1
|
Hossain M, Aslan B, Hatoum-Aslan A. Tandem mobilization of anti-phage defenses alongside SCCmec elements in staphylococci. Nat Commun 2024; 15:8820. [PMID: 39394251 PMCID: PMC11470126 DOI: 10.1038/s41467-024-53146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Recent research has identified multiple immune systems that bacteria use to protect themselves from viral infections. However, little is known about the mechanisms by which these systems horizontally spread, especially among bacterial pathogens. Here, we investigate antiviral defenses in staphylococci, opportunistic pathogens that constitute leading causes of antibiotic-resistant infections. We show that these organisms harbor a variety of anti-phage defenses encoded within or near SCC (staphylococcal cassette chromosome) mec cassettes, mobile genomic islands that confer methicillin resistance. Importantly, we demonstrate that SCCmec-encoded recombinases mobilize not only SCCmec, but also tandem SCC-like cassettes enriched in genes coding for diverse defense systems. Further, we show that phage infection stimulates cassette mobilization (i.e. excision and circularization). Thus, our findings indicate that SCC/SCCmec cassettes not only spread antibiotic resistance but can also play a role in mobilizing anti-phage defenses.
Collapse
Affiliation(s)
- Motaher Hossain
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| | - Barbaros Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| | - Asma Hatoum-Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA.
| |
Collapse
|
2
|
Jiménez-Velásquez S, Pacheco-Montealegre ME, Torres-Higuera L, Uribe-Gutiérrez L, Burbano-David D, Dávila-Mora LL, Renjifo-Ibáñez C, Caro-Quintero A. Genus-targeted markers for the taxonomic identification and monitoring of coagulase-positive and coagulase-negative Staphylococcus species. World J Microbiol Biotechnol 2024; 40:333. [PMID: 39358646 PMCID: PMC11447098 DOI: 10.1007/s11274-024-04121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
The Staphylococcus genus comprises multiple pathogenic and opportunistic species that represent a risk to public health. Epidemiological studies require accurate taxonomic classification of isolates with enough resolution to distinguish clonal complexes. Unfortunately, 16 S rRNA molecular analysis and phenotypic characterization cannot distinguish all species and do not offer enough resolution to assess intraspecific diversity. Other approaches, such as Multilocus Sequence Tagging, provide higher resolution; however, they have been developed for Staphylococcus aureus and a few other species. Here, we developed a set of genus-targeted primers using five orthologous genes (pta, tuf, tpi, groEs, and sarA) to identify all Staphylococcus species within the genus. The primers were initially evaluated using 20 strains from the Collection of Microorganisms of Interest in Animal Health from AGROSAVIA (CMISA), and their amplified sequences were compared to a set of 33 Staphylococcus species. This allowed the taxonomic identification of the strains even on close species and the establishment of intraspecies diversity. To enhance the scope and cost-effectiveness of the proposed strategy, we customized the primer sets for an Illumina paired-end amplicon protocol, enabling gene multiplexing. We assessed five genes across 177 strains, generating 880 paired-end libraries from the CMISA. This approach significantly reduced sequencing costs, as all libraries can be efficiently sequenced in a single MiSeq run at a fraction (one-fourth or less) of the cost associated with Sanger sequencing. In summary, this method can be used for precise identification and diversity analysis of Staphylococcus species, offering an advancement over traditional techniques in both resolution and cost-effectiveness.
Collapse
Affiliation(s)
- S Jiménez-Velásquez
- Livestock Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Cundinamarca, Colombia
| | - M E Pacheco-Montealegre
- Livestock Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Cundinamarca, Colombia
| | - L Torres-Higuera
- Livestock Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Cundinamarca, Colombia
| | - L Uribe-Gutiérrez
- Livestock Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Cundinamarca, Colombia
| | - D Burbano-David
- Livestock Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Cundinamarca, Colombia
| | - L L Dávila-Mora
- Livestock Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Cundinamarca, Colombia
| | - C Renjifo-Ibáñez
- Livestock Microbiology Laboratory, Tibaitatá Research Center, Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Km 14 vía Bogotá a Mosquera, Cundinamarca, Colombia
| | - A Caro-Quintero
- Departamento de Biología, Facultad de Ciencias, Max Planck Tandem Group in Holobionts, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
3
|
Bello S, Mudassir SH, Rudra B, Gupta RS. Phylogenomic and molecular markers based studies on Staphylococcaceae and Gemella species. Proposals for an emended family Staphylococcaceae and three new families (Abyssicoccaceae fam. nov., Salinicoccaceae fam. nov. and Gemellaceae fam. nov.) harboring four new genera, Lacicoccus gen. nov., Macrococcoides gen. nov., Gemelliphila gen. nov., and Phocicoccus gen. nov. Antonie Van Leeuwenhoek 2023; 116:937-973. [PMID: 37523090 DOI: 10.1007/s10482-023-01857-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023]
Abstract
The family Staphylococcacae and genus Gemella contain several organisms of clinical or biotechnological importance. We report here comprehensive phylogenomic and comparative analyses on 112 available genomes from species in these taxa to clarify their evolutionary relationships and classification. In a phylogenomic tree based on 678 core proteins, Gemella species were separated from Staphylococcacae by a long branch indicating that they constitute a distinct family (Gemellaceae fam. nov.). In this tree, Staphylococcacae species formed two main clades, one encompassing the genera Aliicoccus, Jeotgalicoccus, Nosocomiicoccus and Salinicoccus (Family "Salinicoccaceae"), while the other clade consisted of the genera Macrococcus, Mammaliicoccus and Staphylococcus (Family Staphylococcaceae emend.). In this tree, species from the genera Gemella, Jeotgalicoccus, Macrococcus and Salinicoccus each formed two distinct clades. Two species clades for these genera are also observed in 16S rRNA gene trees and supported by average amino acid identity analysis. We also report here detailed analyses on protein sequences from Staphylococcaceae and Gemella genomes to identify conserved signature indels (CSIs) which are specific for different genus and family-level clades. These analyses have identified 120 novel CSIs robustly demarcating different proposed families and genera. The identified CSIs provide independent evidence that the genera Gemella, Jeotgalicoccus, Macrococcus and Salinicoccus consist of two distinct clades, which can be reliably distinguished based on multiple exclusively shared CSIs. We are proposing transfers of the species from the novel clades of the above four genera into the genera Gemelliphila gen. nov., Phocicoccus gen. nov., Macrococcoides gen. nov. and Lacicoccus gen. nov., respectively. The identified CSIs also provide strong evidence for division of Staphylococcaceae into an emended family Staphylococcaceae and two new families, Abyssicoccaceae fam. nov. and Salinicoccaceae fam. nov. All of these families can be reliably demarcated based on several exclusively shared CSIs.
Collapse
Affiliation(s)
- Sarah Bello
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Syed Huzaifa Mudassir
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Bashudev Rudra
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | - Radhey S Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
4
|
Kovařovic V, Finstrlová A, Sedláček I, Petráš P, Švec P, Mašlaňová I, Neumann-Schaal M, Šedo O, Botka T, Staňková E, Doškař J, Pantůček R. Staphylococcus brunensis sp. nov. isolated from human clinical specimens with a staphylococcal cassette chromosome-related genomic island outside of the rlmH gene bearing the ccrDE recombinase gene complex. Microbiol Spectr 2023; 11:e0134223. [PMID: 37712674 PMCID: PMC10581047 DOI: 10.1128/spectrum.01342-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
Novel species of coagulase-negative staphylococci, which could serve as reservoirs of virulence and antimicrobial resistance factors for opportunistic pathogens from the genus Staphylococcus, are recognized in human and animal specimens due to advances in diagnostic techniques. Here, we used whole-genome sequencing, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize five coagulase-negative strains from the Staphylococcus haemolyticus phylogenetic clade obtained from human ear swabs, wounds, and bile. Based on the results of polyphasic taxonomy, we propose the species Staphylococcus brunensis sp. nov. (type strain NRL/St 16/872T = CCM 9024T = LMG 31872T = DSM 111349T). The genomic analysis revealed numerous variable genomic elements, including staphylococcal cassette chromosome (SCC), prophages, plasmids, and a unique 18.8 kb-long genomic island SbCIccrDE integrated into the ribosomal protein L7 serine acetyltransferase gene rimL. SbCIccrDE has a cassette chromosome recombinase (ccr) gene complex with a typical structure found in SCCs. Based on nucleotide and amino acid identity to other known ccr genes and the distinct integration site that differs from the canonical methyltransferase gene rlmH exploited by SCCs, we classified the ccr genes as novel variants, ccrDE. The comparative genomic analysis of SbCIccrDE with related islands shows that they can accumulate virulence and antimicrobial resistance factors creating novel resistance elements, which reflects the evolution of SCC. The spread of these resistance islands into established pathogens such as Staphylococcus aureus would pose a great threat to the healthcare system. IMPORTANCE The coagulase-negative staphylococci are important opportunistic human pathogens, which cause bloodstream and foreign body infections, mainly in immunocompromised patients. The mobile elements, primarily the staphylococcal cassette chromosome mec, which confers resistance to methicillin, are the key to the successful dissemination of staphylococci into healthcare and community settings. Here, we present a novel species of the Staphylococcus genus isolated from human clinical material. The detailed analysis of its genome revealed a previously undescribed genomic island, which is closely related to the staphylococcal cassette chromosome and has the potential to accumulate and spread virulence and resistance determinants. The island harbors a set of conserved genes required for its mobilization, which we recognized as novel cassette chromosome recombinase genes ccrDE. Similar islands were revealed not only in the genomes of coagulase-negative staphylococci but also in S. aureus. The comparative genomic study contributes substantially to the understanding of the evolution and pathogenesis of staphylococci.
Collapse
Affiliation(s)
- Vojtěch Kovařovic
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adéla Finstrlová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Petráš
- Reference Laboratory for Staphylococci, National Institute of Public Health, Praha, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivana Mašlaňová
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tibor Botka
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jiří Doškař
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Hossain M, Aslan B, Hatoum-Aslan A. Tandem mobilization of anti-phage defenses alongside SCC mec cassettes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533233. [PMID: 36993521 PMCID: PMC10055296 DOI: 10.1101/2023.03.17.533233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Bacterial viruses (phages) and the immune systems targeted against them significantly impact bacterial survival, evolution, and the emergence of pathogenic strains. While recent research has made spectacular strides towards discovering and validating new defenses in a few model organisms1-3, the inventory of immune systems in clinically-relevant bacteria remains underexplored, and little is known about the mechanisms by which these systems horizontally spread. Such pathways not only impact the evolutionary trajectory of bacterial pathogens, but also threaten to undermine the effectiveness of phage-based therapeutics. Here, we investigate the battery of defenses in staphylococci, opportunistic pathogens that constitute leading causes of antibiotic-resistant infections. We show that these organisms harbor a variety of anti-phage defenses encoded within/near the infamous SCC (staphylococcal cassette chromosome) mec cassettes, mobile genomic islands that confer methicillin resistance. Importantly, we demonstrate that SCCmec-encoded recombinases mobilize not only SCCmec, but also tandem cassettes enriched with diverse defenses. Further, we show that phage infection potentiates cassette mobilization. Taken together, our findings reveal that beyond spreading antibiotic resistance, SCCmec cassettes play a central role in disseminating anti-phage defenses. This work underscores the urgent need for developing adjunctive treatments that target this pathway to save the burgeoning phage therapeutics from suffering the same fate as conventional antibiotics.
Collapse
Affiliation(s)
- Motaher Hossain
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| | - Barbaros Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| | - Asma Hatoum-Aslan
- University of Illinois at Urbana-Champaign, Department of Microbiology, Urbana, IL, USA
| |
Collapse
|
6
|
Nam-Cha SH, Ocaña AV, Pérez-Tanoira R, Aguilera-Correa JJ, Domb AJ, Ruiz-Grao MC, Cebada-Sánchez S, López-Gónzalez Á, Molina-Alarcón M, Pérez-Martínez J, Pérez-Martínez FC. Methacrylate Cationic Nanoparticles Activity against Different Gram-Positive Bacteria. Antibiotics (Basel) 2023; 12:antibiotics12030533. [PMID: 36978400 PMCID: PMC10044577 DOI: 10.3390/antibiotics12030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Nanotechnology is a developing field that has boomed in recent years due to the multiple qualities of nanoparticles (NPs), one of which is their antimicrobial capacity. We propose that NPs anchored with 2-(dimethylamino)ethyl methacrylate (DMAEMA) have antibacterial properties and could constitute an alternative tool in this field. To this end, the antimicrobial effects of three quaternised NPs anchored with DMAEMA were studied. These NPs were later copolymerized using different methylmethacrylate (MMA) concentrations to evaluate their role in the antibacterial activity shown by NPs. Clinical strains of Staphylococcus aureus, S. epidermidis, S. lugdunensis and Enterococcus faecalis were used to assess antibacterial activity. The minimal inhibitory concentration (MIC) was determined at the different concentrations of NPs to appraise antibacterial activity. The cytotoxic effects of the NPs anchored with DMAEMA were determined in NIH3T3 mouse fibroblast cultures by MTT assays. All the employed NPs were effective against the studied bacterial strains, although increasing concentrations of the MMA added during the synthesis process diminished these effects without altering toxicity in cell cultures. To conclude, more studies with other copolymers are necessary to improve the antibacterial effects of NPs anchored with DMAEMA.
Collapse
Affiliation(s)
- Syong H. Nam-Cha
- Department of Pathology, Complejo Hospitalario Universitario, 02006 Albacete, Spain
| | - Ana V. Ocaña
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, 02001 Albacete, Spain
| | - Ramón Pérez-Tanoira
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, 28805 Madrid, Spain
- Biomedicine y Biotechnology Department, School of Medicine, University of Alcalá de Henares, 28054 Madrid, Spain
| | | | - Abraham J. Domb
- Institute of Drug Research, School of Pharmacy-Faculty of Medicine, Center for Nanoscience and Nanotechnology and The Alex Grass Center for Drug Design and Synthesis, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Marta C. Ruiz-Grao
- Department of Nursing, University of Castilla-La Mancha, 02071 Albacete, Spain
- Health and Social Research Center, University of Castilla-La Mancha, 16071 Cuenca, Spain
| | | | | | - Milagros Molina-Alarcón
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, 02001 Albacete, Spain
- Department of Nursing, University of Castilla-La Mancha, 02071 Albacete, Spain
- Correspondence: (M.M.-A.); (F.C.P.-M.)
| | - Juan Pérez-Martínez
- BIOTYC Foundation, C/Blasco de Garay 27, 02003 Albacete, Spain
- Department of Nephrology, Complejo Hospitalario Universitario, 02006 Albacete, Spain
| | - Francisco C. Pérez-Martínez
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), University of Castilla-La Mancha, 02001 Albacete, Spain
- Department of Nursing, University of Castilla-La Mancha, 02071 Albacete, Spain
- BIOTYC Foundation, C/Blasco de Garay 27, 02003 Albacete, Spain
- Correspondence: (M.M.-A.); (F.C.P.-M.)
| |
Collapse
|
7
|
Rasheed NA, Abdulrahman RF, Hussein NR. Phylogenetic relatedness of methicillin-resistant Staphylococcus aureus isolates from the host community and Syrian refugees in Duhok Governorate based on 16S rRNA. IJID REGIONS 2022; 4:42-46. [PMID: 36093367 PMCID: PMC9453217 DOI: 10.1016/j.ijregi.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/01/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) isolates were identical and highly similar to globally published isolates. MRSA strains in the Iraqi and Syrian populations were genetically closely related. Study isolates were grouped into two major groups on the phylogenetic tree. Most strains in the study were SCCmec type IVa, clustered on the same tree lineage. The highest rate of vancomycin resistance was found among the isolates from refugees.
Objectives The aim of the study was to investigate the genetic relatedness between methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from the host community of Duhok City and Syrian refugees based on the partial sequences of the 16S rRNA gene, and to investigate the prevalence of SCCmec and vancomycin resistance. Methods Thirty MRSA isolates that had previously been detected and characterized were included. PCR was used for SCCmec typing, vancomycin detection, and amplification of the 16S rRNA gene for sequencing. Results The MRSA isolates were identical and highly similar to globally published S. aureus strains, especially human nasal cavity strains. The phylogenetic tree showed that the isolates were grouped into two major groups: groups 1 and 2. Group 2 was divergent from group 1 and included isolates from the host community and Syrian refugees (new arrivals). Group 1 included isolates from the three groups, and these were genetically closely related. Most strains in both study groups were SCCmec type IVa and clustered on the same lineage of the tree. The highest rate of vancomycin resistance was found among the isolates from refugees. Conclusions The close relationship between MRSA strains in the two study groups could be due to the geographical location of neighboring countries, which enhances the spread of MRSA strains between them.
Collapse
Affiliation(s)
- Narin A. Rasheed
- Medical Department, Akre Technical Institute, Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq
- Corresponding author: Narin A. Rasheed, Medical Department, Akre Technical Institute, Duhok Polytechnic University, Duhok, Kurdistan Region, Iraq.
| | - Rezheen F. Abdulrahman
- Pathology and Microbiology Department, College of Veterinary Medicine, University of Duhok, Duhok, Kurdistan Region, Iraq
| | - Nawfal R. Hussein
- Department of Medicine, College of Medicine, University of Zakho, Zakho, Kurdistan Region, Iraq
| |
Collapse
|
8
|
Larsen JS, Miller M, Oakley AJ, Dixon NE, Lewis PJ. Multiple classes and isoforms of the RNA polymerase recycling motor protein HelD. Microbiologyopen 2021; 10:e1251. [PMID: 34964291 PMCID: PMC8655204 DOI: 10.1002/mbo3.1251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Efficient control of transcription is essential in all organisms. In bacteria, where DNA replication and transcription occur simultaneously, the replication machinery is at risk of colliding with highly abundant transcription complexes. This can be exacerbated by the fact that transcription complexes pause frequently. When pauses are long-lasting, the stalled complexes must be removed to prevent collisions with either another transcription complex or the replication machinery. HelD is a protein that represents a new class of ATP-dependent motor proteins distantly related to helicases. It was first identified in the model Gram-positive bacterium Bacillus subtilis and is involved in removing and recycling stalled transcription complexes. To date, two classes of HelD have been identified: one in the low G+C and the other in the high G+C Gram-positive bacteria. In this work, we have undertaken the first comprehensive investigation of the phylogenetic diversity of HelD proteins. We show that genes in certain bacterial classes have been inherited by horizontal gene transfer, many organisms contain multiple expressed isoforms of HelD, some of which are associated with antibiotic resistance, and that there is a third class of HelD protein found in Gram-negative bacteria. In summary, HelD proteins represent an important new class of transcription factors associated with genome maintenance and antibiotic resistance that are conserved across the Eubacterial kingdom.
Collapse
Affiliation(s)
- Joachim S Larsen
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Michael Miller
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Aaron J Oakley
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Nicholas E Dixon
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Peter J Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
9
|
Meyer M, Bobeck E, Sato Y, El-Gazzar M. Comparison of Naturally Occurring vs. Experimental Infection of Staphylococcus aureus Septicemia in Laying Hens in Two Different Age Groups. Avian Dis 2021; 65:310-320. [PMID: 34412463 DOI: 10.1637/0005-2086-65.2.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 11/05/2022]
Abstract
In April and November of 2018, multiple commercial laying hen flocks within the same company presented with a sharp increase in mortality and drop in egg production that persisted for several days. These flocks showed striking necropsy lesions consistent with systemic infection and responded to antimicrobial treatment in the feed. Staphylococcus aureus (SA) was the most frequently isolated organism from multiple tissues including comb and wattle lesions, lungs, liver, ovary, spleen, and bone marrow. Given such an uncommon presentation of SA, which is known as a secondary opportunistic pathogen, a challenge study was conducted to evaluate its role in these disease outbreaks. In the present study, laying hens of two ages (22 and 96 wk) were inoculated with SA via three routes: oral gavage, subcutaneous (SC) injection, and intravenous (IV) injection. Both young and old hens in the IV group showed a significant increase in body temperature and drop in body weight; however, the clinical signs observed in the naturally occurring outbreaks were not present. SA was reisolated at multiple time points postchallenge from all challenge groups except the negative control group. While the SC group showed localized necrosis at the injection site, microscopic changes were different from changes observed in birds from the natural outbreaks. Despite observed initial differences in route and age, the SA challenge strain was not capable of reproducing the disease on its own. The results of this study indicate that SA may have played a role in the increased mortality, clinical signs, and necropsy lesions reported with the naturally occurring outbreaks. However, SA should still be considered as a secondary opportunistic pathogen. Other factors that could have caused the initial insult are stress, immunosuppression, or other primary infectious agents. The results of this study may aid veterinary diagnosticians, clinicians, and all poultry professionals to include SA in their differentials list as a secondary opportunistic pathogen in similar cases. This is an uncommon presentation and further field observations and clinical studies are needed to better elucidate the pathogenesis of this disease, which will in turn help to prevent future outbreaks.
Collapse
Affiliation(s)
- Meaghan Meyer
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Elizabeth Bobeck
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Yuko Sato
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA 50011
| | - Mohamed El-Gazzar
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University College of Veterinary Medicine, Ames, IA 50011,
| |
Collapse
|
10
|
Balemi A, Gumi B, Amenu K, Girma S, Gebru M, Tekle M, Ríus AA, D’Souza DH, Agga GE, Kerro Dego O. Prevalence of Mastitis and Antibiotic Resistance of Bacterial Isolates from CMT Positive Milk Samples Obtained from Dairy Cows, Camels, and Goats in Two Pastoral Districts in Southern Ethiopia. Animals (Basel) 2021; 11:ani11061530. [PMID: 34073967 PMCID: PMC8225129 DOI: 10.3390/ani11061530] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary A study was carried out from August 2017 to February 2018 on lactating dairy cows, one-humped dromedary camels, and goats to determine mastitis in the Bule Hora and Dugda Dawa districts of in Southern Ethiopia. Milk samples from 564 udder quarters and udder halves from 171 animals consisting of 60 dairy cows, 51 camels, and 60 goats were tested for mastitis. Sixty-four positive udder milk samples were cultured, and bacterial mastitis pathogens were isolated and identified. The antibiotic resistance of bacterial isolates from milk with mastitis was tested against nine antimicrobials commonly used in the study area. Cow-level prevalence of mastitis in dairy cows, camels, and goats was 33.3%, 26.3%, and 25%, respectively. The quarter-level prevalence of mastitis in cows, camels and goats was 17.6%, 14.5%, and 20%, respectively. In cattle, the prevalence was significantly higher in Dugda Dawa than in Bule Hora. Major bacterial isolates were coagulase-negative Staphylococcus species (39.1%), S. aureus (17.2%), S. hyicus (14.1%), and S. intermedius and Escherichia coli (9.4% each). In camels, udder abnormality and mastitis were significantly higher in late lactation than in early lactation. Mastitis tends to increase with parity in camels. E. coli isolates were highly resistant to spectinomycin, vancomycin, and doxycycline, whereas most S. aureus isolates were multidrug-resistant. Most of the rural and periurban communities in this area consume raw milk, which indicates a high risk of infection with multidrug-resistant bacteria. We recommend community-focused training programs to improve community awareness of the risk of raw milk consumption and the need to boil milk. Abstract A study was carried out from August 2017 to February 2018 on lactating dairy cows, one-humped dromedary camels, and goats to determine mastitis in the Bule Hora and Dugda Dawa districts of in Southern Ethiopia. Milk samples from 564 udder quarters and udder halves from 171 animals consisting of 60 dairy cows, 51 camels, and 60 goats were tested for mastitis. Sixty-four positive udder milk samples were cultured, and bacterial mastitis pathogens were isolated and identified. The antibiotic resistance of bacterial isolates from milk with mastitis was tested against nine antimicrobials commonly used in the study area. Cow- and quarter-level prevalence of mastitis in dairy cows, camels, and goats was 33.3%, 26.3%, and 25% and 17.6%, 14.5%, and 20%, respectively. In cattle, the prevalence was significantly higher in Dugda Dawa than in Bule Hora. Major bacterial isolates were coagulase-negative Staphylococcus species (39.1%), S. aureus (17.2%), S. hyicus (14.1%), and S. intermedius and Escherichia coli (9.4% each). In camels, udder abnormality and mastitis were significantly higher in late lactation than in early lactation. Mastitis tends to increase with parity in camels. E. coli isolates were highly resistant to spectinomycin, vancomycin, and doxycycline, whereas most S. aureus isolates were multidrug-resistant. Most of the rural and periurban communities in this area consume raw milk, which indicates a high risk of infection with multidrug-resistant bacteria. We recommend a community-focused training program to improve community awareness of the need to boil milk and the risk of raw milk consumption.
Collapse
Affiliation(s)
- Amanuel Balemi
- College of Veterinary Sciences, Mekelle University, Mekelle, P.O. Box 231, Ethiopia; (A.B.); (M.G.)
| | - Balako Gumi
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, P.O. Box 1176, Ethiopia;
| | - Kebede Amenu
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, P.O. Box 34, Ethiopia; (K.A.); (M.T.)
| | - Sisay Girma
- College of Agriculture, Bule Hora University, Bule Hora, P.O. Box 144, Ethiopia;
| | - Mu'uz Gebru
- College of Veterinary Sciences, Mekelle University, Mekelle, P.O. Box 231, Ethiopia; (A.B.); (M.G.)
| | - Muluken Tekle
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, P.O. Box 34, Ethiopia; (K.A.); (M.T.)
| | - Agustin A. Ríus
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA;
| | - Doris H. D’Souza
- Department of Food Science, The University of Tennessee, Knoxville, TN 37998, USA;
| | - Getahun E. Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Bowling Green, KY 42101, USA;
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA;
- Correspondence:
| |
Collapse
|
11
|
Cole K, Atkins B, Llewelyn M, Paul J. Genomic investigation of clinically significant coagulase-negative staphylococci. J Med Microbiol 2021; 70. [PMID: 33704043 DOI: 10.1099/jmm.0.001337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction. Coagulase-negative staphylococci have been recognized both as emerging pathogens and contaminants of clinical samples. High-resolution genomic investigation may provide insights into their clinical significance.Aims. To review the literature regarding coagulase-negative staphylococcal infection and the utility of genomic methods to aid diagnosis and management, and to identify promising areas for future research.Methodology. We searched Google Scholar with the terms (Staphylococcus) AND (sequencing OR (infection)). We prioritized papers that addressed coagulase-negative staphylococci, genomic analysis, or infection.Results. A number of studies have investigated specimen-related, phenotypic and genetic factors associated with colonization, infection and virulence, but diagnosis remains problematic.Conclusion. Genomic investigation provides insights into the genetic diversity and natural history of colonization and infection. Such information allows the development of new methodologies to identify and compare relatedness and predict antimicrobial resistance. Future clinical studies that employ suitable sampling frames coupled with the application of high-resolution whole-genome sequencing may aid the development of more discriminatory diagnostic approaches to coagulase-staphylococcal infection.
Collapse
Affiliation(s)
- Kevin Cole
- Brighton and Sussex Medical School, Brighton, UK.,Public Health England Collaborating Centre, Royal Sussex County Hospital, Brighton, UK
| | | | - Martin Llewelyn
- Brighton and Sussex University Hospitals NHS Trust, Brighton, UK.,Brighton and Sussex Medical School, Brighton, UK
| | - John Paul
- Public Health England Collaborating Centre, Royal Sussex County Hospital, Brighton, UK.,Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
12
|
Lauková A, Pogány Simonová M, Focková V, Kološta M, Tomáška M, Dvorožňáková E. Susceptibility to Bacteriocins in Biofilm-Forming, Variable Staphylococci Isolated from Local Slovak Ewes' Milk Lump Cheeses. Foods 2020; 9:foods9091335. [PMID: 32971750 PMCID: PMC7554739 DOI: 10.3390/foods9091335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/19/2023] Open
Abstract
Seventeen staphylococci isolated from 54 Slovak local lump cheeses made from ewes’ milk were taxonomically allotted to five species and three clusters/groups involving the following species: Staphylococcus aureus (5 strains), Staphylococcus xylosus (3 strains), Staphylococcus equorum (one strain) Staphylococcus succinus (5 strains) and Staphylococcus simulans (3 strains). Five different species were determined. The aim of the study follows two lines: basic research in connection with staphylococci, and further possible application of the bacteriocins. Identified staphylococci were mostly susceptible to antibiotics (10 out of 14 antibiotics). Strains showed γ-hemolysis (meaning they did not form hemolysis) except for S. aureus SAOS1/1 strain, which formed β-hemolysis. S. aureus SAOS1/1 strain was also DNase positive as did S. aureus SAOS5/2 and SAOS51/3. The other staphylococci were DNase negative. S. aureus SAOS1/1 and SAOS51/3 showed biofilm formation on Congo red agar. However, using quantitative plate assay, 12 strains out of 17 showed low-grade biofilm formation (0.1 ≤ A570 < 1), while five strains did not form biofilm (A570 < 0.1). The growth of all strains, including those strains resistant to enterocins, was inhibited by nisin and gallidermin, with high inhibition activity resulting in the inhibition zone in size from 1600 up to 102,400 AU/mL (arbitrary unit per milliliter). This study contributes to microbiota colonization associated with raw ewe’s milk lump cheeses; it also indicates bacteriocin treatment benefit, which can be used in prevention and/or elimination of staphylococci.
Collapse
Affiliation(s)
- Andrea Lauková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4–6, 040 01 Košice, Slovakia; (M.P.S.); (V.F.)
- Correspondence:
| | - Monika Pogány Simonová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4–6, 040 01 Košice, Slovakia; (M.P.S.); (V.F.)
| | - Valentína Focková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4–6, 040 01 Košice, Slovakia; (M.P.S.); (V.F.)
| | - Miroslav Kološta
- Dairy Research Institute, a.s. Dlhá 95, 010 01 Žilina, Slovakia; (M.K.); (M.T.)
| | - Martin Tomáška
- Dairy Research Institute, a.s. Dlhá 95, 010 01 Žilina, Slovakia; (M.K.); (M.T.)
| | - Emília Dvorožňáková
- Parasitological Institute of the Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovakia;
| |
Collapse
|
13
|
Vaughn JM, Abdi RD, Gillespie BE, Kerro Dego O. Genetic diversity and virulence characteristics of Staphylococcus aureus isolates from cases of bovine mastitis. Microb Pathog 2020; 144:104171. [PMID: 32224210 DOI: 10.1016/j.micpath.2020.104171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
Staphylococcus aureus is one of the major bacterial mastitis pathogens with significant effects on animal and human health. Some studies showed that S. aureus strains that infect different host species are genetically distinct, although most strains can infect a wide range of host species. However, there are no clearly defined clonal patterns of S. aureus strains that are known to infect a specific host. The objectives of this study were to evaluate the clonal diversity and virulence characteristics of S. aureus isolates from cases of bovine mastitis. Bacteriological tests were conducted on milk samples from cases of bovine mastitis from 11 dairy farms including some milk samples from unknown farms in Eastern Tennessee. Overall, a total of 111 S. aureus were isolated and identified, and further evaluated for their genetic diversity by pulsed-field gel electrophoresis (PFGE) and virulence characteristics by PCR. Genotypic virulence factors including staphylococcal enterotoxins, and toxic shock syndrome toxin 1 (tsst-1) were tested by PCR. In addition, the association among several known virulence factors of these isolates based on our current and previous studies in our lab were evaluated. Previously generated data that were included in the analysis of association among virulence factors were the presence of biofilm production associated genes in the ica operon such as icaA, icaD and icaAB, and phenotypic virulence characteristics such as hemolysis on blood agar, slime production and resistance or susceptibility to ten commonly used antimicrobials in dairy farms. The PFGE results showed the presence of 16 PFGE types (designated A - P) throughout farms, of which three pulsotypes, I, M and O were the most frequently isolated PFGE types from most farms. The PFGE type M was the most prevalent of all 16 PFGE types, with 64 isolates being present among nine farms. The PCR results of enterotoxin genes showed that out of the total 111 tested 84 (75.7%) were negative whereas 13 (11.7%), 2 (1.8%), 3 (2.7%), 1 (0.9%) and 8 (7.2%) were positive for seb, seb and sec, sec, see, and tsst-1, respectively. All 111 isolates were negative for sea and sej. Results of the evaluation of I, M and O strains adhesion to and invasion into mammary epithelial cells showed that the total count of each strain of bacteria adhered to and invaded into mammary epithelial cell line (MAC-T cells) was not significantly different (P > 0.05). This may be an indication that there is no significant difference in their ability to establish early host-pathogen interaction and colonization of the host. There were no statistically significant associations among PFGE types and other known virulence factors of these strains. However, PFGE types O and M tend to cluster with β-hemolysin, absence of enterotoxins and susceptibility to antimicrobials. In conclusion, there was not any association between pulsotype and genotypic and phenotypic virulence factors. S. aureus isolates from cases of bovine mastitis had diverse genotypes that possessed variable virulence factors.
Collapse
Affiliation(s)
- Jacqueline M Vaughn
- The University of Tennessee, Department of Animal Science, Knoxville, TN, 37996, USA
| | - Reta Duguma Abdi
- The University of Tennessee, Department of Animal Science, Knoxville, TN, 37996, USA; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Greenvale, NY, 11548, USA
| | | | - Oudessa Kerro Dego
- The University of Tennessee, Department of Animal Science, Knoxville, TN, 37996, USA.
| |
Collapse
|
14
|
Hambal M, Admi M, Safika S, Sari WE, Ferasyi TR, Dasrul D, Balqis U, Darmawi D. Identification of Staphylococcus species isolated from preputium of Aceh cattle based on 16S rRNA gene sequences analysis. Vet World 2019; 12:1540-1545. [PMID: 31849414 PMCID: PMC6868254 DOI: 10.14202/vetworld.2019.1540-1545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/29/2019] [Indexed: 11/27/2022] Open
Abstract
Aim: This research aimed to identify Staphylococcus species isolated from preputial swabs of healthy Aceh cattle, based on 16S ribosomal RNA gene analysis. Materials and Methods: The bacterium was isolated from preputial swabs of healthy Aceh cattle. The total DNA from the isolated bacteria was extracted using the Genomic DNA Mini Kit followed by polymerase chain reaction (PCR) amplification of the 16S rRNA gene. The product of PCR amplification was then sequenced and aligned to the known sequences in the GenBank database by multiple alignments and was also analyzed by bioinformatics software to construct a phylogenetic tree. Results: The results revealed that the bacterial isolate 3A had genetically closed relation to Staphylococcus pasteuri with <97% maximum identity. Data derived from the phylogenetic tree revealed that the bacterial isolate 3A was also related to Staphylococcus warneri, yet, it shows a different evolutionary distance with the ancestors (S. pasteuri). Conclusion: The results of this research suggested that the bacterium 3A, isolated from preputial swabs of healthy Aceh cattle, is a Staphylococcus species.
Collapse
Affiliation(s)
- Muhammad Hambal
- Laboratory of Parasitology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Masda Admi
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia.,Department of Mathematics and Applied Sciences, Universitas Syiah Kuala, Darussalam, Banda Aceh, 23111, Indonesia
| | - Safika Safika
- Department of Veterinary Infectious Diseases and Veterinary Public Health, Faculty of Veterinary Medicine, IPB University, Jl. Agatis Dramaga, Bogor, 16680, West Java, Indonesia
| | - Wahyu Eka Sari
- Laboratory of Research, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia.,Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Teuku Reza Ferasyi
- Laboratory of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Dasrul Dasrul
- Laboratory of Reproduction, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Ummu Balqis
- Laboratory of Pathology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia
| | - Darmawi Darmawi
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, Indonesia.,Laboratory of Biomedical Science, Faculty of Public Health, University of Teuku Umar, Meulaboh, Aceh, Indonesia
| |
Collapse
|
15
|
Yong YY, Dykes GA, Choo WS. Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Crit Rev Microbiol 2019; 45:201-222. [PMID: 30786799 DOI: 10.1080/1040841x.2019.1573802] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococci are Gram-positive bacteria that are ubiquitous in the environment and able to form biofilms on a range of surfaces. They have been associated with a range of human health issues such as medical device-related infection, localized skin infection, or direct infection caused by toxin production. The extracellular material produced by these bacteria resists antibiotics and host defence mechanism which complicates the treatment process. The commonly reported Staphylococcus species are Staphylococcus aureus and S. epidermidis as they inhabit human bodies. However, the emergence of other staphylococci, such as S. haemolyticus, S. lugdunensis, S. saprophyticus, S. capitis, S. saccharolyticus, S. warneri, S. cohnii, and S. hominis, is also of concern and they have been associated with biofilm formation. This review critically assesses recent cases on the biofilm formation by S. aureus, S. epidermidis, and other staphylococci reported in health-related environments. The control of biofilm formation by staphylococci using natural compounds is specifically discussed as they represent potential anti-biofilm agents which may reduce the burden of antibiotic resistance.
Collapse
Affiliation(s)
- Yi Yi Yong
- a School of Science , Monash University Malaysia , Selangor , Malaysia
| | - Gary A Dykes
- b School of Public Health , Curtin University , Bentley , Australia
| | - Wee Sim Choo
- a School of Science , Monash University Malaysia , Selangor , Malaysia
| |
Collapse
|
16
|
Lauková A, Bino E, Kubašová I, Strompfová V, Miltko R, Belzecki G, Pogány Simonová M. Characterisation of Faecal Staphylococci from Roe Deer (Capreolus capreolus) and Red Deer (Cervus elaphus) and Their Susceptibility to Gallidermin. Probiotics Antimicrob Proteins 2019; 12:302-310. [PMID: 30710249 DOI: 10.1007/s12602-019-9522-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our current knowledge of microbiota in wild ruminants is limited. The goal of this study was to evaluate staphylococcal species in red and roe deer for various attributes (haemolysis, DNase, and urease activities; lactic acid and biofilm production; and antibiotic profile) and their susceptibility to gallidermin. Sixteen staphylococcal strains were identified from faeces of 21 free-living animals (9 adult female Cervus elaphus-red deer and 12 young female Capreolus capreolus-roe deer) sampled by the Polish colleagues in the Strzałowo Forest District, Piska Primaeval Forest. The variability in the species of staphylococci was determined. Seven species (Staphylococcus capitis, S. epidermidis, S. haemolyticus, S. hominis, S. pseudintermedius, S. vitulinus and S. warneri) and five clusters/groups of coagulase-negative staphylococci (CoNS) were identified. The strains were generally not haemolytic and Dnase negative; did not form biofilms or only produced low-grade biofilms; exhibited high levels of lactic acid; were urease positive; and were generally susceptible to antibiotics (only two strains were resistant to multiple antibiotics). However, all of the strains were susceptible to the lantibiotic bacteriocin gallidermin, with a minimal inhibitory concentration of 0.0156 μg (up to 6400 AU/ml in arbitrary units). This is the first study to perform a detailed study of the properties of CoNS from roe and red deer.
Collapse
Affiliation(s)
- A Lauková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovakia.
| | - E Bino
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovakia
| | - I Kubašová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovakia
| | - V Strompfová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovakia
| | - R Miltko
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05 110, Jablonna, Poland
| | - G Belzecki
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05 110, Jablonna, Poland
| | - M Pogány Simonová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovakia
| |
Collapse
|
17
|
Bino E, Lauková A, Ščerbová J, Kubašová I, Kandričáková A, Strompfová V, Miltko R, Belzecki G. Fecal coagulase-negative staphylococci from horses, their species variability, and biofilm formation. Folia Microbiol (Praha) 2019; 64:719-726. [PMID: 30706301 DOI: 10.1007/s12223-019-00684-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/21/2019] [Indexed: 11/30/2022]
Abstract
The intestinal microbiota has enormous impact on the health and performance of horses. Staphylococci belong in the phylum Firmicutes, and their occurrence, especially of methicillin-resistant strains and species, has been reported in horses previously. Moreover, biofilm formation is one of the virulence factors; it has been not completely studied in fecal coagulase-negative staphylococci (CoNS) from horses. Therefore, this study was focused on biofilm formation by various species of fecal CoNS from horses because it has been never reported before. In addition, their antibiotic profile was tested. Horses (42) of various breeds from Slovakia/Poland were sampled. Variability in the species of CoNS was detected in feces of horses. Thirty-two strains were identified by using the MALDI-TOF system and classified into nine species and three subspecies of CoNS: Staphylococcus capitis, S. cohnii subsp. cohnii, S. cohnii subsp. urealyticus, S. cohnii subsp. casei, S. epidermidis, S. haemolyticus, S. pasteuri, S. sciuri, S. vitulinus, S. warneri, and S. xylosus. The most frequent species was S. vitulinus. Twenty-two strains showed high biofilm production; 10 strains showed low-grade biofilm production. The highest biofilm formation was measured in the species S. xylosus. Eleven strains (of 32) were methicillin-resistant; the others were susceptible to methicillin.
Collapse
Affiliation(s)
- E Bino
- Institute of Animal Physiology of the Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovakia
| | - Andrea Lauková
- Institute of Animal Physiology of the Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovakia.
| | - J Ščerbová
- Institute of Animal Physiology of the Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovakia
| | - I Kubašová
- Institute of Animal Physiology of the Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovakia
| | - A Kandričáková
- Institute of Animal Physiology of the Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovakia
| | - V Strompfová
- Institute of Animal Physiology of the Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej 4-6, 040 01, Košice, Slovakia
| | - R Miltko
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05 110, Jablonna, Poland
| | - G Belzecki
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05 110, Jablonna, Poland
| |
Collapse
|
18
|
Coates-Brown R, Moran JC, Pongchaikul P, Darby AC, Horsburgh MJ. Comparative Genomics of Staphylococcus Reveals Determinants of Speciation and Diversification of Antimicrobial Defense. Front Microbiol 2018; 9:2753. [PMID: 30510546 PMCID: PMC6252332 DOI: 10.3389/fmicb.2018.02753] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/29/2018] [Indexed: 11/18/2022] Open
Abstract
The bacterial genus Staphylococcus comprises diverse species with most being described as colonizers of human and animal skin. A relational analysis of features that discriminate its species and contribute to niche adaptation and survival remains to be fully described. In this study, an interspecies, whole-genome comparative analysis of 21 Staphylococcus species was performed based on their orthologues. Three well-defined multi-species groups were identified: group A (including aureus/epidermidis); group B (including saprophyticus/xylosus) and group C (including pseudintermedius/delphini). The machine learning algorithm Random Forest was applied to prioritize orthologs that drive formation of the Staphylococcus species groups A-C. Orthologues driving staphylococcal intrageneric diversity comprised regulatory, metabolic and antimicrobial resistance proteins. Notably, the BraSR (NsaRS) two-component system (TCS) and its associated BraDE transporters that regulate antimicrobial resistance showed limited distribution in the genus and their presence was most closely associated with a subset of Staphylococcus species dominated by those that colonize human skin. Divergence of BraSR and GraSR antimicrobial peptide survival TCS and their associated transporters was observed across the staphylococci, likely reflecting niche specific evolution of these TCS/transporters and their specificities for AMPs. Experimental evolution, with selection for resistance to the lantibiotic nisin, revealed multiple routes to resistance and differences in the selection outcomes of the BraSR-positive species S. hominis and S. aureus. Selection supported a role for GraSR in nisin survival responses of the BraSR-negative species S. saprophyticus. Our study reveals diversification of antimicrobial-sensing TCS across the staphylococci and hints at differential relationships between GraSR and BraSR in those species positive for both TCS.
Collapse
Affiliation(s)
| | | | | | | | - Malcolm J. Horsburgh
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
19
|
Argemi X, Matelska D, Ginalski K, Riegel P, Hansmann Y, Bloom J, Pestel-Caron M, Dahyot S, Lebeurre J, Prévost G. Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer. BMC Genomics 2018; 19:621. [PMID: 30126366 PMCID: PMC6102843 DOI: 10.1186/s12864-018-4978-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/31/2018] [Indexed: 02/07/2023] Open
Abstract
Background Coagulase negative staphylococci (CoNS) are commensal bacteria on human skin. Staphylococcus lugdunensis is a unique CoNS which produces various virulence factors and may, like S. aureus, cause severe infections, particularly in hospital settings. Unlike other staphylococci, it remains highly susceptible to antimicrobials, and genome-based phylogenetic studies have evidenced a highly conserved genome that distinguishes it from all other staphylococci. Results We demonstrate that S. lugdunensis possesses a closed pan-genome with a very limited number of new genes, in contrast to other staphylococci that have an open pan-genome. Whole-genome nucleotide and amino acid identity levels are also higher than in other staphylococci. We identified numerous genetic barriers to horizontal gene transfer that might explain this result. The S. lugdunensis genome has multiple operons encoding for restriction-modification, CRISPR/Cas and toxin/antitoxin systems. We also identified a new PIN-like domain-associated protein that might belong to a larger operon, comprising a metalloprotease, that could function as a new toxin/antitoxin or detoxification system. Conclusion We show that S. lugdunensis has a unique genome profile within staphylococci, with a closed pan-genome and several systems to prevent horizontal gene transfer. Its virulence in clinical settings does not rely on its ability to acquire and exchange antibiotic resistance genes or other virulence factors as shown for other staphylococci. Electronic supplementary material The online version of this article (10.1186/s12864-018-4978-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xavier Argemi
- Service des Maladies Infectieuses et Tropicales, Hôpitaux Universitaires, Nouvel Hôpital Civil, 1 Place de l'Hôpital, 67000, Strasbourg, France. .,Université de Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA 7290, Virulence Bactérienne Précoce, F-67000, Strasbourg, France.
| | - Dorota Matelska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Philippe Riegel
- Université de Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA 7290, Virulence Bactérienne Précoce, F-67000, Strasbourg, France
| | - Yves Hansmann
- Service des Maladies Infectieuses et Tropicales, Hôpitaux Universitaires, Nouvel Hôpital Civil, 1 Place de l'Hôpital, 67000, Strasbourg, France.,Université de Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA 7290, Virulence Bactérienne Précoce, F-67000, Strasbourg, France
| | - Jochen Bloom
- Bioinformatics & Systems Biology, Justus-Liebig-University Gießen, 35392, Gießen, Germany
| | - Martine Pestel-Caron
- Normandie Univ, UNIROUEN, GRAM EA2656, Rouen University Hospital, F-76000, Rouen, France
| | - Sandrine Dahyot
- Normandie Univ, UNIROUEN, GRAM EA2656, Rouen University Hospital, F-76000, Rouen, France
| | - Jérémie Lebeurre
- Normandie Univ, UNIROUEN, GRAM EA2656, Rouen University Hospital, F-76000, Rouen, France
| | - Gilles Prévost
- Université de Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA 7290, Virulence Bactérienne Précoce, F-67000, Strasbourg, France
| |
Collapse
|
20
|
Characterisation of Staphylococcus felis isolated from cats using whole genome sequencing. Vet Microbiol 2018; 222:98-104. [PMID: 30080680 DOI: 10.1016/j.vetmic.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 11/20/2022]
Abstract
This study used phenotypic tests and whole genome sequencing to characterise a collection of 37 clinical Staphylococcus felis isolates from cats. Samples were isolated from a range of diseases including feline lower urinary tract disease (n = 15), otitis externa (n = 13), and ocular disease (n = 2). Isolates were identified using MALDI-TOF MS and by BLASTn analysis of S. felis-specific 16S rRNA, rpoB and nuc genes in whole genome sequence-based contigs. Phenotypic antimicrobial resistance was determined using disk diffusion and broth microdilution. Coagulase activity was assessed using feline and rabbit plasma. Genomes were screened for putative virulence and antimicrobial resistance genes using the sequences of known genes from other staphylococci as homologous references. Phylogenetic relationships were inferred using single nucleotide polymorphisms. One isolate was coagulase-positive when tested with feline plasma but all isolates were rabbit plasma coagulase-negative. No genetic determinant of coagulase activity was identified in this isolate. A range of putative virulence genes were found amongst isolates including genes associated with adhesion, toxin production and immune evasion. Ninety two percent of isolates were fully susceptible to all antimicrobials tested, which was reflected by a general absence of resistance genes. Clustering within the phylogenetic tree suggested a multiclonal population structure; this clustering did not correlate with disease syndrome or geographic origin of the isolate. Future studies of veterinary staphylococci will benefit from the publicly available S. felis draft genomes that were generated in this study.
Collapse
|
21
|
Harris LG, El-Bouri K, Johnston S, Rees E, Frommelt L, Siemssen N, Christner M, Davies AP, Rohde H, Mack D. Rapid Identification of Staphylococci from Prosthetic Joint Infections Using MALDI-TOF Mass-Spectrometry. Int J Artif Organs 2018; 33:568-74. [DOI: 10.1177/039139881003300902] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2010] [Indexed: 11/15/2022]
Abstract
Hospital-acquired infections associated with implanted medical devices are most commonly caused by staphylococci. Current methods of species identification are slow, costly, and sometimes unreliable. We evaluated the ability of a Bruker Daltonics Microflex MALDI-TOF/MS in conjunction with MALDI Biotyper software to identify 158 characterized staphylococcal isolates from prosthetic joint infections, including 36 Staphylococcus aureus, 100 Staphylococcus epidermidis, 10 Staphylococcus capitis, 8 Staphylococcus lugdunensis, 2 Staphylococcus warneri, and 2 Staphylococcus haemolyticus isolates using the extraction method recommended by Bruker Daltonics. The suggested species identification by the MALDI Biotyper software was correct for all isolates, indicating reliable differentiation between S. aureus and coagulase-negative staphylococci. Applying the recommended criteria of the MALDI Biotyper software all 158 isolates gave scores ≥2.0, implying secure genus and probable species identification for all isolates. 34/36 S. aureus, 36/100 S. epidermidis, 5/10 S. capitis, 6/8 S. lugdunensis, 2/2 S. haemolyticus, 0/2 S. warneri displayed scores ≥2.3 implying highly probable species identification. For S. epidermidis 25/100 additional isolates had a score close to 2.3. It appears that additional clinically relevant staphylococcal isolates in the data base might aid in identification at scores implying highly probable species identification. The ability of the MALDI Biotyper software to recognize clonally-related strains within a species group (i.e. sub-typing) was investigated, and showed great potential. In conclusion, the MALDI-TOF/MS MALDI Biotyper system provides a promising rapid and reliable method of identifying clinical isolates from prosthetic joint infections to the species level, and has potential for sub-typing.
Collapse
Affiliation(s)
- Llinos G. Harris
- Medical Microbiology and Infectious Diseases, Institute of Life Science, School of Medicine, Swansea University, Swansea - United Kingdom
| | - Khalid El-Bouri
- Public Health Wales Microbiology ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea - United Kingdom
| | - Stuart Johnston
- Public Health Wales Microbiology ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea - United Kingdom
| | - Eugene Rees
- Public Health Wales Microbiology ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea - United Kingdom
| | | | - Nicolaus Siemssen
- ENDO-Klinik Hamburg GmbH, Hamburg - Germany
- Endoprothetik und Gelenkchirurgie, Krankenhaus Tabea GmbH & Co. KG, Hamburg - Germany
| | - Martin Christner
- Institute for Medical Microbiology, Virology and Hygiene, University Hospital, Eppendorf-Hamburg, Hamburg - Germany
| | - Angharad P. Davies
- Medical Microbiology and Infectious Diseases, Institute of Life Science, School of Medicine, Swansea University, Swansea - United Kingdom
- Public Health Wales Microbiology ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea - United Kingdom
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Hospital, Eppendorf-Hamburg, Hamburg - Germany
| | - Dietrich Mack
- Medical Microbiology and Infectious Diseases, Institute of Life Science, School of Medicine, Swansea University, Swansea - United Kingdom
- Public Health Wales Microbiology ABM Swansea, Singleton Hospital, Abertawe-Bro Morgannwg University Health Board, Swansea - United Kingdom
| |
Collapse
|
22
|
Pantůček R, Sedláček I, Indráková A, Vrbovská V, Mašlaňová I, Kovařovic V, Švec P, Králová S, Krištofová L, Kekláková J, Petráš P, Doškař J. Staphylococcus edaphicus sp. nov., Isolated in Antarctica, Harbors the mecC Gene and Genomic Islands with a Suspected Role in Adaptation to Extreme Environments. Appl Environ Microbiol 2018; 84:e01746-17. [PMID: 29079617 PMCID: PMC5752872 DOI: 10.1128/aem.01746-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/20/2017] [Indexed: 01/22/2023] Open
Abstract
Two Gram-stain-positive, coagulase-negative staphylococcal strains were isolated from abiotic sources comprising stone fragments and sandy soil in James Ross Island, Antarctica. Here, we describe properties of a novel species of the genus Staphylococcus that has a 16S rRNA gene sequence nearly identical to that of Staphylococcus saprophyticus However, compared to S. saprophyticus and the next closest relatives, the new species demonstrates considerable phylogenetic distance at the whole-genome level, with an average nucleotide identity of <85% and inferred DNA-DNA hybridization of <30%. It forms a separate branch in the S. saprophyticus phylogenetic clade as confirmed by multilocus sequence analysis of six housekeeping genes, rpoB, hsp60, tuf, dnaJ, gap, and sod Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and key biochemical characteristics allowed these bacteria to be distinguished from their nearest phylogenetic neighbors. In contrast to S. saprophyticus subsp. saprophyticus, the novel strains are pyrrolidonyl arylamidase and β-glucuronidase positive and β-galactosidase negative, nitrate is reduced, and acid produced aerobically from d-mannose. Whole-genome sequencing of the 2.69-Mb large chromosome revealed the presence of a number of mobile genetic elements, including the 27-kb pseudo-staphylococcus cassette chromosome mec of strain P5085T (ψSCCmecP5085), harboring the mecC gene, two composite phage-inducible chromosomal islands probably essential to adaptation to extreme environments, and one complete and one defective prophage. Both strains are resistant to penicillin G, ampicillin, ceftazidime, methicillin, cefoxitin, and fosfomycin. We hypothesize that antibiotic resistance might represent an evolutionary advantage against beta-lactam producers, which are common in a polar environment. Based on these results, a novel species of the genus Staphylococcus is described and named Staphylococcus edaphicus sp. nov. The type strain is P5085T (= CCM 8730T = DSM 104441T).IMPORTANCE The description of Staphylococcus edaphicus sp. nov. enables the comparison of multidrug-resistant staphylococci from human and veterinary sources evolved in the globalized world to their geographically distant relative from the extreme Antarctic environment. Although this new species was not exposed to the pressure of antibiotic treatment in human or veterinary practice, mobile genetic elements carrying antimicrobial resistance genes were found in the genome. The genomic characteristics presented here elucidate the evolutionary relationships in the Staphylococcus genus with a special focus on antimicrobial resistance, pathogenicity, and survival traits. Genes encoded on mobile genetic elements were arranged in unique combinations but retained conserved locations for the integration of mobile genetic elements. These findings point to enormous plasticity of the staphylococcal pangenome, shaped by horizontal gene transfer. Thus, S. edaphicus can act not only as a reservoir of antibiotic resistance in a natural environment but also as a mediator for the spread and evolution of resistance genes.
Collapse
Affiliation(s)
- Roman Pantůček
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivo Sedláček
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Adéla Indráková
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Veronika Vrbovská
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ivana Mašlaňová
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vojtěch Kovařovic
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Švec
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Stanislava Králová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucie Krištofová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jana Kekláková
- Reference Laboratory for Staphylococci, National Institute of Public Health, Prague, Czech Republic
| | - Petr Petráš
- Reference Laboratory for Staphylococci, National Institute of Public Health, Prague, Czech Republic
| | - Jiří Doškař
- Division of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
23
|
Ossowicz P, Janus E, Błaszak M, Zatoń K, Rozwadowski Z. Benzalkonium Salts of Amino Acids – Physicochemical Properties and Anti-Microbial Activity. TENSIDE SURFACT DET 2017. [DOI: 10.3139/113.110524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractNew salts combining a benzalkonium cation and chiral amino acid anions were synthesized and characterized. The identification was performed by NMR spectroscopy. Properties such as temperature of phase transformation, specific rotation, thermal stability and surface activity and antimicrobial activity were determined and compared with that of benzalkonium chloride. Benzalkonium amino acids salts can be used as conditioners in cosmetics. It has been shown they have weak impact on symbiotic microorganisms which occupy a wide range of skin, and this confirms that they do not disturb the biological balance of human skin.
Collapse
Affiliation(s)
- Paula Ossowicz
- 1Institute of Organic Chemical Technology, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| | - Ewa Janus
- 1Institute of Organic Chemical Technology, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin, ul. Pułaskiego 10, 70-322 Szczecin, Poland
| | - Magdalena Błaszak
- 2Department of Chemistry, Microbiology and Environmental Biotechnology, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, ul. Słowackiego 17, 71-434 Szczecin, Poland
| | - Kinga Zatoń
- 2Department of Chemistry, Microbiology and Environmental Biotechnology, Faculty of Environmental Management and Agriculture, West Pomeranian University of Technology in Szczecin, ul. Słowackiego 17, 71-434 Szczecin, Poland
| | - Zbigniew Rozwadowski
- 3Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin, Al. Piastów 42, 70-065 Szczecin, Poland
| |
Collapse
|
24
|
Mohamad M, Uçkay I, Hannouche D, Miozzari H. Particularities of Staphylococcus Lugdunensis in orthopaedic infections. Infect Dis (Lond) 2017; 50:223-225. [PMID: 28937308 DOI: 10.1080/23744235.2017.1374553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Morad Mohamad
- a Orthopaedic Surgery Service , Geneva University Hospitals , Geneva , Switzerland
| | - Ilker Uçkay
- a Orthopaedic Surgery Service , Geneva University Hospitals , Geneva , Switzerland.,b Faculty of Medicine, University of Geneva , Geneva , Switzerland
| | - Didier Hannouche
- a Orthopaedic Surgery Service , Geneva University Hospitals , Geneva , Switzerland
| | - Hermès Miozzari
- a Orthopaedic Surgery Service , Geneva University Hospitals , Geneva , Switzerland
| |
Collapse
|
25
|
Mendoza-Olazarán S, Garcia-Mazcorro JF, Morfín-Otero R, Villarreal-Treviño L, Camacho-Ortiz A, Rodríguez-Noriega E, Bocanegra-Ibarias P, Maldonado-Garza HJ, Dowd SE, Garza-González E. Draft genome sequences of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from human patients. Stand Genomic Sci 2017; 12:49. [PMID: 28878860 PMCID: PMC5580220 DOI: 10.1186/s40793-017-0263-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022] Open
Abstract
Herein, we report the draft-genome sequences and annotation of two opportunistic pathogenic strains of Staphylococcus cohnii isolated from humans. One strain (SC-57) was isolated from blood from a male patient in May 2006 and the other (SC-532) from a catheter from a male patient in June 2006. Similar to other genomes of Staphylococcus species, most genes (42%) of both strains are involved in metabolism of amino acids and derivatives, carbohydrates and proteins. Eighty (4%) genes are involved in virulence, disease, and defense and both species show phenotypic low biofilm production and evidence of increased antibiotic resistance associated to biofilm production. From both isolates, a new Staphylococcal Cassette Chromosome mec was detected: mec class A, ccr type 1. This is the first report of whole genome sequences of opportunistic S. cohnii isolated from human patients.
Collapse
Affiliation(s)
- Soraya Mendoza-Olazarán
- Servicio de Gastroenterología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| | - José F Garcia-Mazcorro
- Facultad de Medicina Veterinaria, Universidad Autónoma de Nuevo León, General Escobedo, Nuevo León Mexico
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, and Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco Mexico
| | - Licet Villarreal-Treviño
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| | - Adrián Camacho-Ortiz
- Servicio de Infectología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara, Fray Antonio Alcalde, and Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco Mexico
| | - Paola Bocanegra-Ibarias
- Servicio de Gastroenterología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| | - Héctor J Maldonado-Garza
- Servicio de Gastroenterología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| | - Scot E Dowd
- Molecular Research DNA Laboratory, Shallowater, TX USA
| | - Elvira Garza-González
- Servicio de Gastroenterología, Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León Mexico
| |
Collapse
|
26
|
Ayeni FA, Andersen C, Nørskov-Lauritsen N. Comparison of growth on mannitol salt agar, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, VITEK ® 2 with partial sequencing of 16S rRNA gene for identification of coagulase-negative staphylococci. Microb Pathog 2017; 105:255-259. [PMID: 28254444 DOI: 10.1016/j.micpath.2017.02.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 01/09/2023]
Abstract
Mannitol salt agar (MSA) is often used in resources' limited laboratories for identification of S. aureus however, coagulase-negative staphylococci (CoNS) grows and ferments mannitol on MSA. 171 strains of CoNS which have been previously misidentified as S. aureus due to growth on MSA were collected from different locations in Nigeria and two methods for identification of CoNS were compared i.e. ViTEK 2 and MALDI-TOF MS with partial 16S rRNA gene sequencing as gold standard. Partial tuf gene sequencing was used for contradicting identification. All 171 strains (13 species) grew on MSA and ferments mannitol. All tested strains of S. epidermidis, S. haemolyticus, S. nepalensis, S. pasteuri, S. sciuri,, S. warneri, S. xylosus, S. capitis were correctly identified by MALDI-TOF while variable identification were observed in S. saprophyticus and S. cohnii (90%, 81%). There was low identification of S. arlettae (14%) while all strains of S. kloosii and S. gallinarum were misidentified. There is absence of S. gallinarum in the MALDI-TOF database at the period of this study. All tested strains of S. epidermidis, S. gallinarum, S. haemolyticus, S. sciuri,, S. warneri, S. xylosus and S. capitis were correctly identified by ViTEK while variable identification were observed in S. saprophyticus, S. arlettae, S. cohnii, S. kloosii, (84%, 86%, 75%, 60%) and misidentification of S. nepalensis, S. pasteuri. Partial sequencing of 16S rRNA gene was used as gold standard for most strains except S. capitis and S. xylosus where the two species were misidentified by partial sequencing of 16S rRNA contrary to MALDI-TOF and ViTEK identification. Tuf gene sequencing was used for correct identification. Characteristic growth on MSA for CoNS is also identical to S. aureus growth on the media and therefore, MSA could not differentiate between S. aureus and CoNS. The percentage accuracy of ViTEK was better than MALDI-TOF in identification of CoNS. Although partial sequencing of 16S rRNA gene was used as gold standard in this study, it could not correctly identify S. capitis and S. xylosus.
Collapse
Affiliation(s)
- Funmilola A Ayeni
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria; Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | - Camilla Andersen
- Department of Clinical Microbiology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
27
|
Complete Genome Sequence of Staphylococcus pseudintermedius Type Strain LMG 22219. GENOME ANNOUNCEMENTS 2017; 5:5/7/e01651-16. [PMID: 28209834 PMCID: PMC5313626 DOI: 10.1128/genomea.01651-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
We report the first complete genome sequence of LMG 22219 (=ON 86T = CCUG 49543T), the Staphylococcus pseudintermedius type strain isolated from feline lung tissue. This sequence information will facilitate phylogenetic comparisons of staphylococcal species and other bacteria at the genome level.
Collapse
|
28
|
Lauková A, Kandričáková A, Pleva P, Buňková L, Ščerbová J. Effect of lantibiotic gallidermin against biogenic amine-producing faecal staphylococci from ostriches and pheasants. Folia Microbiol (Praha) 2017; 62:229-235. [DOI: 10.1007/s12223-017-0492-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 01/04/2017] [Indexed: 11/30/2022]
|
29
|
Naushad S, Barkema HW, Luby C, Condas LAZ, Nobrega DB, Carson DA, De Buck J. Comprehensive Phylogenetic Analysis of Bovine Non- aureus Staphylococci Species Based on Whole-Genome Sequencing. Front Microbiol 2016; 7:1990. [PMID: 28066335 PMCID: PMC5168469 DOI: 10.3389/fmicb.2016.01990] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022] Open
Abstract
Non-aureus staphylococci (NAS), a heterogeneous group of a large number of species and subspecies, are the most frequently isolated pathogens from intramammary infections in dairy cattle. Phylogenetic relationships among bovine NAS species are controversial and have mostly been determined based on single-gene trees. Herein, we analyzed phylogeny of bovine NAS species using whole-genome sequencing (WGS) of 441 distinct isolates. In addition, evolutionary relationships among bovine NAS were estimated from multilocus data of 16S rRNA, hsp60, rpoB, sodA, and tuf genes and sequences from these and numerous other single genes/proteins. All phylogenies were created with FastTree, Maximum-Likelihood, Maximum-Parsimony, and Neighbor-Joining methods. Regardless of methodology, WGS-trees clearly separated bovine NAS species into five monophyletic coherent clades. Furthermore, there were consistent interspecies relationships within clades in all WGS phylogenetic reconstructions. Except for the Maximum-Parsimony tree, multilocus data analysis similarly produced five clades. There were large variations in determining clades and interspecies relationships in single gene/protein trees, under different methods of tree constructions, highlighting limitations of using single genes for determining bovine NAS phylogeny. However, based on WGS data, we established a robust phylogeny of bovine NAS species, unaffected by method or model of evolutionary reconstructions. Therefore, it is now possible to determine associations between phylogeny and many biological traits, such as virulence, antimicrobial resistance, environmental niche, geographical distribution, and host specificity.
Collapse
Affiliation(s)
- Sohail Naushad
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada; Canadian Bovine Mastitis and Milk Quality Research NetworkSt-Hyacinthe, QC, Canada
| | - Herman W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada; Canadian Bovine Mastitis and Milk Quality Research NetworkSt-Hyacinthe, QC, Canada
| | - Christopher Luby
- Canadian Bovine Mastitis and Milk Quality Research NetworkSt-Hyacinthe, QC, Canada; Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of SaskatchewanSaskatoon, SK, Canada
| | - Larissa A Z Condas
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada; Canadian Bovine Mastitis and Milk Quality Research NetworkSt-Hyacinthe, QC, Canada
| | - Diego B Nobrega
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada; Canadian Bovine Mastitis and Milk Quality Research NetworkSt-Hyacinthe, QC, Canada
| | - Domonique A Carson
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada; Canadian Bovine Mastitis and Milk Quality Research NetworkSt-Hyacinthe, QC, Canada
| | - Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of CalgaryCalgary, AB, Canada; Canadian Bovine Mastitis and Milk Quality Research NetworkSt-Hyacinthe, QC, Canada
| |
Collapse
|
30
|
Carli AV, Ross FP, Bhimani SJ, Nodzo SR, Bostrom MPG. Developing a Clinically Representative Model of Periprosthetic Joint Infection. J Bone Joint Surg Am 2016; 98:1666-1676. [PMID: 27707853 DOI: 10.2106/jbjs.15.01432] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
➤The poor treatment outcomes for periprosthetic joint infection (PJI) reflect the limited understanding that currently exists regarding the pathogenesis of this devastating clinical problem.➤Current animal models of PJI are limited in their translational nature primarily because of their inability to recreate the periprosthetic environment.➤A greater mechanistic understanding of the musculoskeletal and immune systems of small animals, such as mice and rats, provides a more robust platform for modeling and examining the pathogenesis of PJI.➤A clinically representative PJI model must involve an implant that recreates the periprosthetic space and be amenable to methodologies that identify implant biofilm as well as quantify the peri-implant bacterial load.
Collapse
|
31
|
Han HW, Chang HC, Chang TC. Identification of Staphylococcus spp. and detection of mecA by an oligonucleotide array. Diagn Microbiol Infect Dis 2016; 86:23-9. [PMID: 27342780 DOI: 10.1016/j.diagmicrobio.2016.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/15/2023]
Abstract
Phenotypic identification of coagulase-negative staphylococci (CoNS) is difficult and many staphylococcal species carry mecA. This study developed an array that was able to detect mecA and identify 30 staphylococcal species by targeting the internal transcribed spacer regions. A total of 129 target reference strains (30 species) and 434 clinical isolates of staphylococci were analyzed. Gene sequencing of 16S rRNA, gap or tuf genes was the reference method for species identification. All reference strains (100%) were correctly identified, while the identification rates of clinical isolates of S. aureus and CoNS were 98.9% and 98%, respectively. The sensitivity and specificity for mecA detection were 99% and 100%, respectively, in S. aureus isolates, and both values were 100% in isolates of CoNS. The assay takes 6 h from a purified culture isolate, and so far it has not been performed directly on patient samples.
Collapse
Affiliation(s)
- Huan Wen Han
- Institute of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Hsien Chang Chang
- Institute of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan.
| | - Tsung Chain Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
32
|
Hiding in Fresh Fruits and Vegetables: Opportunistic Pathogens May Cross Geographical Barriers. Int J Microbiol 2016; 2016:4292417. [PMID: 26989419 PMCID: PMC4772400 DOI: 10.1155/2016/4292417] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/24/2016] [Indexed: 01/11/2023] Open
Abstract
Different microbial groups of the microbiome of fresh produce can have diverse effects on human health. This study was aimed at identifying some microbial communities of fresh produce by analyzing 105 samples of imported fresh fruits and vegetables originated from different countries in the world including local samples (Oman) for aerobic plate count and the counts of Enterobacteriaceae, Enterococcus, and Staphylococcus aureus. The isolated bacteria were identified by molecular (PCR) and biochemical methods (VITEK 2). Enterobacteriaceae occurred in 60% of fruits and 91% of vegetables. Enterococcus was isolated from 20% of fruits and 42% of vegetables. E. coli and S. aureus were isolated from 22% and 7% of vegetables, respectively. Ninety-seven bacteria comprising 21 species were similarly identified by VITEK 2 and PCR to species level. E. coli, Klebsiella pneumoniae, Enterococcus casseliflavus, and Enterobacter cloacae were the most abundant species; many are known as opportunistic pathogens which may raise concern to improve the microbial quality of fresh produce. Phylogenetic trees showed no relationship between clustering of the isolates based on the 16S rRNA gene and the original countries of fresh produce. Intercountry passage of opportunistic pathogens in fresh produce cannot be ruled out, which requires better management.
Collapse
|
33
|
Kandričáková A, Lauková A, Ščerbová J. Staphylococci Related to Farm Ostriches and Their Sensitivity to Enterocins. Foodborne Pathog Dis 2016; 13:142-7. [PMID: 26854524 DOI: 10.1089/fpd.2015.2069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
In Slovakia, ostriches are reared mainly for their meat. There is still limited information related to microflora of ostriches, including staphylococci. Knowing the composition of microflora is very important for the recognition of potential pathogenic agents. Recently, a frequent problem in animals is the occurrence of bacteria resistant to antibiotics. The aim of this study was to detect staphylococcal species in feces of farm ostriches and to test their sensitivity to antibiotics and enterocins. Altogether 140 ostriches from three age groups were sampled (n = 18, faecal mixture samples from each group) on a farm in Slovakia or on Slovak farm. From 54 fecal samples, the staphylococcal count reached an average 4. 3 ± 0. 63 (log10) CFU/g. Twenty-four lactic acid producing strains were taxonomically classified to eight species of the genus Staphylococcus: Staphylococcus equorum, S. xylosus, S. epidermidis, S. haemolyticus, S. cohnii, S. succinus, S. warneri, and S. hominis. Strains were evaluated by secure probable species identification/probable species identification (score value up to 2.299) confirmed also by phenotypization. Most strains were sensitive to antibiotics. Four strains (S. haemolyticus SHae 111, S. haemolyticus SHAe 371, S. xylosus SX 2133, and S. warneri SW 292) were resistant to methicillin but sensitive to six or five of the seven enterocins tested (inhibitory activity 200-12,800 AU/mL). S. warneri SW 292 was sensitive to all enterocins (activity up to 12,800 AU/mL).
Collapse
Affiliation(s)
- Anna Kandričáková
- Institute of Animal Physiology Slovak Academy of Sciences , Šoltésovej, Košice, Slovakia
| | - Andrea Lauková
- Institute of Animal Physiology Slovak Academy of Sciences , Šoltésovej, Košice, Slovakia
| | - Jana Ščerbová
- Institute of Animal Physiology Slovak Academy of Sciences , Šoltésovej, Košice, Slovakia
| |
Collapse
|
34
|
Seo Y, Park B, Hinton A, Yoon SC, Lawrence KC. Identification of Staphylococcus species with hyperspectral microscope imaging and classification algorithms. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2016. [DOI: 10.1007/s11694-015-9301-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Bukowski M, Polakowska K, Ilczyszyn WM, Sitarska A, Nytko K, Kosecka M, Miedzobrodzki J, Dubin A, Wladyka B. Species determination within Staphylococcus genus by extended PCR-restriction fragment length polymorphism of saoC gene. FEMS Microbiol Lett 2014; 362:1-11. [PMID: 25790489 DOI: 10.1093/femsle/fnu007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Genetic methods based on PCR-restriction fragment length polymorphism (RFLP) are widely used for microbial species determination. In this study, we present the application of saoC gene as an effective tool for species determination and within-species diversity analysis for Staphylococcus genus. The unique sequence diversity of saoC allows us to apply four restriction enzymes to obtain RFLP patterns, which appear highly distinctive even among closely related species as well as atypical isolates of environmental origin. Such patterns were successfully obtained for 26 species belonging to Staphylococcus genus. What is more, tracing polymorphisms detected by different restriction enzymes allowed for basic phylogeny analysis for Staphylococcus aureus, which is potentially applicable for other staphylococcal species.
Collapse
Affiliation(s)
- Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387 Krakow, Poland
| | - Klaudia Polakowska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387 Krakow, Poland
| | - Weronika M Ilczyszyn
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387 Krakow, Poland
| | - Agnieszka Sitarska
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387 Krakow, Poland
| | - Kinga Nytko
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387 Krakow, Poland
| | - Maja Kosecka
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387 Krakow, Poland
| | - Jacek Miedzobrodzki
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387 Krakow, Poland
| | - Adam Dubin
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387 Krakow, Poland
| | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387 Krakow, Poland Malopolska Centre of Biotechnology, Jagiellonian University, 7 Gronostajowa St, 30-387 Krakow, Poland
| |
Collapse
|
36
|
The first study on bacterial flora of pest beetles Sciaphobus squalidus, Tatianaerhynchites aequatus and Byctiscus betulae in the Republic of Moldova. Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Filleron A, Simon M, Hantova S, Jacquot A, Cambonie G, Marchandin H, Jumas-Bilak E. tuf-PCR-temporal temperature gradient gel electrophoresis for molecular detection and identification of staphylococci: Application to breast milk and neonate gut microbiota. J Microbiol Methods 2014; 98:67-75. [DOI: 10.1016/j.mimet.2013.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 12/29/2013] [Accepted: 12/30/2013] [Indexed: 11/30/2022]
|
38
|
Chu YY, Nega M, Wölfle M, Plener L, Grond S, Jung K, Götz F. A new class of quorum quenching molecules from Staphylococcus species affects communication and growth of gram-negative bacteria. PLoS Pathog 2013; 9:e1003654. [PMID: 24098134 PMCID: PMC3784491 DOI: 10.1371/journal.ppat.1003654] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/08/2013] [Indexed: 01/26/2023] Open
Abstract
The knowledge that many pathogens rely on cell-to-cell communication mechanisms known as quorum sensing, opens a new disease control strategy: quorum quenching. Here we report on one of the rare examples where Gram-positive bacteria, the ‘Staphylococcus intermedius group’ of zoonotic pathogens, excrete two compounds in millimolar concentrations that suppress the quorum sensing signaling and inhibit the growth of a broad spectrum of Gram-negative beta- and gamma-proteobacteria. These compounds were isolated from Staphylococcus delphini. They represent a new class of quorum quenchers with the chemical formula N-[2-(1H-indol-3-yl)ethyl]-urea and N-(2-phenethyl)-urea, which we named yayurea A and B, respectively. In vitro studies with the N-acyl homoserine lactone (AHL) responding receptor LuxN of V. harveyi indicated that both compounds caused opposite effects on phosphorylation to those caused by AHL. This explains the quorum quenching activity. Staphylococcal strains producing yayurea A and B clearly benefit from an increased competitiveness in a mixed community. While studying the potential interaction of staphylococci with Gram-negative bacteria, we came across another communication system in a Staphylococcus species group, which consists of closely related coagulase-positive bacterial species that play a role as zoonotic pathogens. We found that these species excrete two small compounds that inhibit both the expression of QS-controlled toxins and other QS-regulated compounds as well as growth in Gram-negative bacteria. The excreted compounds, which we named yayurea A and B, were isolated from S. delphini and structurally characterized. They represent new bacterial products, which quench the QS regulation in a wide spectrum of Gram-negative bacteria by stimulating the LuxN-mediated phosphorylation of LuxU. Furthermore, growth of yayurea A and B producing S. delphini is not suppressed by respiratory toxins when co-cultured with P. aeruginosa. This suggests that the quorum quenchers have a function in self-protection and competitiveness in natural environments shared with Gram-negatives. Here we show one of the rare cases of inter-phylum interference between firmicutes (Gram-positive) and beta-/gammaproteobacteria (Gram-negative).
Collapse
Affiliation(s)
- Ya-Yun Chu
- Interfaculty Institute of Microbiology and Infectious Diseases Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Gold RM, Patterson AP, Lawhon SD. Understanding methicillin resistance in staphylococci isolated from dogs with pyoderma. J Am Vet Med Assoc 2013; 243:817-24. [DOI: 10.2460/javma.243.6.817] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Hu Y, Meng J, Shi C, Hervin K, Fratamico PM, Shi X. Characterization and comparative analysis of a second thermonuclease from Staphylococcus aureus. Microbiol Res 2013; 168:174-82. [DOI: 10.1016/j.micres.2012.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 12/12/2022]
|
41
|
Simultaneous quantification of multiple bacteria by the BactoChip microarray designed to target species-specific marker genes. PLoS One 2013; 8:e55764. [PMID: 23409037 PMCID: PMC3569451 DOI: 10.1371/journal.pone.0055764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 01/04/2013] [Indexed: 12/14/2022] Open
Abstract
Bacteria are ubiquitous throughout the environment, the most abundant inhabitants of the healthy human microbiome, and causal pathogens in a variety of diseases. Their identification in disease is often an essential step in rapid diagnosis and targeted intervention, particularly in clinical settings. At present, clinical bacterial detection and discrimination is primarily culture-based, requiring both time and microbiological expertise, especially for bacteria that are not easily cultivated. Higher-throughput molecular methods based on PCR amplification or, recently, microarrays are reaching the clinic as well. However, these methods are currently restricted to a small set of microbes or based on conserved phylogenetic markers such as the 16S rRNA gene, which are difficult to resolve at the species or strain levels. Here, we designed and experimentally validated the BactoChip, an oligonucleotide microarray for bacterial detection and quantification. The chip allows the culture-independent identification of bacterial species, also determining their relative abundances in complex communities as occur in the commensal microbiota or in clinical settings. The microarray successfully distinguished among bacterial species from 21 different genera using 60-mer probes targeting a novel set of in silico identified high-resolution marker genes. The BactoChip additionally proved accurate in determining species-level relative abundances over a 100-fold dynamic range in complex bacterial communities and with a low limit of detection (0.1%). In combination with the continually increasing number of sequenced bacterial genomes, future iterations of the technology could enable to highly accurate clinically-oriented tools for rapid assessment of bacterial community composition and relative abundances.
Collapse
|
42
|
Prax M, Lee CY, Bertram R. An update on the molecular genetics toolbox for staphylococci. MICROBIOLOGY-SGM 2013; 159:421-435. [PMID: 23378573 PMCID: PMC3709823 DOI: 10.1099/mic.0.061705-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococci are Gram-positive spherical bacteria of enormous clinical and biotechnological relevance. Staphylococcus aureus has been extensively studied as a model pathogen. A plethora of methods and molecular tools has been developed for genetic modification of at least ten different staphylococcal species to date. Here we review recent developments of various genetic tools and molecular methods for staphylococcal research, which include reporter systems and vectors for controllable gene expression, gene inactivation, gene essentiality testing, chromosomal integration and transposon delivery. It is furthermore illustrated how mutant strain construction by homologous or site-specific recombination benefits from sophisticated counterselection methods. The underlying genetic components have been shown to operate in wild-type staphylococci or modified chassis strains. Finally, possible future developments in the field of applied Staphylococcus genetics are highlighted.
Collapse
Affiliation(s)
- Marcel Prax
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Faculty of Science, University of Tübingen, Waldhäuser Str. 70/8, 72076 Tübingen, Germany
| | - Chia Y Lee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Slot 511, Little Rock, AR 72205, USA
| | - Ralph Bertram
- Department of Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Faculty of Science, University of Tübingen, Waldhäuser Str. 70/8, 72076 Tübingen, Germany
| |
Collapse
|
43
|
Bautista-Trujillo GU, Solorio-Rivera JL, Rentería-Solórzano I, Carranza-Germán SI, Bustos-Martínez JA, Arteaga-Garibay RI, Baizabal-Aguirre VM, Cajero-Juárez M, Bravo-Patiño A, Valdez-Alarcón JJ. Performance of culture media for the isolation and identification of Staphylococcus aureus from bovine mastitis. J Med Microbiol 2012; 62:369-376. [PMID: 23139397 DOI: 10.1099/jmm.0.046284-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rapid isolation and identification of pathogens is a major goal of diagnostic microbiology. In order to isolate and identify Staphylococcus aureus, a number of authors have used a variety of selective and/or differential culture media. However, to date, there are no reports comparing the efficacy of selective and differential culture media for S. aureus isolation from bovine mastitis cases using the 16S rRNA (rrs) gene sequence as a gold standard test. In the present study, we evaluated the efficacy of four selective and/or differential culture media for the isolation of S. aureus from milk samples collected from cows suffering from bovine mastitis. Four hundred and forty isolates were obtained using salt-mannitol agar (SMA, Bioxon), Staphylococcus-110 agar (S110, Bioxon), CHROMAgar Staph aureus (CSA, BD-BBL) and sheep's blood agar (SBA, BD-BBL). All bacterial isolates were identified by their typical colony morphology in the respective media, by secondary tests (for coagulase and β-haemolysis) and by partial 16S rRNA (rrs) gene sequencing as a gold standard test. Sensitivity, positive predictive and negative predictive values were higher for SMA (86.96, 52.63 and 95.95%, respectively) compared with S110 (70.00, 23.73 and 90.91%, respectively), CSA (69.23, 28.13 and 95.74%, respectively) and SBA (68.75, 37.93 and 89.58%, respectively) while specificity values were similar for all media. Data indicated that the use of culture media for S. aureus isolation combined with determination of coagulase activity and haemolysis as secondary tests improved accuracy of the identification and was in accordance with rrs gene sequence-analysis compared with the use of the culture media alone.
Collapse
Affiliation(s)
- G U Bautista-Trujillo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, México
| | - J L Solorio-Rivera
- Unidad de Servicios de Apoyo al Diagnóstico, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, México
| | - I Rentería-Solórzano
- Unidad de Servicios de Apoyo al Diagnóstico, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, México
| | - S I Carranza-Germán
- Unidad de Servicios de Apoyo al Diagnóstico, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, México
| | - J A Bustos-Martínez
- Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Coyoacán, México
| | - R I Arteaga-Garibay
- Centro Nacional de Recursos Genéticos, Instituto Nacional de Investigaciones Forestales y Agropecuarias, Tepatitlán de Morelos, Jalisco, México
| | - V M Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, México
| | - M Cajero-Juárez
- Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, La Palma, Tarímbaro, Michoacán, México.,Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, México
| | - A Bravo-Patiño
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, México
| | - J J Valdez-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, México
| |
Collapse
|
44
|
Characterization of a mazEF toxin-antitoxin homologue from Staphylococcus equorum. J Bacteriol 2012; 195:115-25. [PMID: 23104807 DOI: 10.1128/jb.00400-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-antitoxin (TA) systems encoded in prokaryotic genomes fall into five types, typically composed of two distinct small molecules, an endotoxic protein and a cis-encoded antitoxin of ribonucleic or proteinaceous nature. In silico analysis revealed seven putative type I and three putative type II TA systems in the genome of the nonpathogenic species strain Staphylococcus equorum SE3. Among these, a MazEF system orthologue termed MazEF(seq) was further characterized. 5' rapid amplification of cDNA ends (RACE) revealed the expression and the transcriptional start site of mazE(seq), indicating an immediately upstream promoter. Heterologous expression of the putative toxin-encoding mazF(seq) gene imposed growth cessation but not cell death on Escherichia coli. In vivo and in vitro, MazF(seq) was shown to cleave at UACAU motifs, which are remarkably abundant in a number of putative metabolic and regulatory S. equorum gene transcripts. Specific interaction between MazF(seq) and the putative cognate antitoxin MazE(seq) was demonstrated by bacterial two-hybrid analyses. These data strongly suggest that MazEF(seq) represents the first characterized TA system in a nonpathogenic Staphylococcus species and indicate that MazEF modules in staphylococci may also control processes beyond pathogenicity.
Collapse
|
45
|
Purves J, Blades M, Arafat Y, Malik SA, Bayliss CD, Morrissey JA. Variation in the genomic locations and sequence conservation of STAR elements among staphylococcal species provides insight into DNA repeat evolution. BMC Genomics 2012; 13:515. [PMID: 23020678 PMCID: PMC3532100 DOI: 10.1186/1471-2164-13-515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 09/24/2012] [Indexed: 01/05/2023] Open
Abstract
Background Staphylococcus aureus Repeat (STAR) elements are a type of interspersed intergenic direct repeat. In this study the conservation and variation in these elements was explored by bioinformatic analyses of published staphylococcal genome sequences and through sequencing of specific STAR element loci from a large set of S. aureus isolates. Results Using bioinformatic analyses, we found that the STAR elements were located in different genomic loci within each staphylococcal species. There was no correlation between the number of STAR elements in each genome and the evolutionary relatedness of staphylococcal species, however higher levels of repeats were observed in both S. aureus and S. lugdunensis compared to other staphylococcal species. Unexpectedly, sequencing of the internal spacer sequences of individual repeat elements from multiple isolates showed conservation at the sequence level within deep evolutionary lineages of S. aureus. Whilst individual STAR element loci were demonstrated to expand and contract, the sequences associated with each locus were stable and distinct from one another. Conclusions The high degree of lineage and locus-specific conservation of these intergenic repeat regions suggests that STAR elements are maintained due to selective or molecular forces with some of these elements having an important role in cell physiology. The high prevalence in two of the more virulent staphylococcal species is indicative of a potential role for STAR elements in pathogenesis.
Collapse
|
46
|
Lamers RP, Muthukrishnan G, Castoe TA, Tafur S, Cole AM, Parkinson CL. Phylogenetic relationships among Staphylococcus species and refinement of cluster groups based on multilocus data. BMC Evol Biol 2012; 12:171. [PMID: 22950675 PMCID: PMC3464590 DOI: 10.1186/1471-2148-12-171] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 08/30/2012] [Indexed: 11/17/2022] Open
Abstract
Background Estimates of relationships among Staphylococcus species have been hampered by poor and inconsistent resolution of phylogenies based largely on single gene analyses incorporating only a limited taxon sample. As such, the evolutionary relationships and hierarchical classification schemes among species have not been confidently established. Here, we address these points through analyses of DNA sequence data from multiple loci (16S rRNA gene, dnaJ, rpoB, and tuf gene fragments) using multiple Bayesian and maximum likelihood phylogenetic approaches that incorporate nearly all recognized Staphylococcus taxa. Results We estimated the phylogeny of fifty-seven Staphylococcus taxa using partitioned-model Bayesian and maximum likelihood analysis, as well as Bayesian gene-tree species-tree methods. Regardless of methodology, we found broad agreement among methods that the current cluster groups require revision, although there was some disagreement among methods in resolution of higher order relationships. Based on our phylogenetic estimates, we propose a refined classification for Staphylococcus with species being classified into 15 cluster groups (based on molecular data) that adhere to six species groups (based on phenotypic properties). Conclusions Our findings are in general agreement with gene tree-based reports of the staphylococcal phylogeny, although we identify multiple previously unreported relationships among species. Our results support the general importance of such multilocus assessments as a standard in microbial studies to more robustly infer relationships among recognized and newly discovered lineages.
Collapse
Affiliation(s)
- Ryan P Lamers
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, 4000 Central Florida Boulevard, Orlando, FL 32816, USA
| | | | | | | | | | | |
Collapse
|
47
|
Jans C, Bugnard J, Njage PMK, Lacroix C, Meile L. Lactic acid bacteria diversity of African raw and fermented camel milk products reveals a highly competitive, potentially health-threatening predominant microflora. Lebensm Wiss Technol 2012. [DOI: 10.1016/j.lwt.2012.01.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Carson M, Meredith AL, Shaw DJ, Giotis ES, Lloyd DH, Loeffler A. Foxes as a potential wildlife reservoir for mecA-positive Staphylococci. Vector Borne Zoonotic Dis 2012; 12:583-7. [PMID: 22448723 DOI: 10.1089/vbz.2011.0825] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methicillin-resistant staphylococci (MRS), and methicillin-resistant Staphylococcus aureus (MRSA) in particular, have become a public and veterinary health concern. The search for MRS reservoirs outside human hospitals is needed in order to understand the reasons for their persistence and to control their spread. MRS have been isolated from rats, but little is known about their occurrence in foxes. In view of the perceived increasing proximity between people and foxes in the U.K. and the well-documented potential of foxes as hosts for zoonotic pathogens, this study examined whether foxes can be a reservoir for MRS. This study examined the carriage of staphylococci and their antimicrobial resistance patterns in 38 foxes (Vulpes vulpes) from rural and semirural areas in the U.K. Staphylococci were isolated by enrichment culture from nasal, oral, axillary, and perineal swabs and speciated by standard bacteriological tests and API ID32 STAPH (bioMérieux, Marcy l'Etoile, France). Antimicrobial resistance was investigated by disc diffusion tests and identification of mecA. Thirty-seven staphylococcal isolates were identified from 35 of the 38 foxes. All isolates were coagulase-negative and most frequently included species from the S. sciuri group (35%), S. equorum (27%), and S. capitis (22%). All were phenotypically resistant to methicillin, and mecA was detected in 33 (89%) of isolates, but only 10 (27%) showed broad β-lactam antibiotic resistance. Methicillin-resistant S. aureus was not identified. These results indicate that foxes are a potential wildlife reservoir for mecA-positive staphylococci. Selection pressure from environmental contamination with antimicrobials should be considered.
Collapse
Affiliation(s)
- Marianne Carson
- Department of Veterinary Clinical Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Phylogeny of the staphylococcal major autolysin and its use in genus and species typing. J Bacteriol 2012; 194:2630-6. [PMID: 22427631 DOI: 10.1128/jb.06609-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major staphylococcal autolysin Atl is an important player in cell separation and daughter cell formation. In this study, we investigated the amino acid sequences of Atl proteins derived from 15 staphylococcal and 1 macrococcal species representatives. The overall organization of the bifunctional precursor protein consisting of the signal peptide, a propeptide (PP), the amidase (AM), six repeat sequences (R(1) to R(6)), and the glucosaminidase (GL) was highly conserved in all of the species. The most-conserved domains were the enzyme domains AM and GL; the least-conserved regions were the PP and R regions. An Atl-based phylogenetic tree for the various species representatives correlated well with the corresponding 16S rRNA-based tree and also perfectly matched the phylogenetic trees based on core genome analysis. The phylogenetic distance analysis of 18 AtlA proteins of various Staphylococcus aureus strains and 15 AtlE proteins of S. epidermidis revealed that both species representatives formed a relatively homogeneous cluster. Two S. epidermidis strains, M23864:W1 and VCU116, were identified by Atl typing that clustered far more distantly and belonged to either S. caprae and S. capitis or a new subspecies. Here we show that Atl typing is a useful tool for staphylococcal genus and species typing by using either the highly conserved AM domain or the less-conserved PP domain.
Collapse
|
50
|
Bond R, Loeffler A. What’s happened to Staphylococcus intermedius? Taxonomic revision and emergence of multi-drug resistance. J Small Anim Pract 2012; 53:147-54. [DOI: 10.1111/j.1748-5827.2011.01165.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|