1
|
Wu M, Guo R, Chen M, Zhu M, Chen Z, Ding C, Yu S. Development of a multiplex PCR assay for detection of Riemerella anatipestifer serotype 1 and serotype 2 strains. Vet Microbiol 2025; 303:110435. [PMID: 39956017 DOI: 10.1016/j.vetmic.2025.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Riemerella anatipestifer infection is one of the main infectious diseases that threaten the poultry industry at present. Serotypes 1 and 2 are the main serotypes causing global outbreaks of R. anatipestifer. In this study, we designed the primers specific for R. anatipestifer serotypes 1 and serotype 2 strains, and for R. anatipestifer 16S rRNA (for the species identification) to establish a multiplex PCR assay for rapid detection of the serotype 1 and serotype 2 strains. The specificity test showed that a 505 bp fragment was amplified from serotype 1 strains, and a 1125 bp fragment was amplified from serotype 2 strains. A 843 bp fragment of 16S rRNA was amplified from R. anatipestifer strains with different serotypes. No amplification band was shown for other species of bacterial pathogens, including Escherichia coli, Salmonella, Pasteurella multocida, Mycoplasma gallisepticum and Mycoplasma synoviae. The sensitivity test showed a detection limit of 102 CFU of the multiplex PCR assay. Furthermore, a total of 60 R. anatipestifer clinical isolates were tested for identification of the serotypes, and the results showed that a 843 bp 16S rRNA fragment was amplified from all 60 isolates, confirming they are R. anatipestifer strains. Moreover, a 505 bp serotype 1 fragment was amplified from 9 isolates, and a 1125 bp serotype 2 fragment was amplified from 28 isolates. R. anatipestifer serotype 1 and 2 strains accounted for 61.67 % of the isolates. The results were further validated by slide agglutination test, which showed 100 % consistency with the multiplex PCR.
Collapse
Affiliation(s)
- Mengsi Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Rong Guo
- Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals Taizhou 225309, China.
| | - Meitong Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Min Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Zongchao Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals Taizhou 225309, China; Yangzhou You-Jia-Chuang Biotechnology Co., Ltd., Yangzhou 225261, China.
| |
Collapse
|
2
|
Bidoudan Y, Fellahi S, Fihri OF, Bollo E, Khayli M, Mouahid M, Tligui N. Ornithobacterium rhinotracheale in Moroccan Poultry: Antimicrobial Susceptibility Profiles, Characterization of Recent Isolates, and Retrospective Study (2019-23) of Its Occurrence in Different Poultry Production Systems. Avian Dis 2025; 68:469-480. [PMID: 40249588 DOI: 10.1637/aviandiseases-d-24-00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/30/2024] [Indexed: 04/19/2025]
Abstract
Ornithobacterium rhinotracheale (ORT) is one of the most important respiratory pathogens of poultry, notably in turkeys, while Riemerella anatipestifer (RA) is the etiologic agent of infectious serositis, the most economically significant disease of domestic ducks and, to a lesser extent, geese and turkeys. Currently, little is known about ORT and RA infections in Moroccan poultry. Thus, the main aim of this study was to describe ORT incidence in Moroccan poultry flocks during the period from 2019 to 2023 and gain better insights into genetic characteristics in combination with assessment of antimicrobial susceptibility of Moroccan ORT isolates during 2023 outbreaks. In addition, we report the first detection of RA in Moroccan turkeys and caged layer chickens. For this purpose, poultry flocks exhibiting elevated mortality rates along with respiratory clinical signs were necropsied. Additionally, the birds presenting fibrinous pleuropneumonia were investigated for ORT infection during the period from January to December 2023. Samples of the lungs, air sacs, and tracheas were collected for bacteriology testing, and the antimicrobial susceptibility testing was conducted on the isolates. Furthermore, trachea and lung samples were subjected to real-time quantitative polymerase chain reaction (qPCR), and positive qPCR samples were then selected for further amplification of the rpoB gene, followed by sequencing. Moreover, a retrospective study of the incidence of ORT from 2019 to 2023 was carried out. The results showed a significant increase of ORT cases (p , 0.001); additionally, age was identified as the sole significant risk factor associated with ORT diagnosis in the multivariable logistic regression analysis (odds ratio = 4.87, 95% confidence interval = 2.54-9.37, p , 0.001). Bacteriology confirmed 10 ORT isolates. Additionally, antimicrobial susceptibility testing revealed complete resistance to several antibiotics, with varying levels of resistance and sensitivity across isolates, including 100% sensitivity to florfenicol in broilers and turkeys. Sequencing of the rpoB gene revealed that 10 ORT isolates had nucleotide similarity ranging from 98% to 100% with other known ORT isolates from chickens and turkeys reported in the U.K., Chile, China, Portugal, and the United States. On the other hand, two ORT isolates were found to be genetically very close to known RA strains, despite testing positive for ORT by real-time qPCR. Amino acid sequence comparisons for these isolates reached 83.10% similarity with Riemerella sp. strain WJ4 isolated in China and 98.79% similarity with strain IPDH 98/90 isolated in Germany. In conclusion, the prevalence of ORT in Moroccan poultry flocks increased over the 5-yr period covered by this retrospective study, contributing significantly to recent respiratory disease outbreaks. Additionally, RA may also contribute to polyserositis in poultry; however, further studies are needed to determine its pathogenicity.
Collapse
Affiliation(s)
- Yassmina Bidoudan
- Mouahid's Veterinary Clinic, Temara 12000, Morocco,
- Anatomic Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco
| | - Siham Fellahi
- Avian Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco
| | - Ouafaa Fassi Fihri
- Infectious Diseases Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco
| | - Enrico Bollo
- Anatomic Pathology Unit, Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Mounir Khayli
- National Office of Food Safety (ONSSA), Rabat-Instituts, Rabat, Morocco
| | | | - Noursaid Tligui
- Anatomic Pathology Unit, Department of Veterinary Pathology and Public Health, Agronomy and Veterinary Institute Hassan II, Rabat B.P. 6202, Morocco
| |
Collapse
|
3
|
Zhang HL, Li FL, Chen HY, Qin DM, Sun SJ, Zhang MM, Ding HZ, Liu Y. In vivo pharmacokinetic and pharmacodynamic study and cutoff of florfenicol against Riemerella anatipestifer in ducks. Poult Sci 2025; 104:104635. [PMID: 39647361 PMCID: PMC11667036 DOI: 10.1016/j.psj.2024.104635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
Riemerella anatipestifer causes serious infections, characterized by septicemia and serositis, in ducks and geese. R. anatipestifer is mainly controlled through antimicrobial chemotherapy. This study investigated the pharmacokinetic/pharmacodynamic (PK/PD) integration of florfenicol (FF) against R. anatipestifer by establishing a systemic infection model in ducks. For PK studies, FF was administrated intramuscularly (i.m.) at single doses of 2.5, 10, 20, and 40 mg/kg body weight. The concentrations of FF in blood, lung, and liver were determined. FF was rapidly eliminated in R. anatipestifer-infected ducks with T1/2kel values of 1.67, 2.2, and 1.62 h in the plasma, lung, and liver, respectively. For PD analysis, the infected ducks were administered FF via the i.m. route at doses of 5-80 mg/kg body weight, using 2 dosing regimens involving the administration of FF either once or twice over 24 h. The bacteria were counted 24 h after drug administration. Bactericidal effects in tissues (including those of the heart, liver, spleen, lung, kidney, and brain) were achieved at doses of ≥20 mg/kg following 2 i.m. injections of FF within 24 h. The data obtained were fitted to a sigmoidal Emax model. The results demonstrated that AUC24h/minimum inhibitory concentration (MIC) (R2 = 0.930) and Cmax/MIC (R2 = 0.930) were the optimal PK/PD parameters for describing the antibacterial activity of FF. The magnitudes of AUC24h/MIC and Cmax/MIC required to produce a drop of 3 Log10CFU/mL in the bacterial count were 58.56 h and 15.10, respectively. The MIC distribution of 164 R. anatipestifer strains for FF ranged from 0.25 to 16 μg/mL. Both the values of COWT derived from the ECOFFinder program and the COPD based on a 10,000-subject Monte Carlo simulation of FF against R. anatipestifer were 1 μg/mL, confirming that infections caused by strains with MIC ≤ 1 μg/mL could be effectively treated. Our study results may prove useful in optimizing FF regimens to treat R. anatipestifer infections.
Collapse
Affiliation(s)
- Hui-Lin Zhang
- School of Biological and Food Engineering, Fuyang Normal University, Fuyang 236037, PR China
| | - Fa-Lei Li
- School of Biological and Food Engineering, Fuyang Normal University, Fuyang 236037, PR China
| | - Hui-Yang Chen
- School of Biological and Food Engineering, Fuyang Normal University, Fuyang 236037, PR China
| | - Ding-Mei Qin
- School of Biological and Food Engineering, Fuyang Normal University, Fuyang 236037, PR China
| | - Shu-Jun Sun
- School of Biological and Food Engineering, Fuyang Normal University, Fuyang 236037, PR China
| | - Meng-Meng Zhang
- School of Biological and Food Engineering, Fuyang Normal University, Fuyang 236037, PR China
| | - Huan-Zhong Ding
- Guangdong Key Laboratory for Veterinary Drug Development and Safety evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Yong Liu
- School of Biological and Food Engineering, Fuyang Normal University, Fuyang 236037, PR China.
| |
Collapse
|
4
|
Yang R, Li S, Guo J, Wang Y, Dong Z, Wang Q, Bai H, Ning C, Zhu X, Bai J, Hu S, Xiao Y, Li Z, Zhou Z. Serine protease RAYM_01812 (SspA) inhibits complement-mediated killing and monocyte chemotaxis and contributes to virulence of Riemerella anatipestifer in ducks. Virulence 2024; 15:2421219. [PMID: 39450484 PMCID: PMC11540087 DOI: 10.1080/21505594.2024.2421219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/04/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Riemerella anatipestifer (RA) is a significant poultry pathogen causing acute septicemia and inflammation. The function of protease RAYM_01812, responsible for gelatin degradation, is unexplored in RA pathogenesis. To elucidate its role, we generated a deletion mutant ΔRAYM_01812 (ΔRAYM) and complementary CΔRAYM_01812 (CΔRAYM) strain and revealed the protease's role in extracellular gelatinase activity. By expressing full-length 76 kDa RAYM_01812 protein without signal peptide as well as seven partial structural domains fragments, we evidence that the N-terminal propeptide acts as an enzymatic activity inhibitor and it gets cleaved at A112. Also, we show that the β-fold sheet domain is necessary for enhancing the enzymatic protease activity. Sequential auto-proteolysis forms a stable 40 kDa enzyme. Then, testing the strains in duck sera indicated that the absence or presence of RAYM_01812 results in reduced or enhanced bacterial survival, respectively. Furthermore, we found that the protease is able to cleave IgY antibodies as well as the complement factors C3a and C5a, that the protease reduces C3a- or C5a-mediated monocyte chemotaxis, and results in enhanced membrane attack complex (MAC) formation on the surface of ΔRAYM compared to CΔRAYM. This suggests that RAYM_01812 plays a crucial role in protecting against the serum complement-mediated bactericidal effect through inhibiting MAC formation and monocyte chemotaxis. Animal infection assays showed a 1090-fold reduced virulence of ΔRAYM compared to RA-YM, evidenced by decreased tissue loading and weaker histopathological changes. In conclusion, RAYM_01812 acts as a vital virulence factor, enabling host innate immune defence escape through complement killing evasion and monocyte chemotaxis inhibition.
Collapse
Affiliation(s)
- Rongkun Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jie Guo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- COFCO Nutrition and Health Research Institute, Beijing, China
| | - Yanhua Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zeyuan Dong
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qing Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Hongying Bai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Congran Ning
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaotong Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiao Bai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine, in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Wang Y, Li S, Ning C, Yang R, Wu Y, Cheng X, Xu J, Wang Y, Liu F, Zhang Y, Hu S, Xiao Y, Li Z, Zhou Z. The outer membrane protein, OMP71, of Riemerella anatipestifer, mediates adhesion and virulence by binding to CD46 in ducks. Vet Res 2024; 55:138. [PMID: 39407352 PMCID: PMC11481396 DOI: 10.1186/s13567-024-01393-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The Riemerella anatipestifer bacterium is known to cause infectious serositis in ducklings. Moreover, its adherence to the host's respiratory mucosa is a critical step in pathogenesis. Membrane cofactor protein (MCP; CD46) is a complement regulatory factor on the surface of eukaryotic cell membranes. Bacteria have been found to bind to this protein on host cells. Outer membrane proteins (OMPs) are necessary for adhesion, colonisation, and pathogenicity of Gram-negative bacteria; however, the mechanism by which R. anatipestifer adheres to duck cells remains unclear. In this study, pull-down assays and LC-MS/MS identified eleven OMPs interacting with duck CD46 (dCD46), with OMP71 exhibiting the strongest binding. The ability of an omp71 gene deletion strain to bind dCD46 is weaker than that of the wild-type strain, suggesting that this interaction is important. Further evidence of this interaction was obtained by synthesising OMP71 using an Escherichia coli recombinant protein expression system. Adhesion and invasion assays and protein and antibody blocking assays confirmed that OMP71 promoted the R. anatipestifer YM strain (RA-YM) adhesion to duck embryo fibroblasts (DEFs) by binding to CD46. Tests of the pathogenicity of a Δomp71 mutant strain of RA-YM on ducks compared to the wild-type parent supported the hypothesis that OMP71 was a key virulence factor of RA-YM. In summary, the finding that R. anatipestifer exploits CD46 to bind to host cells via OMP71 increases our understanding of the molecular mechanism of R. anatipestifer invasion. The finding suggests potential targets for preventing and treating diseases related to R. anatipestifer infection.
Collapse
Affiliation(s)
- Yanhua Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Sen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Congran Ning
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Rongkun Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yaxin Wu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xu Cheng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jike Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yi Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Fei Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Sishun Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
6
|
Wang J, Zou Z, Hu M, Shan X, Zhang Y, Miao Y, Zhang X, Islam N, Hu Q. Riemerella anatipestifer UvrC is required for iron utilization, biofilm formation and virulence. Avian Pathol 2024; 53:247-256. [PMID: 38420684 DOI: 10.1080/03079457.2024.2317431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
UvrC is a subunit of excinuclease ABC, which mediates nucleotide excision repair (NER) in bacteria. Our previous studies showed that transposon Tn4531 insertion in the UvrC encoding gene Riean_1413 results in reduced biofilm formation by Riemerella anatipestifer strain CH3 and attenuates virulence of strain YZb1. In this study, whether R. anatipestifer UvrC has some biological functions other than NER was investigated. Firstly, the uvrC of R. anatipestifer strain Yb2 was in-frame deleted by homologous recombination, generating deletion mutant ΔuvrC, and its complemented strain cΔuvrC was constructed based on Escherichia coli - R. anatipestifer shuttle plasmid pRES. Compared to the wild-type (WT) R. anatipestifer strain Yb2, uvrC deleted mutant ΔuvrC significantly reduced biofilm formation, tolerance to H2O2- and HOCl-induced oxidative stress, iron utilization, and adhesion to and invasion of duck embryonic hepatocytes, but not its growth curve and proteolytic activity. In addition, animal experiments showed that the LD50 value of ΔuvrC in ducklings was about 13-fold higher than that of the WT, and the bacterial loads in ΔuvrC infected ducklings were significantly lower than those in Yb2-infected ducklings, indicating uvrC deletion in R. anatipestifer attenuated virulence. Taken together, the results of this study indicate that R. anatipestifer UvrC is required for iron utilization, biofilm formation, oxidative stress tolerance and virulence of strain Yb2, demonstrating multiple functions of UvrC.RESEARCH HIGHLIGHTSDeletion of uvrC in R. anatipestfer Yb2 significantly reduced its biofilm formation.uvrC deletion led to reduced tolerance to H2O2- and HOCl-induced oxidative stress.The iron utilization of uvrC deleted mutant was significantly reduced.The uvrC deletion in R. anatipestifer Yb2 attenuated its virulence.
Collapse
Affiliation(s)
- Jialing Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Zuocheng Zou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Mengmeng Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Xinggen Shan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Ying Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Yiqin Miao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - XiaoYing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Nazrul Islam
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| | - Qinghai Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Wu X, Ge J, Song G, Liu Y, Gao P, Tian T, Li X, Xu J, Chu Y, Zheng F. The GE296_RS03820 and GE296_RS03830 genes are involved in capsular polysaccharide biosynthesis in Riemerella anatipestifer. FASEB J 2024; 38:e23763. [PMID: 38954404 DOI: 10.1096/fj.202302694rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Riemerella anatipestifer is a pathogenic bacterium that causes duck serositis and meningitis, leading to significant harm to the duck industry. To escape from the host immune system, the meningitis-causing bacteria must survive and multiply in the bloodstream, relying on specific virulence factors such as capsules. Therefore, it is essential to study the genes involved in capsule biosynthesis in R. anatipestifer. In this study, we successfully constructed gene deletion mutants Δ3820 and Δ3830, targeting the GE296_RS03820 and GE296_RS03830 genes, respectively, using the RA-LZ01 strain as the parental strain. The growth kinetics analysis revealed that these two genes contribute to bacterial growth. Transmission and scanning electron microscopy (TEM and SEM) and silver staining showed that Δ3820 and Δ3830 produced the altered capsules and compounds of capsular polysaccharides (CPSs). Serum resistance test showed the mutants also exhibited reduced C3b deposition and decreased resistance serum killing. In vivo, Δ3820 and Δ3830 exhibited markedly declining capacity to cross the blood-brain barrier, compared to RA-LZ01. These findings indicate that the GE296_RS03820 and GE296_RS03830 genes are involved in CPSs biosynthesis and play a key role in the pathogenicity of R. anatipestifer. Furthermore, Δ3820 and Δ3830 mutants presented a tendency toward higher survival rates from RA-LZ01 challenge in vivo. Additionally, sera from ducklings immunized with the mutants showed cross-immunoreactivity with different serotypes of R. anatipestifer, including 1, 2, 7 and 10. Western blot and SDS-PAGE assays revealed that the altered CPSs of Δ3820 and Δ3830 resulted in the exposure of some conserved proteins playing the key role in the cross-immunoreactivity. Our study clearly demonstrated that the GE296_RS03820 and GE296_RS03830 genes are involved in CPS biosynthesis in R. anatipestifer and the capsule is a target for attenuation in vaccine development.
Collapse
Affiliation(s)
- Xiaoni Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiazhen Ge
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guodong Song
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yijian Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengcheng Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tongtong Tian
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuerui Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Xu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Fuying Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
8
|
Liu J, Hao D, Ding X, Shi M, Wang Q, He H, Cheng B, Wang M, Wang Q, Xiang Y, Chen L. Epidemiological investigation and β-lactam antibiotic resistance of Riemerella anatipestifer isolates with waterfowl origination in Anhui Province, China. Poult Sci 2024; 103:103490. [PMID: 38387287 PMCID: PMC10899037 DOI: 10.1016/j.psj.2024.103490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Riemerella anatipestifer (R. anatipestifer) is a highly pathogenic and complex serotypes waterfowl pathogen with inherent resistance to multiple antibiotics. This study was aimed to investigate the antibiotic resistance characteristics and genomic features of R. anatipestifer isolates in Anhui Province, China in 2023. A total of 287 cases were analysed from duck farms and goose farms, and the R. anatipestifer isolates were subjected to drug resistance tests for 30 antimicrobials. Whole genome sequencing (WGS) and bioinformatics analysis were performed on the bacterial genomes, targeting the β-lactam resistance genes. The results showed that a total of 74 isolates of R. anatipestifer were isolated from 287 cases, with a prevalence of 25.8%. The antimicrobial susceptibility testing (AST) revealed that all the 74 isolates were resistant to multiple drugs, ranging from 13 to 26 kinds of drugs. Notably, these isolates showed significant resistance to aminoglycosides and macrolides, which are also commonly used in clinical practices. Data revealed the presence of several β-lactamase-related genes among the isolates, including a novel blaRASA-1 variant (16.2%), the class A extended-spectrum β-lactamase blaRAA-1 (12.2%), and a blaOXA-209 variant (98.6%). Functional analysis of the variants blaRASA-1 and blaOXA-209 showed that the blaRASA-1 variant exhibited activity against various β-lactam antibiotics while their occurrence in R. anatipestifer were not common. The blaOXA-209 variant, on the other hand, did not perform any β-lactam antibiotic resistance. Furthermore, we observed that blaRAA-1 could undergo horizontal transmission among different bacteria via the insertion sequence IS982. In conclusion, this study delves into the high prevalence of R. anatipestifer infection in waterfowl in Anhui, China. The isolated strains exhibit severe drug resistance issues, closely associated with the prevalence of antibiotic resistance genes (ARG). Additionally, our research investigates the β-lactam antibiotic resistance mechanism in R. anatipestifer.
Collapse
Affiliation(s)
- Junfeng Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City 450000, Henan Province, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou City 450000, China; Anhui Qiangying Food Group, Suzhou City 234000, Anhui Province, China
| | - Dongmin Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City 450000, Henan Province, China; Henan Key Laboratory of Animal Food Safety Zhengzhou City 450000, Henan Province, China; Anhui Qiangying Food Group, Suzhou City 234000, Anhui Province, China
| | - Xueyan Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City 450000, Henan Province, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou City 450000, China
| | - Mingzhen Shi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City 450000, Henan Province, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou City 450000, China
| | - Qiaojun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou City 225000, Jiangsu Province, China
| | - Hengxu He
- College of Veterinary Medicine, Yangzhou University, Yangzhou City 225000, Jiangsu Province, China
| | - Binghua Cheng
- Anhui Qiangying Food Group, Suzhou City 234000, Anhui Province, China
| | - Mengping Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City 450000, Henan Province, China
| | - Qingxiu Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City 450000, Henan Province, China
| | - Yuqiang Xiang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City 450000, Henan Province, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou City 450000, China
| | - Liying Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou City 450000, Henan Province, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou City 450000, China; Henan Key Laboratory of Animal Food Safety Zhengzhou City 450000, Henan Province, China.
| |
Collapse
|
9
|
Liang Z, Li H, Yang D, Yin L, Wu Y, Liu J, Zhou Q. A novel bivalent inactivated vaccine for ducks against Riemerella anatipestifer based on serotype distribution in southern China. Poult Sci 2024; 103:103427. [PMID: 38262334 PMCID: PMC10835443 DOI: 10.1016/j.psj.2024.103427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Riemerella anatipestifer (RA) causes epizootic infectious polyserositis in ducks with high mortality and leads to huge economic losses worldwide. Bacterial resistance poses a challenge for the control of the disease, vaccines failed to provide ideal cross-protection. Thus, the preparation of vaccines based on popular serotypes is important. In this study, we collected 700 brain and liver tissues of dead ducks from 8 provinces in southern China from 2016 to 2022 and obtained 195 RA isolates with serotypes 1, 2, 7, and 10. Serotypes 1 and 2 were the most prevalent (82%). A novel bivalent inactivated vaccine WZX-XT5 containing propolis adjuvant was prepared, we chose XT5 (serotype 1) and WZX (serotype 2) as vaccine strains and evaluated WZX-XT5-induced immune response and protective efficacy in ducks. Results showed that the XT5 (LD50, 3.5 × 103 CFU) exhibited high virulence and provided better protection against RA compared with ZXP, DCR and LCF1 (LD50, 108 CFU). Notably, the dose of 109 CFU provided ideal protection compared with 108 CFU, propolis and oil emulsion adjuvants induced stronger protective efficacy compared with aluminum hydroxide adjuvant. Importantly, WZX-XT5 immunization induced high levels of RA-specific IgY, IFN-γ, IL-2, and IL-4 in serum and offered over 90% protection against RA with ultra-high lethal dose in ducks. Additionally, no clinical signs of RA infection or obvious pathological damage in tissues were observed in protected ducks. Overall, this study first reports the identification, serotyping and virulence of RA in ducks of southern China and the preparation of a novel bivalent inactivated vaccine, providing useful scientific information to prevent and control RA infection.
Collapse
Affiliation(s)
- Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Dehong Yang
- Wens Foodstuffs Group Co, Ltd, Xinxing, Guangdong, 527400, China
| | - Lijuan Yin
- Wens Foodstuffs Group Co, Ltd, Xinxing, Guangdong, 527400, China
| | - Yunyan Wu
- Wens Foodstuffs Group Co, Ltd, Xinxing, Guangdong, 527400, China
| | - Junfa Liu
- Wens Foodstuffs Group Co, Ltd, Xinxing, Guangdong, 527400, China; Shandong Huachen Pharmaceutical CO., LTD, Weifang, Shandong, 261205, China
| | - Qingfeng Zhou
- Wens Foodstuffs Group Co, Ltd, Xinxing, Guangdong, 527400, China.
| |
Collapse
|
10
|
Li S, Wang Y, Yang R, Zhu X, Bai H, Deng X, Bai J, Zhang Y, Xiao Y, Li Z, Liu Z, Zhou Z. Outer membrane protein OMP76 of Riemerella anatipestifer contributes to complement evasion and virulence by binding to duck complement factor vitronectin. Virulence 2023; 14:2223060. [PMID: 37326479 PMCID: PMC10281475 DOI: 10.1080/21505594.2023.2223060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Riemerella anatipestifer is an important bacterial pathogen in poultry. Pathogenic bacteria recruit host complement factors to resist the bactericidal effect of serum complement. Vitronectin (Vn) is a complementary regulatory protein that inhibits the formation of the membrane attack complex (MAC). Microbes use outer membrane proteins (OMPs) to hijack Vn for complement evasion. However, the mechanism by which R. anatipestifer achieves evasion is unclear. This study aimed to characterise OMPs of R. anatipestifer which interact with duck Vn (dVn) during complement evasion. Far-western assays and comparison of wild-type and mutant strains that were treated with dVn and duck serum demonstrated particularly strong binding of OMP76 to dVn. These data were confirmed with Escherichia coli strains expressing and not expressing OMP76. Combining tertiary structure analysis and homology modelling, truncated and knocked-out fragments of OMP76 showed that a cluster of critical amino acids in an extracellular loop of OMP76 mediate the interaction with dVn. Moreover, binding of dVn to R. anatipestifer inhibited MAC deposition on the bacterial surface thereby enhancing survival in duck serum. Virulence of the mutant strain ΔOMP76 was attenuated significantly relative to the wild-type strain. Furthermore, adhesion and invasion abilities of ΔOMP76 decreased, and histopathological changes showed that ΔOMP76 was less virulent in ducklings. Thus, OMP76 is a key virulence factor of R. anatipestifer. The identification of OMP76-mediated evasion of complement by recruitment of dVn contributes significantly to the understanding of the molecular mechanism by which R. anatipestifer escapes host innate immunity and provides a new target for the development of subunit vaccines.
Collapse
Affiliation(s)
- Sen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yanhua Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Rongkun Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xiaotong Zhu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Hongying Bai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jiao Bai
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zhengfei Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
11
|
Nowaczek A, Dec M, Stępień-Pyśniak D, Wilczyński J, Urban-Chmiel R. Characterization of Riemerella anatipestifer Strains Isolated from Various Poultry Species in Poland. Antibiotics (Basel) 2023; 12:1648. [PMID: 38136682 PMCID: PMC10740677 DOI: 10.3390/antibiotics12121648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Riemerella anatipestifer (R. anatipestifer) is one of the common pathogens found in poultry flocks, resulting in serious economic losses for the poultry industry due to high mortality, reduced growth rate, poor feed conversion, increased condemnations, and high treatment costs. The aim of this study was to phenotypically characterize phylogenetic relationships and assess the presence of resistance gene strains of R. anatipestifer obtained from various poultry species in Poland. A total of 57 isolates of Riemerella were included in this study. A polymerase chain reaction (PCR) and matrix assisted laser desorption ionization mass spectrometry (MALDI-TOF MS) were used for identification of the strains. The phylogenetic relationship of the R. anatipestifer isolates was determined by analysing the rpoB gene sequence. The susceptibility to antibiotics was evaluated by minimum inhibitory concentration (MIC) in liquid media. All of the field strains of R. anatipestifer were grouped into one of two clades resulting from rpoB gene sequencing. High MIC50 and MIC90 values were obtained for gentamycin, amikacin, and colistin. Low MIC50 and MIC90 values were obtained for amoxicillin cefuroxime, cefoperazone, piperacillin, and trimethoprim/sulfamethoxazole. Among the resistance genes, tet(X) and ermF were identified most frequently. This is the first phenotypic characterization of R. anatipestifer strains obtained from poultry flocks in Poland.
Collapse
Affiliation(s)
- Anna Nowaczek
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (M.D.); (D.S.-P.); (R.U.-C.)
| | - Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (M.D.); (D.S.-P.); (R.U.-C.)
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (M.D.); (D.S.-P.); (R.U.-C.)
| | | | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (M.D.); (D.S.-P.); (R.U.-C.)
| |
Collapse
|
12
|
Guan Y, Bao L, Zhou L, Dai C, Li Z, Zhang S, Shang Y, Niu W, Zhang Y, Wang H. Comparative analysis of the fecal microbiota of healthy and injured common kestrel ( Falco tinnunculus) from the Beijing Raptor Rescue Center. PeerJ 2023; 11:e15789. [PMID: 37637157 PMCID: PMC10452619 DOI: 10.7717/peerj.15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2023] [Indexed: 08/29/2023] Open
Abstract
The gut microbiota is a complex ecosystem that interacts with many other factors to affect the health and disease states of the host. The common kestrel (Falco tinnunculus) is protected at the national level in China. However, the available sequencing data of the gut microbiota from the feces of wild common kestrels, especially for being rescued individuals by professional organization, remains limited. In the present study, we characterized the fecal bacterial communities of healthy and injured common kestrels, and compared the structure of their fecal microbiota by analyzing the V3-V4 region of the 16S rRNA gene using high-throughput sequencing technology with the Illumina MiSeq platform. We found that Firmicutes, Proteobacteria and Actinobacteria were the most predominant phyla in common kestrels. Further, the beta diversity analysis showed that changes in gut microbes were associated with injuries to the common kestrel. The Bacteroides/Firmicutes ratio was significantly lower in the injured group. At the genus level, Glutamicibacter showed significant difference in the two groups. The aim of our current study was to characterize the basic bacterial composition and community structure in the feces of healthy common kestrels, and then compare the differences in the fecal microbiota between healthy and injured individuals. Patescibacteria, Spirochaetes, and Glutamicibacter may be studied as potential biomarkers for certain diseases in raptors. The results could provide the basic data for additional research on the fecal microbiota of common kestrels and contribute to the rescue of wild raptors in the future.
Collapse
Affiliation(s)
- Yu Guan
- Beijing Normal University, Beijing, China
| | - Lei Bao
- Beijing Normal University, Beijing, China
| | - Lei Zhou
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Chang Dai
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Zhisai Li
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Shuai Zhang
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | - Yugang Shang
- International Fund for Animal Welfare, Beijing Raptor Rescuer Center, Beijing, China
| | | | | | | |
Collapse
|
13
|
Huang M, Wang M, Feng Y, Wang M, Gao Q, Zhu D, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Huang J, Ou X, Mao S, Sun D, He Y, Wu Z, Cheng A, Liu M. Functional Characterization of FeoAB in Iron Acquisition and Pathogenicity in Riemerella anatipestifer. Microbiol Spectr 2023; 11:e0137323. [PMID: 37272830 PMCID: PMC10434265 DOI: 10.1128/spectrum.01373-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
The bacterium Riemerella anatipestifer requires iron for growth, but the mechanism of iron uptake is not fully understood. In this study, we disrupted the Feo system and characterized its function in iron import in R. anatipestifer ATCC 11845. Compared to the parent strain, the growth of the ΔfeoA, ΔfeoB, and ΔfeoAB strains was affected under Fe3+-limited conditions, since the absence of the feo system led to less intracellular iron than in the parent strain. In parallel, the ΔfeoAB strain was shown to be less sensitive to streptonigrin, an antibiotic that requires free iron to function. The sensitivity of the ΔfeoAB strain to hydrogen peroxide was also observed to be diminished compared with that of the parent strain, which could be related to the reduced intracellular iron content in the ΔfeoAB strain. Further research revealed that feoA and feoB were directly regulated by iron through the Fur regulator and that the transcript levels of feoA and feoB were significantly increased in medium supplemented with 1 mM MnCl2, 400 μM ZnSO4, and 200 μM CuCl2. Finally, it was shown that the ΔfeoAB strain of R. anatipestifer ATCC 11845 was significantly impaired in its ability to colonize the blood, liver, and brain of ducklings. Taken together, these results demonstrated that FeoAB supports ferrous iron acquisition in R. anatipestifer and plays an important role in R. anatipestifer colonization. IMPORTANCE In Gram-negative bacteria, the Feo system is an important ferrous iron transport system. R. anatipestifer encodes an Feo system, but its function unknown. As iron uptake may be required for oxidative stress protection and virulence, understanding the contribution of iron transporters to these processes is crucial. This study showed that the ΔfeoAB strain is debilitated in its ability to import iron and that its intracellular iron content was constitutively low, which enhanced the resistance of the deficient strain to H2O2. We were surprised to find that, in addition to responding to iron, the Feo system may play an important role in sensing manganese, zinc, and copper stress. The reduced colonization ability of the ΔfeoAB strain also sheds light on the role of iron transporters in host-pathogen interactions. This study is important for understanding the cross talk between iron and other metal transport pathways, as well as the pathogenic mechanism in R. anatipestifer.
Collapse
Affiliation(s)
- Mi Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan Feng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Quan H, Gong X, Chen Q, Zheng F, Yu Y, Liu D, Wang W, Chu Y. Functional Characterization of a Novel SMR-Type Efflux Pump RanQ, Mediating Quaternary Ammonium Compound Resistance in Riemerella anatipestifer. Microorganisms 2023; 11:907. [PMID: 37110330 PMCID: PMC10142375 DOI: 10.3390/microorganisms11040907] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Riemerella anatipestifer (R. anatipestifer) is a multidrug-resistant bacterium and an important pathogen responsible for major economic losses in the duck industry. Our previous study revealed that the efflux pump is an important resistance mechanism of R. anatipestifer. Bioinformatics analysis indicated that the GE296_RS02355 gene (denoted here as RanQ), a putative small multidrug resistance (SMR)-type efflux pump, is highly conserved in R. anatipestifer strains and important for the multidrug resistance. In the present study, we characterized the GE296_RS02355 gene in R. anatipestifer strain LZ-01. First, the deletion strain RA-LZ01ΔGE296_RS02355 and complemented strain RA-LZ01cΔGE296_RS02355 were constructed. When compared with that of the wild-type (WT) strain RA-LZ01, the mutant strain ΔRanQ showed no significant influence on bacterial growth, virulence, invasion and adhesion, morphology biofilm formation ability, and glucose metabolism. In addition, the ΔRanQ mutant strain did not alter the drug resistance phenotype of the WT strain RA-LZ01 and displayed enhanced sensitivity toward structurally related quaternary ammonium compounds, such as benzalkonium chloride and methyl viologen, which show high efflux specificity and selectivity. This study may help elucidate the unprecedented biological functions of the SMR-type efflux pump in R. anatipestifer. Thus, if this determinant is horizontally transferred, it could cause the spread of quaternary ammonium compound resistance among bacterial species.
Collapse
Affiliation(s)
- Heng Quan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Xiaowei Gong
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Fuying Zheng
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Yongfeng Yu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Donghui Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| |
Collapse
|
15
|
Zheng X, Xu S, Wang Z, Tao X, Liu Y, Dai L, Li Y, Zhang W. Sifting through the core-genome to identify putative cross-protective antigens against Riemerella anatipestifer. Appl Microbiol Biotechnol 2023; 107:3085-3098. [PMID: 36941438 DOI: 10.1007/s00253-023-12479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
Infectious serositis of ducks, caused by Riemerella anatipestifer, is one of the main infectious diseases that harm commercial ducks. Whole-strain-based vaccines with no or few cross-protection were observed between different serotypes of R. anatipestifer, and so far, control of infection is hampered by a lack of effective vaccines, especially subunit vaccines with cross-protection. Since the concept of reverse vaccinology was introduced, it has been widely used to screen for protective antigens in important pathogens. In this study, pan-genome binding reverse vaccinology, an emerging approach to vaccine candidate screening, was used to screen for cross-protective antigens against R. anatipestifer. Thirty proteins were identified from the core-genome as potential cross-protective antigens. Three of these proteins were recombinantly expressed, and their immunoreactivity with five antisera (anti-serotypes 1, 2, 6, 10, and 11) was demonstrated by Western blotting. Our study established a method for high-throughput screening of cross-protective antigens against R. anatipestifer in silico, which will lay the foundation for the development of a cross-protective subunit vaccine controlling R. anatipestifer infection. KEY POINTS: • Pan-genome binding reverse vaccine approach was first established in R. anatipestifer to screen for subunit vaccine candidates. • Thirty potential cross-protective antigens against R. anatipestifer were identified by this method. • The reliability of the method was verified preliminarily by the results of Western blotting of three of these potential antigens.
Collapse
Affiliation(s)
- Xiangkuan Zheng
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sixiang Xu
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuohao Wang
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingyu Tao
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250100, China
| | - Lei Dai
- Hainan Animal Disease Prevention and Control Center, 16 Xingdan Road, Haikou, 571100, China
| | - Yubao Li
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China.
| | - Wei Zhang
- The Sanya Institute of Nanjing Agriculture University, Sanya, 572024, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Sawicka-Durkalec A, Tomczyk G, Gerilovych I, Kursa O. Molecular Detection and Phylogenetic Analysis of Riemerella anatipestifer in Poultry and Wild Geese in Poland. Pathogens 2023; 12:pathogens12020256. [PMID: 36839527 PMCID: PMC9965878 DOI: 10.3390/pathogens12020256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Riemerella anatipestifer (RA) is one of the most relevant bacterial pathogens of commercial waterfowl from clinical and economic points of view. Our study aimed to evaluate the prevalence of RA infection in different types of commercial poultry in Poland and verify the potential role of wild geese as vectors of this pathogen. We tested a total of 126 poultry flocks, including geese (N = 20), ducks (N = 42), turkeys (N = 64) and 19 wild geese, including greater white-fronted geese (N = 9), greylag geese (N = 5) and Taiga bean geese (N = 5). Tracheal swabs were examined for RA using a PCR targeting a conserved region of the 16S rRNA gene. Selected PCR products were sequenced to perform the phylogenetic analysis. Among the commercial poultry, the highest RA prevalence was found in flocks of ducks (35.7%) and geese (30.0%), whereas the lowest one was found in turkeys (3.2%). Most tested wild geese (94.7%) were RA positive. The phylogenetic analysis showed relatively low genetic diversity of the sequences analyzed, which gathered in two clusters of the phylogenetic tree, and the minimum nucleotide identity was 98.6%. Our results would support the contention that RA isolates from commercial poultry circulate in wild bird populations but are not transmitted back to poultry.
Collapse
Affiliation(s)
- Anna Sawicka-Durkalec
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
- Correspondence: ; Tel.: +48-81-889-3013
| | - Grzegorz Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| | - Iryna Gerilovych
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
- National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”, 83 Pushkinska, 61023 Kharkov, Ukraine
| | - Olimpia Kursa
- Department of Poultry Diseases, National Veterinary Research Institute, 24-100 Pulawy, Poland
| |
Collapse
|
17
|
Wang J, Chen Y, He X, Du X, Gao Y, Shan X, Hu Z, Hu Q. PaR1 secreted by the type IX secretion system is a protective antigen of Riemerella anatipestifer. Front Microbiol 2023; 13:1082712. [PMID: 36713192 PMCID: PMC9874225 DOI: 10.3389/fmicb.2022.1082712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Riemerella anatipestifer mainly infects domestic ducks, geese, turkeys, and other birds, and causes considerable economic losses to the global duck industry. Previous studies have shown that concentrated cell-free culture filtrates of R. anatipestifer induce highly significant protection against homologous challenge. In this study, 12 immunogenic proteins were identified in the culture supernatant of R. anatipestifer strain Yb2 with immunoproteomic analysis. Of these, three immunogenic proteins, AS87_RS06600 (designated "PaR1" in this study), AS87_RS09020, and AS87_RS09965, which appeared in more than three spots on the western-blotted membrane, were expressed in Escherichia coli and purified. Animal experiments showed that the recombinant PaR1 (rPaR1) protein protected 41.67% of immunized ducklings against challenge with virulent Yb2, whereas rAS87_RS09020 or rAS87_RS09965 did not, and that ducklings immunized once with rPaR1 were 20, 40, and 0% protected from challenge with R. anatipestifer strains WJ4 (serotype 1), Yb2 (serotype 2), and HXb2 (serotype 10), respectively. In addition, rPaR1 immunized rabbit serum showed bactericidal activity against strain Yb2 at a titer of 1:8. These results indicate that rPaR1 of strain Yb2 protects against homologous challenge. Amino acid homology analysis show that PaR1 is a non-serotype-specific protein among different R. anatipestifer serotypes. Furthermore, PaR1 is mainly secreted outside the cell through the T9SS. Overall, our results demonstrate that R. anatipestifer PaR1 is a non-serotype-specific protective protein secreted by the T9SS.
Collapse
|
18
|
Riemerella anatipestifer GldG is necessary for secretion of effectors by type IX secretion system. Vet Microbiol 2023; 276:109628. [PMID: 36508857 DOI: 10.1016/j.vetmic.2022.109628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Riemerella anatipestifer secretes proteins through the type IX secretion system (T9SS). Recent studies have shown that the R. anatipestifer T9SS component proteins GldM and GldK also act as crucial virulence factors. In our previous study, the disruption of AS87_RS00460 gene, which encodes the predicted protein GldG, significantly reduced the bacterial virulence of R. anatipestifer wild-type strain Yb2, but the mechanism was unclear. In this study, we investigated the function of the GldG in bacterial virulence and protein secretion using the mutant strain Yb2ΔgldG and complementation strain cYb2ΔgldG. Our results demonstrate that the gldG gene encodes a gliding-motility-associated ABC transporter substrate-binding protein GldG, which was localized to the bacterial membrane in an immunoblotting analysis, and functions in the bacterium's adherence to and invasion of host cells and its survival in host blood. The resistance of mutant strain Yb2ΔgldG to complement-dependent killing was significantly reduced. Yb2ΔgldG displayed reduced gliding motility and deficient protein secretion. Label-free quantification (LFQ) with liquid chromatography-mass spectrometry (LC-MS) showed that 10 proteins with a conserved T9SS C-terminal domain were differentially secreted by Yb2ΔgldG and Yb2. The secretion levels of those 10 proteins were determined with immunoblotting, and the results were consistent with the LFQ LC-MS data. All of these effects were rescued by complementation with a plasmid encoding Yb2 gldG. Our results demonstrate that the R. anatipestifer gldG gene encodes the protein GldG, which is involved in bacterial virulence and protein secretion.
Collapse
|
19
|
Huang M, Liu M, Liu J, Wang M, Jia R, Zhu D, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Gao Q, Huang J, Ou X, Mao S, Tian B, Sun D, Cheng A. Evaluation of the immunoprotection efficacy of Riemerella anatipestifer fur-deficient mutant as an attenuated vaccine. Poult Sci 2022; 102:102450. [PMID: 36621099 PMCID: PMC9841290 DOI: 10.1016/j.psj.2022.102450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Riemerella anatipestifer (R. anatipestifer, RA) is an infectious pathogen that causes septicemia and polyserositis in ducks. Our previous studies showed that RA CH-1 ∆fur was significantly attenuated in ducklings, which highlights the potential of this strain as a live attenuated vaccine. In this study, it was shown that infection with 109 CFU of the fur mutant did not cause any clinical symptoms or significant histological lesions in 3-day-old ducklings and that the bacteria were readily cleared by the host within 3 d. Compared with the nonvaccinated group, the group inoculated with the mutant strain RA CH-1 ∆fur exhibited protection of ducklings against a high-dose (2.28 × 1010 CFU) challenge with the wild-type strain RA CH-1. Moreover, the average body weights and body weight gains of the Δfur-inoculated group were not significantly affected by the challenge. Further analysis revealed that RA CH-1 ∆fur elicited higher IgY titers and that the serum antibody levels persisted for at least 49 d after immunization. Overall, our study showed that RA CH-1 ∆fur is a safe and effective vaccine candidate that is expected to play an important role in RA CH-1 infection prevention in the duck industry.
Collapse
Affiliation(s)
- Mi Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Jiajun Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
20
|
Li J, Zhang Y, Wang Y, Zhang Y, Shi B, Gan L, Yu S, Jia X, Yang K, Li Z. Immunogenicity of live phoP gene deletion strain of Riemerella anatipestifer serotype 1. Poult Sci 2022; 102:102294. [PMID: 36436377 PMCID: PMC9706625 DOI: 10.1016/j.psj.2022.102294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/08/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Duck infectious serositis is an acute and infectious disease caused by Riemerella anatipestifer (R. anatipestifer) that leads to perihepatitis, pericarditis, meningitis, and airbag inflammation in ducks, which causes serious economic losses to the global duck industry. The phoP/phoR is a novel 2-component signal transduction system first reported in gram-negative bacteria, of which phoP acts as a global regulator and virulence factor. In this study, the phoP gene from the R. anatipestifer YM strain was knocked out using homologous recombination technology and replaced with the spectinomycin resistance gene (Spec). The virulence of the R. anatipestifer YMΔphoP strain was reduced by approximately 47,000 times compared to that of the wild-type R. anatipestifer YM strain. Ducks were immunized with live R. anatipestifer YMΔphoP strain by subcutaneous inoculation at a dose of 106 to 107 CFU (0.2 mL per duck) and challenged with the wild-type R. anatipestifer YM strain 14 days later. The protection rate in the immunized group was 100%. The growth characteristics of ducks in the immunized and negative control groups were normal, and the research demonstrated R. anatipestifer YMΔphoP strain have suitable immunogenicity and protective effects. Thus, the study findings suggest that the novel R. anatipestifer YMΔphoP strain may provide a candidate for the development of a gene deletion activated vaccine against duck infectious serositis.
Collapse
Affiliation(s)
- Jian Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanhao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baolan Shi
- Sinopharm Animal Health Corporation Ltd., Wuhan, 430070, China
| | - Luoxin Gan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuang Yu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangchao Jia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kang Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, China,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, 430070, China,Corresponding author:
| |
Collapse
|
21
|
Abstract
Duck infectious serositis, also known as Riemerella anatipestifer disease, infects domestic ducks, geese, and turkeys and wild birds. However, the regulatory mechanism of its pathogenicity remains unclear. The PhoPR two-component system (TCS) was first reported in Gram-negative bacteria in our previous research and was demonstrated to be involved in virulence and gene expression. Here, DNA affinity purification sequencing (DAP-seq) was applied to further explore the regulation of PhoPR in relation to pathogenicity in R. anatipestifer. A conserved motif was identified upstream of 583 candidate target genes which were directly regulated by PhoP. To further confirm the genes which are regulated by PhoR and PhoP, single-gene-deletion strains were constructed. The results of transcriptome analysis using next-generation RNA sequencing showed 136 differentially expressed genes (DEGs) between the ΔphoP strain and the wild type (WT) and 183 DEGs between the ΔphoR strain and the WT. The candidate target genes of PhoP were further identified by combining transcriptome analysis and DAP-seq, which revealed that the main direct regulons of PhoP are located on the membrane and PhoP is involved in regulating aerotolerance. Using the in vivo duck model, the pathogenicity of ΔphoP and ΔphoR mutants was found to be significantly lower than that of the WT. Together, our findings provide insight into the direct regulation of PhoP and suggest that phoPR is essential for the pathogenicity of R. anatipestifer. The gene deletion strains are expected to be candidate live vaccine strains of R. anatipestifer which can be used as ideal genetic engineering vector strains for the expression of foreign antigens. IMPORTANCE Riemerella anatipestifer is a significant pathogen with high mortality in the poultry industry that causes acute septicemia and infectious polyserositis in ducks, chickens, geese, and other avian species. Previously, we characterized the two-component system encoded by phoPR and found that R. anatipestifer almost completely lost its pathogenicity for ducklings when phoPR was deleted. However, the mechanism of PhoPR regulation of virulence in R. anatipestifer had not been deeply explored. In this study, we utilized DAP-seq to explore the DNA-binding sites of PhoP as a response regulator in the global genome. Furthermore, phoP and phoR were deleted separately, and transcriptomics analysis of the corresponding gene deletion strains was performed. We identified a series of directly regulated genes of the PhoPR two-component system. The duckling model showed that both PhoP and PhoR are essential virulence-related factors in R. anatipestifer.
Collapse
|
22
|
Riemerella anatipestifer AS87_RS02955 Acts as a Virulence Factor and Displays Endonuclease Activity. Appl Environ Microbiol 2022; 88:e0127622. [PMID: 36106871 PMCID: PMC9552600 DOI: 10.1128/aem.01276-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Riemerella anatipestifer is an important bacterial pathogen in the global duck industry and causes heavy economic losses. In our previous study, we demonstrated that R. anatipestifer type IX secretion system components GldK and GldM, and the secretion protein metallophosphoesterase, acted as virulence factors. In this study, R. anatipestifer AS87_RS02955 was investigated for virulence and enzymatic activity properties. We constructed AS87_RS02955 mutation and complementation strains to assess bacterial virulence. In vivo bacterial loads showed a significantly reduced bacterial loads in the blood of ducks infected with mutant strain Yb2Δ02955, which was recovered in the blood of ducks infected with the complementation strain cYb2Δ02955, demonstrating that AS87_RS02955 was associated with virulence. Further studies showed AS87_RS02955 was a novel nonspecific endonuclease with no functionally conserved domain, but enzymatic activity toward DNA and RNA was indicated. DNase activity was activated by Zn2+, Cu2+, Mg2+, Ca2+, and Mn2+ ions but inhibited by ethylenediaminetetraacetic acid. RNase activity was independent of metal cations, but stimulated by Mg2+, Ca2+, and Mn2+. RAS87_RS02955 enzymatic activity was active across a broad pH and temperature range. Moreover, we identified four sites in rAS87_RS02955, F39, F92, I134, and F145, which were critical for enzymatic activity. In summary, we showed that R. anatipestifer AS87_RS02955 encoded a novel endonuclease with important roles in bacterial virulence. IMPORTANCE R. anatipestifer AS87_RS02955 was identified as a novel T9SS effector and displayed a nonspecific endonuclease activity in this study. The protein did not contain a conserved His-Asn-His motif structure, which is similar to the endonuclease from Prevotella sp. Its mutant strain Yb2Δ02955 demonstrated significantly attenuated virulence, suggesting AS87_RS02955 is an important virulence factor. Moreover, AS87_RS02955 displayed nonspecific endonuclease activity to cleave λ DNA and MS2 RNA, while four protein sites were critical for endonuclease activity. In conclusion, R. anatipestifer AS87_RS02955 plays important roles in bacterial virulence.
Collapse
|
23
|
Assessment of Bacterial Diversity of Industrial Poultry Wastewater by Denaturing Gradient Gel Electrophoresis (DGGE) and the Cultivation Method in Order to Inform Its Reuse in Agriculture. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6065305. [PMID: 36177057 PMCID: PMC9514947 DOI: 10.1155/2022/6065305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
Effluents discharged by poultry meat industries are heavily polluted with raw materials, such as fat, blood residues, and proteins. Thus, untreated effluents directly discharged into the environment may constitute a public health threat. This study aims to evaluate the bacterial diversity of three water qualities: industrial poultry wastewater (PWW), tap water (TW), and PWW diluted with TW (50 : 50) (V/V) (TWPWW) by the combination of culture-independent and culture-dependent approaches. The total bacterial DNA was extracted using phenol/chloroform method. The hypervariable 16S rRNA region V3-V5 was amplified by PCR using universal primers. The amplicons were separated by vertical electrophoresis on a polyacrylamide gel of increasing denaturing gradient according to their richness in GC bases. Selected bands were reamplified and sequenced. Pure isolated bacteria from nutrient agar medium were characterized according to their morphological and biochemical characteristics. Genomic DNA from pure strains was extracted by boiling method, and a molecular amplification of the 16S–23S ITS region of the 16S rRNA gene was performed using the universal primers. Selected isolates were identified by sequencing. Results showed a high bacterial load and diversity in PWW in comparison with TW and TWPWW. A collection of 44 strains was obtained, and 25 of them were identified by sequencing. Proteobacteria represented 76% of isolated bacteria Gamma-Proteobacteria was the predominate isolate (68%). Other isolates were Firmicutes (8%), Bacteroidetes (12%), and Actinobacteria (8%). These isolates belong to different genera, namely, Pseudomonas, Acinetobacter, Proteus, Empedobacter, Corynebacterium, Enterobacter, Comamonas, Frondibacter, Leclercia, Staphylococcus, Atlantibacter, Klebsiella, and Microbacterium.
Collapse
|
24
|
Ke T, Yang D, Yan Z, Yin L, Shen H, Luo C, Xu J, Zhou Q, Wei X, Chen F. Identification and Pathogenicity Analysis of the Pathogen Causing Spotted Spleen in Muscovy Duck. Front Vet Sci 2022; 9:846298. [PMID: 35677936 PMCID: PMC9169529 DOI: 10.3389/fvets.2022.846298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Since September 2020, the clinical symptoms of Muscovy duck spleen spots have appeared in Guangdong, Guangxi, Jiangxi, Hunan, Hubei, and other provinces, resulting in a large number of Muscovy duck deaths and great economic losses. The absence of the typical clinical symptoms caused by pathogenic microorganisms makes the cause of the spotted spleen a mystery. High-throughput sequencing results suggested that Riemerella anatipestifer (R. anatipestifer) may be the pathogen. Then, R. anatipestifer was regarded as the research target for isolation, identification, and pathogenicity assessment. After biochemical test, PCR amplification, and serotype determination, it was confirmed that the isolated strain CZG-1 was serotype 15 R. anatipestifer. Typical spotted spleen symptoms were observed after CZG-1 infection. Furthermore, drug sensitivity assays showed the similar drug-resistant spectrum of R. anatipestifer serotype 15 to other serotypes; for example, all test strains were resistant to polymyxin, gentamicin, and neomycin. The CZG-1 strain has high pathogenicity, and its lethal dose of 50% (LD50) is 35.122 CFU/ml. Virulence gene determination showed that the CZG-1 strain had at least five virulence genes, bioF, TSS9-1, TSS9-2, PncA, and 0373Right. Above all, this study identified and proved that the pathogen of spotted spleen in ducks was R. anatipestifer serotype 15, which caused death of ducks without the typical symptoms of bacterial infection. The results of this study enriched the knowledge of symptom after R. anatipestifer infection, provided a reference to the identification of the pathogen of spotted spleen, and provided theoretical basis for prevention and control of spotted spleen.
Collapse
Affiliation(s)
- Tianqiao Ke
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dehong Yang
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Zhuanqiang Yan
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Lijuan Yin
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Hanqin Shen
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Cuifen Luo
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Jingyu Xu
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Qingfeng Zhou
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
| | - Xiaona Wei
- Wen's Group Academy, Wen's Foodstuffs Group Co., Ltd., Xinxing, China
- Xiaona Wei
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Feng Chen
| |
Collapse
|
25
|
Riemerella anatipestifer T9SS Effector SspA Functions in Bacterial Virulence and Defending Natural Host Immunity. Appl Environ Microbiol 2022; 88:e0240921. [PMID: 35575548 DOI: 10.1128/aem.02409-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Riemerella anatipestifer is a major pathogenic agent of duck septicemic and exudative diseases. Recent studies have shown that the R. anatipestifer type IX secretion system (T9SS) is a crucial factor in bacterial virulence. The AS87_RS04190 protein was obviously missing from the secreted proteins of the T9SS mutant strain Yb2ΔgldM. A bioinformatic analysis indicated that the AS87_RS04190 protein contains a T9SS C-terminal domain sequence and encodes a putative subtilisin-like serine protease (SspA). To determine the role of the putative SspA protein in R. anatipestifer pathogenesis and proteolysis, we constructed two strains with an sspA mutation and complementation, respectively, and determined their median lethal doses, their bacterial loads in infected duck blood, and their adherence to and invasion of cells. Our results demonstrate that the SspA protein functions in bacterial virulence. It is also associated with the bacterial protease activity and has a conserved catalytic triad structure (Asp126, His158, and Ser410), which is necessary for protein function. The optimal reactive pH and temperature were determined to be 7.0 and 50°C, respectively, and Km and Vmax were determined to be 10.15 mM and 246.96 U/mg, respectively. The enzymatic activity of SspA is activated by Ca2+, Mg2+, and Mn2+ and inhibited by Cu2+ and EDTA. SspA degrades gelatin, fibrinogen, and bacitracin LL-37. These results demonstrate that SspA is an effector protein of T9SS and functions in R. anatipestifer virulence and its proteolysis of gelatin, fibrinogen, and bacitracin LL-37. IMPORTANCE In recent years, Riemerella anatipestifer T9SS has been reported to act as a virulence factor. However, the functions of the proteins secreted by R. anatipestifer T9SS are not entirely clear. In this study, a secreted subtilisin-like serine protease SspA was shown to be associated with R. anatipestifer virulence, host complement evasion, and degradation of gelatin, fibrinogen, and LL-37. The enzymatic activity of recombinant SspA was determined, and its Km and Vmax were 10.15 mM and 246.96 U/mg, respectively. Three conserved sites (Asp126, His158, and Ser410) are necessary for the protein's function. The median lethal dose of the sspA-deleted mutant strain was reduced >10,000-fold, indicating that SspA is an important virulence factor. In summary, we demonstrate that the R. anatipestifer AS87_RS04190 gene encodes an important T9SS effector, SspA, which plays an important role in bacterial virulence.
Collapse
|
26
|
Yin L, Zhou Q, Mai K, Yan Z, Shen H, Li Q, Chen L, Zhou Q. Epidemiological investigation of duck adenovirus 3 in southern China, during 2018-2020. Avian Pathol 2022; 51:171-180. [PMID: 35088627 DOI: 10.1080/03079457.2022.2034737] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Duck adenovirus 3 (DAdV-3) has been identified as the causative agent of a disease characterized by swelling and hemorrhages in liver and kidney of Muscovy ducks, causing huge economic losses to the waterfowl industry in China. In this study, a total of 54 DAdV-3 outbreaks from 2018 to 2020 in China were monitored with samples being collected and analyzed. The hexon amino acid sequences of the 54 DAdV-3 outbreaks and the DAdV-3 reference strains from GenBank were 98.7% to 100% identical. Epidemiological analysis showed that DAdV-3 circulated in meat-type and egg-laying Muscovy ducks, and co-infections with other viral and bacterial pathogens, such as Muscovy duck parvovirus (MDPV), Muscovy duck-origin goose parvovirus (MDGPV), Adeno-associated virus (AAV), Duck hepatitis B virus (DHBV), R. anatipestifer, and E. coli were identified. In addition, 12 out of the 23 (52.2%) DAdV-3 strains were isolated by LMH cells and identified by DAdV-3 real-time PCR. The whole-genome sequence analysis demonstrated that 12 new DAdV-3 isolates share 99.8-100% identity with the DAdV-3 reference strains, and 9 new DAdV-3 isolates exhibit a truncated ORF67 gene. Our results enhance the understanding of the epidemiology and molecular characterization associated with DAdV-3 infection in China.Highlights First report of the epidemiology of duck adenovirus 3 infection in China.Mutant DAdV-3 strains (truncated ORF67) became the predominant virus.
Collapse
Affiliation(s)
- Lijuan Yin
- Wen' s Group Academy, Wen' s Foodstuffs Group Co, Ltd, Xinxing, Yunfu, Guangdong, 527400, China
| | - Qi Zhou
- Wen' s Group Academy, Wen' s Foodstuffs Group Co, Ltd, Xinxing, Yunfu, Guangdong, 527400, China
| | - Kaijie Mai
- Wen' s Group Academy, Wen' s Foodstuffs Group Co, Ltd, Xinxing, Yunfu, Guangdong, 527400, China
| | - Zhuanqiang Yan
- Wen' s Group Academy, Wen' s Foodstuffs Group Co, Ltd, Xinxing, Yunfu, Guangdong, 527400, China.,College of Animal Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Hanqin Shen
- Wen' s Group Academy, Wen' s Foodstuffs Group Co, Ltd, Xinxing, Yunfu, Guangdong, 527400, China.,College of Animal Science, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qunhui Li
- Wen' s Group Academy, Wen' s Foodstuffs Group Co, Ltd, Xinxing, Yunfu, Guangdong, 527400, China
| | - Li Chen
- Wen' s Group Academy, Wen' s Foodstuffs Group Co, Ltd, Xinxing, Yunfu, Guangdong, 527400, China
| | - Qingfeng Zhou
- Wen' s Group Academy, Wen' s Foodstuffs Group Co, Ltd, Xinxing, Yunfu, Guangdong, 527400, China
| |
Collapse
|
27
|
Li F, Zhao W, Hong Q, Shao Q, Song J, Yang S. Faecalibacter bovis sp. nov., isolated from cow faeces. Int J Syst Evol Microbiol 2021; 71. [PMID: 34788211 DOI: 10.1099/ijsem.0.005104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-spore-forming, yellow-pigmented, aerobic, pleomorphic rod-shaped bacterium, designated ZY171143T, was isolated from faeces of a cow with diarrhoea in Wenshan, Yunnan Province, south-west China and its taxonomic position was studied. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZY171143T belonged to the family Weeksellaceae and was most closely related to the only species of the genus Faecalibacter, Faecalibacter macacae CCTCC AB 2016016T with a sequence similarity of 97.8 %. The genomic OrthoANI and digital DNA-DNA hybridization values between the strain and F. macacae CCTCC AB 2016016T were 86.2 and 30.5 %, respectively. The genomic G+C content was 31.1 mol%. The predominant fatty acids (>5 %) were C15 : 0 iso, C17 : 0 iso 3OH, C16 : 0, C16 : 1 ω5c and summed feature 3 (C16 : 1 ω7c and/or 16 : 1 ω6c). The major polar lipids were phosphatidylethanolamine, triacylglycerol and sulfonolipid. The sole respiratory quinone was MK-6. These chemotaxonomic characterizations also revealed that strain ZY171143T was a member of the genus Faecalibacter. Based on the phenotypic, chemotaxonomic and genotypic data, strain ZY171143T represents a novel species within the genus Faecalibacter, for which the name Faecalibacter bovis sp. nov. is proposed. The type strain is ZY171143T (=CGMCC 1.13663T=KCTC 62642T).
Collapse
Affiliation(s)
- Fuxiang Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, PR China
| | - Wenhua Zhao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, PR China
| | - Qionghua Hong
- Yunnan Provincial Meat Caprine Engineering Research Center, Yunnan Animal Science and Veterinary Institute, Kunming, PR China
| | - Qingyong Shao
- Yunnan Provincial Meat Caprine Engineering Research Center, Yunnan Animal Science and Veterinary Institute, Kunming, PR China
| | - Jianling Song
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, PR China
| | - Shibiao Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, PR China
| |
Collapse
|
28
|
Gao Q, Lu S, Wang M, Jia R, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Sun D, Tian B, Cheng A. Putative Riemerella anatipestifer Outer Membrane Protein H Affects Virulence. Front Microbiol 2021; 12:708225. [PMID: 34616377 PMCID: PMC8488386 DOI: 10.3389/fmicb.2021.708225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Riemerella anatipestifer causes serious contagious disease in ducks, geese, and other fowl. However, as a harmful pathogen causing significant economic losses in the poultry industry, R. anatipestifer is still poorly understood for its pathogenesis mechanisms. In a previous study, we developed an indirect ELISA method for detecting R. anatipestifer infection using B739_0832 protein, a putative outer membrane protein H (OmpH) that is conserved among different serotypes of R. anatipestifer. Although OmpH in some pathogenic bacteria, such as Pasteurella, has been reported as a virulence factor, it is still not clear whether B739_0832 protein contributes to the virulence of R. anatipestifer. In this study, we confirmed that B739_0832 protein in R. anatipestifer localizes to the outer membrane. We constructed a B739_0832 deletion mutant strain (ΔB739_0832) and assayed various effects from the deletion of B739_0832. ΔB739_0832 strain had a similar growth rate to wild-type R. anatipestifer CH-1. However, the survival rate of ducklings in 10 days after infection from ΔB739_0832 strain was 50%, whereas no ducklings survived from wild-type R. anatipestifer infection. Furthermore, the median lethal dose (LD50) of the ΔB739_0832 strain was approximately 150 times higher than that of the wild-type strain. Pathology examinations on infected ducklings found that, at 36 h after infection, bacterial loads in blood, liver, and brain tissues from ΔB739_0832-infected ducklings were considerably lower than those from wild-type infected ducklings. These results demonstrate that the B739_0832 protein contributes to the virulence of R. anatipestifer CH-1.
Collapse
Affiliation(s)
- Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shuwei Lu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
29
|
Li D, Wang X, Xu X, Gu J, Yang Y, Liu T, Wang S, Chen S, Li J. Duck Complement Factor H Binds to Outer Membrane Protein Omp24 of Riemerella anatipestifer. Avian Dis 2021; 65:261-268. [PMID: 34412457 DOI: 10.1637/0005-2086-65.2.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/29/2021] [Indexed: 11/05/2022]
Abstract
The resistance to serum complement-mediated killing is a vital virulence property of microbial pathogens. Complement factor H (FH) is a key negative regulator of the complement alternative pathway (AP) that prevents formation and accelerates the decay of AP C3 convertase and acts as a cofactor in the inactivation of C3b. Pathogens can recruit host FH through their surface proteins to escape the clearance of the complement system. Riemerella anatipestifer could also evade the complement system attack to achieve host infection, but the mechanism is still unclear. In this study, the R. anatipestifer proteins that could interact with FH in host serum were screened and analyzed, and the functions were determined. Affinity chromatography with a Ni-nitrilotriacetic acid Sefinose column and mass spectrometry identified three outer membrane proteins (Omp) of R. anatipestifer, Omp54, Omp53, and Omp24, as potential FH-binding proteins. We then successfully conducted the prokaryotic expression and polyclonal antibody preparation of three candidate proteins. Indirect immunofluorescence assay showed that three candidate proteins were all present in R. anatipestifer. The affinity blotting assay, anti-serum-inhibiting assay, and serum bactericidal assay presented evidence that Omp24 could bind FH. Moreover, FH bound to Omp24 was associated with resistance to the alternative pathway and functional for R. anatipestifer survival in the normal duck serum. These results suggested that R. anatipestifer Omp24 was a FH-binding protein and the interaction with FH blocked the alternative pathway. Recruitment of complement regulatory proteins may facilitate better R. anatipestifer resistance to this vital line of host defense.
Collapse
Affiliation(s)
- Delong Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, People's Republic of China
| | - Xiangli Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Xingsheng Xu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Jiulong Gu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Yunchuan Yang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Ting Liu
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Siyuan Wang
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China
| | - Sihuai Chen
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, People's Republic of China
| | - Jixiang Li
- College of Veterinary Medicine, Southwest University, Chongqing 402460, People's Republic of China, .,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, People's Republic of China
| |
Collapse
|
30
|
A Riemerella anatipestifer Metallophosphoesterase That Displays Phosphatase Activity and Is Associated with Virulence. Appl Environ Microbiol 2021; 87:AEM.00086-21. [PMID: 33741629 DOI: 10.1128/aem.00086-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/27/2021] [Indexed: 11/20/2022] Open
Abstract
Riemerella anatipestifer is an important pathogen of waterfowl, causing septicemic and exudative diseases. In our previous study, we demonstrated that bacterial virulence and secretion proteins of the type IX secretion system (T9SS) mutant strains Yb2ΔgldK and Yb2ΔgldM were significantly reduced, in comparison to those of wild-type strain Yb2. In this study, the T9SS secretion protein AS87_RS00980, which is absent from the secretion proteins of Yb2ΔgldK and Yb2ΔgldM, was investigated by construction of gene mutation and complementation strains. The virulence assessment showed >1,000-fold attenuated virulence and significantly reduced bacterial loads in the blood of ducks infected with Yb2Δ00980, the AS87_RS00980 gene deletion mutant strain. Bacterial virulence was recovered in complementation strain cYb2Δ00980 Further study indicated that the T9SS secretion protein AS87_RS00980 is a metallophosphoesterase (MPPE), which displayed phosphatase activity and was cytomembrane localized. Moreover, the optimal reactive pH and temperature were determined to be 7.0 and 60°C, respectively, and the Km and V max were determined to be 3.53 mM and 198.1 U/mg. The rMPPE activity was activated by Zn2+ and Cu2+ but inhibited by Fe3+, Fe2+, and EDTA. There are five conserved sites, namely, N267, H268 H351, H389, and H391, in the metallophosphatase domain. Mutant proteins Y267-rMPPE and Y268-rMPPE retained 29.30% and 19.81% relative activity, respectively, and mutant proteins Y351-rMPPE, Y389-rMPPE, and Y391-rMPPE lost almost all MPPE activity. Taken together, these results indicate that the R. anatipestifer AS87_RS00980 gene encodes an MPPE that is a secretion protein of T9SS that plays an important role in bacterial virulence.IMPORTANCE Riemerella anatipestifer T9SS was recently discovered to be associated with bacterial gliding motility and secretion of virulence factors. Several T9SS genes have been identified, but no effector has been reported in R. anatipestifer to date. In this study, we identified the T9SS secretion protein AS87_RS00980 as an MPPE that displays phosphatase activity and is associated with bacterial virulence. The enzymatic activity of the rMPPE was determined, and the Km and V max were 3.53 mM and 198.1 U/mg, respectively. Five conserved sites were also identified. The AS87_RS00980 gene deletion mutant strain was attenuated >1,000-fold, indicating that MPPE is an important virulence factor. In summary, we identified that the R. anatipestifer AS87_RS00980 gene encodes an important T9SS effector, MPPE, which plays an important role in bacterial virulence.
Collapse
|
31
|
Identification by MALDI-TOF MS and Antibiotic Resistance of Riemerella anatipestifer, Isolated from a Clinical Case in Commercial Broiler Chickens. Vet Sci 2021; 8:vetsci8020029. [PMID: 33671477 PMCID: PMC7922512 DOI: 10.3390/vetsci8020029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022] Open
Abstract
The Gram-negative bacterium Riemerella anatipestifer (RA) is known to cause clinical disease with severe economic impacts primarily in ducks and less frequently in geese and turkeys. RA was isolated and identified in broiler chickens, from a clinical case in a commercial broiler farm located in the southwest mainland of Greece. The morbidity and the mortality in the broiler house were estimated at 10% and 5% respectively. The observed clinical signs appeared at the age of 30 to 42 days with respiratory distress (dyspnea), white fluid feces and stunting. Post-mortem examinations displayed serositis, pericarditis, perihepatitis and airsacculitis. Edematous swelling around the tibio-tarsal joints was observed in some birds. Tissue samples from lesions were streaked on selective media. Three bacterial isolates were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Moreover, an antibiogram analysis was performed for the three RA strains, using a pattern of 16 common antibiotics to advocate the most effective drugs for a proper treatment. All the RA isolates were sensitive to ceftiofur, sulphamethoxazole-trimethoprim and amoxicillin, whereas all were resistant to gentamicin, tylosin, tetracyclin, colistin sulphate, spectinomycin, lincomycin and oxytetracycline.
Collapse
|
32
|
Herder EA, Spence AR, Tingley MW, Hird SM. Elevation Correlates With Significant Changes in Relative Abundance in Hummingbird Fecal Microbiota, but Composition Changes Little. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.597756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The microbial communities living on and in vertebrate hosts have myriad effects on their hosts, potentially including fitness and speciation. Microbiomes are influenced by both intrinsic (from the host) and extrinsic (from the environment) factors, but the relative contributions of each are unknown for most non-model species. Abiotic environmental factors can influence the microbiome directly but it is less clear how abiotic gradients shape microbiome communities in the wild. Here, we captured eight wild Anna’s hummingbirds from three different elevations along their elevational distribution in California and moved them directly to a middle (“Within Range”) elevation. After some time at this elevation, the birds were moved in captivity to an “Above Range” elevation, and two birds were later moved back to the Within Range elevation. Fecal and food samples were collected longitudinally and the V4 region of the 16S rRNA gene analyzed. The most abundant phyla in all samples were Fusobacteria, Firmicutes, Actinobacteria, and Proteobacteria. Individual Bird ID explained the greatest amount of microbiome variation at 27.5%, signifying some amount of stability in the Anna’s hummingbird fecal microbiome. Sample elevation explained 19.6% (p = 0.001) of the variation using weighted UniFrac, but only 2.0% (p = 0.047) using unweighted UniFrac, implying a change in abundance of bacterial lineages in the microbiome but not in the presence or absence of the microbes. Additionally, Fusobacteria were 7.0x more abundant in the Above Range elevation samples while Firmicutes were 0.3x lower. A thorough understanding of how the environment can shape the microbiome may assist in conservation efforts and a general understanding of host-microbiome relationships in an era of rapid and global environmental change.
Collapse
|
33
|
Comparative genomics and metabolomics analysis of Riemerella anatipestifer strain CH-1 and CH-2. Sci Rep 2021; 11:616. [PMID: 33436670 PMCID: PMC7804117 DOI: 10.1038/s41598-020-79733-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022] Open
Abstract
Riemerella anatipestifer is a major pathogenic microorganism in poultry causing serositis with significant mortality. Serotype 1 and 2 were most pathogenic, prevalent, and liable over the world. In this study, the intracellular metabolites in R. anatipestifer strains RA-CH-1 (serotype 1) and RA-CH-2 (serotype 2) were identified by gas chromatography-mass spectrometer (GC–MS). The metabolic profiles were performed using hierarchical clustering and partial least squares discriminant analysis (PLS-DA). The results of hierarchical cluster analysis showed that the amounts of the detected metabolites were more abundant in RA-CH-2. RA-CH-1 and RA-CH-2 were separated by the PLS-DA model. 24 potential biomarkers participated in nine metabolisms were contributed predominantly to the separation. Based on the complete genome sequence database and metabolite data, the first large-scale metabolic models of iJL463 (RA-CH-1) and iDZ470 (RA-CH-2) were reconstructed. In addition, we explained the change of purine metabolism combined with the transcriptome and metabolomics data. The study showed that it is possible to detect and differentiate between these two organisms based on their intracellular metabolites using GC–MS. The present research fills a gap in the metabolomics characteristics of R. anatipestifer.
Collapse
|
34
|
Cheng P, Feng T, Zhang Y, Li X, Tian L, Wu J, Cheng F, Zeng Y, Chen H, He X, Fu G, Zheng L, Chen H. Comparative pharmacokinetics of intravenous and intramuscular cefquinome sulfate administration in ducklings and goslings. Am J Vet Res 2020; 81:837-877. [PMID: 33107745 DOI: 10.2460/ajvr.81.11.873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To compare the pharmacokinetics of cefquinome sulfate in ducklings and goslings after IV or IM administration of a single dose. ANIMALS 216 healthy Muscovy ducklings (Cairina moschata) and 216 healthy Sichuan white goslings (Anser cygnoides). PROCEDURES Ducklings and goslings were each randomly assigned to 3 groups (n = 72/group) that received a single dose (2 mg/kg) of injectable cefquinome sulfate administered IV or IM or of injectable cefquinome sulfate suspension administered IM. Blood samples were collected at various points after drug administration (n = 6 birds/time point). Plasma cefquinome concentrations were measured by high-performance liquid chromatography with UV detection, and pharmacokinetic parameters were calculated with a 2-compartment model method. RESULTS After IV injection, mean distribution half-life of cefquinome was longer in goslings (0.446 hours) than in ducklings (0.019 hours), whereas volume of distribution at steady state was greater (0.432 vs 0.042 L/kg) and elimination half-life was slower (1.737 vs 0.972 hours). After IM administration of injectable cefquinome sulfate, bioavailability of the drug was higher in goslings (113.9%) than in ducklings (67.5%). After IM administration of injectable cefquinome sulfate suspension, bioavailability was also higher in goslings (123.1%) than in ducklings (96.8%), whereas elimination half-life was slower (6.917 vs 1.895 hours, respectively). CONCLUSIONS AND CLINICAL RELEVANCE In goslings, IV administration of cefquinome resulted in slower distribution and metabolism of the drug than in ducklings and IM administration resulted in higher bioavailability. The delayed-release effect of the injectable cefquinome sulfate suspension when administered IM was observed only in goslings.
Collapse
|
35
|
Omaleki L, Blackall PJ, Bisgaard M, Turni C. Molecular and serological characterization of Riemerella isolates associated with poultry in Australia. Avian Pathol 2020; 50:31-40. [PMID: 32990455 DOI: 10.1080/03079457.2020.1828568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A total of 62 isolates of Riemerella-like organisms, originally isolated from Australian poultry (10 from chickens, 46 from ducks, five from unknown hosts and one vaccine strain), were included in this study. On the basis of two published polymerase chain reaction (PCR) assays that are reported to be specific for Riemerella anatipestifer, 51 of the isolates were identified as R. anatipestifer. Forty-six of these isolates had a detailed history and were sourced from ducks, while five were of unknown origin. The 11 remaining isolates failed to yield a positive reaction in either PCR with 10 originating from chickens and one from a duck. Amplification and sequencing of the 16S rRNA gene of these isolates identified the duck isolate as Moraxella lacunta. Phylogenetic analysis of the 10 chicken isolates identified one as R. columbina and the remaining nine isolates as Riemerella-like taxon 2. The 51 Australian R. anatipestifer isolates were assigned by gel diffusion test to serovars 1 (26 isolates), 6 (seven isolates), 8 (five isolates), 9 (two isolates), 13 (one isolate) and 14 (one isolate) while nine isolates gave no reaction to any antiserum. A commercial system was used to perform DNA fingerprinting using rep-PCR analysis, which revealed different clusters with a lack of a clear relationship between the clusters and the serovars.
Collapse
Affiliation(s)
- Lida Omaleki
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland Australia
| | - Magne Bisgaard
- Professor Emeritus, Bisgaard Consulting, Viby Sjaelland, Denmark
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland Australia
| |
Collapse
|
36
|
Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Bell ME, Holmes B, Steigerwalt AG, Villarma A, Sheth M, Batra D, Rowe LA, Burroughs M, Pryor JC, Bernardet JF, Hugo C, Kämpfer P, Newman JD, McQuiston JR. Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. Int J Syst Evol Microbiol 2020; 70:4432-4450. [PMID: 32735208 PMCID: PMC7660247 DOI: 10.1099/ijsem.0.003935] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/28/2019] [Accepted: 12/02/2019] [Indexed: 01/10/2023] Open
Abstract
The genus Chryseobacterium in the family Weeksellaceae is known to be polyphyletic. Amino acid identity (AAI) values were calculated from whole-genome sequences of species of the genus Chryseobacterium, and their distribution was found to be multi-modal. These naturally-occurring non-continuities were leveraged to standardise genus assignment of these species. We speculate that this multi-modal distribution is a consequence of loss of biodiversity during major extinction events, leading to the concept that a bacterial genus corresponds to a set of species that diversified since the Permian extinction. Transfer of nine species (Chryseobacterium arachidiradicis, Chryseobacterium bovis, Chryseobacterium caeni, Chryseobacterium hispanicum, Chryseobacterium hominis, Chryseobacterium hungaricum,, Chryseobacterium pallidum and Chryseobacterium zeae) to the genus Epilithonimonas and eleven (Chryseobacterium anthropi, Chryseobacterium antarcticum, Chryseobacterium carnis, Chryseobacterium chaponense, Chryseobacterium haifense, Chryseobacterium jeonii, Chryseobacterium montanum, Chryseobacterium palustre, Chryseobacterium solincola, Chryseobacterium treverense and Chryseobacterium yonginense) to the genus Kaistella is proposed. Two novel species are described: Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. Evidence is presented to support the assignment of Planobacterium taklimakanense to a genus apart from Chryseobacterium, to which Planobacterium salipaludis comb nov. also belongs. The novel genus Halpernia is proposed, to contain the type species Halpernia frigidisoli comb. nov., along with Halpernia humi comb. nov., and Halpernia marina comb. nov.
Collapse
Affiliation(s)
- Ainsley C. Nicholson
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Christopher A. Gulvik
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Anne M. Whitney
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Ben W. Humrighouse
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Melissa E. Bell
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Barry Holmes
- National Collection of Type Cultures, Health Protection Agency, Colindale, London NW9 5EQ, UK
| | - Arnie G. Steigerwalt
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Aaron Villarma
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Mili Sheth
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Dhwani Batra
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Lori A. Rowe
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Mark Burroughs
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Jessica C. Pryor
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | - Jean-François Bernardet
- Institut National de la Recherche Agronomique, Unité de Virologie et Immunologie Moléculaires, Domaine de Vilvert, Jouy-en-Josas, France
| | - Celia Hugo
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Universität Giessen, Giessen, Germany
| | - Jeffrey D. Newman
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
- Biology Department, Lycoming College, Williamsport PA 17701, USA
| | - John R. McQuiston
- Special Bacteriology Reference Laboratory, Bacterial Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| |
Collapse
|
37
|
Li S, Chen Q, Gong X, Liu Y, Zheng F. RanB, a putative ABC-type multidrug efflux transporter contributes to aminoglycosides resistance and organic solvents tolerance in Riemerella anatipestifer. Vet Microbiol 2020; 243:108641. [PMID: 32273020 DOI: 10.1016/j.vetmic.2020.108641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 12/31/2022]
Abstract
Riemerella anatipestifer is a Gram-negative bacterium, which is an important pathogen infecting ducks and resistant to various antibiotics. The efflux pump is an important resistance mechanism of Gram-negative bacteria, but little research has been done in R. anatipestifer. In this study, the drug resistance mediated by RIA_1614 gene of R. anatipestifer RA-GD strain was studied, because the gene was presumed to be an efflux pump component of ABC. Firstly, the deletion strain RA-GD△RIA_1614 and complemented strain RA-GD△RIA_1614 pCPRA::RIA_1614 were constructed. Then, MICs of various antimicrobial agents to parent and deletion strains and the tolerance of the strains to organic solvents were detected to screen the substrates for RIA_1614 gene. Moreover, the transcription levels of RIA_1614 gene in the parent and the complemented strains exposed to the substrates were detected by quantitative real-time RT-PCR. Furthermore, the efflux abilities of parent, deletion and complemented strains to substrates were determined by antibiotic accumulation test. In addition, in vitro competition ability and virulence of the strains were also detected. The results showed that the deletion strain was more sensitive to aminoglycosides and organic solvents than parental strain RA-GD. When RA-GD and complemented strain were exposed to sub-repression levels of aminoglycosides and organic solvents, the transcription levels of RIA_1614 gene were significantly up-regulated. Sodium o-vanadate inhibitor assay confirmed that RIA_1614 protein contributed to amikacin and streptomycin resistance and organic solvent tolerance. Streptomycin accumulation test showed that the RIA_1614 protein was able to export streptomycin, and the addition of ATPase inhibitor sodium o-vanadate increased the accumulation of streptomycin, indicating that RIA_1614 protein was an ATP-dependent efflux transporter. Growth and competition experiments revealed that RIA_1614 protein had no significant effect on growth of RA-GD, but decreased in vitro competition ability of the strain. Furthermore, pathogenicity tests showed that RIA_1614 protein involved in the virulence of the strain. Based on the results and amino acid sequence analysis, it was determined that RIA_1614 protein was a member of ABC efflux pumps, and the protein was named RanB.
Collapse
Affiliation(s)
- Shengdou Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, China
| | - Qiwei Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, China
| | - Xiaowei Gong
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, China
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, China
| | - Fuying Zheng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 1 Xujiaping, Yanchangbao, Lanzhou 730046, China.
| |
Collapse
|
38
|
Pan Z, Zhou Q, Ma H, Gong Q, Wang S, Yao H, Ma J, Wang K. Identification of a novel bacterial taxon associated with bovine mastitis showing a close evolutionary relationship with Elizabethkingia sp. Microbiol Res 2020; 236:126443. [PMID: 32146293 DOI: 10.1016/j.micres.2020.126443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/26/2020] [Accepted: 02/20/2020] [Indexed: 11/26/2022]
Abstract
Recently, the characteristics of prevalent bacterial pathogens causing bovine mastitis have become increasingly complicated, and many commensal or unusual bacterial species have been isolated from milk samples of cows with mastitis. Strain JS20170427COW was isolated dominantly from the milk of Holstein Friesian cows with mastitis in Jiangsu province in China. Colonies of this strain showed a hillock-like protrusion, with a pale-yellow color at the protrusion and a transparent edge, 4-5 mm in diameter after cultivation at 37 °C for 24 h on 5% sheep blood-enriched agar. Although 16 s rRNA analysis showed the closest relationship with the family Flavobacteriaceae containing Elizabethkingia spp., Riemerella sp. and Soonwooa buanensis, the bacterial species of strain JS20170427COW could not be identified adequately because it had a sequence identity of less than 95 % in 16 s rRNA when compared with all the known species of the family Flavobacteriaceae. Unexpectedly, both the first and re-sequencing data determined the whole genome size of strain JS20170427COW to be 2.69 Mb, which is different from the above three closest bacterial species. Therefore, we hypothesized that strain JS20170427COW is a novel taxon of Flavobacteriaceae. Further identification using conserved genes, single-nucleotide polymorphisms (SNPs), phylogenetic and average nucleotide identity analyses based on whole genome data suggested that JS20170427COW was more likely to be an Elizabethkingia-like strain, but that it does not belong to the Elizabethkingia genus. Comparison of the predicted open reading frames (ORFs) revealed that strain JS20170427COW encodes more special genes than Elizabethkingia species. In summary, we identified a novel Flavobacteriaceae taxon showing a close relationship with Elizabethkingia subspecies, which has potential pathogenicity in bovine mastitis.
Collapse
Affiliation(s)
- Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qianmei Gong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Suchun Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kaicheng Wang
- China Animal Health and Epidemiology Center, Qingdao 266032, China.
| |
Collapse
|
39
|
Evaluation of Long-term Antibody Response and Cross-serotype Reaction in Ducks Immunised with Recombinant Riemerella Anatipestifer Outer Membrane Protein A and CpG ODN. J Vet Res 2019; 63:543-548. [PMID: 31934665 PMCID: PMC6950437 DOI: 10.2478/jvetres-2019-0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022] Open
Abstract
Introduction Riemerella anatipestifer (RA) infections can lead to high mortality in ducklings. Inactivated vaccines against RA are commercially available, but they fail to provide cross-protection against various serotypes. We have previously demonstrated that a subunit vaccine containing recombinant outer membrane protein A (rOmpA) antigen of serotype 2 formulated with CpG oligodeoxynucleotides (ODN) as the adjuvant was able to stimulate both humoral and cellular immunities. Material and Methods In the present study, thirty healthy 7-day-old Pekin ducks were randomly assigned to three equal treatment groups: rOmpA-vaccinated, rOmpA + CpG-vaccinated, and control. Vaccine was injected intramuscularly and a booster dose of the same vaccine was given two weeks after primary immunisation. The long-term antibody response and cross-serotype reaction of this vaccine were evaluated in ducks. Results Compared to ducks immunised with rOmpA alone, ducks immunised with rOmpA + CpG ODN had significantly (p < 0.05) increased serum antibody titre from two weeks until nine months after primary immunisation. In addition, expression of cytokines including interferon (IFN)-α, IFN-γ, interleukin (IL)-6, and IL-12 was significantly (p < 0.05) enhanced in PBMC of ducks immunised with rOmpA + CpG ODN two weeks after primary immunisation. Antibodies from ducks immunised with the rOmpA + CpG ODN vaccine could also detect RA serotypes 1 and 6 in Western blot analysis. Conclusion Combination of rOmpA and CpG ODN could be a feasible strategy for developing a subunit RA vaccine with long term and broader-ranging protection.
Collapse
|
40
|
Wang Y, Zhang Y, Cui Y, Sun Z, Zhou Z, Hu S, Li S, Liu M, Meng X, Xiao Y, Shi D, Bi D, Li Z. Identification of an Integrase That Responsible for Precise Integration and Excision of Riemerella anatipestifer Genomic Island. Front Microbiol 2019; 10:2099. [PMID: 31616389 PMCID: PMC6764341 DOI: 10.3389/fmicb.2019.02099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Riemerella anatipestifer is a Gram-negative, pathogenic bacterium, which is harmful to poultry. However, the genomic islands (GIs) in R. anatipestifer are not well-studied. In this study, a 10K genomic island was predicted by the bioinformatics analysis of R. anatipestifer ATCC 11845, which is widely found in other R. anatipestifer genomes. We had first reported the genomic island integration and excision function in R. anatipestifer. We successfully constructed the integration plasmid by using the integrase and 53 bp attP elements. The 10K GI was found integrated at the 53 bp attB located in the Arg-tRNA of the R. anatipestifer RA-YM chromosome. We identified an integrase that helped in the precise integration and excision in R. anatipestifer and elucidated the molecular mechanism of the 10K genomic island integration and excision. Furthermore, we provided a new method for the gene expression and construction of complementary strain.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yijie Cui
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhijian Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zutao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Sishun Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Mei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Xianrong Meng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
| |
Collapse
|
41
|
Wang Y, Yin X, Zhou Z, Hu S, Li S, Liu M, Wang X, Xiao Y, Shi D, Bi D, Li Z. Cas9 regulated gene expression and pathogenicity in Riemerella anatipestifer. Microb Pathog 2019; 136:103706. [PMID: 31491547 DOI: 10.1016/j.micpath.2019.103706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/27/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022]
Abstract
Riemerellosis, a Riemerella anatipestifer infection, can cause meningitis, pericarditis, parahepatitis, and airsacculitis in ducks, leading to serious economic losses in the duck meat industry. However, the molecular mechanism of the pathogenesis and virulence factors of this infection are poorly understood. In the present study, we created a mutant strain RA-YMΔCas9 using trans-conjugation. Bacterial virulence tests indicated that the median lethal dose (LD50) of RA-YMΔCas9 was 5.01 × 107 CFU, significantly lower than that of the RA-YM strain, which was 1.58 × 105 CFU. The distribution and blood bacterial load from the infection groups showed no significant difference in the brain between the RA-YMΔCas9 mutant and the wild-type RA-YM strains, however, the number of mutant strains were significantly reduced in the liver, heart, and blood. Animal immunization experiments demonstrated that the intranasal administration of RA-YMΔCas9 in ducklings provided 80% protection after challenge with the wild-type strain, showing potential use as a live mucosal vaccine. RNAseq analysis indicated that Cas9 protein played a regulatory role in gene expression. This study is the first to report on the involvement of Cas9 in the regulation and pathogenesis of R. anatipestifer, and provides a theoretical basis for the development of relevant genetic engineering vaccines.
Collapse
Affiliation(s)
- Ying Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Xuehuan Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China
| | - Zutao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Sishun Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Shaowen Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Mei Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Zili Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University. Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China.
| |
Collapse
|
42
|
New Perspectives on Galleria mellonella Larvae as a Host Model Using Riemerella anatipestifer as a Proof of Concept. Infect Immun 2019; 87:IAI.00072-19. [PMID: 31160365 DOI: 10.1128/iai.00072-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Galleria mellonella larvae have been used as a host model to study interactions between pathogens and hosts for several years. However, whether the model is useful to interrogate Riemerella anatipestifer infection biology remained unknown. This study aimed to exploit the potential of G. mellonella larvae and reveal their limitations as a host model for R. anatipestifer infection. G. mellonella larvae were shown to be effective for virulence evaluations of different R. anatipestifer strains. Furthermore, the virulent strain R. anatipestifer CH-1 had a stronger ability to proliferate than the attenuated strain R. anatipestifer ATCC 11845 in both G. mellonella larvae and ducklings. Unconventionally it was shown that G. mellonella larvae cannot be used to evaluate the efficacy of antimicrobials and their combinations. Additionally, it was shown that certain virulence factors, such as OmpA (B739_0861), B739_1208, B739_1343, and Wza (B739_1124), were specific only for ducklings, suggesting that G. mellonella larvae must be cautiously used to identify virulence factors of R. anatipestifer Evaluation of heme uptake-related virulence genes, such as tonB1 and tonB2, required preincubating the strains with hemoglobin before infection of G. mellonella larvae since R. anatipestifer cannot obtain a heme source from G. mellonella larvae. In conclusion, this study revealed the applicability and limitations of G. mellonella as a model with which to study the pathogen-host interaction, particularly in the context of R. anatipestifer infection.
Collapse
|
43
|
Ziembińska-Buczyńska A, Ciesielski S, Żabczyński S, Cema G. Bacterial community structure in rotating biological contactor treating coke wastewater in relation to medium composition. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19171-19179. [PMID: 31111385 PMCID: PMC6594990 DOI: 10.1007/s11356-019-05087-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Biological wastewater treatment using biofilm systems is an effective way to treat difficult wastewater, such as coke wastewater. The information about the structure and the dynamics of this microbial community in biofilm, which are responsible for wastewater treatment, is relevant in the context of treatment efficacy and the biochemical potential to remove various pollutants. However, physico-chemical factors can influence the biofilm community significantly, causing performance disturbances. Therefore, we decided to examine the structure of microbial community in rotating biological contactor (RBC) biofilm during coke wastewater treatment and to investigate the possible shift in the community structure caused by the feeding medium change from synthetic to real coke wastewater. The experiment performed with high-throughput next-generation sequencing (NGS) revealed that bacteria commonly present in wastewater treatment plant (WWTP) systems, responsible for nitrite oxidizing, such as Nitrospira or Nitrobacter, were absent or below detection threshold, while Nitrosomonas, responsible for ammonia oxidizing, was detected in a relatively small number especially after shift to real coke wastewater. This research indicates that medium change could cause the change from autotrophic into heterotrophic nitrification led by Acinetobacter. Moreover, biofilm systems can be also a potential source of bacteria possessing high biochemical potential for pollutants removal but less known in WWTP systems, as well as potentially pathogenic microorganisms.
Collapse
Affiliation(s)
| | - Sławomir Ciesielski
- Faculty of Environmental Sciences, Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-719, Olsztyn, Poland
| | - Sebastian Żabczyński
- Environmental Biotechnology Department, Silesian University of Technology, Akademicka 2, 44-100, Gliwice, Poland
| | - Grzegorz Cema
- Environmental Biotechnology Department, Silesian University of Technology, Akademicka 2, 44-100, Gliwice, Poland
| |
Collapse
|
44
|
Huang L, Wang M, Mo T, Liu M, Biville F, Zhu D, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Tian B, Liu Y, Zhang L, Yu Y, Pan L, Rehman MU, Chen X, Cheng A. Role of LptD in Resistance to Glutaraldehyde and Pathogenicity in Riemerella anatipestifer. Front Microbiol 2019; 10:1443. [PMID: 31281307 PMCID: PMC6598057 DOI: 10.3389/fmicb.2019.01443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/07/2019] [Indexed: 11/25/2022] Open
Abstract
Riemerella anatipestifer is a gram-negative bacterium that causes disease in ducks and other birds. Despite being an important pathogen in poultry, the pathogenesis and drug resistance mechanisms of this bacterium are poorly understood. An analysis of our unpublished RNA-Seq data showed that lptD, a gene encoding one of the lipopolysaccharide transport components, is transcribed at higher levels in strain CH-1 than in strain ATCC11845. In addition, strain CH-1 has been shown to display broader drug resistance than strain ATCC11845. Since LptD is involved in LPS biogenesis and drug resistance, we wondered if lptD is associated with increased R. anatipestifer resistance to glutaraldehyde, a disinfectant used in the production industry. In this study, the minimal inhibitory concentration (MIC) of glutaraldehyde for strain CH-1 was determined to be 0.125% (vol/vol), whereas an MIC of 0.05% (vol/vol) was observed for strain ATCC11845. Furthermore, the level of lptD transcription in strain CH-1 was consistently 2-fold higher than that observed in strain ATCC11845. Moreover, lptD transcription was upregulated in both strains at a subinhibitory concentration of glutaraldehyde. The role of lptD in R. anatipestifer was further assessed by constructing an ATCC11845 mutant strain with low lptD expression, R. anatipestifer ATCC11845 lptD−. The growth of R. anatipestifer ATCC11845 lptD− was severely impaired, and this strain was more susceptible than the wild-type strain to glutaraldehyde. Moreover, compared to the wild-type strain, R. anatipestifer ATCC11845 lptD− exhibited decreased biofilm formation and was more sensitive to duck serum. Finally, low lptD expression led to decreased colonization in ducklings. These results suggest that LptD is involved in R. anatipestifer glutaraldehyde resistance and pathogenicity.
Collapse
Affiliation(s)
- Li Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ting Mo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | | | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Xiaoyue Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| |
Collapse
|
45
|
Liu M, Tian X, Wang M, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Tian B, Chen X, Liu Y, Zhang L, Yu Y, Biville F, Pan L, Rehman MU, Cheng A. Development of a markerless gene deletion strategy using rpsL as a counterselectable marker and characterization of the function of RA0C_1534 in Riemerella anatipestifer ATCC11845 using this strategy. PLoS One 2019; 14:e0218241. [PMID: 31181133 PMCID: PMC6557517 DOI: 10.1371/journal.pone.0218241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
Riemerella anatipestifer is a gram-negative bacterium that mainly infects ducks, turkeys and other birds. In a previous study, we established a markerless mutation system based on the pheS mutant as a counterselectable marker. However, the toxic effect of p-Cl-Phe on the R. anatipestifer strain expressing the pheS mutant was weak on blood agar plates. In this study, we successfully obtained streptomycin-resistant derivative of R. anatipestifer ATCC11845 using 100 μg/mL streptomycin as a selection pressure. Then, we demonstrate that rpsL can be used as a counterselectable marker in the R. anatipestifer ATCC11845 rpsL mutant strain, namely, R. anatipestifer ATCCs. A suicide vector carrying wild-type rpsL, namely, pORS, was constructed and used for markerless deletion of the gene RA0C_1534, which encodes a putative sigma-70 family RNA polymerase sigma factor. Using rpsL as a counterselectable marker, markerless mutagenesis of RA0C_1534 was also performed based on natural transformation. R. anatipestifer ATCCsΔRA0C_1534 was more sensitive to H2O2-generated oxidative stress than R. anatipestifer ATCCs. Moreover, transcription of RA0C_1534 was upregulated under 10 mM H2O2 treatment and upon mutation of fur. These results suggest that RA0C_1534 is involved in oxidative stress response in R. anatipestifer. The markerless gene mutation method developed in this study provides new tools for investigation of the physiology and pathogenic mechanisms of this bacterium.
Collapse
Affiliation(s)
- MaFeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
- * E-mail: (MFL); (ACC)
| | - Xiu Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - MengYi Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - DeKang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - MingShu Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - RenYong Jia
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - XinXin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - ShaQiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - XiaoYue Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - YunYa Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - YanLing Yu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Francis Biville
- Unité des Infections Bactériennes Invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - LeiChang Pan
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - Mujeeb Ur Rehman
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
| | - AnChun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, P. R. China
- * E-mail: (MFL); (ACC)
| |
Collapse
|
46
|
Amniculibacterium aquaticum gen. nov., sp. nov., a new member of the family Flavobacteriaceae isolated from a stream. Arch Microbiol 2019; 201:1119-1127. [PMID: 31165177 DOI: 10.1007/s00203-019-01688-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/01/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
Strain KYPW7T, isolated from the Funglin Stream in Taiwan, was characterized using a polyphasic taxonomy approach. Cells of strain KYPW7T were Gram-stain-negative, aerobic, non-spore forming, non-motile rods and formed white colonies. Growth occurred at 15-30 °C (optimum 25 °C), at pH 6-8 (optimum pH 6.5) and with 0-1% NaCl (optimum 0%). Phylogenetic analyses based on 16S rRNA and coding sequences of 92 protein clusters showed that strain KYPW7T represents a novel genus in the family Flavobacteriaceae. The 16S rRNA gene sequence of strain KYPW7T was related to the species of the genera Chryseobacterium (91.8-96.0% sequence similarity), Bergeyella (95.1-95.8%), Cloacibacterium (94.5-95.7%), Daejeonia (95.6%) and Riemerella (94.0-95.0%). Strain KYPW7T showed less than 72% average nucleotide identity and less than 24% digital DNA-DNA hybridization identity compared to the type strains of related genera within the family Flavobacteriaceae. The predominant fatty acids were iso-C15:0 and iso-C17:0 3-OH. The major isoprenoid quinone was MK-6 and the DNA G + C content was 36.8 mol%. The polar lipids had phosphatidylethanolamine, three uncharacterized aminophospholipids and an uncharacterized phospholipid. The polyamines contained homospermidine, putrescine and spermidine. On the basis of the genotypic and phenotypic data, strain KYPW7T represents a novel species of a new genus in the family Flavobacteriaceae, for which the name Amniculibacterium aquaticum gen. nov., sp. nov. is proposed. The type strain is KYPW7T (= BCRC 81123T = LMG 30598T = KCTC 62512T).
Collapse
|
47
|
Yuan H, Huang L, Wang M, Jia R, Chen S, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Liu Y, Zhang L, Yu Y, You Y, Chen X, Zhu D, Cheng A. Role of the gldK gene in the virulence of Riemerella anatipestifer. Poult Sci 2019; 98:2414-2421. [DOI: 10.3382/ps/pez028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/10/2019] [Indexed: 01/09/2023] Open
|
48
|
Malhi KK, Wang X, Chen Z, Ding C, Yu S. Riemerella anatipestifer gene AS87_08785 encodes a functional component, GldK, of the type IX secretion system. Vet Microbiol 2019; 231:93-99. [PMID: 30955831 DOI: 10.1016/j.vetmic.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/25/2022]
Abstract
Riemerella anatipestifer is an important pathogen of waterfowl, causing septicemic and exudative diseases. In our previous study, we demonstrated that the deletion of the AS87_08785 gene significantly reduced the virulence of R. anatipestifer strain Yb2, but the mechanism remained unclear. In this study, R. anatipestifer strains with mutated or complemented AS87_08785 genes were constructed and characterized. A sequence analysis indicated that the AS87_08785 gene encoded a putative GldK protein, which localized to the membrane fraction in a western blotting analysis. The mutant strain Yb2ΔgldK displayed defective gliding motility on agar plates, reduced protease activity, and a reduced capacity for protein secretion. RNA sequencing and quantitative PCR analyses indicated that the transcription of 13 genes was downregulated in mutant Yb2ΔgldK. Animal experiments showed that the bacterial loads in the blood of Yb2ΔgldK-infected ducks were significantly reduced relative to those in wild-type strain Yb2 infected ducks. Most of the defective biological properties of the mutant were restored in complementation strain cYb2ΔgldK. Our results demonstrated that R. anatipestifer gene AS87_08785 encoded a component of the type IX secretion system, GldK, which functioned in bacterial gliding motility, protein secretion, and bacterial virulence.
Collapse
Affiliation(s)
- Kanwar Kumar Malhi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Xiaolan Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Zongchao Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai, China; Jiangsu Agri-Animal Husbandry Vocational College, Veterinary Bio-Pharmaceutical, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Taizhou, Jiangsu, China.
| |
Collapse
|
49
|
Hu D, Guo Y, Guo J, Wang Y, Pan Z, Xiao Y, Wang X, Hu S, Liu M, Li Z, Bi D, Zhou Z. Deletion of the Riemerella anatipestifer type IX secretion system gene sprA results in differential expression of outer membrane proteins and virulence. Avian Pathol 2019; 48:191-203. [PMID: 30640518 DOI: 10.1080/03079457.2019.1566594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Riemerella anatipestifer (RA), the causative agent of infectious serositis that targets ducklings and other poultry, secretes protein via the type IX secretion system (T9SS). The proteins transported by T9SS are located on the bacterial cell surface or secreted into the extracellular milieu. In this study, a sprA deletion mutant was constructed encoding a core protein of T9SS to investigate its influence on outer membrane protein expression and its role in virulence. Compared with the wild-type RA-YM strain, the deletion mutant ΔsprA failed to digest gelatin, showed the same growth rate in the logarithmic phase and exhibited greater sensitivity to the bactericidal activity of duck sera, whereas the complemented strain restored these phenotypes. The outer membrane proteome of RA-YM and the ΔsprA mutant were analyzed by Tandem Mass Tags, which revealed 198 proteins with predicted localization to the cell envelope. Sixty-three of these proteins were differentially expressed in the outer membrane, with 43 up-regulated and 20 down-regulated. Among the twelve outer membrane proteins which were secreted by T9SS, four proteins were up-regulated and one protein was down-regulated. Animal experiments demonstrated that the median lethal dose of the mutant strain ΔsprA was about 500 times higher than that of the wild-type RA-YM strain, and bacterial loads in blood, brain, heart, liver and spleen of the ΔsprA-infected ducks were significantly reduced. Our results indicate that the SprA is a virulence-associated factor of RA, and its absence results in altered abundance of outer membrane proteins, and secretion disorders associated with some of the T9SS effector proteins.
Collapse
Affiliation(s)
- Di Hu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Yunqing Guo
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Jie Guo
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Ying Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Zhe Pan
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Yuncai Xiao
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Xiliang Wang
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Sishun Hu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Mei Liu
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Zili Li
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Dingren Bi
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| | - Zutao Zhou
- a State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China.,b Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan , People's Republic of China
| |
Collapse
|
50
|
Veiga IMB, Lüschow D, Gutzer S, Hafez HM, Mühldorfer K. Phylogenetic relationship of Ornithobacterium rhinotracheale isolated from poultry and diverse avian hosts based on 16S rRNA and rpoB gene analyses. BMC Microbiol 2019; 19:31. [PMID: 30727944 PMCID: PMC6364391 DOI: 10.1186/s12866-019-1395-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/16/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Ornithobacterium (O.) rhinotracheale is an emerging bacterial pathogen in poultry and not fully understood to date. Because of its importance particularly for the global turkey meat industry, reliable diagnostic and characterization methods are needed for early treatment and in future for better vaccine production. The host range of birds infected by O. rhinotracheale or carrying the bacterium in their respiratory tract has constantly increased raising important epidemiological and taxonomic questions for a better understanding of its diversity, ecology and transmission cycles. The purpose of this study was to introduce partial rpoB gene sequencing for O. rhinotracheale into routine diagnostics to differentiate strains isolated from poultry and more diverse avian hosts (i.e., birds of prey, corvids and pigeons) and to compare phylogenetic relationships with results from 16S rRNA gene analysis and multilocus sequence typing (MLST). RESULTS Partial 16S rRNA gene analysis revealed a high level of homogeneity among the 65 investigated O. rhinotracheale sequences with similarity values ranging from 98.6 to 100% between sequences from non-galliform and poultry species. The corresponding rpoB gene sequences were heterogeneous and ranged in their similarity values from 85.1 to 100%. The structure of the rpoB tree was in strong correlation with previous MLST results revealing three main clusters A (poultry and birds of prey), B (poultry, birds of prey and corvids) and C (pigeons), which were clearly separated from each other. CONCLUSIONS By using partial sequences from a single gene, the rpoB gene analysis is in good agreement with MLST results with a slight decrease in resolution to distinguish more similar strains. The present results provide strong evidence that traditional phenotypic and genetic methods may not properly represent the heterogeneous group of bacteria classified as O. rhinotracheale. From housekeeping gene analyses, it is very likely that the genus Ornithobacterium includes additional species and partial rpoB gene sequencing can be recommended as fast, cost-effective and readily available method to identify strains and differentiate between O. rhinotracheale and Ornithobacterium-like bacteria.
Collapse
Affiliation(s)
- Inês M. B. Veiga
- Present Address: Institute of Animal Pathology, Bern, Switzerland
- Institute of Poultry Diseases, Freie Universität Berlin, Berlin, Germany
| | - Dörte Lüschow
- Institute of Poultry Diseases, Freie Universität Berlin, Berlin, Germany
| | - Stefanie Gutzer
- Institute of Poultry Diseases, Freie Universität Berlin, Berlin, Germany
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Freie Universität Berlin, Berlin, Germany
| | - Kristin Mühldorfer
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|