1
|
Zhang X, Burattini M, Duru J, Chala N, Wyssen N, Cofiño-Fabres C, Rivera-Arbeláez JM, Passier R, Poulikakos D, Ferrari A, Tringides C, Vörös J, Luciani GB, Miragoli M, Zambelli T. Multimodal Mapping of Electrical and Mechanical Latency of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocyte Layers. ACS NANO 2024; 18:24060-24075. [PMID: 39172696 DOI: 10.1021/acsnano.4c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The synchronization of the electrical and mechanical coupling assures the physiological pump function of the heart, but life-threatening pathologies may jeopardize this equilibrium. Recently, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a model for personalized investigation because they can recapitulate human diseased traits, such as compromised electrical capacity or mechanical circuit disruption. This research avails the model of hiPSC-CMs and showcases innovative techniques to study the electrical and mechanical properties as well as their modulation due to inherited cardiomyopathies. In this work, hiPSC-CMs carrying either Brugada syndrome (BRU) or dilated cardiomyopathy (DCM), were organized in a bilayer configuration to first validate the experimental methods and second mimic the physiological environment. High-density CMOS-based microelectrode arrays (HD-MEA) have been employed to study the electrical activity. Furthermore, mechanical function was investigated via quantitative video-based evaluation, upon stimulation with a β-adrenergic agonist. This study introduces two experimental methods. First, high-throughput mechanical measurements in the hiPSC-CM layers (xy-inspection) are obtained using both a recently developed optical tracker (OPT) and confocal reference-free traction force microscopy (cTFM) aimed to quantify cardiac kinematics. Second, atomic force microscopy (AFM) with FluidFM probes, combined with the xy-inspection methods, supplemented a three-dimensional understanding of cell-cell mechanical coupling (xyz-inspection). This particular combination represents a multi-technique approach to detecting electrical and mechanical latency among the cell layers, examining differences and possible implications following inherited cardiomyopathies. It can not only detect disease characteristics in the proposed in vitro model but also quantitatively assess its response to drugs, thereby demonstrating its feasibility as a scalable tool for clinical and pharmacological studies.
Collapse
Affiliation(s)
- Xinyu Zhang
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - Margherita Burattini
- Laboratory of Experimental and Applied Medical Technologies, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Department of Maternity, Surgery and Dentistry, University of Verona, 37134 Verona, Italy
| | - Jens Duru
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - Nafsika Chala
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich,Switzerland
| | - Nino Wyssen
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - Carla Cofiño-Fabres
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherland
| | - José Manuel Rivera-Arbeláez
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherland
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7500 AE Enschede, The Netherland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich,Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zurich,Switzerland
- Experimental Continuum Mechanics, EMPA, Swiss Federal Laboratories for Material Science and Technologies, 8600 Dübendorf, Switzerland
| | - Christina Tringides
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| | | | - Michele Miragoli
- Laboratory of Experimental and Applied Medical Technologies, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Humanitas Research Hospital ─ IRCCS, 20089 Rozzano, Italy
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich,Switzerland
| |
Collapse
|
2
|
Redwanz C, Pires RH, Biedenweg D, Groß S, Otto O, Könemann S. Endothelin-1 influences mechanical properties and contractility of hiPSC derived cardiomyocytes resulting in diastolic dysfunction. J Mol Cell Cardiol 2024; 194:105-117. [PMID: 39019395 DOI: 10.1016/j.yjmcc.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
A better understanding of the underlying pathomechanisms of diastolic dysfunction is crucial for the development of targeted therapeutic options with the aim to increase the patients' quality of life. In order to shed light on the processes involved, suitable models are required. Here, effects of endothelin-1 (ET-1) treatment on cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) were investigated. While it is well established, that ET-1 treatment induces hypertrophy in cardiomyocytes, resulting changes in cell mechanics and contractile behavior with focus on relaxation have not been examined before. Cardiomyocytes were treated with 10 nM of ET-1 for 24 h and 48 h, respectively. Hypertrophy was confirmed by real-time deformability cytometry (RT-DC) which was also used to assess the mechanical properties of cardiomyocytes. For investigation of the contractile behavior, 24 h phase contrast video microscopy was applied. To get a deeper insight into changes on the molecular biological level, gene expression analysis was performed using the NanoString nCounter® cardiovascular disease panel. Besides an increased cell size, ET-1 treated cardiomyocytes are stiffer and show an impaired relaxation. Gene expression patterns in ET-1 treated hiPSC derived cardiomyocytes showed that pathways associated with cardiovascular diseases, cardiac hypertrophy and extracellular matrix were upregulated while those associated with fatty acid metabolism were downregulated. We conclude that alterations in cardiomyocytes after ET-1 treatment go far beyond hypertrophy and represent a useful model for diastolic dysfunction.
Collapse
Affiliation(s)
- Caterina Redwanz
- Department for Internal Medicine B, Cardiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| | - Ricardo H Pires
- Institute of Physics, University of Greifswald, Felix-Hausdorff-Straße 6, 17489 Greifswald, Germany; Centre for Innovation Competence - Humoral Immune Response in Cardiovascular Diseases, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, 17489 Greifswald, Germany
| | - Doreen Biedenweg
- Institute of Physics, University of Greifswald, Felix-Hausdorff-Straße 6, 17489 Greifswald, Germany; Centre for Innovation Competence - Humoral Immune Response in Cardiovascular Diseases, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, 17489 Greifswald, Germany.
| | - Stefan Groß
- Department for Internal Medicine B, Cardiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| | - Oliver Otto
- German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; Institute of Physics, University of Greifswald, Felix-Hausdorff-Straße 6, 17489 Greifswald, Germany; Centre for Innovation Competence - Humoral Immune Response in Cardiovascular Diseases, University Medicine Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, 17489 Greifswald, Germany.
| | - Stephanie Könemann
- Department for Internal Medicine B, Cardiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| |
Collapse
|
3
|
Cook M, Stevenson B, Jacobs LA, Leocadio Victoria D, Cisneros B, Hobbs JK, Stewart CL, Winder SJ. The Role of β-Dystroglycan in Nuclear Dynamics. Cells 2024; 13:431. [PMID: 38474395 DOI: 10.3390/cells13050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Dystroglycan is a ubiquitously expressed heterodimeric cell-surface laminin receptor with roles in cell adhesion, signalling, and membrane stabilisation. More recently, the transmembrane β-subunit of dystroglycan has been shown to localise to both the nuclear envelope and the nucleoplasm. This has led to the hypothesis that dystroglycan may have a structural role at the nuclear envelope analogous to its role at the plasma membrane. The biochemical fraction of myoblast cells clearly supports the presence of dystroglycan in the nucleus. Deletion of the dystroglycan protein by disruption of the DAG1 locus using CRISPR/Cas9 leads to changes in nuclear size but not overall morphology; moreover, the Young's modulus of dystroglycan-deleted nuclei, as determined by atomic force microscopy, is unaltered. Dystroglycan-disrupted myoblasts are also no more susceptible to nuclear stresses including chemical and mechanical, than normal myoblasts. Re-expression of dystroglycan in DAG1-disrupted myoblasts restores nuclear size without affecting other nuclear parameters.
Collapse
Affiliation(s)
- Matthew Cook
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
- A*STAR Skin Research Laboratories, Singapore 138648, Singapore
| | - Ben Stevenson
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Laura A Jacobs
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados, Mexico City 07360, Mexico
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK
| | - Colin L Stewart
- A*STAR Skin Research Laboratories, Singapore 138648, Singapore
| | - Steve J Winder
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
4
|
Ghosheh M, Ehrlich A, Ioannidis K, Ayyash M, Goldfracht I, Cohen M, Fischer A, Mintz Y, Gepstein L, Nahmias Y. Electro-metabolic coupling in multi-chambered vascularized human cardiac organoids. Nat Biomed Eng 2023; 7:1493-1513. [PMID: 37550423 DOI: 10.1038/s41551-023-01071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/27/2023] [Indexed: 08/09/2023]
Abstract
The study of cardiac physiology is hindered by physiological differences between humans and small-animal models. Here we report the generation of multi-chambered self-paced vascularized human cardiac organoids formed under anisotropic stress and their applicability to the study of cardiac arrhythmia. Sensors embedded in the cardiac organoids enabled the simultaneous measurement of oxygen uptake, extracellular field potentials and cardiac contraction at resolutions higher than 10 Hz. This microphysiological system revealed 1 Hz cardiac respiratory cycles that are coupled to the electrical rather than the mechanical activity of cardiomyocytes. This electro-mitochondrial coupling was driven by mitochondrial calcium oscillations driving respiration cycles. Pharmaceutical or genetic inhibition of this coupling results in arrhythmogenic behaviour. We show that the chemotherapeutic mitoxantrone induces arrhythmia through disruption of this pathway, a process that can be partially reversed by the co-administration of metformin. Our microphysiological cardiac systems may further facilitate the study of the mitochondrial dynamics of cardiac rhythms and advance our understanding of human cardiac physiology.
Collapse
Affiliation(s)
- Mohammad Ghosheh
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avner Ehrlich
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Tissue Dynamics, LTD, Jerusalem, Israel
| | - Konstantinos Ioannidis
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Tissue Dynamics, LTD, Jerusalem, Israel
| | - Muneef Ayyash
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Idit Goldfracht
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, the Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel
| | - Merav Cohen
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Fischer
- Department of Biological Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yoav Mintz
- Department of General Surgery, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lior Gepstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, the Rappaport Faculty of Medicine and Research Institute, Technion- Israel Institute of Technology, Haifa, Israel
- Cardiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Yaakov Nahmias
- Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Tissue Dynamics, LTD, Jerusalem, Israel.
- Department of Cell and Developmental Biology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Hua H, Zou S, Ma Z, Guo W, Fong CY, Khoo BL. A deformability-based biochip for precise label-free stratification of metastatic subtypes using deep learning. MICROSYSTEMS & NANOENGINEERING 2023; 9:120. [PMID: 37780810 PMCID: PMC10539402 DOI: 10.1038/s41378-023-00577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 10/03/2023]
Abstract
Cellular deformability is a promising biomarker for evaluating the physiological state of cells in medical applications. Microfluidics has emerged as a powerful technique for measuring cellular deformability. However, existing microfluidic-based assays for measuring cellular deformability rely heavily on image analysis, which can limit their scalability for high-throughput applications. Here, we develop a parallel constriction-based microfluidic flow cytometry device and an integrated computational framework (ATMQcD). The ATMQcD framework includes automatic training set generation, multiple object tracking, segmentation, and cellular deformability quantification. The system was validated using cancer cell lines of varying metastatic potential, achieving a classification accuracy of 92.4% for invasiveness assessment and stratifying cancer cells before and after hypoxia treatment. The ATMQcD system also demonstrated excellent performance in distinguishing cancer cells from leukocytes (accuracy = 89.5%). We developed a mechanical model based on power-law rheology to quantify stiffness, which was fitted with measured data directly. The model evaluated metastatic potentials for multiple cancer types and mixed cell populations, even under real-world clinical conditions. Our study presents a highly robust and transferable computational framework for multiobject tracking and deformation measurement tasks in microfluidics. We believe that this platform has the potential to pave the way for high-throughput analysis in clinical applications, providing a powerful tool for evaluating cellular deformability and assessing the physiological state of cells.
Collapse
Affiliation(s)
- Haojun Hua
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
| | - Shangjie Zou
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077 China
| | - Zhiqiang Ma
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077 China
| | - Wang Guo
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077 China
| | - Ching Yin Fong
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
| | - Bee Luan Khoo
- City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077 China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077 China
- City University of Hong Kong Futian-Shenzhen Research Institute, Shenzhen, 518057 China
| |
Collapse
|
6
|
Zhang B, Ding J, Ma Z. ICP4-Associated Activation of Rap1b Facilitates Herpes Simplex Virus Type I (HSV-1) Infection in Human Corneal Epithelial Cells. Viruses 2023; 15:1457. [PMID: 37515145 PMCID: PMC10385634 DOI: 10.3390/v15071457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The strong contribution of RAS-related protein 1b (Rap1b) to cytoskeleton remodeling determines intracellular and extracellular physiological activities, including the successful infection of viruses in permissive cells, but its role in the HSV-1 life cycle is still unclear. Here, we demonstrated that the HSV-1 immediate early (IE) gene ICP4 inhibits protein kinase A (PKA) phosphorylation to induce Rap1b-activation-mediated viral infection. Rap1b activation and membrane enrichment begin at the early stage of HSV-1 infection and remain active during the proliferation period of the virus. Treating the cells with Rap1b small interfering RNA (siRNA) showed a dose-dependent decrease in viral infection levels, but no dose-dependent increase was observed after Rap1b overexpression. Further investigation indicated that the suppression of Rap1b activation derives from phosphorylated PKA and Rap1b mutants with partial or complete prenylation instead of phosphorylation, which promoted viral infection in a dose-dependent manner. Furthermore, the PKA agonist Forskolin disturbed Rap1b activation in a dose-dependent manner, accompanied by a decreasing trend in viral infection. Moreover, the HSV-1 IE gene ICP4 induced PKA dephosphorylation, leading to continuous Rap1b activation, followed by cytoskeleton rearrangement induced by cell division control protein 42 (CDC42) and Ras-related C3 botulinum toxin substrate 1 (RAC1). These further stimulated membrane-triggered physiological processes favoring virus infection. Altogether, we show the significance of Rap1b during HSV-1 infection and uncover the viral infection mechanism determined by the posttranslational regulation of the viral ICP4 gene and Rap1b host protein.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Juntao Ding
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
7
|
Wang X, Li N, Zhang Z, Qin K, Zhang H, Shao S, Liu B. Visualization of Cell Membrane Tension Regulated by the Microfilaments as a "Shock Absorber" in Micropatterned Cells. BIOLOGY 2023; 12:889. [PMID: 37372173 DOI: 10.3390/biology12060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
The extracellular stress signal transmits along the cell membrane-cytoskeleton-focal adhesions (FAs) complex, regulating the cell function through membrane tension. However, the mechanism of the complex regulating membrane tension is still unclear. This study designed polydimethylsiloxane stamps with specific shapes to change the actin filaments' arrangement and FAs' distribution artificially in live cells, visualized the membrane tension in real time, and introduced the concept of information entropy to describe the order degree of the actin filaments and plasma membrane tension. The results showed that the actin filaments' arrangement and FAs' distribution in the patterned cells were changed significantly. The hypertonic solution resulted in the plasma membrane tension of the pattern cell changing more evenly and slowly in the zone rich in cytoskeletal filaments than in the zone lacking filaments. In addition, the membrane tension changed less in the adhesive area than in the non-adhesive area when destroying the cytoskeletal microfilaments. This suggested that patterned cells accumulated more actin filaments in the zone where FAs were difficult to generate to maintain the stability of the overall membrane tension. The actin filaments act as shock absorbers to cushion the alternation in membrane tension without changing the final value of membrane tension.
Collapse
Affiliation(s)
- Xianmeng Wang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Kairong Qin
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Shuai Shao
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
Dabbiru VAS, Manu E, Biedenweg D, Nestler P, Pires RH, Otto O. Cell-surface contacts determine volume and mechanical properties of human embryonic kidney 293 T cells. Cytoskeleton (Hoboken) 2023; 80:21-33. [PMID: 36310101 DOI: 10.1002/cm.21735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022]
Abstract
Alterations in the organization of the cytoskeleton precede the escape of adherent cells from the framework of cell-cell and cell-matrix interactions into suspension. With cytoskeletal dynamics being linked to cell mechanical properties, many studies elucidated this relationship under either native adherent or suspended conditions. In contrast, tethered cells that mimic the transition between both states have not been the focus of recent research. Using human embryonic kidney 293 T cells we investigated all three conditions in the light of alterations in cellular shape, volume, as well as mechanical properties and relate these findings to the level, structure, and intracellular localization of filamentous actin (F-actin). For cells adhered to a substrate, our data shows that seeding density affects cell size but does not alter their elastic properties. Removing surface contacts leads to cell stiffening that is accompanied by changes in cell shape, and a reduction in cellular volume but no alterations in F-actin density. Instead, we observe changes in the organization of F-actin indicated by the appearance of blebs in the semi-adherent state. In summary, our work reveals an interplay between molecular and mechanical alterations when cells detach from a surface that is mainly dominated by cell morphology.
Collapse
Affiliation(s)
- Venkata A S Dabbiru
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. Standort Greifswald, Universitätsmedizin Greifswald, Greifswald, Germany.,Institut für Physik, Universität Greifswald, Greifswald, Germany
| | - Emmanuel Manu
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. Standort Greifswald, Universitätsmedizin Greifswald, Greifswald, Germany.,Institut für Physik, Universität Greifswald, Greifswald, Germany
| | - Doreen Biedenweg
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany.,Institut für Physik, Universität Greifswald, Greifswald, Germany
| | - Peter Nestler
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany.,Institut für Physik, Universität Greifswald, Greifswald, Germany
| | - Ricardo H Pires
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. Standort Greifswald, Universitätsmedizin Greifswald, Greifswald, Germany.,Institut für Physik, Universität Greifswald, Greifswald, Germany
| | - Oliver Otto
- Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären Erkrankungen, Universität Greifswald, Greifswald, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V. Standort Greifswald, Universitätsmedizin Greifswald, Greifswald, Germany.,Institut für Physik, Universität Greifswald, Greifswald, Germany
| |
Collapse
|
9
|
Maïno N, Bertsch A, Renaud P. Impedance spectroscopy of the cell/nanovolcano interface enables optimization for electrophysiology. MICROSYSTEMS & NANOENGINEERING 2023; 9:62. [PMID: 37206698 PMCID: PMC10188357 DOI: 10.1038/s41378-023-00533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/17/2023] [Indexed: 05/21/2023]
Abstract
Volcano-shaped microelectrodes have demonstrated superior performance in measuring attenuated intracellular action potentials from cardiomyocyte cultures. However, their application to neuronal cultures has not yet yielded reliable intracellular access. This common pitfall supports a growing consensus in the field that nanostructures need to be pitched to the cell of interest to enable intracellular access. Accordingly, we present a new methodology that enables us to resolve the cell/probe interface noninvasively through impedance spectroscopy. This method measures changes in the seal resistance of single cells in a scalable manner to predict the quality of electrophysiological recordings. In particular, the impact of chemical functionalization and variation of the probe's geometry can be quantitatively measured. We demonstrate this approach on human embryonic kidney cells and primary rodent neurons. Through systematic optimization, the seal resistance can be increased by as much as 20-fold with chemical functionalization, while different probe geometries demonstrated a lower impact. The method presented is therefore well suited to the study of cell coupling to probes designed for electrophysiology, and it is poised to contribute to elucidate the nature and mechanism of plasma membrane disruption by micro/nanostructures.
Collapse
Affiliation(s)
- Nicolas Maïno
- Microsystems laboratory 4, Institute of Electrical and Micro Engineering, Ecole Polytechique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arnaud Bertsch
- Microsystems laboratory 4, Institute of Electrical and Micro Engineering, Ecole Polytechique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Philippe Renaud
- Microsystems laboratory 4, Institute of Electrical and Micro Engineering, Ecole Polytechique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
10
|
Pires RH, Dau TH, Manu E, Shree N, Otto O. Switching in the expression pattern of actin isoforms marks the onset of contractility and distinct mechanodynamic behavior during cardiomyocyte differentiation. Physiol Rep 2022; 10:e15171. [PMID: 35166060 PMCID: PMC8844573 DOI: 10.14814/phy2.15171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 11/22/2021] [Accepted: 12/12/2021] [Indexed: 04/16/2023] Open
Abstract
Differentiation of cardiac progenitor cells (CPC) into cardiomyocytes is a fundamental step in cardiogenesis, which is marked by changes in gene expression responsible for remodeling of the cytoskeleton and in altering the mechanical properties of cells. Here we have induced the differentiation of CPC derived from human pluripotent stem cells into immature cardiomyocytes (iCM) which we compare with more differentiated cardiomyocytes (mCM). Using atomic force microscopy and real-time deformability cytometry, we describe the mechanodynamic changes that occur during the differentiation process and link our findings to protein expression data of cytoskeletal proteins. Increased levels of cardiac-specific markers as well as evolution of cytoskeletal morphology and contractility parameters correlated with the expected extent of cell differentiation that was accompanied by hypertrophic growth of cells. These changes were associated with switching in the balance of the different actin isoforms where β-actin is predominantly found in CPC, smooth muscle α-actin is dominant in iCM cells and sarcomeric α-actin is found in significantly higher levels in mCM. We link these cytoskeletal changes to differences in mechano-dynamic behavior of cells that translate to changes in Young's modulus that depend on the cell adherence. Our results demonstrate that the intracellular balance of actin isoform expression can be used as a sensitive ruler to determine the stage of differentiation during early phases of cardiomyocyte differentiation that correlates with an increased expression of sarcomeric proteins and is accompanied by changes in cellular elasticity.
Collapse
Affiliation(s)
- Ricardo H. Pires
- ZIK‐HIKE ‐ Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären ErkrankungenUniversität GreifswaldGreifswaldGermany
- DZHK ‐ Deutsches Zentrum für HerzkreislaufforschungGreifswaldGermany
| | - Tung H. Dau
- ZIK‐HIKE ‐ Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären ErkrankungenUniversität GreifswaldGreifswaldGermany
- FLI ‐ Friedrich‐Loeffler‐InstitutGreifswaldInsel RiemsGermany
| | - Emmanuel Manu
- ZIK‐HIKE ‐ Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären ErkrankungenUniversität GreifswaldGreifswaldGermany
- DZHK ‐ Deutsches Zentrum für HerzkreislaufforschungGreifswaldGermany
| | - Nithya Shree
- ZIK‐HIKE ‐ Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären ErkrankungenUniversität GreifswaldGreifswaldGermany
| | - Oliver Otto
- ZIK‐HIKE ‐ Zentrum für Innovationskompetenz: Humorale Immunreaktionen bei kardiovaskulären ErkrankungenUniversität GreifswaldGreifswaldGermany
- DZHK ‐ Deutsches Zentrum für HerzkreislaufforschungGreifswaldGermany
| |
Collapse
|
11
|
Emig R, Zgierski-Johnston CM, Timmermann V, Taberner AJ, Nash MP, Kohl P, Peyronnet R. Passive myocardial mechanical properties: meaning, measurement, models. Biophys Rev 2021; 13:587-610. [PMID: 34765043 PMCID: PMC8555034 DOI: 10.1007/s12551-021-00838-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Passive mechanical tissue properties are major determinants of myocardial contraction and relaxation and, thus, shape cardiac function. Tightly regulated, dynamically adapting throughout life, and affecting a host of cellular functions, passive tissue mechanics also contribute to cardiac dysfunction. Development of treatments and early identification of diseases requires better spatio-temporal characterisation of tissue mechanical properties and their underlying mechanisms. With this understanding, key regulators may be identified, providing pathways with potential to control and limit pathological development. Methodologies and models used to assess and mimic tissue mechanical properties are diverse, and available data are in part mutually contradictory. In this review, we define important concepts useful for characterising passive mechanical tissue properties, and compare a variety of in vitro and in vivo techniques that allow one to assess tissue mechanics. We give definitions of key terms, and summarise insight into determinants of myocardial stiffness in situ. We then provide an overview of common experimental models utilised to assess the role of environmental stiffness and composition, and its effects on cardiac cell and tissue function. Finally, promising future directions are outlined.
Collapse
Affiliation(s)
- Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Callum M. Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Viviane Timmermann
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrew J. Taberner
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Martyn P. Nash
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg, Bad Krozingen, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Shen S, Sewanan LR, Campbell SG. Evidence for synergy between sarcomeres and fibroblasts in an in vitro model of myocardial reverse remodeling. J Mol Cell Cardiol 2021; 158:11-25. [PMID: 33992697 DOI: 10.1016/j.yjmcc.2021.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022]
Abstract
We have created a novel in-vitro platform to study reverse remodeling of engineered heart tissue (EHT) after mechanical unloading. EHTs were created by seeding decellularized porcine myocardial sections with a mixture of primary neonatal rat ventricular myocytes and cardiac fibroblasts. Each end of the ribbon-like constructs was fixed to a plastic clip, allowing the tissues to be statically stretched or slackened. Inelastic deformation was introduced by stretching tissues by 20% of their original length. EHTs were subsequently unloaded by returning tissues to their original, shorter length. Mechanical characterization of EHTs immediately after unloading and at subsequent time points confirmed the presence of a reverse-remodeling process, through which stress-free tissue length was increased after chronic stretch but gradually decreased back to its original value within 9 days. When a cardiac myosin inhibitor was applied to tissues after unloading, EHTs failed to completely recover their passive and active mechanical properties, suggesting a role for actomyosin contraction in reverse remodeling. Selectively inhibiting cardiomyocyte contraction or fibroblast activity after mechanical unloading showed that contractile activity of both cell types was required to achieve full remodeling. Similar tests with EHTs formed from human induced pluripotent stem cell-derived cardiomyocytes also showed reverse remodeling that was enhanced when treated with omecamtiv mecarbil, a myosin activator. These experiments suggest essential roles for active sarcomeric contraction and fibroblast activity in reverse remodeling of myocardium after mechanical unloading. Our findings provide a mechanistic rationale for designing potential therapies to encourage reverse remodeling in patient hearts.
Collapse
Affiliation(s)
- Shi Shen
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Yang M, Yan J, Wu A, Zhao W, Qin J, Pogwizd SM, Wu X, Yuan S, Ai X. Alterations of housekeeping proteins in human aged and diseased hearts. Pflugers Arch 2021; 473:351-362. [PMID: 33638007 PMCID: PMC10468297 DOI: 10.1007/s00424-021-02538-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 01/10/2023]
Abstract
Pathological remodeling includes alterations of ion channel function and calcium homeostasis and ultimately cardiac maladaptive function during the process of disease development. Biochemical assays are important approaches for assessing protein abundance and post-translational modification of ion channels. Several housekeeping proteins are commonly used as internal controls to minimize loading variabilities in immunoblotting protein assays. Yet, emerging evidence suggests that some housekeeping proteins may be abnormally altered under certain pathological conditions. However, alterations of housekeeping proteins in aged and diseased human hearts remain unclear. In the current study, immunoblotting was applied to measure three commonly used housekeeping proteins (β-actin, calsequestrin, and GAPDH) in well-procured human right atria (RA) and left ventricles (LV) from diabetic, heart failure, and aged human organ donors. Linear regression analysis suggested that the amounts of linearly loaded total proteins and quantified intensity of total proteins from either Ponceau S (PS) blot-stained or Coomassie Blue (CB) gel-stained images were highly correlated. Thus, all immunoblotting data were normalized with quantitative CB or PS data to calibrate potential loading variabilities. In the human heart, β-actin was reduced in diabetic RA and LV, while GAPDH was altered in aged and diabetic RA but not LV. Calsequestrin, an important Ca2+ regulatory protein, was significantly changed in aged, diabetic, and ischemic failing hearts. Intriguingly, expression levels of all three proteins were unchanged in non-ischemic failing human LV. Overall, alterations of human housekeeping proteins are heart chamber specific and disease context dependent. The choice of immunoblotting loading controls should be carefully evaluated. Usage of CB or PS total protein analysis could be a viable alternative approach for some complicated pathological specimens.
Collapse
Affiliation(s)
- Mei Yang
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 West Harrison St. 1255 Jelke South, Chicago, IL, 60612, USA
| | - Jiajie Yan
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 West Harrison St. 1255 Jelke South, Chicago, IL, 60612, USA
| | - Aimee Wu
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 West Harrison St. 1255 Jelke South, Chicago, IL, 60612, USA
| | - Weiwei Zhao
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 West Harrison St. 1255 Jelke South, Chicago, IL, 60612, USA
| | - Jin Qin
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 West Harrison St. 1255 Jelke South, Chicago, IL, 60612, USA
| | - Steven M Pogwizd
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xin Wu
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 West Harrison St. 1255 Jelke South, Chicago, IL, 60612, USA
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, No. 24, Tongjiaxiang, Nanjing, 210009, China.
| | - Xun Ai
- Department of Physiology and Biophysics, Rush University Medical Center, 1750 West Harrison St. 1255 Jelke South, Chicago, IL, 60612, USA.
| |
Collapse
|
14
|
Münch J, Abdelilah-Seyfried S. Sensing and Responding of Cardiomyocytes to Changes of Tissue Stiffness in the Diseased Heart. Front Cell Dev Biol 2021; 9:642840. [PMID: 33718383 PMCID: PMC7952448 DOI: 10.3389/fcell.2021.642840] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocytes are permanently exposed to mechanical stimulation due to cardiac contractility. Passive myocardial stiffness is a crucial factor, which defines the physiological ventricular compliance and volume of diastolic filling with blood. Heart diseases often present with increased myocardial stiffness, for instance when fibrotic changes modify the composition of the cardiac extracellular matrix (ECM). Consequently, the ventricle loses its compliance, and the diastolic blood volume is reduced. Recent advances in the field of cardiac mechanobiology revealed that disease-related environmental stiffness changes cause severe alterations in cardiomyocyte cellular behavior and function. Here, we review the molecular mechanotransduction pathways that enable cardiomyocytes to sense stiffness changes and translate those into an altered gene expression. We will also summarize current knowledge about when myocardial stiffness increases in the diseased heart. Sophisticated in vitro studies revealed functional changes, when cardiomyocytes faced a stiffer matrix. Finally, we will highlight recent studies that described modulations of cardiac stiffness and thus myocardial performance in vivo. Mechanobiology research is just at the cusp of systematic investigations related to mechanical changes in the diseased heart but what is known already makes way for new therapeutic approaches in regenerative biology.
Collapse
Affiliation(s)
- Juliane Münch
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Tavassoli H, Rorimpandey P, Kang YC, Carnell M, Brownlee C, Pimanda JE, Chan PPY, Chandrakanthan V. Label-Free Isolation and Single Cell Biophysical Phenotyping Analysis of Primary Cardiomyocytes Using Inertial Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006176. [PMID: 33369875 DOI: 10.1002/smll.202006176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/23/2020] [Indexed: 06/12/2023]
Abstract
To advance the understanding of cardiomyocyte (CM) identity and function, appropriate tools to isolate pure primary CMs are needed. A label-free method to purify viable CMs from mouse neonatal hearts is developed using a simple particle size-based inertial microfluidics biochip achieving purities of over 90%. Purified CMs are viable and retained their identity and function as depicted by the expression of cardiac-specific markers and contractility. The physico-mechanical properties of sorted cells are evaluated using downstream real-time deformability cytometry. CMs exhibited different physico-mechanical properties when compared with non-CMs. Taken together, this CM isolation and phenotyping method could serve as a valuable tool to progress the understanding of CM identity and function, and ultimately benefit cell therapy and diagnostic applications.
Collapse
Affiliation(s)
- Hossein Tavassoli
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Prunella Rorimpandey
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Young Chan Kang
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Michael Carnell
- Biomedical Imaging Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chris Brownlee
- Flow Cytometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| | - John E Pimanda
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Haematology, Prince of Wales Hospital, Sydney, NSW, 2052, Australia
| | - Peggy P Y Chan
- Department of Telecommunications, Electrical, Robotics and Biomedical Engineering, Swinburne University of Technology, Hawthorn, Victoria, 3122, Australia
| | - Vashe Chandrakanthan
- Department of Pathology, School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
16
|
Heida T, Otto O, Biedenweg D, Hauck N, Thiele J. Microfluidic Fabrication of Click Chemistry-Mediated Hyaluronic Acid Microgels: A Bottom-Up Material Guide to Tailor a Microgel's Physicochemical and Mechanical Properties. Polymers (Basel) 2020; 12:E1760. [PMID: 32781609 PMCID: PMC7464250 DOI: 10.3390/polym12081760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
The demand for tailored, micrometer-scaled biomaterials in cell biology and (cell-free) biotechnology has led to the development of tunable microgel systems based on natural polymers, such as hyaluronic acid (HA). To precisely tailor their physicochemical and mechanical properties and thus to address the need for well-defined microgel systems, in this study, a bottom-up material guide is presented that highlights the synergy between highly selective bio-orthogonal click chemistry strategies and the versatility of a droplet microfluidics (MF)-assisted microgel design. By employing MF, microgels based on modified HA-derivates and homobifunctional poly(ethylene glycol) (PEG)-crosslinkers are prepared via three different types of click reaction: Diels-Alder [4 + 2] cycloaddition, strain-promoted azide-alkyne cycloaddition (SPAAC), and UV-initiated thiol-ene reaction. First, chemical modification strategies of HA are screened in-depth. Beyond the microfluidic processing of HA-derivates yielding monodisperse microgels, in an analytical study, we show that their physicochemical and mechanical properties-e.g., permeability, (thermo)stability, and elasticity-can be systematically adapted with respect to the type of click reaction and PEG-crosslinker concentration. In addition, we highlight the versatility of our HA-microgel design by preparing non-spherical microgels and introduce, for the first time, a selective, hetero-trifunctional HA-based microgel system with multiple binding sites. As a result, a holistic material guide is provided to tailor fundamental properties of HA-microgels for their potential application in cell biology and (cell-free) biotechnology.
Collapse
Affiliation(s)
- Thomas Heida
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany; (T.H.); (N.H.)
| | - Oliver Otto
- Center for Innovation Competence: Humoral Immune Reactions in Cardiovascular Disorders, University of Greifswald, Fleischmannstr. 42, 17489 Greifswald, Germany;
- German Center for Cardiovascular Research e. V., University Medicine Greifswald, Fleischmannstr. 42, 17489 Greifswald, Germany
| | - Doreen Biedenweg
- Clinic for Internal Medicine B, University Medicine Greifswald, Fleischmannstr. 8, 17475 Greifswald, Germany;
| | - Nicolas Hauck
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany; (T.H.); (N.H.)
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden e. V., 01069 Dresden, Germany; (T.H.); (N.H.)
| |
Collapse
|
17
|
Mishra P, Cohen RI, Zhao N, Moghe PV. Fluorescence-based actin turnover dynamics of stem cells as a profiling method for stem cell functional evolution, heterogeneity and phenotypic lineage parsing. Methods 2020; 190:44-54. [PMID: 32473293 DOI: 10.1016/j.ymeth.2020.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cells are widely explored in regenerative medicine as a source to produce diverse cell types. Despite the wide usage of stem cells like mesenchymal stem cells (MSCs) and induced pluripotent stem cells (iPSCs), there is a lack of robust methods to rapidly discern the phenotypic and functional heterogeneity of stem cells. The organization of actin cytoskeleton has been previously used to discern divergent stem cell differentiation pathways. In this paper, we highlight the versatility of a cell profiling method for actin turnover dynamics. Actin filaments in live stem cells are labeled using SiR-actin, a cell permeable fluorogenic probe, to determine the endogenous actin turnover. Live MSC imaging after days of induction successfully demonstrated lineage specific change in actin turnover. Next, we highlighted the differences in the cellular heterogeneity of actin dynamics during adipogenic or osteogenic MSC differentiation. Next, we applied the method to differentiating iPSCs in culture, and detected a progressive slowdown in actin turnover during differentiation upon stimulation with neural or cardiac media. Finally, as a proof of concept, the actin dynamic profiling was used to isolate MSCs via flow cytometry prior to sorting into three distinct sub-populations with low, intermediate or high actin dynamics. A greater fraction of MSCs with more rapid actin dynamics demonstrated increased inclination for adipogenesis, whereas, slower actin dynamics correlated with increased osteogenesis. Together, these results show that actin turnover can serve as a versatile biomarker to not only track cellular phenotypic heterogeneity but also harvest live cells with potential for differential phenotypic fates.
Collapse
Affiliation(s)
- Prakhar Mishra
- Molecular Biosciences Graduate Program in Cell and Developmental Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ricky I Cohen
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Nanxia Zhao
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
18
|
Abstract
Cells are the building blocks of life, from single-celled microbes through to multi-cellular organisms. To understand a multitude of biological processes we need to understand how cells behave, how they interact with each other and how they respond to their environment. The use of new methodologies is changing the way we study cells allowing us to study them on minute scales and in unprecedented detail. These same methods are allowing researchers to begin to sample the vast diversity of microbes that dominate natural environments. The aim of this special issue is to bring together research and perspectives on the application of new approaches to understand the biological properties of cells, including how they interact with other biological entities. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Thomas A Richards
- Biosciences and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), 08003 Barcelona, Spain
| | - Stefano Pagliara
- Biosciences and Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,School of Biological Sciences, University of East Anglia, Norwich, NR4 7TU, UK
| |
Collapse
|