholds induced by nicotine. SR9883 (5 and 10 mg kg-1) decreased responding for intravenous nicotine infusions (0.03 mg kg-1 per infusion) but had no effect on responding for food rewards in rats. Conclusions These data suggest that SR9883 is useful for investigating behavioral processes regulated by certain α4β2* nAChR stoichiometries. SR9883 and related compounds with favorable drug-like physiochemical and pharmacological properties hold promise as novel treatments of tobacco use disorder.
Collapse
Affiliation(s)
- Kevin M. Braunscheidel
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George Voren
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christie D. Fowler
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Qun Lu
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Alexander Kuryatov
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Michael D. Cameron
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Ines Ibañez-Tallon
- The Laboratory of Molecular Biology, The Rockefeller University, New York, NY, United States
| | - Jon M. Lindstrom
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Theodore M. Kamenecka
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, United States
| | - Paul J. Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Takebayashi M, Mori S, Ito R, Takayama K, Ojima H, Takeuchi M, Takahashi H, Yamamoto N, Egawa R, Kimura Y, Ihara M, Sasaki K, Sattelle DB, Matsuda K. Impact of a worker bee thoracic ganglion RIC-3 variant on the actions of acetylcholine and neonicotinoids on nicotinic receptors in Apis mellifera. PEST MANAGEMENT SCIENCE 2024. [PMID: 39167025 DOI: 10.1002/ps.8371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
A transmembrane thioredoxin (TMX3) enables the functional expression of insect nicotinic acetylcholine receptors (nAChRs) in Xenopus laevis oocytes, while co-factors RIC-3 and UNC-50 regulate the receptor expression level. RIC-3 (resistant to inhibitors of cholinesterase 3) has been shown to diversify by its differential mRNA splicing patterns. How such diversity influences neonicotinoid sensitivity of nAChRs of beneficial insect species remains poorly understood. We have identified a RIC-3 variant expressed most abundantly in the thoracic ganglia of honeybee (Apis mellifera) workers and investigated its effects on the functional expression and pharmacology of Amα1/Amα8/Amβ1 and Amα1/Amα2/Amα8/Amβ1 nAChRs expressed in X. laevis oocytes. The AmRIC-3 enhanced the response amplitude to the acetylcholine (ACh) of these A. mellifera nAChRs when its cRNA was injected into oocytes at low concentrations but suppressed the ACh response amplitude at high concentrations. Co-expression of the AmRIC-3 had a minimal impact on the affinity of ACh, but changed the efficacy of imidacloprid and clothianidin, suggesting that the presence and the level of RIC-3 expression can affect the nAChR responses to ACh and neonicotinoids, depending on nAChR subunit composition in honeybees. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mayuka Takebayashi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Sumito Mori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Ryo Ito
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Hisanori Ojima
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Miyu Takeuchi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Hiyori Takahashi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Niina Yamamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Runa Egawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuki Kimura
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Ken Sasaki
- Graduate School of Agriculture, Tamagawa University, Tokyo, Japan
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
| |
Collapse
|
4
|
Gallino SL, Agüero L, Boffi JC, Schottlender G, Buonfiglio P, Dalamon V, Marcovich I, Carpaneto A, Craig PO, Plazas PV, Elgoyhen AB. Key role of the TM2-TM3 loop in calcium potentiation of the α9α10 nicotinic acetylcholine receptor. Cell Mol Life Sci 2024; 81:337. [PMID: 39120784 PMCID: PMC11335262 DOI: 10.1007/s00018-024-05381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The α9α10 nicotinic cholinergic receptor (nAChR) is a ligand-gated pentameric cation-permeable ion channel that mediates synaptic transmission between descending efferent neurons and mechanosensory inner ear hair cells. When expressed in heterologous systems, α9 and α10 subunits can assemble into functional homomeric α9 and heteromeric α9α10 receptors. One of the differential properties between these nAChRs is the modulation of their ACh-evoked responses by extracellular calcium (Ca2+). While α9 nAChRs responses are blocked by Ca2+, ACh-evoked currents through α9α10 nAChRs are potentiated by Ca2+ in the micromolar range and blocked at millimolar concentrations. Using chimeric and mutant subunits, together with electrophysiological recordings under two-electrode voltage-clamp, we show that the TM2-TM3 loop of the rat α10 subunit contains key structural determinants responsible for the potentiation of the α9α10 nAChR by extracellular Ca2+. Moreover, molecular dynamics simulations reveal that the TM2-TM3 loop of α10 does not contribute to the Ca2+ potentiation phenotype through the formation of novel Ca2+ binding sites not present in the α9 receptor. These results suggest that the TM2-TM3 loop of α10 might act as a control element that facilitates the intramolecular rearrangements that follow ACh-evoked α9α10 nAChRs gating in response to local and transient changes of extracellular Ca2+ concentration. This finding might pave the way for the future rational design of drugs that target α9α10 nAChRs as otoprotectants.
Collapse
Affiliation(s)
- Sofia L Gallino
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lucía Agüero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Juan C Boffi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Italy
| | - Gustavo Schottlender
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula Buonfiglio
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Viviana Dalamon
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Irina Marcovich
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Regeneron Pharmaceuticals, Inc. Tarrytown, 10591, NY, USA
| | - Agustín Carpaneto
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricio O Craig
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Paola V Plazas
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Ana B Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ''Dr. Héctor N. Torres'' (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Cecchini M, Corringer PJ, Changeux JP. The Nicotinic Acetylcholine Receptor and Its Pentameric Homologs: Toward an Allosteric Mechanism of Signal Transduction at the Atomic Level. Annu Rev Biochem 2024; 93:339-366. [PMID: 38346274 DOI: 10.1146/annurev-biochem-030122-033116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The nicotinic acetylcholine receptor has served, since its biochemical identification in the 1970s, as a model of an allosteric ligand-gated ion channel mediating signal transition at the synapse. In recent years, the application of X-ray crystallography and high-resolution cryo-electron microscopy, together with molecular dynamic simulations of nicotinic receptors and homologs, have opened a new era in the understanding of channel gating by the neurotransmitter. They reveal, at atomic resolution, the diversity and flexibility of the multiple ligand-binding sites, including recently discovered allosteric modulatory sites distinct from the neurotransmitter orthosteric site, and the conformational dynamics of the activation process as a molecular switch linking these multiple sites. The model emerging from these studies paves the way for a new pharmacology based, first, upon the occurrence of an original mode of indirect allosteric modulation, distinct from a steric competition for a single and rigid binding site, and second, the design of drugs that specifically interact with privileged conformations of the receptor such as agonists, antagonists, and desensitizers. Research on nicotinic receptors is still at the forefront of understanding the mode of action of drugs on the nervous system.
Collapse
Affiliation(s)
- Marco Cecchini
- Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, Strasbourg, France
| | - Pierre-Jean Corringer
- Channel Receptors Unit, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Paris, France
| | - Jean-Pierre Changeux
- Department of Neuroscience, Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Paris, France;
| |
Collapse
|
6
|
Brockmöller S, Worek F, Rothmiller S. Protein networking: nicotinic acetylcholine receptors and their protein-protein-associations. Mol Cell Biochem 2024; 479:1627-1642. [PMID: 38771378 DOI: 10.1007/s11010-024-05032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024]
Abstract
Nicotinic acetylcholine receptors (nAChR) are complex transmembrane proteins involved in neurotransmission in the nervous system and at the neuromuscular junction. nAChR disorders may lead to severe, potentially fatal pathophysiological states. To date, the receptor has been the focus of basic and applied research to provide novel therapeutic interventions. Since most studies have investigated only the nAChR itself, it is necessary to consider the receptor as part of its protein network to understand or elucidate-specific pathways. On its way through the secretory pathway, the receptor interacts with several chaperones and proteins. This review takes a closer look at these molecular interactions and focuses especially on endoplasmic reticulum biogenesis, secretory pathway sorting, Golgi maturation, plasma membrane presentation, retrograde internalization, and recycling. Additional knowledge regarding the nAChR protein network may lead to a more detailed comprehension of the fundamental pathomechanisms of diseases or may lead to the discovery of novel therapeutic drug targets.
Collapse
Affiliation(s)
- Sabrina Brockmöller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany.
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Bavaria, Germany
| |
Collapse
|
7
|
Obaid Saleh BH, Salman MD, Salman AD, Alardhi SM, Mohammed MM, Gyurika IG, Le PC, Ali OI. In silico analysis of the use of solanine derivatives as a treatment for Alzheimer's disease. Heliyon 2024; 10:e32209. [PMID: 38912489 PMCID: PMC11190594 DOI: 10.1016/j.heliyon.2024.e32209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is a brain illness that causes cognitive impairment in the elderly, especially females, as a result of genetics, hormones, and life experiences. It becomes more severe with age and is associated with cardiovascular disease, hypertension, and diabetes. Beta-amyloid plaques and hyper phosphorylated Tau protein buildup are common clinical findings. Misfiling of amyloid precursor protein (APP) and Amyloid beta peptide (Aβ) proteins contributes to Alzheimer's disease. Enzyme Acetylcholinesterase enzyme interacts with amyloid-beta, enhancing its accumulation in insoluble plaques, leading to successful treatment for Alzheimer's disease primarily based on lowering this enzyme. Treatments include using the Rivastigmine for mild, moderate, or severe Alzheimer's disease, which inhibits acetylcholinesterase, but may cause side effects; Solanine derivatives, nightshade toxin, it is cholinesterase inhibitory, may mitigate Alzheimer's illness is progressing. In this research utilized a molecular docking program, which is a computer's computational ability to determine the optimal position for a specific compound to bind to a protein or target, forming a target-ligand complex and displaying biological activity and aiding in the development of effective anti-AD treatments and understanding AD pathological mechanisms. The study examined complexes of 3LII (Acetylcholinesterase receptor) in the A and B chain with Solanine and Rivastigmine derivatives, using an in-silico approach. PyRx default sorter was used to improve docking accuracy. Four compounds were selected based on their higher binding affinities in chain A and B. The results showed that Solanine derivatives (alpha-Solanine, Beta1-Solanine and Beta2-Solanine) have higher binding strength (-9.0,-9.3 and -8.6) than Rivastigmine (-7.2) in chain A, and also the binding strength was high for the Solanine derivatives (alpha-Solanine, Beta1-Solanine, and Beta2-Solanine) (-9.0,-8.8 and -8.9) is higher than Rivastigmine (-6.0) in the chain B. Solanine derivatives showed higher binding strength with acetylcholinesterase, potentially for to reduce the progression of the disease.
Collapse
Affiliation(s)
| | - Manar Dawood Salman
- Iraqi Ministry of Science and Technology/ Environment and Water Directorate, Iraq
| | - Ali Dawood Salman
- Chemical Engineering Department, College of Engineering, University of Baghdad, Baghdad, Iraq
| | - Saja Mohsen Alardhi
- Nanotechnology and Advanced Material Research Center, University of Technology, Iraq
| | - Malik M. Mohammed
- Al Mustaqbal University Engineering Techniques of Fuel and Energy Department, Iraq
| | - István Gábor Gyurika
- Department of Mechanics, Research Centre for Engineering Sciences, University of Pannonia, H-8210, Veszprém, P.O. Box 1158, Hungary
| | - Phuoc-Cuong Le
- The University of Danang-University of Science and Technology, Danang, 550000, Viet Nam
| | - Osamah Ihsan Ali
- Department of Materials Engineering, Research Centre for Engineering Sciences, University of Pannonia, H-8210, Veszprém, P.O. Box 1158, Hungary
| |
Collapse
|
8
|
Nemecz D, Nowak WA, Nemecz Á. VHH Nanobody Versatility against Pentameric Ligand-Gated Ion Channels. J Med Chem 2024; 67:8502-8518. [PMID: 38829690 PMCID: PMC11181324 DOI: 10.1021/acs.jmedchem.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
Pentameric ligand-gated ion channels provide rapid chemical-electrical signal transmission between cells in the central and peripheral nervous system. Their dysfunction is associated with many nervous system disorders. They are composed of five identical (homomeric receptors) or homologous (heteromeric receptors) subunits. VHH nanobodies, or single-chain antibodies, are the variable domain, VHH, of antibodies that are composed of the heavy chain only from camelids. Their unique structure results in many specific biochemical and biophysical properties that make them an excellent alternative to conventional antibodies. This Perspective explores the published VHH nanobodies which have been isolated against pentameric ligand-gated ion channel subfamilies. It outlines the genetic and chemical modifications available to alter nanobody function. An assessment of the available functional and structural data indicate that it is feasible to create therapeutic agents and impart, through their modification, a given desired modulatory effect of its target receptor for current stoichiometric-specific VHH nanobodies.
Collapse
Affiliation(s)
- Dorota Nemecz
- Biochemistry
Department, Nicolaus Copernicus University
in Torun, 87-100 Torun, Poland
| | - Weronika A. Nowak
- Biochemistry
Department, Nicolaus Copernicus University
in Torun, 87-100 Torun, Poland
| | - Ákos Nemecz
- Biochemistry
Department, Nicolaus Copernicus University
in Torun, 87-100 Torun, Poland
| |
Collapse
|
9
|
Bourne Y, Sulzenbacher G, Chabaud L, Aráoz R, Radić Z, Conrod S, Taylor P, Guillou C, Molgó J, Marchot P. The Cyclic Imine Core Common to the Marine Macrocyclic Toxins Is Sufficient to Dictate Nicotinic Acetylcholine Receptor Antagonism. Mar Drugs 2024; 22:149. [PMID: 38667766 PMCID: PMC11050823 DOI: 10.3390/md22040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity. From these data, small spiroimine enantiomers mimicking the functional core motif of phycotoxins were chemically synthesized and characterized. Voltage-clamp analyses involving three nAChR subtypes revealed preserved antagonism for both enantiomers, despite lower subtype specificity and binding affinities associated with faster reversibility compared with their macrocyclic relatives. Binding and structural analyses involving two AChBPs pointed to modest affinities and positional variability of the spiroimines, along with a range of AChBP loop-C conformations denoting a prevalence of antagonistic properties. These data highlight the major contribution of the spiroimine core to binding within the nAChR nest and confirm the need for an extended interaction network as established by the macrocyclic toxins to define high affinities and marked subtype specificity. This study identifies a minimal set of functional pharmacophores and binding determinants as templates for designing new antagonists targeting disease-associated nAChR subtypes.
Collapse
Affiliation(s)
- Yves Bourne
- Lab “Architecture et Fonction des Macromolécules Biologiques” (AFMB), Aix-Marseille Univ, CNRS, Faculté des Sciences Campus Luminy, 13288 Marseille cedex 09, France; (Y.B.); (G.S.)
| | - Gerlind Sulzenbacher
- Lab “Architecture et Fonction des Macromolécules Biologiques” (AFMB), Aix-Marseille Univ, CNRS, Faculté des Sciences Campus Luminy, 13288 Marseille cedex 09, France; (Y.B.); (G.S.)
| | - Laurent Chabaud
- Institut de Chimie des Substances Naturelles (ICSN), Univ Paris-Saclay, CNRS, 91198 Gif-sur-Yvette, France; (L.C.); (C.G.)
| | - Rómulo Aráoz
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS) EMR CNRS 9004, Département Médicaments et Technologies pour la Santé, Institut des Sciences du Vivant Frédéric Joliot, CEA, INRAE, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.A.); (J.M.)
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences (SSPPS), University of California San Diego, La Jolla, CA 92093-0751, USA; (Z.R.); (P.T.)
| | - Sandrine Conrod
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Aix Marseille Univ, CNRS, 13344 Marseille, France;
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences (SSPPS), University of California San Diego, La Jolla, CA 92093-0751, USA; (Z.R.); (P.T.)
| | - Catherine Guillou
- Institut de Chimie des Substances Naturelles (ICSN), Univ Paris-Saclay, CNRS, 91198 Gif-sur-Yvette, France; (L.C.); (C.G.)
| | - Jordi Molgó
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS) EMR CNRS 9004, Département Médicaments et Technologies pour la Santé, Institut des Sciences du Vivant Frédéric Joliot, CEA, INRAE, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.A.); (J.M.)
| | - Pascale Marchot
- Lab “Architecture et Fonction des Macromolécules Biologiques” (AFMB), Aix-Marseille Univ, CNRS, Faculté des Sciences Campus Luminy, 13288 Marseille cedex 09, France; (Y.B.); (G.S.)
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Aix Marseille Univ, CNRS, 13344 Marseille, France;
| |
Collapse
|
10
|
Kumari M, Khatoon N, Sharma R, Adusumilli S, Auerbach A, Kashyap HK, Nayak TK. Mechanism of hydrophobic gating in the acetylcholine receptor channel pore. J Gen Physiol 2024; 156:e202213189. [PMID: 38153395 PMCID: PMC10757554 DOI: 10.1085/jgp.202213189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
Neuromuscular acetylcholine receptors (AChRs) are hetero-pentameric, ligand-gated ion channels. The binding of the neurotransmitter acetylcholine (ACh) to two target sites promotes a global conformational change of the receptor that opens the channel and allows ion conduction through the channel pore. Here, by measuring free-energy changes from single-channel current recordings and using molecular dynamics simulations, we elucidate how a constricted hydrophobic region acts as a "gate" to regulate the channel opening in the pore of AChRs. Mutations of gate residues, including those implicated in congenital myasthenia syndrome, lower the permeation barrier of the channel substantially and increase the unliganded gating equilibrium constant (constitutive channel openings). Correlations between hydrophobicity and the observed free-energy changes, supported by calculations of water densities in the wild-type versus mutant channel pores, provide evidence for hydrophobic wetting-dewetting transition at the gate. The analysis of a coupled interaction network provides insight into the molecular mechanism of closed- versus open-state conformational changes at the gate. Studies of the transition state by "phi"(φ)-value analysis indicate that agonist binding serves to stabilize both the transition and the open state. Intersubunit interaction energy measurements and molecular dynamics simulations suggest that channel opening involves tilting of the pore-lining M2 helices, asymmetric outward rotation of amino acid side chains, and wetting transition of the gate region that lowers the barrier to ion permeation and stabilizes the channel open conformation. Our work provides new insight into the hydrophobic gate opening and shows why the gate mutations result in constitutive AChR channel activity.
Collapse
Affiliation(s)
- Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Nadira Khatoon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Rachita Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Sushanth Adusumilli
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Anthony Auerbach
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Tapan K. Nayak
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
11
|
Astore MA, Pradhan AS, Thiede EH, Hanson SM. Protein dynamics underlying allosteric regulation. Curr Opin Struct Biol 2024; 84:102768. [PMID: 38215528 DOI: 10.1016/j.sbi.2023.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Allostery is the mechanism by which information and control are propagated in biomolecules. It regulates ligand binding, chemical reactions, and conformational changes. An increasing level of experimental resolution and control over allosteric mechanisms promises a deeper understanding of the molecular basis for life and powerful new therapeutics. In this review, we survey the literature for an up-to-date biological and theoretical understanding of protein allostery. By delineating five ways in which the energy landscape or the kinetics of a system may change to give rise to allostery, we aim to help the reader grasp its physical origins. To illustrate this framework, we examine three systems that display these forms of allostery: allosteric inhibitors of beta-lactamases, thermosensation of TRP channels, and the role of kinetic allostery in the function of kinases. Finally, we summarize the growing power of computational tools available to investigate the different forms of allostery presented in this review.
Collapse
Affiliation(s)
- Miro A Astore
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Center for Computational Mathematics, Flatiron Institute, New York, NY, USA. https://twitter.com/@miroastore
| | - Akshada S Pradhan
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Erik H Thiede
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Center for Computational Mathematics, Flatiron Institute, New York, NY, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Sonya M Hanson
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Center for Computational Mathematics, Flatiron Institute, New York, NY, USA.
| |
Collapse
|
12
|
Steck TL, Ali Tabei SM, Lange Y. Estimating the Cholesterol Affinity of Integral Membrane Proteins from Experimental Data. Biochemistry 2024; 63:19-26. [PMID: 38099740 PMCID: PMC10765374 DOI: 10.1021/acs.biochem.3c00567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The cholesterol affinities of many integral plasma membrane proteins have been estimated by molecular computation. However, these values lack experimental confirmation. We therefore developed a simple mathematical model to extract sterol affinity constants and stoichiometries from published isotherms for the dependence of the activity of such proteins on the membrane cholesterol concentration. The binding curves for these proteins are sigmoidal, with strongly lagged thresholds attributable to competition for the cholesterol by bilayer phospholipids. The model provided isotherms that matched the experimental data using published values for the sterol association constants and stoichiometries of the phospholipids. Three oligomeric transporters were found to bind cholesterol without cooperativity, with dimensionless association constants of 35 for Kir3.4* and 100 for both Kir2 and a GAT transporter. (The corresponding ΔG° values were -8.8, -11.4, and -11.4 kJ/mol, respectively). These association constants are significantly lower than those for the phospholipids, which range from ∼100 to 6000. The BK channel, the nicotinic acetylcholine receptor, and the M192I mutant of Kir3.4* appear to bind multiple cholesterol molecules cooperatively (n = 2 or 4), with subunit affinities of 563, 950, and 700, respectively. The model predicts that the three less avid transporters are approximately half-saturated in their native plasma membranes; hence, they are sensitive to variations in cholesterol in vivo. The more avid proteins would be nearly saturated in vivo. The method can be applied to any integral protein or other ligands in any bilayer for which there are reasonable estimates of the sterol affinities and stoichiometries of the phospholipids.
Collapse
Affiliation(s)
- Theodore L. Steck
- Department
of Biochemistry and Molecular Biology, University
of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - S. M. Ali Tabei
- Department
of Physics, University of Northern Iowa, Cedar Falls, Iowa 50614, United States
| | - Yvonne Lange
- Department
of Pathology, Rush University Medical Center, Chicago, Illinois 60612, United States
| |
Collapse
|
13
|
Sinclair P, Kabbani N. Ionotropic and metabotropic responses by alpha 7 nicotinic acetylcholine receptors. Pharmacol Res 2023; 197:106975. [PMID: 38032294 DOI: 10.1016/j.phrs.2023.106975] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) belong to a superfamily of cys-loop receptors characterized by the assembly of five subunits into a multi-protein channel complex. Ligand binding to nAChRs activates rapid allosteric transitions of the receptor leading to channel opening and ion flux in neuronal and non-neuronal cell. Thus, while ionotropic properties of nAChRs are well recognized, less is known about ligand-mediated intracellular metabotropic signaling responses. Studies in neural and non-neural cells confirm ionotropic and metabotropic channel responses following ligand binding. In this review we summarize evidence on the existence of ionotropic and metabotropic signaling responses by homopentameric α7 nAChRs in various cell types. We explore how coordinated calcium entry through the ion channel and calcium release from nearby stores gives rise to signaling important for the modulation of cytoskeletal motility and cell growth. Amino acid residues for intracellular protein binding within the α7 nAChR support engagement in metabotropic responses including signaling through heterotrimeric G proteins in neural and immune cells. Understanding the dual properties of ionotropic and metabotropic nAChR responses is essential in advancing drug development for the treatment of various human disease.
Collapse
Affiliation(s)
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, Fairfax, VA, USA; School of Systems Biology, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
14
|
Qasem AA, Rowan MG, Sanders VR, Millar NS, Blagbrough IS. Synthesis and Antagonist Activity of Methyllycaconitine Analogues on Human α7 Nicotinic Acetylcholine Receptors. ACS BIO & MED CHEM AU 2023; 3:147-157. [PMID: 37096031 PMCID: PMC10119942 DOI: 10.1021/acsbiomedchemau.2c00057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 11/02/2022] [Indexed: 04/26/2023]
Abstract
Methyllycaconitine (MLA), 1, is a naturally occurring norditerpenoid alkaloid that is a highly potent (IC50 = 2 nM) selective antagonist of α7 nicotinic acetylcholine receptors (nAChRs). Several structural factors affect its activity such as the neopentyl ester side-chain and the piperidine ring N-side-chain. The synthesis of simplified AE-bicyclic analogues 14-21 possessing different ester and nitrogen side-chains was achieved in three steps. The antagonist effects of synthetic analogues were examined on human α7 nAChRs and compared to that of MLA 1. The most efficacious analogue (16) reduced α7 nAChR agonist responses [1 nM acetylcholine (ACh)] to 53.2 ± 1.9% compared to 3.4 ± 0.2% for MLA 1. This demonstrates that simpler analogues of MLA 1 possess antagonist effects on human α7 nAChRs but also indicates that further optimization may be possible to achieve antagonist activity comparable to that of MLA 1.
Collapse
Affiliation(s)
| | | | - Victoria R. Sanders
- Department
of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, U.K.
| | - Neil S. Millar
- Department
of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, U.K.
| | - Ian S. Blagbrough
- School
of Pharmacy, University of Bath, Bath BA2 7AY, U.K.
- Tel: 1225-386795.
| |
Collapse
|
15
|
Richter K, Grau V. Signaling of nicotinic acetylcholine receptors in mononuclear phagocytes. Pharmacol Res 2023; 191:106727. [PMID: 36966897 DOI: 10.1016/j.phrs.2023.106727] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023]
Abstract
Nicotinic acetylcholine receptors are not only expressed by the nervous system and at the neuro-muscular junction but also by mononuclear phagocytes, which belong to the innate immune system. Mononuclear phagocyte is an umbrella term for monocytes, macrophages, and dendritic cells. These cells play pivotal roles in host defense against infection but also in numerous often debilitating diseases that are characterized by exuberant inflammation. Nicotinic acetylcholine receptors of the neuronal type dominate in these cells, and their stimulation is mainly associated with anti-inflammatory effects. Although the cholinergic modulation of mononuclear phagocytes is of eminent clinical relevance for the prevention and treatment of inflammatory diseases and neuropathic pain, we are only beginning to understand the underlying mechanisms on the molecular level. The purpose of this review is to report and critically discuss the current knowledge on signal transduction mechanisms elicited by nicotinic acetylcholine receptors in mononuclear phagocytes.
Collapse
Affiliation(s)
- Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery, Justus-Liebig-University Giessen, Germany; German Centre for Lung Research (DZL), Giessen, Germany; Cardiopulmonary Institute (CPI), Giessen, Germany.
| |
Collapse
|
16
|
Komori Y, Takayama K, Okamoto N, Kamiya M, Koizumi W, Ihara M, Misawa D, Kamiya K, Yoshinari Y, Seike K, Kondo S, Tanimoto H, Niwa R, Sattelle DB, Matsuda K. Functional impact of subunit composition and compensation on Drosophila melanogaster nicotinic receptors-targets of neonicotinoids. PLoS Genet 2023; 19:e1010522. [PMID: 36795653 PMCID: PMC9934367 DOI: 10.1371/journal.pgen.1010522] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/11/2022] [Indexed: 02/17/2023] Open
Abstract
Neonicotinoid insecticides target insect nicotinic acetylcholine receptors (nAChRs) and their adverse effects on non-target insects are of serious concern. We recently found that cofactor TMX3 enables robust functional expression of insect nAChRs in Xenopus laevis oocytes and showed that neonicotinoids (imidacloprid, thiacloprid, and clothianidin) exhibited agonist actions on some nAChRs of the fruit fly (Drosophila melanogaster), honeybee (Apis mellifera) and bumblebee (Bombus terrestris) with more potent actions on the pollinator nAChRs. However, other subunits from the nAChR family remain to be explored. We show that the Dα3 subunit co-exists with Dα1, Dα2, Dβ1, and Dβ2 subunits in the same neurons of adult D. melanogaster, thereby expanding the possible nAChR subtypes in these cells alone from 4 to 12. The presence of Dα1 and Dα2 subunits reduced the affinity of imidacloprid, thiacloprid, and clothianidin for nAChRs expressed in Xenopus laevis oocytes, whereas the Dα3 subunit enhanced it. RNAi targeting Dα1, Dα2 or Dα3 in adults reduced expression of targeted subunits but commonly enhanced Dβ3 expression. Also, Dα1 RNAi enhanced Dα7 expression, Dα2 RNAi reduced Dα1, Dα6, and Dα7 expression and Dα3 RNAi reduced Dα1 expression while enhancing Dα2 expression, respectively. In most cases, RNAi treatment of either Dα1 or Dα2 reduced neonicotinoid toxicity in larvae, but Dα2 RNAi enhanced neonicotinoid sensitivity in adults reflecting the affinity-reducing effect of Dα2. Substituting each of Dα1, Dα2, and Dα3 subunits by Dα4 or Dβ3 subunit mostly increased neonicotinoid affinity and reduced efficacy. These results are important because they indicate that neonicotinoid actions involve the integrated activity of multiple nAChR subunit combinations and counsel caution in interpreting neonicotinoid actions simply in terms of toxicity.
Collapse
Affiliation(s)
- Yuma Komori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Masaki Kamiya
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Wataru Koizumi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
| | | | | | - Yuto Yoshinari
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Kazuki Seike
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Invertebrate Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Miyagi, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - David B. Sattelle
- Centre for Respiratory Biology, Division of Medicine, University College London, London, United Kingdom
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
- * E-mail:
| |
Collapse
|
17
|
Takayama K, Ito R, Yamamoto H, Otsubo S, Matsumoto R, Ojima H, Komori Y, Matsuda K, Ihara M. Effects of cofactors RIC-3, TMX3 and UNC-50, together with distinct subunit ratios on the agonist actions of imidacloprid on Drosophila melanogaster Dα1/Dβ1 nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105177. [PMID: 36127041 DOI: 10.1016/j.pestbp.2022.105177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Insect nicotinic acetylcholine receptors (nAChRs) require cofactors for functional heterologous expression. A previous study revealed that TMX3 was crucial for the functional expression of Drosophila melanogaster Dα1/Dβ1 nAChRs in Xenopus laevis oocytes, while UNC-50 and RIC-3 enhanced the acetylcholine (ACh)-induced responses of the nAChRs. However, it is unclear whether the coexpression of UNC-50 and RIC-3 with TMX3 and the subunit stoichiometry affect pharmacology of Dα1/Dβ1 nAChRs when expressed in X. laevis oocytes. We have investigated the effects of coexpressing UNC-50 and RIC-3 with TMX3 as well as changing the subunit stoichiometry on the agonist activity of ACh and imidacloprid on the Dα1/Dβ1 nAChRs. UNC-50 and RIC-3 hardly affected the agonist affinity of ACh and imidacloprid for the Dα1/Dβ1 nAChRs formed by injecting into X. laevis oocytes with an equal amount mixture of the subunit cRNAs, but enhanced current amplitude of the ACh-induced response. Imidacloprid showed higher affinity for the Dβ1 subunit-excess Dα1/Dβ1 (Dα1/Dβ1 = 1/5) nAChRs than the Dα1 subunit-excess Dα1/Dβ1 (Dα1/Dβ1 = 5/1) nAChRs, suggesting that imidacloprid prefers the Dα1-Dβ1 orthosteric site over the Dα1-Dα1 orthosteric site.
Collapse
Affiliation(s)
- Koichi Takayama
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Ryo Ito
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Haruki Yamamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Shuya Otsubo
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Rei Matsumoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hisanori Ojima
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Yuma Komori
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
18
|
Rahman MM, Basta T, Teng J, Lee M, Worrell BT, Stowell MHB, Hibbs RE. Structural mechanism of muscle nicotinic receptor desensitization and block by curare. Nat Struct Mol Biol 2022; 29:386-394. [PMID: 35301478 DOI: 10.1038/s41594-022-00737-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
Binding of the neurotransmitter acetylcholine to its receptors on muscle fibers depolarizes the membrane and thereby triggers muscle contraction. We sought to understand at the level of three-dimensional structure how agonists and antagonists alter nicotinic acetylcholine receptor conformation. We used the muscle-type receptor from the Torpedo ray to first define the structure of the receptor in a resting, activatable state. We then determined the receptor structure bound to the agonist carbachol, which stabilizes an asymmetric, closed channel desensitized state. We find conformational changes in a peripheral membrane helix are tied to recovery from desensitization. To probe mechanisms of antagonism, we obtained receptor structures with the active component of curare, a poison arrow toxin and precursor to modern muscle relaxants. d-Tubocurarine stabilizes the receptor in a desensitized-like state in the presence and absence of agonist. These findings define the transitions between resting and desensitized states and reveal divergent means by which antagonists block channel activity of the muscle-type nicotinic receptor.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tamara Basta
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Myeongseon Lee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Brady T Worrell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA.
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
Combarnous Y, Nguyen TMD. Membrane Hormone Receptors and Their Signaling Pathways as Targets for Endocrine Disruptors. J Xenobiot 2022; 12:64-73. [PMID: 35466213 PMCID: PMC9036253 DOI: 10.3390/jox12020007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
The endocrine disruptors are mostly small organic molecules developed for numerous and very diverse industrial applications. They essentially act through nuclear receptors with small and hydrophobic endogenous ligands. Nevertheless, potential adverse effects through membrane hormone receptors cannot be ruled out, and have indeed been observed. The present paper reviews how orthosteric and allosteric binding sites of the different families of membrane receptors can be targets for man-made hydrophobic molecules (components of plastics, paints, flame retardants, herbicides, pesticides, etc.). We also review potential target proteins for such small hydrophobic molecules downstream of membrane receptors at the level of their intracellular signaling pathways. From the currently available information, although endocrine disruptors primarily affect nuclear receptors’ signaling, membrane receptors for hormones, cytokines, neuro-mediators, and growth factors can be affected as well and deserve attention.
Collapse
Affiliation(s)
- Yves Combarnous
- INRAe, CNRS, Tours University Joint Unit, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France;
- Correspondence: ; Tel.: +33-(0)24-7427-650
| | - Thi Mong Diep Nguyen
- INRAe, CNRS, Tours University Joint Unit, Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France;
- Faculty of Natural Sciences, Quy Nhon University, Quy Nhon 820000, Vietnam
| |
Collapse
|
20
|
Montgomery M, Rendine S, Zimmer CT, Elias J, Schaetzer J, Pitterna T, Benfatti F, Skaljac M, Bigot A. Structural Biology-Guided Design, Synthesis, and Biological Evaluation of Novel Insect Nicotinic Acetylcholine Receptor Orthosteric Modulators. J Med Chem 2022; 65:2297-2312. [PMID: 34986308 DOI: 10.1021/acs.jmedchem.1c01767] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of novel and safe insecticides remains an important need for a growing world population to protect crops and animal and human health. New chemotypes modulating the insect nicotinic acetylcholine receptors have been recently brought to the agricultural market, yet with limited understanding of their molecular interactions at their target receptor. Herein, we disclose the first crystal structures of these insecticides, namely, sulfoxaflor, flupyradifurone, triflumezopyrim, flupyrimin, and the experimental compound, dicloromezotiaz, in a double-mutated acetylcholine-binding protein which mimics the insect-ion-channel orthosteric site. Enabled by these findings, we discovered novel pharmacophores with a related mode of action, and we describe herein their design, synthesis, and biological evaluation.
Collapse
Affiliation(s)
- Mark Montgomery
- Syngenta Crop Protection, Jealott's Hill International Research Centre, RG42 6EY Bracknell, Berkshire, U.K
| | - Stefano Rendine
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Christoph T Zimmer
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Jan Elias
- Syngenta Crop Protection AG, Rosentalstrasse 67, 4002 Basel, Switzerland
| | - Jürgen Schaetzer
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Thomas Pitterna
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Fides Benfatti
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Marisa Skaljac
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Aurélien Bigot
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| |
Collapse
|
21
|
Skok M. Universal nature of cholinergic regulation demonstrated with nicotinic acetylcholine receptors. BBA ADVANCES 2022; 2:100061. [PMID: 37082580 PMCID: PMC10074969 DOI: 10.1016/j.bbadva.2022.100061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 11/17/2022] Open
Abstract
Mammalian nicotinic acetylcholine receptors (nAChRs) were initially discovered as ligand-gated ion channels mediating fast synaptic transmission in the neuro-muscular junctions and autonomic ganglia. They were further found to be involved in a wide range of basic biological processes within the brain and in non-excitable tissues. The present review summarizes the data obtained in our laboratory during last two decades. Investigation of autonomic ganglia with the nAChR subunit-specific antibodies was followed by identification of nAChRs in B lymphocytes, discovery of mitochondrial nAChRs and their role in mitochondrial apoptosis pathway, and revealing the role of α7 nAChRs and α7-specific antibodies in neuroinflammation-related Alzheimer disease and COVID-19. The data obtained demonstrate the involvement of nAChRs in cell survival, proliferation, cell-to-cell communication and inflammatory reaction. Together with the ability of nAChRs to function in both ionotropic and metabotropic way, these data illustrate the universal nature of cholinergic regulation mediated by nAChRs.
Collapse
|
22
|
Matsuda K. Chemical and biological studies of natural and synthetic products for the highly selective control of pest insect species. Biosci Biotechnol Biochem 2021; 86:1-11. [PMID: 34694357 DOI: 10.1093/bbb/zbab187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/17/2021] [Indexed: 11/12/2022]
Abstract
Tanacetum cinerariifolium was known to produce pyrethrins, but the mechanism of pyrethrin biosynthesis was largely unclear. The author showed that the nonmevalonate and oxylipin pathways underlie biosynthesis of the acid and alcohol moieties, respectively, and a GDSL lipase joins the products of these pathways. A blend of the green leaf volatiles and (E)-β-farnesene mediates the induction of wounding responses to neighboring intact conspecies by enhancing pyrethrin biosynthesis. Plants fight against herbivores underground as well as aboveground, and, in soy pulps, some fungi produce compounds selectively modulating ion channels in insect nervous system. The author proposed that indirect defense of plants occurs where microorganisms produce defense substances in the rhizosphere. Broad-spectrum pesticides, including neonicotinoids, may affect nontarget organisms. The author discovered cofactors enabling functional expression of insect nicotinic acetylcholine receptors (nAChRs). This led to understanding the mechanism of insect nAChR-neonicotinoid interactions, thus paving new avenues for controlling crop pests and disease vectors.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
23
|
Maizón HB, Barrantes FJ. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor. Brief Bioinform 2021; 23:6409696. [PMID: 34695840 DOI: 10.1093/bib/bbab435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
We present a concatenated deep-learning multiple neural network system for the analysis of single-molecule trajectories. We apply this machine learning-based analysis to characterize the translational diffusion of the nicotinic acetylcholine receptor at the plasma membrane, experimentally interrogated using superresolution optical microscopy. The receptor protein displays a heterogeneous diffusion behavior that goes beyond the ensemble level, with individual trajectories exhibiting more than one diffusive state, requiring the optimization of the neural networks through a hyperparameter analysis for different numbers of steps and durations, especially for short trajectories (<50 steps) where the accuracy of the models is most sensitive to localization errors. We next use the statistical models to test for Brownian, continuous-time random walk and fractional Brownian motion, and introduce and implement an additional, two-state model combining Brownian walks and obstructed diffusion mechanisms, enabling us to partition the two-state trajectories into segments, each of which is independently subjected to multiple analysis. The concatenated multi-network system evaluates and selects those physical models that most accurately describe the receptor's translational diffusion. We show that the two-state Brownian-obstructed diffusion model can account for the experimentally observed anomalous diffusion (mostly subdiffusive) of the population and the heterogeneous single-molecule behavior, accurately describing the majority (72.5 to 88.7% for α-bungarotoxin-labeled receptor and between 73.5 and 90.3% for antibody-labeled molecules) of the experimentally observed trajectories, with only ~15% of the trajectories fitting to the fractional Brownian motion model.
Collapse
Affiliation(s)
- Héctor Buena Maizón
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
24
|
Chareshneu A, Pant P, Tristão Ramos RJ, Sehnal D, Gökbel T, Ionescu CM, Koča J. NAChRDB: A Web Resource of Structure-Function Annotations to Unravel the Allostery of Nicotinic Acetylcholine Receptors. ACS OMEGA 2021; 6:23023-23027. [PMID: 34549102 PMCID: PMC8444218 DOI: 10.1021/acsomega.1c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) comprise a large and ancient family of allosteric ion channels mediating synaptic transmission. The vast knowledge about nAChRs has become difficult to navigate. NAChRDB is a web-accessible resource of curated residue-level functional annotations of neuromuscular nAChRs. Interactive three-dimensional (3D) visualization and sequence alignment give further context to this rich and growing collection of experimental observations and computational predictions. NAChRDB is freely available at https://crocodile.ncbr.muni.cz/Apps/NAChRDB/, with interactive tutorials and regular updates to the content and web interface. No installation or user registration is required. NAChRDB is accessible through any modern internet browser on desktops and mobile devices. By providing immediate and systematic access to practical knowledge gained through decades of research, NAChRDB represents a powerful educational tool and helps guide discovery by revealing gaps in current knowledge and aiding the interpretation of results of molecular and structural biology experiments or computational studies.
Collapse
Affiliation(s)
- Aliaksei Chareshneu
- CEITEC
- Central European Institute of Technology, Masaryk University, Brno 601 77, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Purbaj Pant
- CEITEC
- Central European Institute of Technology, Masaryk University, Brno 601 77, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Ravi José Tristão Ramos
- CEITEC
- Central European Institute of Technology, Masaryk University, Brno 601 77, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - David Sehnal
- CEITEC
- Central European Institute of Technology, Masaryk University, Brno 601 77, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- Protein
Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, U.K.
| | - Tuğrul Gökbel
- Department
of Molecular Biology and Genetics, Izmir
Institute of Technology, İzmir 35430, Turkey
| | - Crina-Maria Ionescu
- CEITEC
- Central European Institute of Technology, Masaryk University, Brno 601 77, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Jaroslav Koča
- CEITEC
- Central European Institute of Technology, Masaryk University, Brno 601 77, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
25
|
Cartereau A, Taillebois E, Le Questel JY, Thany SH. Mode of Action of Neonicotinoid Insecticides Imidacloprid and Thiacloprid to the Cockroach Pameα7 Nicotinic Acetylcholine Receptor. Int J Mol Sci 2021; 22:9880. [PMID: 34576043 PMCID: PMC8471617 DOI: 10.3390/ijms22189880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
The functional expression of the cockroach Pameα7 nicotinic acetylcholine receptor subunit has been previously studied, and was found to be able to form a homomeric receptor when expressed in Xenopus laevis oocytes. In this study, we found that the neonicotinoid insecticide imidacloprid is unable to activate the cockroach Pameα7 receptor, although thiacloprid induces low inward currents, suggesting that it is a partial agonist. In addition, the co-application or 5 min pretreatment with 10 µM imidacloprid increased nicotine current amplitudes, while the co-application or 5 min pretreatment with 10 µM thiacloprid decreased nicotine-evoked current amplitudes by 54% and 28%, respectively. This suggesting that these two representatives of neonicotinoid insecticides bind differently to the cockroach Pameα7 receptor. Interestingly, the docking models demonstrate that the orientation and interactions of the two insecticides in the cockroach Pameα7 nAChR binding pocket are very similar. Electrophysiological results have provided evidence to suggest that imidacloprid and thiacloprid could act as modulators of the cockroach Pameα7 receptors.
Collapse
Affiliation(s)
- Alison Cartereau
- Université d’Orléans, LBLGC USC INRAE 1328, 45067 Orléans, France; (A.C.); (E.T.)
| | - Emiliane Taillebois
- Université d’Orléans, LBLGC USC INRAE 1328, 45067 Orléans, France; (A.C.); (E.T.)
| | | | - Steeve H. Thany
- Université d’Orléans, LBLGC USC INRAE 1328, 45067 Orléans, France; (A.C.); (E.T.)
| |
Collapse
|
26
|
Borroni V, Barrantes FJ. Homomeric and Heteromeric α7 Nicotinic Acetylcholine Receptors in Health and Some Central Nervous System Diseases. MEMBRANES 2021; 11:membranes11090664. [PMID: 34564481 PMCID: PMC8465519 DOI: 10.3390/membranes11090664] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels involved in the modulation of essential brain functions such as memory, learning, and attention. Homomeric α7 nAChR, formed exclusively by five identical α7 subunits, is involved in rapid synaptic transmission, whereas the heteromeric oligomers composed of α7 in combination with β subunits display metabotropic properties and operate in slower time frames. At the cellular level, the activation of nAChRs allows the entry of Na+ and Ca2+; the two cations depolarize the membrane and trigger diverse cellular signals, depending on the type of nAChR pentamer and neurons involved, the location of the intervening cells, and the networks of which these neuronal cells form part. These features make the α7 nAChR a central player in neurotransmission, metabolically associated Ca2+-mediated signaling, and modulation of diverse fundamental processes operated by other neurotransmitters in the brain. Due to its ubiquitous distribution and the multiple functions it displays in the brain, the α7 nAChR is associated with a variety of neurological and neuropsychiatric disorders whose exact etiopathogenic mechanisms are still elusive.
Collapse
Affiliation(s)
- Virginia Borroni
- Instituto de Tecnología en Polímeros y Nanotecnología (ITPN-UBA-CONICET), Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1127AAR, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research, UCA–CONICET, Faculty of Medical Sciences, Catholic University of Argentina, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AAZ, Argentina
- Correspondence:
| |
Collapse
|
27
|
Matsuda K. Robust functional expression of insect nicotinic acetylcholine receptors provides new insights into neonicotinoid actions and new opportunities for pest and vector control. PEST MANAGEMENT SCIENCE 2021; 77:3626-3630. [PMID: 33202087 DOI: 10.1002/ps.6182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Neonicotinoids are selective modulators of insect nicotinic acetylcholine receptors (nAChRs). These widely deployed insecticides interact with the orthosteric sites of nAChRs, not only to activate nAChRs on their own, but also to block the desensitizing component of nAChR responses. To date recombinant vertebrate or insect/vertebrate hybrid nAChRs have been deployed to understand the mechanism of selectivity and diversity of neonicotinoid actions as well as to show that both α/α and α/non-α interfaces are involved in the interactions with neonicotinoids. However, many of the fine details of insecticide interactions with sites on nAChRs remain to be resolved. The breakthrough of functional expression of insect nAChRs allows such questions to be addressed, not only for neonicotinoids but for other insecticides targeting insect nAChRs. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara, 631-8505, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, 631-8505, Japan
| |
Collapse
|
28
|
Elephants in the Dark: Insights and Incongruities in Pentameric Ligand-gated Ion Channel Models. J Mol Biol 2021; 433:167128. [PMID: 34224751 DOI: 10.1016/j.jmb.2021.167128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.
Collapse
|
29
|
Novel Pharmacotherapies in Parkinson's Disease. Neurotox Res 2021; 39:1381-1390. [PMID: 34003454 PMCID: PMC8129607 DOI: 10.1007/s12640-021-00375-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Parkinson’s disease (PD), an age-related progressive neurodegenerative condition, is associated with loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), which results in motor deficits characterized by the following: akinesia, rigidity, resting tremor, and postural instability, as well as nonmotor symptoms such as emotional changes, particularly depression, cognitive impairment, gastrointestinal, and autonomic dysfunction. The most common treatment for PD is focused on dopamine (DA) replacement (e.g., levodopa = L-Dopa), which unfortunately losses its efficacy over months or years and can induce severe dyskinesia. Hence, more efficacious interventions without such adverse effects are urgently needed. In this review, following a general description of PD, potential novel therapeutic interventions for this devastating disease are examined. Specifically, the focus is on nicotine and nicotinic cholinergic system, as well as butyrate, a short chain fatty acid (SCFA), and fatty acid receptors.
Collapse
|
30
|
Oliveira ASF, Ibarra AA, Bermudez I, Casalino L, Gaieb Z, Shoemark DK, Gallagher T, Sessions RB, Amaro RE, Mulholland AJ. A potential interaction between the SARS-CoV-2 spike protein and nicotinic acetylcholine receptors. Biophys J 2021; 120:983-993. [PMID: 33609494 PMCID: PMC7889469 DOI: 10.1016/j.bpj.2021.01.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/08/2023] Open
Abstract
Changeux et al. (Changeux et al. C. R. Biol. 343:33-39.) recently suggested that the SARS-CoV-2 spike protein may interact with nicotinic acetylcholine receptors (nAChRs) and that such interactions may be involved in pathology and infectivity. This hypothesis is based on the fact that the SARS-CoV-2 spike protein contains a sequence motif similar to known nAChR antagonists. Here, we use molecular simulations of validated atomically detailed structures of nAChRs and of the spike to investigate the possible binding of the Y674-R685 region of the spike to nAChRs. We examine the binding of the Y674-R685 loop to three nAChRs, namely the human α4β2 and α7 subtypes and the muscle-like αβγδ receptor from Tetronarce californica. Our results predict that Y674-R685 has affinity for nAChRs. The region of the spike responsible for binding contains a PRRA motif, a four-residue insertion not found in other SARS-like coronaviruses. The conformational behavior of the bound Y674-R685 is highly dependent on the receptor subtype; it adopts extended conformations in the α4β2 and α7 complexes but is more compact when bound to the muscle-like receptor. In the α4β2 and αβγδ complexes, the interaction of Y674-R685 with the receptors forces the loop C region to adopt an open conformation, similar to other known nAChR antagonists. In contrast, in the α7 complex, Y674-R685 penetrates deeply into the binding pocket in which it forms interactions with the residues lining the aromatic box, namely with TrpB, TyrC1, and TyrC2. Estimates of binding energy suggest that Y674-R685 forms stable complexes with all three nAChR subtypes. Analyses of simulations of the glycosylated spike show that the Y674-R685 region is accessible for binding. We suggest a potential binding orientation of the spike protein with nAChRs, in which they are in a nonparallel arrangement to one another.
Collapse
Affiliation(s)
- A Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom; Bristol Synthetic Biology Centre, BrisSynBio, Bristol, United Kingdom
| | - Amaurys Avila Ibarra
- Research Software Engineering, Advanced Computing Research Centre, University of Bristol, Bristol, United Kingdom
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Zied Gaieb
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Bristol, United Kingdom; Bristol Synthetic Biology Centre, BrisSynBio, Bristol, United Kingdom
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| | | | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
31
|
Fernandes TP, Almeida NL, Silva GM, Santos NA. Nicotine gum enhances visual processing in healthy nonsmokers. Brain Imaging Behav 2021; 15:2593-2605. [PMID: 33675460 DOI: 10.1007/s11682-021-00461-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The main purpose of this study was to investigate the isolated effects of nicotine on visual processing, namely contrast processing. METHODS Thirteen participants, aged 18-40 years, were enrolled in this double blind, randomized and pilot controlled trial involving nicotine gum administration (placebo, 2-mg and 4-mg doses). The participants' instruction was to detect the location of vertical gratings (0.2; 1.0; 3.3; 5.7; 8.8; 13.2 and 15.9 cycles per degree) when it was presented either left or right on the monitor screen. A repeated multivariate analysis of variance was conducted to analyse the results for the visual processing tasks. Bayesian analyses were also carried out considering maximum robustness to avoid bias. RESULTS The findings that nicotine gum administration resulted in better contrast discrimination when compared to placebo gum (p < .001). More specifically, the 4-mg resulted in better visual sensitivity when compared to the 2-mg (p < .01) and the placebo (p < .001) gum. Demographic data were not related to the outcomes. CONCLUSIONS These data bring the need for support the findings. If proved, it is possible that nicotine, in small doses, can have a potential therapeutic use for those populations with low vision. TRIAL REGISTRATION NUMBER RBR-46tjy3.
Collapse
Affiliation(s)
- Thiago P Fernandes
- Federal University of Paraiba, Joao Pessoa, Brazil. .,Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil.
| | - Natalia L Almeida
- Federal University of Paraiba, Joao Pessoa, Brazil. .,Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil.
| | - Gabriella M Silva
- Federal University of Paraiba, Joao Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Natanael A Santos
- Federal University of Paraiba, Joao Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
32
|
Duarte Y, Rojas M, Canan J, Pérez EG, González-Nilo F, García-Colunga J. Different Classes of Antidepressants Inhibit the Rat α7 Nicotinic Acetylcholine Receptor by Interacting within the Ion Channel: A Functional and Structural Study. Molecules 2021; 26:molecules26040998. [PMID: 33668529 PMCID: PMC7918632 DOI: 10.3390/molecules26040998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022] Open
Abstract
Several antidepressants inhibit nicotinic acetylcholine receptors (nAChRs) in a non-competitive and voltage-dependent fashion. Here, we asked whether antidepressants with a different structure and pharmacological profile modulate the rat α7 nAChR through a similar mechanism by interacting within the ion-channel. We applied electrophysiological (recording of the ion current elicited by choline, ICh, which activates α7 nAChRs from rat CA1 hippocampal interneurons) and in silico approaches (homology modeling of the rat α7 nAChR, molecular docking, molecular dynamics simulations, and binding free energy calculations). The antidepressants inhibited ICh with the order: norfluoxetine ~ mirtazapine ~ imipramine < bupropion ~ fluoxetine ~ venlafaxine ~ escitalopram. The constructed homology model of the rat α7 nAChR resulted in the extracellular vestibule and the channel pore is highly negatively charged, which facilitates the permeation of cations and the entrance of the protonated form of antidepressants. Molecular docking and molecular dynamics simulations were carried out within the ion−channel of the α7 nAChR, revealing that the antidepressants adopt poses along the receptor channel, with slightly different binding-free energy values. Furthermore, the inhibition of ICh and free energy values for each antidepressant-receptor complex were highly correlated. Thus, the α7 nAChR is negatively modulated by a variety of antidepressants interacting in the ion−channel.
Collapse
Affiliation(s)
- Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; (Y.D.); (M.R.); (J.C.); (F.G.-N.)
- Interdisciplinary Centre for Neuroscience of Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - Maximiliano Rojas
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; (Y.D.); (M.R.); (J.C.); (F.G.-N.)
| | - Jonathan Canan
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; (Y.D.); (M.R.); (J.C.); (F.G.-N.)
| | - Edwin G. Pérez
- Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Fernando González-Nilo
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile; (Y.D.); (M.R.); (J.C.); (F.G.-N.)
- Interdisciplinary Centre for Neuroscience of Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2381850, Chile
| | - Jesús García-Colunga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro 76230, Mexico
- Correspondence: ; Tel.: +52-442-238-1063
| |
Collapse
|
33
|
Miwa JM. Lynx1 prototoxins: critical accessory proteins of neuronal nicotinic acetylcholine receptors. Curr Opin Pharmacol 2021; 56:46-51. [PMID: 33254061 PMCID: PMC8771676 DOI: 10.1016/j.coph.2020.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
Nicotinic receptors of the cholinergic system are ligand-gated ion channels, responding to the excitatory neurotransmitter, acetylcholine, and the addictive component of tobacco, nicotine. They help to transduce salient information in the environment by activating specific neural circuitry in normal and disease states. While nicotinic receptors are promising neurological and neuropsychiatric disorder targets, they have fallen out of favor after several late-stage clinical failures. Targeting the complex of the nicotinic receptor, including lynx1 accessory proteins, could be the key to unlocking the intractable nAChR for therapeutic development. Lynx1 binds to the extracellular face of the nAChR and acts as a critical modulator, suppressing memory, learning, and plasticity. Lynx1 removal in animal models leads to memory and plasticity enhancements, some of which have therapeutic relevance for neuropsychiatric and neurological disease. A review of the lynx1 accessory modulator and its role in modulating neuronal nAChRs will be discussed.
Collapse
Affiliation(s)
- Julie M Miwa
- Lehigh University, Department of Biological Sciences, 111 Research Drive, Bethlehem, PA, United States.
| |
Collapse
|
34
|
Oliveira ASF, Ciccotti G, Haider S, Mulholland AJ. Dynamical nonequilibrium molecular dynamics reveals the structural basis for allostery and signal propagation in biomolecular systems. THE EUROPEAN PHYSICAL JOURNAL. B 2021; 94:144. [PMID: 34720710 PMCID: PMC8549953 DOI: 10.1140/epjb/s10051-021-00157-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/05/2021] [Indexed: 05/03/2023]
Abstract
ABSTRACT A dynamical approach to nonequilibrium molecular dynamics (D-NEMD), proposed in the 1970s by Ciccotti et al., is undergoing a renaissance and is having increasing impact in the study of biological macromolecules. This D-NEMD approach, combining MD simulations in stationary (in particular, equilibrium) and nonequilibrium conditions, allows for the determination of the time-dependent structural response of a system using the Kubo-Onsager relation. Besides providing a detailed picture of the system's dynamic structural response to an external perturbation, this approach also has the advantage that the statistical significance of the response can be assessed. The D-NEMD approach has been used recently to identify a general mechanism of inter-domain signal propagation in nicotinic acetylcholine receptors, and allosteric effects in β -lactamase enzymes, for example. It complements equilibrium MD and is a very promising approach to identifying and analysing allosteric effects. Here, we review the D-NEMD approach and its application to biomolecular systems, including transporters, receptors, and enzymes.
Collapse
Affiliation(s)
- A. Sofia F. Oliveira
- School of Chemistry, Centre for Computational Chemistry, University of Bristol, Bristol, BS8 1TS UK
- BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ UK
| | - Giovanni Ciccotti
- Institute for Applied Computing “Mauro Picone” (IAC), CNR, Via dei Taurini 19, 00185 Rome, Italy
- School of Physics, University College of Dublin, UCD-Belfield, Dublin 4, Ireland
- Università di Roma La Sapienza, Ple. A. Moro 5, 00185 Rome, Italy
| | - Shozeb Haider
- School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Adrian J. Mulholland
- School of Chemistry, Centre for Computational Chemistry, University of Bristol, Bristol, BS8 1TS UK
| |
Collapse
|
35
|
Lupacchini L, Maggi F, Tomino C, De Dominicis C, Mollinari C, Fini M, Bonassi S, Merlo D, Russo P. Nicotine Changes Airway Epithelial Phenotype and May Increase the SARS-COV-2 Infection Severity. Molecules 2020; 26:E101. [PMID: 33379366 PMCID: PMC7794754 DOI: 10.3390/molecules26010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Nicotine is implicated in the SARS-COV-2 infection through activation of the α7-nAChR and over-expression of ACE2. Our objective was to clarify the role of nicotine in SARS-CoV-2 infection exploring its molecular and cellular activity. (2) Methods: HBEpC or si-mRNA-α7-HBEpC were treated for 1 h, 48 h or continuously with 10-7 M nicotine, a concentration mimicking human exposure to a cigarette. Cell viability and proliferation were evaluated by trypan blue dye exclusion and cell counting, migration by cell migration assay, senescence by SA-β-Gal activity, and anchorage-independent growth by cloning in soft agar. Expression of Ki67, p53/phospho-p53, VEGF, EGFR/pEGFR, phospho-p38, intracellular Ca2+, ATP and EMT were evaluated by ELISA and/or Western blotting. (3) Results: nicotine induced through α7-nAChR (i) increase in cell viability, (ii) cell proliferation, (iii) Ki67 over-expression, (iv) phospho-p38 up-regulation, (v) EGFR/pEGFR over-expression, (vi) increase in basal Ca2+ concentration, (vii) reduction of ATP production, (viii) decreased level of p53/phospho-p53, (ix) delayed senescence, (x) VEGF increase, (xi) EMT and consequent (xii) enhanced migration, and (xiii) ability to grow independently of the substrate. (4) Conclusions: Based on our results and on evidence showing that nicotine potentiates viral infection, it is likely that nicotine is involved in SARS-CoV-2 infection and severity.
Collapse
Affiliation(s)
- Leonardo Lupacchini
- Molecular and Cellular Neurobiology, IRCSS San Raffaele Pisana, Via di Val Cannuta 247, I-00166 Rome, Italy; (L.L.); (C.D.D.)
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, viale Luigi Borri 57, I-21100 Varese, Italy;
| | - Carlo Tomino
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Val Cannuta 247, I-00166 Rome, Italy;
| | - Chiara De Dominicis
- Molecular and Cellular Neurobiology, IRCSS San Raffaele Pisana, Via di Val Cannuta 247, I-00166 Rome, Italy; (L.L.); (C.D.D.)
| | - Cristiana Mollinari
- Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere 100, 00133 Rome, Italy;
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy;
| | - Massimo Fini
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Val Cannuta 247, I-00166 Rome, Italy;
| | - Stefano Bonassi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Val Cannuta 247, I-00166 Rome, Italy;
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta 247, I-00166 Rome, Italy
| | - Daniela Merlo
- Department of Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, I-00161 Rome, Italy;
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Val Cannuta 247, I-00166 Rome, Italy;
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Via di Val Cannuta 247, I-00166 Rome, Italy
| |
Collapse
|
36
|
Heldt NA, Reichenbach N, McGary HM, Persidsky Y. Effects of Electronic Nicotine Delivery Systems and Cigarettes on Systemic Circulation and Blood-Brain Barrier: Implications for Cognitive Decline. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:243-255. [PMID: 33285126 DOI: 10.1016/j.ajpath.2020.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Electronic nicotine delivery systems (often known as e-cigarettes) are a novel tobacco product with growing popularity, particularly among younger demographics. The implications for public health are twofold, as these products may represent a novel source of tobacco-associated disease but may also provide a harm reduction strategy for current tobacco users. There is increasing recognition that e-cigarettes impact vascular function across multiple organ systems. Herein, we provide a comparison of evidence regarding the role of e-cigarettes versus combustible tobacco in vascular disease and implications for blood-brain barrier dysfunction and cognitive decline. Multiple non-nicotinic components of tobacco smoke have been identified in e-cigarette aerosol, and their involvement in vascular disease is discussed. In addition, nicotine and nicotinic signaling may modulate peripheral immune and endothelial cell populations in a highly context-dependent manner. Direct preclinical evidence for electronic nicotine delivery system-associated neurovascular impairment is provided, and a model is proposed in which non-nicotinic elements exert a proinflammatory effect that is functionally antagonized by the presence of nicotine.
Collapse
Affiliation(s)
- Nathan A Heldt
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| | - Nancy Reichenbach
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Hannah M McGary
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
37
|
Wang Z, Zibrila AI, Liu S, Zhao G, Li Y, Xu J, Liu D, Li C, Feng W, Liu J. Acetylcholine ameliorated TNF-α-induced primary trophoblast malfunction via muscarinic receptors†. Biol Reprod 2020; 103:1238-1248. [PMID: 32902620 DOI: 10.1093/biolre/ioaa158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/02/2020] [Accepted: 09/04/2020] [Indexed: 11/12/2022] Open
Abstract
Oxidative stress and apoptosis of trophoblasts are involved in preeclampsia (PE). Numerous studies have shown that acetylcholine (ACh), the principal vagal neurotransmitter, plays a crucial role in attenuating oxidative stress, inflammation, and apoptosis in a variety of human diseases. However, the role of ACh in PE management remains unclear. Here, we aimed to determine the effects of ACh on TNF-α-treated human primary trophoblast cells. Western blotting, CCK-8, DHE, TUNEL immunofluorescence staining, transwell assays, and wound-healing assays were performed to evaluate the role of ACh in vitro. We found that both TNF-α expression and the apoptotic index were higher in placentas from preeclamptic women than in normal placentas. TNF-α enhanced oxidative stress and increased the number of TUNEL-positive nuclei, Bax/Bcl-2 ratio, and the cleaved caspase-3/caspase-3 ratio while decreasing cell viability in primary human trophoblast cells. TNF-α promoted cell migration and invasion. PDTC, a selective NF-κB inhibitor, significantly blunted TNF-α-induced effects. ACh treatment attenuated oxidative stress and apoptosis while further promoting migration and invasion of TNF-α-treated primary trophoblast cells. The effects of ACh could be reversed by the muscarinic receptor antagonist atropine. Overall, our findings indicate that ACh significantly ameliorates TNF-α-induced oxidative stress and apoptosis of human primary trophoblast cells via muscarinic receptors. This is the first time that the improvement of vagal activity served as a therapeutic strategy for PE-like trophoblasts, suggesting its potential value in clinical practice.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Adoulaye Issotina Zibrila
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Shuhua Liu
- College of Chemistry Engineering, Tianjin University, Tianjin, China
| | - Gongxiao Zhao
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yubei Li
- College of Clinical Medicine, Xi'an Medical University, Xi'an, China
| | - Jingning Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dan Liu
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Chunfang Li
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Weiyi Feng
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
38
|
Matsuda K, Ihara M, Sattelle DB. Neonicotinoid Insecticides: Molecular Targets, Resistance, and Toxicity. Annu Rev Pharmacol Toxicol 2020; 60:241-255. [PMID: 31914891 DOI: 10.1146/annurev-pharmtox-010818-021747] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neonicotinoids have been used to protect crops and animals from insect pests since the 1990s, but there are concerns regarding their adverse effects on nontarget organisms, notably on bees. Enhanced resistance to neonicotinoids in pests is becoming well documented. We address the current understanding of neonicotinoid target site interactions, selectivity, and metabolism not only in pests but also in beneficial insects such as bees. The findings are relevant to the management of both neonicotinoids and the new generation of pesticides targeting insect nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan; .,Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan;
| | - David B Sattelle
- Centre for Respiratory Biology, UCL Respiratory, University College London, London WC1E 6JF, United Kingdom;
| |
Collapse
|
39
|
Gulsevin A, Meiler J, Horenstein NA. A Computational Analysis of the Factors Governing the Dynamics of α7 nAChR and Its Homologs. Biophys J 2020; 119:1656-1669. [PMID: 33010233 PMCID: PMC7642335 DOI: 10.1016/j.bpj.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
The α7 nicotinic acetylcholine receptor is a homopentameric ion channel from the Cys-loop receptor superfamily targeted for psychiatric indications and inflammatory pain. Molecular dynamics studies of the receptor have focused on residue mobility and global conformational changes to address receptor function. However, a comparative analysis of α7 with its homologs that cannot trigger channel opening has not been made so far. To identify the residues involved in α7 activation, we ran triplicate 500-ns molecular dynamics simulations with an α7 extracellular domain homology model and two acetylcholine-binding protein homologs. We tested the effect of ligand binding and amino acid sequence on the structure and dynamics of the three proteins. We found that mobile regions identified based on root mean-square deviation and root mean-square fluctuation values are not always consistent among the individual α7 extracellular domain simulations. Comparison of the replica-average properties of the three proteins based on dynamic cross-correlation maps showed that ligand binding affects the coupling between the C-loop and the Cys-loop, vestibular loop, and β1-β2 loops. In addition, the main-immunogenic-region-like domain of α7 went through correlated motions with multiple domains of the receptor. These correlated motions were absent or diminished in α7 homologs, suggesting a unique role in α7 activation.
Collapse
Affiliation(s)
- Alican Gulsevin
- Department of Chemistry, Biochemistry Division, University of Florida, Gainesville, Florida; Department of Chemistry, Vanderbilt University, Nashville, Tennessee.
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Leipzig University Medical School, Institute for Drug Discovery, Leipzig, Germany
| | - Nicole A Horenstein
- Department of Chemistry, Biochemistry Division, University of Florida, Gainesville, Florida
| |
Collapse
|
40
|
Oliveira ASF, Ibarra AA, Bermudez I, Casalino L, Gaieb Z, Shoemark DK, Gallagher T, Sessions RB, Amaro RE, Mulholland AJ. Simulations support the interaction of the SARS-CoV-2 spike protein with nicotinic acetylcholine receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.16.206680. [PMID: 32743575 PMCID: PMC7386492 DOI: 10.1101/2020.07.16.206680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Changeux et al. recently suggested that the SARS-CoV-2 spike (S) protein may interact with nicotinic acetylcholine receptors (nAChRs). Such interactions may be involved in pathology and infectivity. Here, we use molecular simulations of validated atomically detailed structures of nAChRs, and of the S protein, to investigate this 'nicotinic hypothesis'. We examine the binding of the Y674-R685 loop of the S protein to three nAChRs, namely the human α4β2 and α7 subtypes and the muscle-like αβγδ receptor from Tetronarce californica. Our results indicate that Y674-R685 has affinity for nAChRs and the region responsible for binding contains the PRRA motif, a four-residue insertion not found in other SARS-like coronaviruses. In particular, R682 has a key role in the stabilisation of the complexes as it forms interactions with loops A, B and C in the receptor's binding pocket. The conformational behaviour of the bound Y674-R685 region is highly dependent on the receptor subtype, adopting extended conformations in the α4β2 and α7 complexes and more compact ones when bound to the muscle-like receptor. In the α4β2 and αβγδ complexes, the interaction of Y674-R685 with the receptors forces the loop C region to adopt an open conformation similar to other known nAChR antagonists. In contrast, in the α7 complex, Y674-R685 penetrates deeply into the binding pocket where it forms interactions with the residues lining the aromatic box, namely with TrpB, TyrC1 and TyrC2. Estimates of binding energy suggest that Y674-R685 forms stable complexes with all three nAChR subtypes. Analyses of the simulations of the full-length S protein show that the Y674-R685 region is accessible for binding, and suggest a potential binding orientation of the S protein with nAChRs.
Collapse
Affiliation(s)
- A. Sofia F. Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Amaurys Avila Ibarra
- Research Software Engineering, Advanced Computing Research Centre, University of Bristol, Bristol BS1 5QD, UK
| | - Isabel Bermudez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX30BP, UK
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093 USA
| | - Zied Gaieb
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093 USA
| | | | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | | | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093 USA
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
41
|
Fernandes TP, Hovis JK, Almeida N, Souto JJS, Bonifacio TA, Rodrigues S, Silva GM, Andrade MO, Silva JB, Gomes GH, Oliveira ME, Lima EH, Gomes ME, Junior MVA, Martins ML, Santos NA. Effects of Nicotine Gum Administration on Vision (ENIGMA-Vis): Study Protocol of a Double-Blind, Randomized, and Controlled Clinical Trial. Front Hum Neurosci 2020; 14:314. [PMID: 33100983 PMCID: PMC7506462 DOI: 10.3389/fnhum.2020.00314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/16/2020] [Indexed: 01/12/2023] Open
Abstract
Studies reported that tobacco addiction was related to visual impairments, but one unresolved issue is whether the impairments are related to the many compounds existing in the cigarettes or to the effects of nicotine. On the other hand, nicotine gum can be used as replacement therapy or as a neuroprotective agent for some diseases. The main purpose of this controlled trial is to investigate the effects of nicotine gum on vision. The ENIGMA-Vis trial aims to compare two dosages of nicotine gum (2 and 4 mg) and a placebo gum in a randomized, double-blind, placebo-controlled trial of 100 participants to be allocated into a single group assignment of repeated measures (two studies; N = 50 for each one). Eligibility criteria are healthy non-smokers not diagnosed with substance abuse and without an acute or chronic medical condition. Intervention will last three sessions for each participant with a window frame of 1 week per session. Study outcomes are (1) short-term effects of nicotine gum on contrast sensitivity; (2) short-term effects of nicotine gum on chromatic contrast discrimination; and (3) whether demographics, body mass index, or serum cotinine predicts response of visual processing. This study addresses an important gap in the effects of nicotine on vision. One of the main takeaways of this study is to understand the effects of nicotine on contrast sensitivity and chromatic contrast discrimination. This information will provide a further understanding of how nicotine interacts with early visual processes and help determine how the different components present during smoking can affect vision. Clinical Trial Registration Number: RBR-46tjy3.
Collapse
Affiliation(s)
- Thiago P Fernandes
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Jeffery K Hovis
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Natalia Almeida
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Jandirlly J S Souto
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Thiago Augusto Bonifacio
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Stephanye Rodrigues
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Gabriella Medeiros Silva
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Michael Oliveira Andrade
- Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Department of Psychology, State University of Minas Gerais, Belo Horizonte, Brazil
| | - Jessica Bruna Silva
- Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Department of Psychology, State University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Milena Edite Oliveira
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Eveline Holanda Lima
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Maria Eduarda Gomes
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Marcos V A Junior
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| | - Mariana Lopes Martins
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Department of Speech Therapy, Federal University of Paraiba, João Pessoa, Brazil
| | - Natanael A Santos
- Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil.,Perception, Neuroscience and Behaviour Laboratory, Department of Psychology, Federal University of Paraiba, João Pessoa, Brazil
| |
Collapse
|
42
|
Tizabi Y, Getachew B, Copeland RL, Aschner M. Nicotine and the nicotinic cholinergic system in COVID-19. FEBS J 2020; 287:3656-3663. [PMID: 32790936 PMCID: PMC7436654 DOI: 10.1111/febs.15521] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/29/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022]
Abstract
There is an urgent need to address the devastating pandemic, COVID‐19, caused by SARS‐CoV‐2. The efforts to understand the details of this disease in hope of providing effective treatments are commendable. It is clear now that the virus can cause far more damage in patients with comorbid conditions—particularly in those with respiratory, cardiovascular, or immune‐compromised system—than in patients without such comorbidities. Drug use can further exacerbate the condition. In this regard, the ill effects of smoking are amply documented, and no doubt can be a confounding factor in COVID‐19 progression. Although conflicting hypotheses on the potential role of nicotine in COVID‐19 pathology have recently been offered, we believe that nicotine itself, through its interaction with the nicotinic cholinergic system, as well as ACE2, may not only be of use in a variety of neuropsychiatric and neurodegenerative diseases, but may also be of potential use in COVID‐19. Thus, on one hand, while we strongly support smoking cessation as a means of harm reduction associated with COVID‐19, on the other hand, we support a potential therapeutic role for nicotine, nicotinic agonists, or positive allosteric modulators of nicotinic cholinergic receptors in COVID‐19, owing to their varied effects including mood regulation, anti‐inflammatory, and purported interference with SARS‐CoV‐2 entry and/or replication.
Collapse
Affiliation(s)
- Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Bruk Getachew
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Robert L Copeland
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
43
|
Pohanka M. Diagnoses of Pathological States Based on Acetylcholinesterase and Butyrylcholinesterase. Curr Med Chem 2020; 27:2994-3011. [PMID: 30706778 DOI: 10.2174/0929867326666190130161202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022]
Abstract
Two cholinesterases exist: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). While AChE plays a crucial role in neurotransmissions, BChE has no specific function apart from the detoxification of some drugs and secondary metabolites from plants. Thus, both AChE and BChE can serve as biochemical markers of various pathologies. Poisoning by nerve agents like sarin, soman, tabun, VX, novichok and overdosing by drugs used in some neurodegenerative disorders like Alzheimer´s disease and myasthenia gravis, as well as poisoning by organophosphorus pesticides are relevant to this issue. But it appears that changes in these enzymes take place in other processes including oxidative stress, inflammation, some types of cancer and genetically conditioned diseases. In this review, the cholinesterases are introduced, the mechanism of inhibitors action is explained and the relations between the cholinesterases and pathologies are explained.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 50001 Hradec Kralove, Czech Republic
| |
Collapse
|
44
|
Allosterism of Nicotinic Acetylcholine Receptors: Therapeutic Potential for Neuroinflammation Underlying Brain Trauma and Degenerative Disorders. Int J Mol Sci 2020; 21:ijms21144918. [PMID: 32664647 PMCID: PMC7404387 DOI: 10.3390/ijms21144918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammation is a key physiological phenomenon that can be pervasive when dysregulated. Persistent chronic inflammation precedes several pathophysiological conditions forming one of the critical cellular homeostatic checkpoints. With a steady global surge in inflammatory diseases, it is imperative to delineate underlying mechanisms and design suitable drug molecules targeting the cellular partners that mediate and regulate inflammation. Nicotinic acetylcholine receptors have a confirmed role in influencing inflammatory pathways and have been a subject of scientific scrutiny underlying drug development in recent years. Drugs designed to target allosteric sites on the nicotinic acetylcholine receptors present a unique opportunity to unravel the role of the cholinergic system in regulating and restoring inflammatory homeostasis. Such a therapeutic approach holds promise in treating several inflammatory conditions and diseases with inflammation as an underlying pathology. Here, we briefly describe the potential of cholinergic allosterism and some allosteric modulators as a promising therapeutic option for the treatment of neuroinflammation.
Collapse
|
45
|
Caton M, Ochoa ELM, Barrantes FJ. The role of nicotinic cholinergic neurotransmission in delusional thinking. NPJ SCHIZOPHRENIA 2020; 6:16. [PMID: 32532978 PMCID: PMC7293341 DOI: 10.1038/s41537-020-0105-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Delusions are a difficult-to-treat and intellectually fascinating aspect of many psychiatric illnesses. Although scientific progress on this complex topic has been challenging, some recent advances focus on dysfunction in neural circuits, specifically in those involving dopaminergic and glutamatergic neurotransmission. Here we review the role of cholinergic neurotransmission in delusions, with a focus on nicotinic receptors, which are known to play a part in some illnesses where these symptoms appear, including delirium, schizophrenia spectrum disorders, bipolar disorder, Parkinson, Huntington, and Alzheimer diseases. Beginning with what we know about the emergence of delusions in these illnesses, we advance a hypothesis of cholinergic disturbance in the dorsal striatum where nicotinic receptors are operative. Striosomes are proposed to play a central role in the formation of delusions. This hypothesis is consistent with our current knowledge about the mechanism of action of cholinergic drugs and with our abstract models of basic cognitive mechanisms at the molecular and circuit levels. We conclude by pointing out the need for further research both at the clinical and translational levels.
Collapse
Affiliation(s)
- Michael Caton
- The Permanente Medical Group, Kaiser Santa Rosa Department of Psychiatry, 2235 Mercury Way, Santa Rosa, CA, 95047, USA
- Heritage Oaks Hospital, 4250 Auburn Boulevard, Sacramento, CA, 95841, USA
| | - Enrique L M Ochoa
- Heritage Oaks Hospital, 4250 Auburn Boulevard, Sacramento, CA, 95841, USA
- Volunteer Clinical Faculty, Department of Psychiatry and Behavioral Sciences, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA, 95817, USA
| | - Francisco J Barrantes
- Laboratory of Molecular Neurobiology, Institute for Biomedical Research (BIOMED), Faculty of Medical Sciences, UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF, Buenos Aires, Argentina.
| |
Collapse
|
46
|
Changeux JP. Discovery of the First Neurotransmitter Receptor: The Acetylcholine Nicotinic Receptor. Biomolecules 2020; 10:E547. [PMID: 32260196 PMCID: PMC7226243 DOI: 10.3390/biom10040547] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
The concept of pharmacological receptor was proposed at the turn of the 20th century but it took almost 70 years before the first receptor for a neurotransmitter was isolated and identified as a protein. This review retraces the history of the difficulties and successes in the identification of the nicotinic acetylcholine receptor, the first neurotransmitter receptor to be identified.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- Department of Neuroscience, CNRS UMR 3571, Institut Pasteur & Collège de France, 75015 Paris, France
| |
Collapse
|
47
|
Pseudo-Symmetric Assembly of Protodomains as a Common Denominator in the Evolution of Polytopic Helical Membrane Proteins. J Mol Evol 2020; 88:319-344. [PMID: 32189026 PMCID: PMC7162841 DOI: 10.1007/s00239-020-09934-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/16/2020] [Indexed: 11/05/2022]
Abstract
The polytopic helical membrane proteome is dominated by proteins containing seven transmembrane helices (7TMHs). They cannot be grouped under a monolithic fold or superfold. However, a parallel structural analysis of folds around that magic number of seven in distinct protein superfamilies (SWEET, PnuC, TRIC, FocA, Aquaporin, GPCRs) reveals a common homology, not in their structural fold, but in their systematic pseudo-symmetric construction during their evolution. Our analysis leads to guiding principles of intragenic duplication and pseudo-symmetric assembly of ancestral transmembrane helical protodomains, consisting of 3 (or 4) helices. A parallel deconstruction and reconstruction of these domains provides a structural and mechanistic framework for their evolutionary paths. It highlights the conformational plasticity inherent to fold formation itself, the role of structural as well as functional constraints in shaping that fold, and the usefulness of protodomains as a tool to probe convergent vs divergent evolution. In the case of FocA vs. Aquaporin, this protodomain analysis sheds new light on their potential divergent evolution at the protodomain level followed by duplication and parallel evolution of the two folds. GPCR domains, whose function does not seem to require symmetry, nevertheless exhibit structural pseudo-symmetry. Their construction follows the same protodomain assembly as any other pseudo-symmetric protein suggesting their potential evolutionary origins. Interestingly, all the 6/7/8TMH pseudo-symmetric folds in this study also assemble as oligomeric forms in the membrane, emphasizing the role of symmetry in evolution, revealing self-assembly and co-evolution not only at the protodomain level but also at the domain level.
Collapse
|
48
|
Oliveira ASF, Edsall CJ, Woods CJ, Bates P, Nunez GV, Wonnacott S, Bermudez I, Ciccotti G, Gallagher T, Sessions RB, Mulholland AJ. A General Mechanism for Signal Propagation in the Nicotinic Acetylcholine Receptor Family. J Am Chem Soc 2019; 141:19953-19958. [PMID: 31805762 DOI: 10.1021/jacs.9b09055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) modulate synaptic activity in the central nervous system. The α7 subtype, in particular, has attracted considerable interest in drug discovery as a target for several conditions, including Alzheimer's disease and schizophrenia. Identifying agonist-induced structural changes underlying nAChR activation is fundamentally important for understanding biological function and rational drug design. Here, extensive equilibrium and nonequilibrium molecular dynamics simulations, enabled by cloud-based high-performance computing, reveal the molecular mechanism by which structural changes induced by agonist unbinding are transmitted within the human α7 nAChR. The simulations reveal the sequence of coupled structural changes involved in driving conformational change responsible for biological function. Comparison with simulations of the α4β2 nAChR subtype identifies features of the dynamical architecture common to both receptors, suggesting a general structural mechanism for signal propagation in this important family of receptors.
Collapse
Affiliation(s)
- Ana Sofia F Oliveira
- School of Biochemistry , University of Bristol , Bristol BS8 1DT , United Kingdom
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom
| | - Christopher J Edsall
- Research Software Engineering, Advanced Computing Research Centre , University of Bristol , Bristol BS1 5QD , United Kingdom
| | - Christopher J Woods
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom
- Research Software Engineering, Advanced Computing Research Centre , University of Bristol , Bristol BS1 5QD , United Kingdom
| | - Phil Bates
- Department of Computer Science, Faculty of Engineering , University of Bristol , Bristol BS8 1TR , United Kingdom
- Oracle Corporation, Oracle Cloud Development Centre , Bristol BS2 2JJ , United Kingdom
| | - Gerardo Viedma Nunez
- Oracle Corporation, Oracle Cloud Development Centre , Bristol BS2 2JJ , United Kingdom
| | - Susan Wonnacott
- Department of Biology and Biochemistry , University of Bath , Bath BA2 7AY , United Kingdom
| | - Isabel Bermudez
- Department of Biological and Medical Sciences , Oxford Brookes University , Oxford OX30BP , United Kingdom
| | - Giovanni Ciccotti
- Institute for Applied Computing "Mauro Picone" (IAC), CNR , Via dei Taurini 19 , 00185 Rome , Italy
- School of Physics , University College of Dublin UCD-Belfield , Dublin 4, Ireland
- Università di Roma La Sapienza , Ple. A. Moro 5 , 00185 Roma , Italy
| | - Timothy Gallagher
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom
| | - Richard B Sessions
- School of Biochemistry , University of Bristol , Bristol BS8 1DT , United Kingdom
| | - Adrian J Mulholland
- Centre for Computational Chemistry, School of Chemistry , University of Bristol , Bristol BS8 1TS , United Kingdom
| |
Collapse
|
49
|
Mosqueira A, Camino PA, Barrantes FJ. Antibody‐induced crosslinking and cholesterol‐sensitive, anomalous diffusion of nicotinic acetylcholine receptors. J Neurochem 2019; 152:663-674. [DOI: 10.1111/jnc.14905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 10/25/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Alejo Mosqueira
- Laboratory of Molecular Neurobiology Biomedical Research institute (BIOMED) UCA–CONICET Buenos Aires Argentina
| | - Pablo A. Camino
- Laboratory of Molecular Neurobiology Biomedical Research institute (BIOMED) UCA–CONICET Buenos Aires Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology Biomedical Research institute (BIOMED) UCA–CONICET Buenos Aires Argentina
| |
Collapse
|
50
|
Camacho-Hernandez GA, Stokes C, Duggan BM, Kaczanowska K, Brandao-Araiza S, Doan L, Papke RL, Taylor P. Synthesis, Pharmacological Characterization, and Structure-Activity Relationships of Noncanonical Selective Agonists for α7 nAChRs. J Med Chem 2019; 62:10376-10390. [PMID: 31675224 DOI: 10.1021/acs.jmedchem.9b01467] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A lack of selectivity of classical agonists for the nicotinic acetylcholine receptors (nAChR) has prompted us to identify and develop a distinct scaffold of α7 nAChR-selective ligands. Noncanonical 2,4,6-substituted pyrimidine analogues were framed around compound 40 for a structure-activity relationship study. The new lead compounds activate selectively the α7 nAChRs with EC50's between 30 and 140 nM in a PNU-120596-dependent, cell-based calcium influx assay. After characterizing the expanded lead landscape, we ranked the compounds for rapid activation using Xenopus oocytes expressing human α7 nAChR with a two-electrode voltage clamp. This approach enabled us to define the molecular determinants governing rapid activation, agonist potency, and desensitization of α7 nAChRs after exposure to pyrimidine analogues, thereby distinguishing this subclass of noncanonical agonists from previously defined types of agonists (agonists, partial agonists, silent agonists, and ago-PAMs). By NMR, we analyzed pKa values for ionization of lead candidates, demonstrating distinctive modes of interaction for this landscape of ligands.
Collapse
Affiliation(s)
- Gisela Andrea Camacho-Hernandez
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Clare Stokes
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Brendan M Duggan
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Katarzyna Kaczanowska
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Stefania Brandao-Araiza
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Lisa Doan
- Department of Pharmacology, Skaggs School of Pharmacy & Pharmaceutical Sciences , University of California-San Diego , La Jolla , California 92093-0751 , United States
| | - Roger L Papke
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| | - Palmer Taylor
- Department of Pharmacology & Therapeutics , University of Florida , P.O. Box 100267, Gainesville , Florida 32610-0267 , United States
| |
Collapse
|