1
|
Yates JR. Aberrant glutamatergic systems underlying impulsive behaviors: Insights from clinical and preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111107. [PMID: 39098647 PMCID: PMC11409449 DOI: 10.1016/j.pnpbp.2024.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Impulsivity is a broad construct that often refers to one of several distinct behaviors and can be measured with self-report questionnaires and behavioral paradigms. Several psychiatric conditions are characterized by one or more forms of impulsive behavior, most notably the impulsive/hyperactive subtype of attention-deficit/hyperactivity disorder (ADHD), mood disorders, and substance use disorders. Monoaminergic neurotransmitters are known to mediate impulsive behaviors and are implicated in various psychiatric conditions. However, growing evidence suggests that glutamate, the major excitatory neurotransmitter of the mammalian brain, regulates important functions that become dysregulated in conditions like ADHD. The purpose of the current review is to discuss clinical and preclinical evidence linking glutamate to separate aspects of impulsivity, specifically motor impulsivity, impulsive choice, and affective impulsivity. Hyperactive glutamatergic activity in the corticostriatal and the cerebro-cerebellar pathways are major determinants of motor impulsivity. Conversely, hypoactive glutamatergic activity in frontal cortical areas and hippocampus and hyperactive glutamatergic activity in anterior cingulate cortex and nucleus accumbens mediate impulsive choice. Affective impulsivity is controlled by similar glutamatergic dysfunction observed for motor impulsivity, except a hyperactive limbic system is also involved. Loss of glutamate homeostasis in prefrontal and nucleus accumbens may contribute to motor impulsivity/affective impulsivity and impulsive choice, respectively. These results are important as they can lead to novel treatments for those with a condition characterized by increased impulsivity that are resistant to conventional treatments.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY 41099, USA.
| |
Collapse
|
2
|
Shen H, Ma Z, Hans E, Duan Y, Bi GH, Chae YC, Bonifazi A, Battiti FO, Newman AH, Xi ZX, Yang Y. Involvement of dopamine D3 receptor in impulsive choice decision-making in male rats. Neuropharmacology 2024; 257:110051. [PMID: 38917939 PMCID: PMC11401648 DOI: 10.1016/j.neuropharm.2024.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Impulsive decision-making has been linked to impulse control disorders and substance use disorders. However, the neural mechanisms underlying impulsive choice are not fully understood. While previous PET imaging and autoradiography studies have shown involvement of dopamine and D2/3 receptors in impulsive behavior, the roles of distinct D1, D2, and D3 receptors in impulsive decision-making remain unclear. In this study, we used a food reward delay-discounting task (DDT) to identify low- and high-impulsive rats, in which low-impulsive rats exhibited preference for large delayed reward over small immediate rewards, while high-impulsive rats showed the opposite preference. We then examined D1, D2, and D3 receptor gene expression using RNAscope in situ hybridization assays. We found that high-impulsive male rats exhibited lower levels of D2 and D3, and particularly D3, receptor expression in the nucleus accumbens (NAc), with no significant changes in the insular, prelimbic, and infralimbic cortices. Based on these findings, we further explored the role of the D3 receptor in impulsive decision-making. Systemic administration of a selective D3 receptor agonist (FOB02-04) significantly reduced impulsive choices in high-impulsive rats but had no effects in low-impulsive rats. Conversely, a selective D3 receptor antagonist (VK4-116) produced increased both impulsive and omission choices in both groups of rats. These findings suggest that impulsive decision-making is associated with a reduction in D3 receptor expression in the NAc. Selective D3 receptor agonists, but not antagonists, may hold therapeutic potentials for mitigating impulsivity in high-impulsive subjects.
Collapse
Affiliation(s)
- Hui Shen
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zilu Ma
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Emma Hans
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Ying Duan
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Yurim C Chae
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Francisco O Battiti
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Yavuz E, Rodrigues R, Pascual Sanchez A, Lingford-Hughes A, Di Simplicio M. Reward processing in young people with self-harm behaviour. J Psychiatr Res 2024; 180:68-78. [PMID: 39383712 DOI: 10.1016/j.jpsychires.2024.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/21/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
Twenty percent of young people report a lifetime presence of self-harm (SH) behaviour, associated with negative health and functional outcomes. Understanding the underlying cognitive mechanisms is needed to develop targeted early interventions. Reward processing biases may underlie SH, aligning with accounts of the behaviour acquiring "addictive" characteristics. However, the specific nature of such biases remains unclear, particularly its relationship with negative affect (NA) that frequently triggers SH. In Study 1, we compared young people (aged 16-25) with SH to a group with NA but no SH history and a healthy control group on performance of a novel Incentive Delay Task (IDT), with SH-related (SH trials), positive social (social trials) or monetary images (money trials) as stimuli. In Study 2, a different sample of SH and HC participants completed the same IDT following NA induction via an online Trier Social Stress Test. For both studies, we hypothesised faster and more correct responses in the SH group than control groups on SH trials. Contradicting our hypothesis, there were no significant between-group differences in IDT performance on SH, social and money trials in either study. Certain SH characteristics (positive reinforcement, SH mental imagery, urge) were significantly correlated with better performance on SH trials in SH participants. Thus, broadly SH behaviour may not be underpinned by motivational biases towards SH-related cues or naturalistic rewards. Future studies should clarify whether incentivisation of SH-related cues instead explains individual differences in SH behaviour and its relation with treatment and prognosis.
Collapse
Affiliation(s)
- Emre Yavuz
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, UK; Institute of Behavioural Neuroscience, Department of Experimental Psychology, Division of Psychology and Language Sciences, University College London, London, UK
| | - Rachel Rodrigues
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, UK
| | - Ana Pascual Sanchez
- Child and Adolescent Mental Health Service (CAMHS) Enhanced Treatment Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Anne Lingford-Hughes
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK
| | - Martina Di Simplicio
- Division of Psychiatry, Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
4
|
Liu Z, Reiner R, Loewenstein Y, Lottem E. Value modulation of self-defeating impulsivity. Biol Psychiatry 2024:S0006-3223(24)01622-6. [PMID: 39349156 DOI: 10.1016/j.biopsych.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Impulse control is a critical aspect of cognitive functioning. Intuitively, whether an action is executed prematurely depends on its associated reward, yet the link between value and impulsivity remains poorly understood. Three frameworks for impulsivity offer contrasting views: impulsive behavior may be valuable because it is associated with hidden internal reward (e.g., reduction of mental effort). Alternatively, it can emerge from exploration, which is disadvantageous in the short term, but can yield long-term benefits. Finally, impulsivity may reflect Pavlovian bias, an inherent tendency that occurs even when its outcome is negative. METHODS To test these hypotheses, we trained seventeen male mice to withhold licking while anticipating variable rewards. We then measured and optogenetically manipulated dopamine release in the ventral striatum. RESULTS We found that higher reward magnitudes correlated with increased impulsivity. This behavior was well explained by a Pavlovian-bias model. Furthermore, we observed negative dopamine signals during premature licking, suggesting that in this task, impulsivity is not merely an unsuccessful attempt at obtaining a reward. Rather, it is a failure to overcome the urge to act prematurely despite knowledge of the negative consequences of such impulsive action. CONCLUSION Our findings underscore the integral role value plays in regulating impulsivity and suggest that the dopaminergic system influences impulsivity through the mediation of value learning.
Collapse
Affiliation(s)
- Zhe Liu
- The Edmond and Lily Safra Center for Brain Sciences
| | | | - Yonatan Loewenstein
- The Edmond and Lily Safra Center for Brain Sciences; The Alexander Silberman Institute of Life Sciences, Dept. of Cognitive and Brain Sciences and The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Lottem
- The Edmond and Lily Safra Center for Brain Sciences.
| |
Collapse
|
5
|
Azocar VH, Petersson P, Fuentes R, Fuentealba JA. Differential phase-amplitude coupling in nucleus accumbens and orbitofrontal cortex reflects decision-making during a delay discounting task. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111064. [PMID: 38917880 DOI: 10.1016/j.pnpbp.2024.111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND The impulsive choice is characterized by the preference for a small immediate reward over a bigger delayed one. The mechanisms underlying impulsive choices are linked to the activity in the Nucleus Accumbens (NAc), the orbitofrontal cortex (OFC), and the dorsolateral striatum (DLS). While the study of functional connectivity between brain areas has been key to understanding a variety of cognitive processes, it remains unclear whether functional connectivity differentiates impulsive-control decisions. METHODS To study the functional connectivity both between and within NAc, OFC, and DLS during a delay discounting task, we concurrently recorded local field potential in NAc, OFC, and DLS in rats. We then quantified the degree of phase-amplitude coupling (PAC), coherence, and Granger Causality between oscillatory activities in animals exhibiting either a high (HI) or low (LI) tendency for impulsive choices. RESULTS Our results showed a differential pattern of PAC during decision-making in OFC and NAc, but not in DLS. While theta-gamma PAC in OFC was associated with self-control decisions, a higher delta-gamma PAC in both OFC and NAc biased decisions toward impulsive choices in both HI and LI groups. Furthermore, during the reward event, Granger Causality analysis indicated a stronger NAc➔OFC gamma contribution in the HI group, while the LI group showed a higher OFC➔NAc gamma contribution. CONCLUSIONS The overactivity in NAc during reward in the HI group suggests that exacerbated contribution of NAcCore can lead to an overvaluation of reward that biases the behavior toward the impulsive choice.
Collapse
Affiliation(s)
- V H Azocar
- School of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile; Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - P Petersson
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Group for Integrative Neurophysiology and Neurotechnology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - R Fuentes
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - J A Fuentealba
- School of Pharmacy and Interdisciplinary Center of Neuroscience, Faculty of Chemistry and Pharmacy, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
6
|
Liu Y(A, Nong Y, Feng J, Li G, Sajda P, Li Y, Wang Q. Phase synchrony between prefrontal noradrenergic and cholinergic signals indexes inhibitory control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594562. [PMID: 38798371 PMCID: PMC11118516 DOI: 10.1101/2024.05.17.594562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Inhibitory control is a critical executive function that allows animals to suppress their impulsive behavior in order to achieve certain goals or avoid punishment. We investigated norepinephrine (NE) and acetylcholine (ACh) dynamics and population neuronal activity in the prefrontal cortex during inhibitory control. Using fluorescent sensors to measure extracellular levels of NE and ACh, we simultaneously recorded the dynamics of prefrontal NE and ACh in mice performing an inhibitory control task. The prefrontal NE and ACh signals exhibited strong coherence at 0.4-0.8 Hz. Chemogenetic inhibition of locus coeruleus (LC) neurons that project to the basal forebrain region reduced inhibitory control performance to chance levels. However, this manipulation did not diminish the difference in NE/ACh signals between successful and failed trials; instead, it abolished the difference in NE-ACh phase synchrony between the successful and failed trials, indicating that NE-ACh phase synchrony is a task-relevant neuromodulatory feature. Chemogenetic inhibition of cholinergic neurons that project to the LC region did not impair the inhibitory control performance, nor did it abolish the difference in NE-ACh phase synchrony between successful or failed trials, further confirming the relevance of NE-ACh phase synchrony to inhibitory control. To understand the possible effect of NE-ACh synchrony on prefrontal population activity, we employed Neuropixels to record from the prefrontal cortex with and without inhibiting LC neurons that project to the basal forebrain during inhibitory control. The LC inhibition reduced the number of prefrontal neurons encoding inhibitory control. Demixed principal component analysis (dPCA) further revealed that population firing patterns representing inhibitory control were impaired by the LC inhibition. Disparities in NE-ACh phase synchrony relevant to inhibitory control occurred only in the prefrontal cortex, but not in the parietal cortex, somatosensory cortex, and the somatosensory thalamus. Taken together, these findings suggest that the LC modulates inhibitory control through its collective effect with cholinergic systems on population activity in the prefrontal cortex. Our results further revealed that NE-ACh phase synchrony is a critical neuromodulatory feature with important implications for cognitive control.
Collapse
Affiliation(s)
- Yuxiang (Andy) Liu
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yuhan Nong
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Paul Sajda
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences Peking University
- PKU-IDG/McGovern Institute for Brain Research, PR China
| | - Qi Wang
- Department of Biomedical Engineering Columbia University ET 351, 500 W. 120 Street, New York, NY 10027
| |
Collapse
|
7
|
Luján MÁ, Young-Morrison R, Aroni S, Katona I, Melis M, Cheer J. Dynamic Overrepresentation of Accumbal Cues in Food- and Opioid-Seeking Rats after Prenatal THC Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592839. [PMID: 38766015 PMCID: PMC11100737 DOI: 10.1101/2024.05.06.592839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The increasing prevalence of cannabis use during pregnancy has raised significant medical concerns, primarily related to the presence of Δ9-tetrahydrocannabinol (THC), which readily crosses the placenta and impacts fetal brain development. Previous research has identified midbrain dopaminergic neuronal alterations related to maternal THC consumption. However, the enduring consequences that prenatal cannabis exposure (PCE) has on striatum-based processing during voluntary reward pursuit have not been specifically determined. Here, we characterize PCE rats during food (palatable pellets) or opioid (remifentanyl)-maintained reward seeking. We find that the supra motivational phenotype of PCE rats is independent of value-based processing and is instead related to augmented reinforcing efficiency of opioid rewards. Our findings reveal that in utero THC exposure leads to increased cue-evoked dopamine release responses and an overrepresentation of cue-aligned, effort-driven striatal patterns of encoding. Recapitulating findings in humans, drug-related neurobiological adaptations of PCE were more pronounced in males, who similarly showed increased vulnerability for relapse. Collectively, these findings indicate that prenatal THC exposure in male rats engenders a pronounced neurodevelopmental susceptibility to addiction-like disorders later in life.
Collapse
|
8
|
Cowan RL, Davis T, Kundu B, Rahimpour S, Rolston JD, Smith EH. More widespread and rigid neuronal representation of reward expectation underlies impulsive choices. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.11.588637. [PMID: 38645037 PMCID: PMC11030340 DOI: 10.1101/2024.04.11.588637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Impulsive choices prioritize smaller, more immediate rewards over larger, delayed, or potentially uncertain rewards. Impulsive choices are a critical aspect of substance use disorders and maladaptive decision-making across the lifespan. Here, we sought to understand the neuronal underpinnings of expected reward and risk estimation on a trial-by-trial basis during impulsive choices. To do so, we acquired electrical recordings from the human brain while participants carried out a risky decision-making task designed to measure choice impulsivity. Behaviorally, we found a reward-accuracy tradeoff, whereby more impulsive choosers were more accurate at the task, opting for a more immediate reward while compromising overall task performance. We then examined how neuronal populations across frontal, temporal, and limbic brain regions parametrically encoded reinforcement learning model variables, namely reward and risk expectation and surprise, across trials. We found more widespread representations of reward value expectation and prediction error in more impulsive choosers, whereas less impulsive choosers preferentially represented risk expectation. A regional analysis of reward and risk encoding highlighted the anterior cingulate cortex for value expectation, the anterior insula for risk expectation and surprise, and distinct regional encoding between impulsivity groups. Beyond describing trial-by-trial population neuronal representations of reward and risk variables, these results suggest impaired inhibitory control and model-free learning underpinnings of impulsive choice. These findings shed light on neural processes underlying reinforced learning and decision-making in uncertain environments and how these processes may function in psychiatric disorders.
Collapse
Affiliation(s)
- Rhiannon L Cowan
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Tyler Davis
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Bornali Kundu
- Department of Neurosurgery, University of Missouri, Columbia, MO 65212, USA
| | - Shervin Rahimpour
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| | - John D Rolston
- Department of Neurosurgery, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
9
|
Mendes AJ, Galdo-Álvarez S, Lema A, Carvalho S, Leite J. Transcranial Direct Current Stimulation Decreases P3 Amplitude and Inherent Delta Activity during a Waiting Impulsivity Paradigm: Crossover Study. Brain Sci 2024; 14:168. [PMID: 38391742 PMCID: PMC10887229 DOI: 10.3390/brainsci14020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The inability to wait for a target before initiating an action (i.e., waiting impulsivity) is one of the main features of addictive behaviors. Current interventions for addiction, such as transcranial Direct Current Stimulation (tDCS), have been suggested to improve this inability. Nonetheless, the effects of tDCS on waiting impulsivity and underlying electrophysiological (EEG) markers are still not clear. Therefore, this study aimed to evaluate the effects of neuromodulation over the right inferior frontal gyrus (rIFG) on the behavior and EEG markers of reward anticipation (i.e., cue and target-P3 and underlying delta/theta power) during a premature responding task. For that, forty healthy subjects participated in two experimental sessions, where they received active and sham tDCS over the rIFG combined with EEG recording during the task. To evaluate transfer effects, participants also performed two control tasks to assess delay discounting and motor inhibition. The active tDCS decreased the cue-P3 and target-P3 amplitudes, as well as delta power during target-P3. While no tDCS effects were found for motor inhibition, active tDCS increased the discounting of future rewards when compared to sham. These findings suggest a tDCS-induced modulation of the P3 component and underlying oscillatory activity during waiting impulsivity and the discounting of future rewards.
Collapse
Affiliation(s)
- Augusto J Mendes
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4704-553 Braga, Portugal
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, 1205 Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Santiago Galdo-Álvarez
- Laboratorio de Neurociencia Cognitiva, Departamento de Psicoloxía Clínica e Psicobioloxía, Facultade de Psicoloxía, Universidade de Santiago de Compostela, 1205 Galicia, Spain
| | - Alberto Lema
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4704-553 Braga, Portugal
| | - Sandra Carvalho
- Department of Education and Psychology, William James Center for Research (WJCR), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- CINTESIS@RISE, Center for Health Technology and Services Research at the Associate Laboratory RISE-Health Research Network, Department of Education and Psychology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge Leite
- CINTESIS@RISE, CINTESIS.UPT, Portucalense University, 4200-072 Porto, Portugal
| |
Collapse
|
10
|
Goikolea-Vives A, Fernandes C, Thomas MSC, Thornton C, Stolp HB. Sex-specific behavioural deficits in adulthood following acute activation of the GABAA receptor in the neonatal mouse. Dev Neurosci 2024:000536641. [PMID: 38325353 DOI: 10.1159/000536641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION Sex differences exist in the prevalence of neurodevelopmental disorders (NDDs). Part of the aetiology of NDDs has been proposed to be alterations in the balance between excitatory and inhibitory neurotransmission, leading to the question of whether males and females respond differently to altered neurotransmitter balance. We investigated whether pharmacological alteration of GABAA signalling in early development results in sex-dependent changes in adult behaviours associated with NDDs. METHODS Male and female C57BL/6J mice received intraperitoneal injections of 0.5mg/kg muscimol or saline on postnatal days (P) 3-5 and were subjected to behavioural testing, specifically open field, light dark box, marble burying, sucralose preference, social interaction and olfactory habituation/dishabituation tests between P60-90. RESULTS Early postnatal administration of muscimol resulted in reduced anxiety in the light dark box test in both male and female adult mice. Muscimol reduced sucralose preference in males, but not females, whereas female mice showed reduced social behaviours. Regional alterations in cortical thickness were observed in the weeks following GABAA receptor activation, pointing to an evolving structural difference in the brain underlying adult behaviour. CONCLUSIONS We conclude that activation of the GABAA receptor in the first week of life resulted in long-lasting changes in a range of behaviours in adulthood following altered neurodevelopment. Sex of the individual affected the nature and severity of these abnormalities, explaining part of the varied pathophysiology and neurodevelopmental diagnosis that derive from excitatory/inhibitory imbalance.
Collapse
|
11
|
White E, Dalley JW. Brain mechanisms of temporal processing in impulsivity: Relevance to attention-deficit hyperactivity disorder. Brain Neurosci Adv 2024; 8:23982128241272234. [PMID: 39148691 PMCID: PMC11325328 DOI: 10.1177/23982128241272234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 08/17/2024] Open
Abstract
In this article, we critique the hypothesis that different varieties of impulsivity, including impulsiveness present in attention-deficit hyperactivity disorder, encompass an accelerated perception of time. This conceptualisation provides insights into how individuals with attention-deficit hyperactivity disorder have the capacity to maximise cognitive capabilities by more closely aligning themselves with appropriate environmental contexts (e.g. fast paced tasks that prevent boredom). We discuss the evidence for altered time perception in attention-deficit hyperactivity disorder alongside putative underlying neurobiological substrates, including a distributed brain network mediating time perception over multiple timescales. In particular, we explore the importance of temporal representations across the brain for time perception and symptom manifestation in attention-deficit hyperactivity disorder, including a prominent role of the hippocampus and other temporal lobe regions. We also reflect on how abnormalities in the perception of time may be relevant for understanding the aetiology of attention-deficit hyperactivity disorder and mechanism of action of existing medications.
Collapse
Affiliation(s)
- Eleanor White
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, Herschel Smith Building for Brain and Mind Sciences, Cambridge, UK
| |
Collapse
|
12
|
Zhang Y, Zhong X, Shao Y, Gong J. Insula Connectivity Abnormalities Predict Impulsivity in Chronic Heroin Use Disorder: A Cross-Sectional Resting-State fMRI Study. Brain Sci 2023; 13:1508. [PMID: 38002468 PMCID: PMC10669645 DOI: 10.3390/brainsci13111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Patients with heroin use disorder (HUD) often exhibit trait impulsivity, which may be an important factor in and a good predictor of addiction. However, the factor structure of HUD trait impulsivity (motor, attentional, and nonplanning) and its neural correlates are not yet known. A total of 24 male volunteers with HUD and 16 healthy control volunteers were recruited for this cross-sectional study. The Barratt Impulsiveness Scale (BIS-11) and resting-state functional magnetic resonance imaging (rs-fMRI) were employed using the insula as a seed point in an effort to understand the association between trait impulsivity and its intrinsic factors and functional connectivity (FC) between the insula and the whole brain. The HUD group in this study exhibited higher total trait impulsivity scores, motor impulsivity, and nonplanning impulsivity than the control group. Changes in FC between the right insula and the lateral occipital cortex and the right angular gyrus were significantly positively correlated with total trait impulsivity scores, motor impulsivity, and nonplanning impulsivity, whereas changes in the FC between the left insula and the left superior frontal gyrus and left frontopolar brain region were significantly negatively correlated with trait impulsivity. Thus, the insula may serve as an important biomarker for identifying trait impulsivity and its intrinsic factor structure in patients with HUDs.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Aviation Psychology, Air Force Medical Center, People’s Liberation Army (PLA), Beijing 100142, China;
| | - Xiao Zhong
- School of Psychology, Beijing Sport University, Beijing 100084, China;
| | - Yongcong Shao
- School of Psychology, Beijing Sport University, Beijing 100084, China;
| | - Jingjing Gong
- School of Psychology, Beijing Sport University, Beijing 100084, China;
- Department of Medical Psychology, Second Medical Center, PLA General Hospital, Beijing 100853, China
| |
Collapse
|
13
|
Clay JM, Baker KA, Mezabrovschi RD, Berti G, Shields GS, Slavich GM, Stafford LD, Parker MO. Mediated and moderated associations between cumulative lifetime stressor exposure, emotional dysregulation, impulsivity, and lifetime alcohol use: A cross-sectional scoping study of UK drinkers. J Psychiatr Res 2023; 164:140-149. [PMID: 37352810 PMCID: PMC10754206 DOI: 10.1016/j.jpsychires.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Stress, trait impulsivity, and emotional dysregulation are independent predictors of alcohol use and misuse, but little is known about the potential mechanisms that link these risk factors together. To address this issue, we carried out an exploratory cross-sectional study, on UK-based participants. Our preregistered, hypothesised theoretical framework was that emotional dysregulation mediates the association between cumulative lifetime stressor exposure and lifetime alcohol use. We also hypothesised that heightened impulsivity would strengthen these relations. As hypothesised, emotional dysregulation fully mediated the relation between cumulative lifetime stressor exposure and lifetime alcohol use. Several facets of impulsivity moderated these associations. For example, as levels of negative urgency increased, the associations between cumulative lifetime stressor exposure and emotional dysregulation, emotional dysregulation and lifetime alcohol use, and lifetime stress exposure and lifetime alcohol use, via emotional dysregulation, strengthened. These preliminary findings propose a theoretically framed model which integrates several prominent risk-factors for alcohol misuse, extending prior research and generating interesting and novel lines of enquiry for longitudinal and cross-cultural analyses. The findings also highlight the potential clinical utility of screening for lifetime stress exposure while tailoring personalised treatment interventions.
Collapse
Affiliation(s)
- James M Clay
- Department of Psychology, University of Portsmouth, UK; Canadian Institute for Substance Use Research, University of Victoria, Victoria, Canada.
| | - Kiera A Baker
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | | | - Giacomo Berti
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Grant S Shields
- Department of Psychological Science, University of Arkansas, Fayetteville, USA
| | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, USA
| | | | - Matthew O Parker
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK; Surrey Sleep Research Centre, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
14
|
Yang TH, Liao RM, Su CI, Chien CY, Ng CT, Yen NS. Interval timing relative to response inhibition in the differential reinforcement of low-rate responding in normally developing young adults. Sci Rep 2023; 13:11977. [PMID: 37488262 PMCID: PMC10366166 DOI: 10.1038/s41598-023-39160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
With recent proposal suggesting the multifaceted nature of impulsivity, researchers have been intrigued by the question of whether the impulsive behaviour measured in the traditionally psychological paradigms is unitary. One such paradigm, the differential reinforcement of low-rate responding (DRL), has been used to assess response inhibition, but its underlying mechanism has still been debated. In present research, we examined and differentiated the effects of both response inhibition and interval timing on a multisession DRL-10 s (DRL-10 s) in a large sample of normally developing young adults, as well as with three other measures including the stop-signal reaction task (SSRT), time production task-10 s (TPT-10 s), and the Barrett impulsivity scale-11 (BIS-11). The results showed that behavioural changes existed in DRL. As the task sessions progressed, there was an increase in both reinforcement probability and peak time, but a decrease in burst responses. Most importantly, both principal component analysis and generalized multilevel modeling yielded consistent results that as the task progressed, there was an increasing involvement of the TPT in the late sessions of DRL. However, none of the effect of SSRT was found. In sum, the differential degrees of involvement of the timing process, relative to response inhibition, were observed in DRL.
Collapse
Grants
- MOST 107-2420-H-004-019 Ministry of Science and Technology, Taiwan
- MOST 108-2420-H-004-013 Ministry of Science and Technology, Taiwan
- MOST 109-2420-H-004-021-. Ministry of Science and Technology, Taiwan
- MOST 107-2420-H-004-019 Ministry of Science and Technology, Taiwan
- MOST 108-2420-H-004-013 Ministry of Science and Technology, Taiwan
- MOST 109-2420-H-004-021-. Ministry of Science and Technology, Taiwan
- MOST 107-2420-H-004-019 Ministry of Science and Technology, Taiwan
- MOST 108-2420-H-004-013 Ministry of Science and Technology, Taiwan
- MOST 109-2420-H-004-021-. Ministry of Science and Technology, Taiwan
- MOST 107-2420-H-004-019 Ministry of Science and Technology, Taiwan
- MOST 108-2420-H-004-013 Ministry of Science and Technology, Taiwan
- MOST 109-2420-H-004-021-. Ministry of Science and Technology, Taiwan
- MOST 107-2420-H-004-019 Ministry of Science and Technology, Taiwan
- MOST 108-2420-H-004-013 Ministry of Science and Technology, Taiwan
- MOST 109-2420-H-004-021-. Ministry of Science and Technology, Taiwan
- MOST 107-2420-H-004-019 Ministry of Science and Technology, Taiwan
- MOST 108-2420-H-004-013 Ministry of Science and Technology, Taiwan
- MOST 109-2420-H-004-021-. Ministry of Science and Technology, Taiwan
Collapse
Affiliation(s)
- Tsung-Han Yang
- Department of Psychology, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
| | - Ruey-Ming Liao
- Department of Psychology, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
- Institute of Neuroscience, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
- Research Center for Mind, Brain, and Learning, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
- Department of Psychology, Asia University, No. 500, Lioufeng Rd., Taichung, 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Xueshi Rd., Taichung, 404333, Taiwan
| | - Chung-I Su
- Research Center for Mind, Brain, and Learning, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
| | - Chun-Yi Chien
- Department of Psychology, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
| | - Chan-Tat Ng
- Department of Psychology, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan
| | - Nai-Shing Yen
- Department of Psychology, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan.
- Research Center for Mind, Brain, and Learning, National Chengchi University, No. 64, Sec. 2, Zhih-Nan Rd., Taipei, 116011, Taiwan.
| |
Collapse
|
15
|
Terem A, Fatal Y, Peretz-Rivlin N, Turm H, Koren SS, Kitsberg D, Ashwal-Fluss R, Mukherjee D, Habib N, Citri A. Claustral neurons projecting to frontal cortex restrict opioid consumption. Curr Biol 2023:S0960-9822(23)00737-6. [PMID: 37379841 DOI: 10.1016/j.cub.2023.05.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
The synthetic opioid fentanyl is a major contributor to the current opioid addiction crisis. We report that claustral neurons projecting to the frontal cortex limit oral fentanyl self-administration in mice. We found that fentanyl transcriptionally activates frontal-projecting claustrum neurons. These neurons also exhibit a unique suppression of Ca2+ activity upon initiation of bouts of fentanyl consumption. Optogenetic stimulation of frontal-projecting claustral neurons, intervening in this suppression, decreased bouts of fentanyl consumption. In contrast, constitutive inhibition of frontal-projecting claustral neurons in the context of a novel, group-housed self-administration procedure increased fentanyl bout consumption. This same manipulation also sensitized conditioned-place preference for fentanyl and enhanced the representation of fentanyl experience in the frontal cortex. Together, our results indicate that claustrum neurons exert inhibitory control over frontal cortical neurons to restrict oral fentanyl intake. Upregulation of activity in the claustro-frontal projection may be a promising strategy for reducing human opioid addiction.
Collapse
Affiliation(s)
- Anna Terem
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Yonatan Fatal
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Noa Peretz-Rivlin
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hagit Turm
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Shahar Shohat Koren
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Danny Kitsberg
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Reut Ashwal-Fluss
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Diptendu Mukherjee
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Naomi Habib
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Ami Citri
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; Institute of Life Sciences, Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; Program in Child and Brain Development, Canadian Institute for Advanced Research, MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
16
|
Arrondeau C, Urueña-Méndez G, Bellés L, Marchessaux F, Goutaudier R, Ginovart N. Motor impulsivity but not risk-related impulsive choice is associated to drug intake and drug-primed relapse. Front Behav Neurosci 2023; 17:1200392. [PMID: 37333480 PMCID: PMC10275384 DOI: 10.3389/fnbeh.2023.1200392] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Motor impulsivity and risk-related impulsive choice have been proposed as vulnerability factors for drug abuse, due to their high prevalence in drug abusers. However, how these two facets of impulsivity are associated to drug abuse remains unclear. Here, we investigated the predictive value of both motor impulsivity and risk-related impulsive choice on characteristics of drug abuse including initiation and maintenance of drug use, motivation for the drug, extinction of drug-seeking behavior following drug discontinuation and, finally, propensity to relapse. Methods We used the Roman High- (RHA) and Low- Avoidance (RLA) rat lines, which display innate phenotypical differences in motor impulsivity, risk-related impulsive choice, and propensity to self-administer drugs. Individual levels of motor impulsivity and risk-related impulsive choice were measured using the rat Gambling task. Then, rats were allowed to self-administer cocaine (0.3 mg/kg/infusion; 14 days) to evaluate acquisition and maintenance of cocaine self-administration, after which motivation for cocaine was assessed using a progressive ratio schedule of reinforcement. Subsequently, rats were tested for their resistance to extinction, followed by cue-induced and drug-primed reinstatement sessions to evaluate relapse. Finally, we evaluated the effect of the dopamine stabilizer aripiprazole on reinstatement of drug-seeking behaviors. Results We found that motor impulsivity and risk-related impulsive choice were positively correlated at baseline. Furthermore, innate high levels of motor impulsivity were associated with higher drug use and increased vulnerability to cocaine-primed reinstatement of drug-seeking. However, no relationships were observed between motor impulsivity and the motivation for the drug, extinction or cue-induced reinstatement of drug-seeking. High levels of risk-related impulsive choice were not associated to any aspects of drug abuse measured in our study. Additionally, aripiprazole similarly blocked cocaine-primed reinstatement of drug-seeking in both high- and low-impulsive animals, suggesting that aripiprazole acts as a D2/3R antagonist to prevent relapse independently of the levels of impulsivity and propensity to self-administer drugs. Discussion Altogether, our study highlights motor impulsivity as an important predictive factor for drug abuse and drug-primed relapse. On the other hand, the involvement of risk-related impulsive choice as a risk factor for drug abuse appears to be limited.
Collapse
Affiliation(s)
- Chloé Arrondeau
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ginna Urueña-Méndez
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lidia Bellés
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florian Marchessaux
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Raphaël Goutaudier
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nathalie Ginovart
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Fletcher PJ, Rahbarnia A, Li Z, Ji X, Higgins GA, Funk D, Lê AD. Effects of 5-HT 2C receptor stimulation in male mice on behaviour and Fos expression: feeding, reward and impulsivity. Behav Brain Res 2023; 447:114438. [PMID: 37059187 DOI: 10.1016/j.bbr.2023.114438] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Serotonin modulates many motivated behaviours via multiple receptor subtypes. Agonists at 5-HT2C receptors have potential for treating behavioural problems associated with obesity and drug use. In this work we examined the impact of the 5-HT2C receptor agonist lorcaserin on several motivated behaviours related to feeding, reward and waiting impulsivity, and on neuronal activation in key brain areas mediating those behaviours. In male C57BL/6J mice effects of lorcaserin (0.2, 1 and 5mg/kg) were examined on feeding, and on operant responding for a palatable reward. Feeding was reduced only at 5mg/kg, whereas operant responding was reduced at 1mg/kg. At a much lower dose range lorcaserin 0.05-0.2mg/kg also reduced impulsive behaviour measured as premature responding in the 5-choice serial reaction time (5-CSRT) test, without affecting attention or ability to perform the task. Lorcaserin induced Fos expression in brain regions related to feeding (paraventricular nucleus and arcuate nucleus), reward (ventral tegmental area), and impulsivity (medial prefrontal cortex, VTA) although these effects did not show the same differential sensitivity to lorcaserin as the behavioural measures. These results indicate a broad profile of action of 5-HT2C receptor stimulation on brain circuitry and on motivated behaviours, but with clear evidence of differential sensitivity across behavioural domains. This is exemplified by that fact that impulsive behaviour was reduced at a much lower dose range than was feeding behaviour. Along with previous work, and some clinical observations, this work supports the idea that 5-HT2C agonists may be useful for behavioural problems associated with impulsivity.
Collapse
Affiliation(s)
- Paul J Fletcher
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada.
| | - Arya Rahbarnia
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Zhaoxia Li
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Xiaodong Ji
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Guy A Higgins
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; InterVivo Solutions Inc, Fergus, Ontario, Canada
| | - Douglas Funk
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - A D Lê
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Bellés L, Arrondeau C, Urueña-Méndez G, Ginovart N. Concurrent measures of impulsive action and choice are partially related and differentially modulated by dopamine D 1- and D 2-like receptors in a rat model of impulsivity. Pharmacol Biochem Behav 2023; 222:173508. [PMID: 36473517 DOI: 10.1016/j.pbb.2022.173508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Impulsivity is a multidimensional construct, but the relationships between its constructs and their respective underlying dopaminergic underpinnings in the general population remain unclear. A cohort of Roman high- (RHA) and low- (RLA) avoidance rats were tested for impulsive action and risky decision-making in the rat gambling task, and then for delay discounting in the delay-discounting task to concurrently measure the relationships among the three constructs of impulsivity using a within-subject design. Then, we evaluated the effects of dopaminergic drugs on the three constructs of impulsivity, considering innate differences in impulsive behaviors at baseline. Risky decision-making and delay-discounting were positively correlated, indicating that both constructs of impulsive choice are related. Impulsive action positively correlated with risky decision-making but not with delay discounting, suggesting partial overlap between impulsive action and impulsive choice. RHAs showed a more impulsive phenotype in the three constructs of impulsivity compared to RLAs, demonstrating the comorbid nature of impulsivity in a population of rats. Amphetamine increased impulsive action and had no effect on risky decision-making regardless of baseline levels of impulsivity, but it decreased delay discounting only in high impulsive RHAs. In contrast, while D1R and D3R agonism as well as D2/3R partial agonism decreased impulsive action regardless of baseline levels of impulsivity, D2/3R agonism decreased impulsive action exclusively in high impulsive RHAs. Irrespective of baseline levels of impulsivity, risky decision-making was increased by D1R and D2/3R agonism but not by D3R agonism or D2/3R partial agonism. Finally, while D1R and D3R agonism, D2/3R partial agonism and D2R blockade increased delay discounting irrespective of baseline levels of impulsivity, D2/3R agonism decreased it in low impulsive RLAs only. These findings indicate that the acute effects of dopamine drugs were partially overlapping across dimensions of impulsivity, and that only D2/3R agonism showed baseline-dependent effects on impulsive action and impulsive choice.
Collapse
Affiliation(s)
- Lidia Bellés
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Chloé Arrondeau
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Ginna Urueña-Méndez
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| | - Nathalie Ginovart
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland; Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland.
| |
Collapse
|
19
|
Clay JM, Stafford LD, Parker MO. Associations Between Self-reported Inhibitory Control, Stress, and Alcohol (Mis)use During the First Wave of the COVID-19 Pandemic in the UK: a National Cross-sectional Study Utilising Data From Four Birth Cohorts. Int J Ment Health Addict 2023; 21:350-371. [PMID: 34366730 PMCID: PMC8330475 DOI: 10.1007/s11469-021-00599-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
We explored (1) self-reported changes in alcohol use during the pandemic in the UK and (2) the extent to which self-reported inhibitory control and/or stress were associated with any change in drinking behaviour. We used a UK-based cross-sectional online survey administered to four nationally representative birth cohorts (N = 13,453). A significant minority of 30- (29.08%) and 50-year-olds (26.67%) reported drinking more, and between 32.23 and 45.02% of respondents reported feeling more stressed depending on the cohort. Stress was associated with hazardous drinking among 30-year-olds (OR = 3.77, 95% CI 1.15 to 12.28). Impatience was associated with both increased alcohol use (1.14, 95% CI 1.06, 1.24) and hazardous drinking (1.20, 95% CI 1.05, 1.38) among 19-year-olds. Risk-taking was associated with hazardous drinking for 30-year-olds (OR = 1.18, 95% CI 1.05, 1.32). These data highlight concerns for those at risk of alcohol misuse and alcohol-related harm during COVID-19 lockdowns. Supplementary Information The online version contains supplementary material available at 10.1007/s11469-021-00599-8.
Collapse
Affiliation(s)
- James M. Clay
- Department of Psychology, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY UK
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT UK
| | - Lorenzo D. Stafford
- Department of Psychology, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY UK
| | - Matthew O. Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT UK
| |
Collapse
|
20
|
Guzulaitis R, Godenzini L, Palmer LM. Neural basis of anticipation and premature impulsive action in the frontal cortex. Nat Neurosci 2022; 25:1683-1692. [PMID: 36376483 DOI: 10.1038/s41593-022-01198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Planning motor actions can improve behavioral performance; however, it can also lead to premature actions. Although the anterior lateral motor cortex (ALM) is known to be important for correct motor planning, it is currently unknown how it contributes to premature impulsive motor output. This was addressed using whole-cell voltage recordings from layer 2/3 pyramidal neurons within the ALM while mice performed a cued sensory association task. Here, a robust voltage response was evoked during the auditory cue, which was greater during incorrect premature behavior than during correct performance in the task. Optogenetically suppressing ALM during the cued sensory association task led to enhanced behavior, with fewer, and more delayed, premature responses and faster correct responses. Taken together, our findings extend the current known roles of the ALM, illustrating that ALM plays an important role in impulsive behavior by encoding and influencing premature motor output.
Collapse
Affiliation(s)
- Robertas Guzulaitis
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia. .,The Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Luca Godenzini
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Lucy Maree Palmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
The orphan receptor GPR88 controls impulsivity and is a risk factor for Attention-Deficit/Hyperactivity Disorder. Mol Psychiatry 2022; 27:4662-4672. [PMID: 36075963 PMCID: PMC9936886 DOI: 10.1038/s41380-022-01738-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/02/2023]
Abstract
The neural orphan G protein coupled receptor GPR88 is predominant in the striatum and cortex of both rodents and humans, and considered a potential target for brain disorders. Previous studies have shown multiple behavioral phenotypes in Gpr88 knockout mice, and human genetic studies have reported association with psychosis. Here we tested the possibility that GPR88 contributes to Attention Deficit Hyperactivity Disorder (ADHD). In the mouse, we tested Gpr88 knockout mice in three behavioral paradigms, best translatable between rodents and humans, and found higher motor impulsivity and reduced attention together with the reported hyperactivity. Atomoxetine, a typical ADHD drug, reduced impulsivity in mutant mice. Conditional Gpr88 knockout mice in either D1R-type or D2R-type medium spiny neurons revealed distinct implications of the two receptor populations in waiting and stopping impulsivity. Thus, animal data demonstrate that deficient GPR88 activity causally promotes ADHD-like behaviors, and identify circuit mechanisms underlying GPR88-regulated impulsivity. In humans, we performed a family-based genetic study including 567 nuclear families with DSM-IV diagnosis of ADHD. There was a minor association for SNP rs2036212 with diagnosis, treatment response and cognition. A stronger association was found for SNP rs2809817 upon patient stratification, suggesting that the T allele is a risk factor when prenatal stress is involved. Human data therefore identify GPR88 variants associated with the disease, and highlight a potential role of life trajectories to modulate GPR88 function. Overall, animal and human data concur to suggest that GPR88 signaling should be considered a key factor for diagnostic and treatment of ADHD.
Collapse
|
22
|
Diminished Inhibitory Control in Adolescents with Overweight and/or Substance Use: an ERP Study. Int J Ment Health Addict 2022. [DOI: 10.1007/s11469-022-00922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
23
|
Liley AE, Gabriel DBK, Simon NW. Lateral Orbitofrontal Cortex and Basolateral Amygdala Regulate Sensitivity to Delayed Punishment during Decision-making. eNeuro 2022; 9:ENEURO.0170-22.2022. [PMID: 36038251 PMCID: PMC9463980 DOI: 10.1523/eneuro.0170-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
In real-world decision-making scenarios, negative consequences do not always occur immediately after a choice. This delay between action and outcome drives the underestimation, or "delay discounting", of punishment. While the neural substrates underlying sensitivity to immediate punishment have been well-studied, there has been minimal investigation of delayed consequences. Here, we assessed the role of lateral orbitofrontal cortex (LOFC) and basolateral amygdala (BLA), two regions implicated in cost/benefit decision-making, in sensitivity to delayed vs immediate punishment. The delayed punishment decision-making task (DPDT) was used to measure delay discounting of punishment in rodents. During DPDT, rats choose between a small, single pellet reward and a large, three pellet reward accompanied by a mild foot shock. As the task progresses, the shock is preceded by a delay that systematically increases or decreases throughout the session. We observed that rats avoid choices associated with immediate punishment, then shift preference toward these options when punishment is delayed. LOFC inactivation did not influence choice of rewards with immediate punishment, but decreased choice of delayed punishment. We also observed that BLA inactivation reduced choice of delayed punishment for ascending but not descending delays. Inactivation of either brain region produced comparable effects on decision-making in males and females, but there were sex differences observed in omissions and latency to make a choice. In summary, both LOFC and BLA contribute to the delay discounting of punishment and may serve as promising therapeutic targets to improve sensitivity to delayed punishment during decision-making.Significance StatementNegative consequences occurring after a delay are often underestimated, which can lead to maladaptive decision-making. While sensitivity to immediate punishment during reward-seeking has been well-studied, the neural substrates underlying sensitivity to delayed punishment remain unclear. Here, we used the Delayed Punishment Decision-making Task to determine that lateral orbitofrontal cortex and basolateral amygdala both regulate the discounting of delayed punishment, suggesting that these regions may be potential targets to improve decision-making in psychopathology.
Collapse
Affiliation(s)
- Anna E Liley
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152
| | - Daniel B K Gabriel
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152
| | - Nicholas W Simon
- Department of Psychology, University of Memphis, Memphis, Tennessee 38152
| |
Collapse
|
24
|
Tisdall L, MacNiven KH, Padula CB, Leong JK, Knutson B. Brain tract structure predicts relapse to stimulant drug use. Proc Natl Acad Sci U S A 2022; 119:e2116703119. [PMID: 35727973 PMCID: PMC9245633 DOI: 10.1073/pnas.2116703119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Diffusion tractography allows identification and measurement of structural tracts in the human brain previously associated with motivated behavior in animal models. Recent findings indicate that the structural properties of a tract connecting the midbrain to nucleus accumbens (NAcc) are associated with a diagnosis of stimulant use disorder (SUD), but not relapse. In this preregistered study, we used diffusion tractography in a sample of patients treated for SUD (n = 60) to determine whether qualities of tracts projecting from medial prefrontal, anterior insular, and amygdalar cortices to NAcc might instead foreshadow relapse. As predicted, reduced diffusion metrics of a tract projecting from the right anterior insula to the NAcc were associated with subsequent relapse to stimulant use, but not with previous diagnosis. These findings highlight a structural target for predicting relapse to stimulant use and further suggest that distinct connections to the NAcc may confer risk for relapse versus diagnosis.
Collapse
Affiliation(s)
- Loreen Tisdall
- Center for Cognitive and Decision Sciences, University of Basel, 4055 Basel, Switzerland
- Department of Psychology, Stanford University, Stanford, CA 94305-2130
| | - Kelly H. MacNiven
- Department of Psychology, Stanford University, Stanford, CA 94305-2130
| | | | - Josiah K. Leong
- Department of Psychological Science, University of Arkansas, Fayetteville, AR 72701
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA 94305-2130
| |
Collapse
|
25
|
Zhang Y, Sun X, Dou C, Li X, Zhang L, Qin C. Distinct neuronal excitability alterations of medial prefrontal cortex in early-life neglect model of rats. Animal Model Exp Med 2022; 5:274-280. [PMID: 35748035 PMCID: PMC9240726 DOI: 10.1002/ame2.12252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 01/12/2023] Open
Abstract
OBJECT Early-life neglect has irreversible emotional effects on the central nervous system. In this work, we aimed to elucidate distinct functional neural changes in medial prefrontal cortex (mPFC) of model rats. METHODS Maternal separation with early weaning was used as a rat model of early-life neglect. The excitation of glutamatergic and GABAergic neurons in rat mPFC was recorded and analyzed by whole-cell patch clamp. RESULTS Glutamatergic and GABAergic neurons of mPFC were distinguished by typical electrophysiological properties. The excitation of mPFC glutamatergic neurons was significantly increased in male groups, while the excitation of mPFC GABAergic neurons was significant in both female and male groups, but mainly in terms of rest membrane potential and amplitude, respectively. CONCLUSIONS Glutamatergic and GABAergic neurons in medial prefrontal cortex showed different excitability changes in a rat model of early-life neglect, which can contribute to distinct mechanisms for emotional and cognitive manifestations.
Collapse
Affiliation(s)
- Yu Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Xiuping Sun
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Changsong Dou
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Xianglei Li
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Ling Zhang
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative MedicineInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS); Comparative Medicine CenterPeking Union Medical College (PUMC)BeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical DiseasesBeijingChina
- International Center for Technology and Innovation of animal modelBeijingChina
- Changping National laboratory (CPNL)BeijingChina
| |
Collapse
|
26
|
Sanchez EO, Bangasser DA. The effects of early life stress on impulsivity. Neurosci Biobehav Rev 2022; 137:104638. [PMID: 35341796 DOI: 10.1016/j.neubiorev.2022.104638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023]
Abstract
Elevated impulsivity is a symptom shared by various psychiatric disorders such as substance use disorder, bipolar disorder, and attention-deficit/hyperactivity disorder. However, impulsivity is not a unitary construct and impulsive behaviors fall into two subcategories: impulsive action and impulsive choice. Impulsive choice refers to the tendency to prefer immediate, small rewards over delayed, large rewards, whereas impulsive action involves difficulty inhibiting rash, premature, or mistimed behaviors. These behaviors are mediated by the mesocorticolimbic dopamine (DA) system, which consists of projections from the ventral tegmental area to the nucleus accumbens and prefrontal cortex. Early life stress (ELS) alters both impulsive choice and impulsive action in rodents. ELS also changes DA receptor expression, transmission, and activity within the mesocorticolimbic system. This review integrates the dopamine, impulsivity, and ELS literature to provide evidence that ELS alters impulsivity via inducing changes in the mesocorticolimbic DA system. Understanding how ELS affects brain circuits associated with impulsivity can help advance treatments aimed towards reducing impulsivity symptoms in a variety of psychiatric disorders.
Collapse
Affiliation(s)
- Evelyn Ordoñes Sanchez
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
27
|
Piszczek L, Constantinescu A, Kargl D, Lazovic J, Pekcec A, Nicholson JR, Haubensak W. Dissociation of impulsive traits by subthalamic metabotropic glutamate receptor 4. eLife 2022; 11:62123. [PMID: 34982027 PMCID: PMC8803315 DOI: 10.7554/elife.62123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Behavioral strategies require gating of premature responses to optimize outcomes. Several brain areas control impulsive actions, but the neuronal basis of natural variation in impulsivity between individuals remains largely unknown. Here, by combining a Go/No-Go behavioral assay with resting-state (rs) functional MRI in mice, we identified the subthalamic nucleus (STN), a known gate for motor control in the basal ganglia, as a major hotspot for trait impulsivity. In vivo recorded STN neural activity encoded impulsive action as a separable state from basic motor control, characterized by decoupled STN/substantia nigra pars reticulata (SNr) mesoscale networks. Optogenetic modulation of STN activity bidirectionally controlled impulsive behavior. Pharmacological and genetic manipulations showed that these impulsive actions are modulated by metabotropic glutamate receptor 4 (mGlu4) function in STN and its coupling to SNr in a behavioral trait-dependent manner, and independently of general motor function. In conclusion, STN circuitry multiplexes motor control and trait impulsivity, which are molecularly dissociated by mGlu4. This provides a potential mechanism for the genetic modulation of impulsive behavior, a clinically relevant predictor for developing psychiatric disorders associated with impulsivity.
Collapse
Affiliation(s)
- Lukasz Piszczek
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Andreea Constantinescu
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Dominic Kargl
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jelena Lazovic
- Preclinical Imaging Facility, Vienna BioCenter Core Facilities (VBCF), Vienna, Austria
| | - Anton Pekcec
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Janet R Nicholson
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Wulf Haubensak
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Azadi M, Moazen P, Wiskerke J, Semnanian S, Azizi H. Preconception paternal morphine exposure leads to an impulsive phenotype in male rat progeny. Psychopharmacology (Berl) 2021; 238:3435-3446. [PMID: 34427719 DOI: 10.1007/s00213-021-05962-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE Identifying the long-term neurocognitive implications of opioid addiction may further our understanding of the compulsive nature of this brain disorder. The aim of this study was to examine the effects of paternal adolescent opiate exposure on cognitive performance (visual attention, impulsivity, and compulsivity) in the next generation. METHODS Male Wistar rats received escalating doses of morphine (2.5-25 mg/kg, s.c.) or saline for 10 days during adolescence (P30-39). In adulthood (P70-80), these rats were allowed to mate with drug-naive females. Male offspring from morphine- and saline-exposed sires, once in adulthood, were trained and tested in the 5-choice serial reaction time test (5-CSRTT) to evaluate their cognitive abilities under baseline, drug-free conditions as well as following acute (1, 3, 5 mg/kg morphine) and subchronic morphine (5 mg/kg morphine for 5 days) treatment. Behavioral effects of the opioid receptor antagonist naloxone were also assessed. RESULTS Morphine-sired offspring exhibited delayed learning when the shortest stimulus duration (1 s) was introduced, i.e., when cognitive load was highest. These subjects also exhibited a reduced ability to exert inhibitory control, as reflected by increased premature and perseverative responding under drug-free baseline conditions in comparison to saline-sired rats. These impairments could not be reversed by administration of naloxone. Moreover, impulsive behavior was further enhanced in morphine-sired rats following acute and subchronic morphine treatment. CONCLUSION Paternal opiate exposure during adolescence was found to primarily impair inhibitory control in male progeny. These results further our understanding of the long-term costs and risk of opioid abuse, extending across generations.
Collapse
Affiliation(s)
- Maryam Azadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Parisa Moazen
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Joost Wiskerke
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Saeed Semnanian
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
29
|
Venniro M, Reverte I, Ramsey LA, Papastrat KM, D'Ottavio G, Milella MS, Li X, Grimm JW, Caprioli D. Factors modulating the incubation of drug and non-drug craving and their clinical implications. Neurosci Biobehav Rev 2021; 131:847-864. [PMID: 34597716 PMCID: PMC8931548 DOI: 10.1016/j.neubiorev.2021.09.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/28/2022]
Abstract
It was suggested in 1986 that cue-induced cocaine craving increases progressively during early abstinence and remains high during extended periods of time. Clinical evidence now supports this hypothesis and that this increase is not specific to cocaine but rather generalize across several drugs of abuse. Investigators have identified an analogous incubation phenomenon in rodents, in which time-dependent increases in cue-induced drug seeking are observed after abstinence from intravenous drug or palatable food self-administration. Incubation of craving is susceptible to variation in magnitude as a function of biological and/or the environmental circumstances surrounding the individual. During the last decade, the neurobiological correlates of the modulatory role of biological (sex, age, genetic factors) and environmental factors (environmental enrichment and physical exercise, sleep architecture, acute and chronic stress, abstinence reinforcement procedures) on incubation of drug craving has been investigated. In this review, we summarized the behavioral procedures adopted, the key underlying neurobiological correlates and clinical implications of these studies.
Collapse
Affiliation(s)
- Marco Venniro
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, USA.
| | - Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Leslie A Ramsey
- Behavioral Neuroscience Research Branch, Intramural Research Program, Baltimore NIDA, NIH, USA
| | - Kimberly M Papastrat
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, USA
| | - Ginevra D'Ottavio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Xuan Li
- Department of Psychology, University of Maryland College Park, College Park, USA.
| | - Jeffrey W Grimm
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, USA.
| | - Daniele Caprioli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| |
Collapse
|
30
|
Poisson CL, Engel L, Saunders BT. Dopamine Circuit Mechanisms of Addiction-Like Behaviors. Front Neural Circuits 2021; 15:752420. [PMID: 34858143 PMCID: PMC8631198 DOI: 10.3389/fncir.2021.752420] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Addiction is a complex disease that impacts millions of people around the world. Clinically, addiction is formalized as substance use disorder (SUD), with three primary symptom categories: exaggerated substance use, social or lifestyle impairment, and risky substance use. Considerable efforts have been made to model features of these criteria in non-human animal research subjects, for insight into the underlying neurobiological mechanisms. Here we review evidence from rodent models of SUD-inspired criteria, focusing on the role of the striatal dopamine system. We identify distinct mesostriatal and nigrostriatal dopamine circuit functions in behavioral outcomes that are relevant to addictions and SUDs. This work suggests that striatal dopamine is essential for not only positive symptom features of SUDs, such as elevated intake and craving, but also for impairments in decision making that underlie compulsive behavior, reduced sociality, and risk taking. Understanding the functional heterogeneity of the dopamine system and related networks can offer insight into this complex symptomatology and may lead to more targeted treatments.
Collapse
Affiliation(s)
- Carli L. Poisson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Liv Engel
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin T. Saunders
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
31
|
Syn3 Gene Knockout Negatively Impacts Aspects of Reversal Learning Performance. eNeuro 2021; 8:ENEURO.0251-21.2021. [PMID: 34413083 PMCID: PMC8431823 DOI: 10.1523/eneuro.0251-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022] Open
Abstract
Behavioral flexibility enables the ability to adaptively respond to changes in contingency requirements to maintain access to desired outcomes, and deficits in behavioral flexibility have been documented in many psychiatric disorders. Previous research has shown a correlation between behavioral flexibility measured in a reversal learning test and Syn3, the gene encoding synapsin III, which negatively regulates phasic dopamine release. Syn3 expression in the hippocampus, striatum, and neocortex is reported to be negatively correlated with reversal learning performance, so here, we used a global knock-out line to investigate reversal learning in mice homozygous wild type, heterozygous null, and homozygous null for the Syn3 gene. Compared with wild-type animals, we found a reversal-specific effect of genetic Syn3 deficiency that resulted in a greater proportional increase in trials required to reach a preset performance criterion during contingency reversal, despite no observed genotype effects on the ability to acquire the initial discrimination. Behavioral flexibility scores, which quantified the likelihood of switching subsequent choice behavior following positive or negative feedback, became significantly more negative in reversal only for Syn3 homozygous-null mice, suggesting a substantial increase in perseverative behavior in the reversal phase. Syn3 ablation reduced the number of anticipatory responses made per trial, often interpreted as a measure of waiting impulsivity. Overall, Syn3 expression negatively affected behavioral flexibility in a reversal-specific manner but may have reduced waiting impulsivity.
Collapse
|
32
|
Nardo T, Batchelor J, Berry J, Francis H, Jafar D, Borchard T. Cognitive Remediation as an Adjunct Treatment for Substance Use Disorders: A Systematic Review. Neuropsychol Rev 2021; 32:161-191. [PMID: 33871785 DOI: 10.1007/s11065-021-09506-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 04/06/2021] [Indexed: 11/28/2022]
Abstract
Substance use disorders are associated with diverse neuropsychological impairments, with deficits in memory and executive functioning commonly observed. Cognitive remediation has been shown to be effective in other populations with cognitive impairments in these domains, including those with psychiatric disorders and acquired brain injuries, and it has been hypothesised to be similarly effective for those in treatment for substance use disorders. We aimed to systematically review the evidence for cognitive remediation interventions administered as an adjunct treatment to substance use rehabilitation. Studies were included if participants were receiving substance use treatment, if improving cognitive functioning was the main focus of the intervention and if they used an experimental design with a control condition receiving treatment-as-usual or an active control intervention. Two independent reviewers agreed on the final selection of 32 studies, encompassing cognitive remediation for working memory, memory, executive functioning and general cognition. Significant differences between intervention and control groups for cognitive test results and treatment outcomes were extracted and compared across treatment approaches. The review found considerable heterogeneity across studies, including in the types of interventions, the nature of participants and the outcome measures used. Further, a lack of quality studies with sufficient power meant that limited conclusions could be drawn, highlighting a need for further replication and research. However, findings indicate that cognitive remediation remains a promising potential avenue for improving cognition and treatment outcomes for those in treatment for substance use disorders. Protocol submitted prospectively to PROSPERO 30.09.2019, CRD42020150978.
Collapse
Affiliation(s)
- Talia Nardo
- Macquarie University, North Ryde, NSW, 2109, Australia.
| | | | - Jamie Berry
- Macquarie University, North Ryde, NSW, 2109, Australia.,Advanced Neuropsychological Treatment Services, Strathfield South, NSW, 2136, Australia
| | | | - Deyyan Jafar
- Macquarie University, North Ryde, NSW, 2109, Australia
| | | |
Collapse
|
33
|
Skóra MN, Pattij T, Beroun A, Kogias G, Mielenz D, de Vries T, Radwanska K, Müller CP. Personality driven alcohol and drug abuse: New mechanisms revealed. Neurosci Biobehav Rev 2020; 116:64-73. [PMID: 32565173 DOI: 10.1016/j.neubiorev.2020.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022]
Abstract
While the majority of the regular consumers of alcohol controls their consumption well over life span and even takes instrumentalization benefits from it, a minority, but yet high total number of users develops an alcohol addiction. It has long been known that particular personality types are more addiction prone than others. Here we review recent progress in the understanding of neurobiological pathways that determine personality and facilitate drug abuse. Novel approaches to characterize personality traits leading to addiction proneness in social settings in mice are discussed. A common genetic and neurobiological base for the behavioural traits of sensation seeking or a depressed phenotype and escalating alcohol consumption are reviewed. Furthermore, recent progress on how social and cognitive factors, including impulsivity and decision making, act at brain level to make an individual more vulnerable to alcohol abuse, are discussed. Altogether, this review provides an update on brain mechanisms underlying a broad spectrum of personality traits that make an individual more prone to alcohol and drug abuse and addiction.
Collapse
Affiliation(s)
- Maria Nalberczak Skóra
- Laboratory of Molecular Basis of Behavior, Nencki Institute, ul. L. Pasteura 3, Warsaw 02-093, Poland
| | - Tommy Pattij
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VU University Medical Center, Amsterdam, the Netherlands
| | - Anna Beroun
- BRAINCITY, Nencki Institute, Warsaw 02-093, Poland
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center, University Clinic, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Taco de Vries
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VU University Medical Center, Amsterdam, the Netherlands; Department of Molecular and Cellular Neuroscience, CNCR, VU University, Amsterdam, The Netherlands
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute, ul. L. Pasteura 3, Warsaw 02-093, Poland
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| |
Collapse
|
34
|
Zhukovsky P, Morein‐Zamir S, Meng C, Dalley JW, Ersche KD. Network failures: When incentives trigger impulsive responses. Hum Brain Mapp 2020; 41:2216-2228. [PMID: 32150321 PMCID: PMC7267965 DOI: 10.1002/hbm.24941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022] Open
Abstract
Adequate control of impulsive urges to act is demanded in everyday life but is impaired in neuropsychiatric conditions such as stimulant use disorder. Despite intensive research it remains unclear whether failures in impulse control are caused by impaired suppression of behavior or by the over invigoration of behavior by stimuli associated with salient incentives such as drugs, food, and money. We investigated failures in impulse control using functional magnetic resonance imaging (fMRI) to map the neural correlates of premature (impulsive) responses during the anticipation phase of the Monetary Incentive Delay (MID) task in healthy controls (HC), stimulant-dependent individuals (SDIs), and their unaffected first-degree siblings (SIB). We combined task-based fMRI analyses with dynamic causal modeling to show that failures of impulse control were associated with interactions between cingulo-opercular and dorsal striatal networks regardless of group status and incentive type. We further report that group-specific incentive salience plays a critical role in modulating impulsivity in SDIs since drug-related incentives specifically increased premature responding and shifted task modulation away from the dorsal striatal network to the cingulo-opercular network. Our findings thus indicate that impulsive actions are elicited by salient personally-relevant incentive stimuli and those such slips of action recruit a distinct fronto-striatal network.
Collapse
Affiliation(s)
- Peter Zhukovsky
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridgeUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
| | | | - Chun Meng
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridgeUK
- Department of PsychologyUniversity of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Karen D. Ersche
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| |
Collapse
|
35
|
Jupp B, Sawiak SJ, van der Veen B, Lemstra S, Toschi C, Barlow RL, Pekcec A, Bretschneider T, Nicholson JR, Robbins TW, Dalley JW. Diminished Myoinositol in Ventromedial Prefrontal Cortex Modulates the Endophenotype of Impulsivity. Cereb Cortex 2020; 30:3392-3402. [PMID: 31897490 PMCID: PMC7197196 DOI: 10.1093/cercor/bhz317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/24/2019] [Accepted: 11/28/2019] [Indexed: 02/02/2023] Open
Abstract
Maladaptive impulsivity manifests in a variety of disorders, including attention-deficit hyperactivity disorder (ADHD), depression, and substance use disorder. However, the etiological mechanisms of impulsivity remain poorly understood. In the present study, we used in-vivo proton magnetic resonance spectroscopy (1H-MRS) to investigate neurometabolite content in the prefrontal cortex (PFC) and striatum of rats exhibiting low- versus high-impulsive (LI, HI) behavior on a visual attentional task. We validated our 1H-MRS findings using regionally resolved ex-vivo mass spectroscopy, transcriptomics, and site-directed RNA interference in the ventromedial PFC. We report a significant reduction in myoinositol levels in the PFC but not the striatum of HI rats compared with LI rats. Reduced myoinositol content was localized to the infralimbic (IL) cortex, where significant reductions in transcript levels of key proteins involved in the synthesis and recycling of myoinositol (IMPase1) were also present. Knockdown of IMPase1in the IL cortex increased impulsivity in nonimpulsive rats when the demand on inhibitory response control was increased. We conclude that diminished myoinositol levels in ventromedial PFC causally mediate a specific form of impulsivity linked to vulnerability for stimulant addiction in rodents. Myoinositol and related signaling substrates may thus offer novel opportunities for treating neuropsychiatric disorders comorbid with impulsive symptomology.
Collapse
Affiliation(s)
- Bianca Jupp
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Steve J Sawiak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Suzanne Lemstra
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Chiara Toschi
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Rebecca L Barlow
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Germany
| | - Anton Pekcec
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Germany
| | - Tom Bretschneider
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Germany
| | - Janet R Nicholson
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss 88397, Germany
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK,Department of Psychiatry, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 2QQ, UK,Address correspondence to Professor Jeffrey W. Dalley, Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, UK.
| |
Collapse
|
36
|
Panno A, Carbone GA, Massullo C, Farina B, Imperatori C. COVID-19 Related Distress Is Associated With Alcohol Problems, Social Media and Food Addiction Symptoms: Insights From the Italian Experience During the Lockdown. Front Psychiatry 2020; 11:577135. [PMID: 33324256 PMCID: PMC7723899 DOI: 10.3389/fpsyt.2020.577135] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Several scholars hypothesize that one of the most negative impacts of the coronavirus disease 2019 (COVID-19) crisis would concern the increase of prevalence and severity of both substances and behavioral addiction. Despite the general concerns about the increase of prevalence and severity of addictions related to the COVID-19 emergency, few data are still available. Thus, the main aim of this study was to investigate the association between COVID-19 related distress and: (i) alcohol problems, (ii) social media addiction (SMA) symptoms, (iii) food addiction (FA) symptoms. Methods: A national online-survey was carried out during the Italian lockdown (i.e., 9 March 2020-4 May 2020). In the current study, 1,519 participants (365 men and 1,154 women, mean age: 28.49 ± 10.89 years) were included. The survey included socio-demographic related items (e.g., age, sex, residential regions, education level, civil status, tobacco use, etc.), as well as ad-hoc developed questions aimed to investigate COVID-19 related variables (e.g., isolation/quarantine, personal diagnosis to COVID-19, friends or relatives with COVID-19 diagnosis, etc.). Participants also completed the following self-report measures in order to investigate: the psychological impact of COVID-19, alcohol problems, SMA symptoms, FA symptoms, and impulsivity. Results: The psychological impact of COVID-19 was independently associated with alcohol problems (β = 0.058, p = 0.043), SMA symptoms (β = 0.259, p < 0.001), and FA symptoms (β = 0.150, p < 0.001). Conclusion: Taken together, our results seem to confirm the general concerns about the negative impacts of the COVID-19 emergency on addictive behaviors, suggesting that this issue should be carefully monitored.
Collapse
Affiliation(s)
- Angelo Panno
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Giuseppe Alessio Carbone
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Chiara Massullo
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Benedetto Farina
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| | - Claudio Imperatori
- Cognitive and Clinical Psychology Laboratory, Department of Human Science, European University of Rome, Rome, Italy
| |
Collapse
|
37
|
Brooks SJ, Mackenzie-Phelan R, Tully J, Schiöth HB. Review of the Neural Processes of Working Memory Training: Controlling the Impulse to Throw the Baby Out With the Bathwater. Front Psychiatry 2020; 11:512761. [PMID: 33132926 PMCID: PMC7511702 DOI: 10.3389/fpsyt.2020.512761] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Smartphone technology has enabled the creation of many working memory training (WMT) Apps, with those peer-reviewed described in a recent review. WMT claims to improve working memory, attention deficits, hyperactivity and fluid intelligence, in line with plasticity brain changes. Critics argue that WMT is unable to achieve "far-transfer"-the attainment of benefits to cognition from one taught context to another dissimilar context-associated with improved quality of life. However, brain changes after a course of WMT in frontoparietal and striatal circuits-that often occur prior to behavioral changes-may be a better indicator of far-transfer efficacy, especially to improve impulse control commonly dysregulated in those with addictive disorders, yet not commonly examined in WMT studies. METHOD In contrast to previous reviews, the aim here is to focus on the findings of brain imaging WMT training studies across various imaging modalities that use various paradigms, published via PubMed, Scopus, Medline, and Google Scholar. RESULTS 35 brain imaging studies utilized fMRI, structural imaging (MRI, DTI), functional connectivity, EEG, transcranial direct current stimulation (tDCS), cerebral perfusion, and neurogenetic analyses with tasks based on visuospatial and auditory working memory, dual and standard n-back. DISCUSSION Evidence suggests that repeated WMT reduces brain activation in frontoparietal and striatal networks reflective of increased neural circuitry efficiency via myelination and functional connectivity changes. Neural effects of WMT may persist months after training has ended, lead to non-trained task transfer, be strengthened by auxiliary methods such as tDCS and be related to COMT polymorphisms. WMT could be utilized as an effective, non-invasive intervention for working memory deficits to treat impulse and affective control problems in people with addictive disorders.
Collapse
Affiliation(s)
- Samantha J Brooks
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom.,Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Neuroscience Research Laboratory (NeuRL), Department of Psychology, School of Human and Community Development, University of the Witwatersrand, Johannesburg, South Africa
| | - Rhiannon Mackenzie-Phelan
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jamie Tully
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Helgi B Schiöth
- Section of Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
38
|
Genomic basis of delayed reward discounting. Behav Processes 2019; 162:157-161. [PMID: 30876880 DOI: 10.1016/j.beproc.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/04/2019] [Accepted: 03/09/2019] [Indexed: 02/07/2023]
Abstract
Delayed reward discounting (DRD) is a behavioral economic measure of impulsivity, reflecting how rapidly a reward loses value based on its temporal distance. In humans, more impulsive DRD is associated with susceptibility to a number of psychiatric diseases (e.g., addiction, ADHD), health outcomes (e.g., obesity), and lifetime outcomes (e.g., educational attainment). Although the determinants of DRD are both genetic and environmental, this review focuses on its genetic basis. Both rodent studies using inbred strains and human twin studies indicate that DRD is moderately heritable, a conclusion that was further supported by a recent human genome-wide association study (GWAS) that used single nucleotide polymorphisms (SNP) to estimate heritability. The GWAS of DRD also identified genetic correlations with psychiatric diagnoses, health outcomes, and measures of cognitive performance. Future research priorities include rodent studies probing putative genetic mechanisms of DRD and human GWASs using larger samples and non-European cohorts. Continuing to characterize genomic influences on DRD has the potential to yield important biological insights with implications for a variety of medically and socially important outcomes.
Collapse
|
39
|
Isles AR, Winstanley CA, Humby T. Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180128. [PMID: 30966916 PMCID: PMC6335461 DOI: 10.1098/rstb.2018.0128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Our willingness to take risks, our ability to wait or the speed with which to make decisions are central features of our personality. However, it is now recognized that impulsive and risk-taking behaviours are not a unitary construct, and different aspects can be both psychologically and neurally dissociated. The range of neurochemicals and brain systems that govern these behaviours is extensive, and this may be a contributing factor to the phenotypic range seen in the human population. However, this variety can also be pathological as extremes in risk-taking and impulsive behaviours are characteristics of many neuropsychiatric and indeed neurodegenerative disorders. This spans obsessive-compulsive disorder, where behaviour becomes ridged and non-spontaneous, to the nonsensical risk-taking seen in gambling and drug taking. This article is part of the theme issue 'Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications'.
Collapse
Affiliation(s)
- Anthony R. Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Catharine A. Winstanley
- Department of Psychology, University of British Columbia, Vancouver Campus, 2136 West Mall, British Columbia, CanadaV6T 1Z4
| | - Trevor Humby
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|