1
|
Mattola S, Mäntylä E, Aho V, Salminen S, Leclerc S, Oittinen M, Salokas K, Järvensivu J, Hakanen S, Ihalainen TO, Viiri K, Vihinen-Ranta M. G2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids. Front Cell Dev Biol 2022; 10:1070599. [PMID: 36568985 PMCID: PMC9773396 DOI: 10.3389/fcell.2022.1070599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages of infection. Inhibitors of cell cycle regulatory protein cyclin-dependent kinase 1 (Cdk1) and pro-apoptotic caspase 3 prevented the NE leakage. The change in NE permeability could be explained by the regulation of the G2/M checkpoint which is accompanied by early mitotic and apoptotic events. The model of G2/M checkpoint activation was supported by infection-induced nuclear accumulation of cyclin B1 and Cdk1. Both NE permeability and nuclear egress of capsids were reduced by the inhibition of Cdk1. Additional proof of checkpoint function regulation and promotion of apoptotic events was the nucleocytoplasmic redistribution of nuclear transport factors, importins, and Ran, in late infection. Consistent with our findings, post-translational histone acetylation that promotes the regulation of several genes related to cell cycle transition and arrest was detected. In conclusion, the model we propose implies that parvoviral capsid egress partially depends on infection-induced G2/M checkpoint regulation involving early mitotic and apoptotic events.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Mikko Oittinen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jani Järvensivu
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Teemu O Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland,*Correspondence: Maija Vihinen-Ranta,
| |
Collapse
|
2
|
Neulinger-Muñoz M, Schaack D, Grekova SP, Bauer AS, Giese T, Salg GA, Espinet E, Leuchs B, Heller A, Nüesch JPF, Schenk M, Volkmar M, Giese NA. Human Retrotransposons and the Global Shutdown of Homeostatic Innate Immunity by Oncolytic Parvovirus H-1PV in Pancreatic Cancer. Viruses 2021; 13:v13061019. [PMID: 34071585 PMCID: PMC8228339 DOI: 10.3390/v13061019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Although the oncolytic parvovirus H-1PV has entered clinical trials, predicting therapeutic success remains challenging. We investigated whether the antiviral state in tumor cells determines the parvoviral oncolytic efficacy. The interferon/interferon-stimulated genes (IFN/ISG)-circuit and its major configurator, human endogenous retroviruses (HERVs), were evaluated using qRT-PCR, ELISA, Western blot, and RNA-Seq techniques. In pancreatic cancer cell lines, H-1PV caused a late global shutdown of innate immunity, whereby the concomitant inhibition of HERVs and IFN/ISGs was co-regulatory rather than causative. The growth-inhibitory IC50 doses correlated with the power of suppression but not with absolute ISG levels. Moreover, H-1PV was not sensitive to exogenous IFN despite upregulated antiviral ISGs. Such resistance questioned the biological necessity of the oncotropic ISG-shutdown, which instead might represent a surrogate marker for personalized oncolytic efficacy. The disabled antiviral homeostasis may modify the activity of other viruses, as demonstrated by the reemergence of endogenous AluY-retrotransposons. This way of suppression may compromise the interferogenicity of drugs having gemcitabine-like mechanisms of action. This shortcoming in immunogenic cell death induction is however amendable by immune cells which release IFN in response to H-1PV.
Collapse
Affiliation(s)
- Matthias Neulinger-Muñoz
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Dominik Schaack
- Department of Anesthesiology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Svetlana P. Grekova
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Andrea S. Bauer
- German Cancer Research Center (DKFZ), Division of Functional Genome Analysis, 69120 Heidelberg, Germany;
| | - Thomas Giese
- Institute of Immunology and German Center for Infection Research (DZIF), Partner Site Heidelberg, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Gabriel A. Salg
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Elisa Espinet
- German Cancer Research Center (DKFZ), Division of Stem Cells and Cancer, 69120 Heidelberg, Germany;
- HI-STEM—Heidelberg Institute for Stem Cell Technology and Experimental Medicine GmbH, 69120 Heidelberg, Germany
| | - Barbara Leuchs
- German Cancer Research Center (DKFZ), Division of Tumor Virology, 69120 Heidelberg, Germany;
| | - Anette Heller
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Jürg P. F. Nüesch
- German Cancer Research Center (DKFZ), Division of Virus-Associated Carcinogenesis F170, 69120 Heidelberg, Germany;
| | - Miriam Schenk
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
| | - Michael Volkmar
- German Cancer Research Center (DKFZ), Division of Molecular Oncology of Gastrointestinal Tumors, 69120 Heidelberg, Germany;
| | - Nathalia A. Giese
- Department of Surgery, European Pancreas Center, University Hospital Heidelberg, 69120 Heidelberg, Germany; (M.N.-M.); (S.P.G.); (G.A.S.); (A.H.); (M.S.)
- Correspondence:
| |
Collapse
|
3
|
Hartley A, Kavishwar G, Salvato I, Marchini A. A Roadmap for the Success of Oncolytic Parvovirus-Based Anticancer Therapies. Annu Rev Virol 2020; 7:537-557. [PMID: 32600158 DOI: 10.1146/annurev-virology-012220-023606] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autonomous rodent protoparvoviruses (PVs) are promising anticancer agents due to their excellent safety profile, natural oncotropism, and oncosuppressive activities. Viral infection can trigger immunogenic cell death, activating the immune system against the tumor. However, the efficacy of this treatment in recent clinical trials is moderate compared with results seen in preclinical work. Various strategies have been employed to improve the anticancer activities of oncolytic PVs, including development of second-generation parvoviruses with enhanced oncolytic and immunostimulatory activities and rational combination of PVs with other therapies. Understanding the cellular factors involved in the PV life cycle is another important area of investigation. Indeed, these studies may lead to the identification of biomarkers that would allow a more personalized use of PV-based therapies. This review focuses on this work and the challenges that still need to be overcome to move PVs forward into clinical practice as an effective therapeutic option for cancer patients.
Collapse
Affiliation(s)
- Anna Hartley
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Gayatri Kavishwar
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Ilaria Salvato
- Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| | - Antonio Marchini
- Laboratory of Oncolytic Virus Immuno-Therapeutics, German Cancer Research Center, 69120 Heidelberg, Germany; .,Laboratory of Oncolytic Virus Immuno-Therapeutics, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| |
Collapse
|
4
|
Viral Nonstructural Protein 1 Induces Mitochondrion-Mediated Apoptosis in Mink Enteritis Virus Infection. J Virol 2019; 93:JVI.01249-19. [PMID: 31484746 DOI: 10.1128/jvi.01249-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022] Open
Abstract
Mink enteritis virus (MEV), an autonomous parvovirus, causes acute hemorrhagic enteritis in minks. The molecular pathogenesis of MEV infection has not been fully understood. In this study, we observed significantly increased apoptosis in the esophagus, small intestine, mesenteric lymph nodes, and kidney in minks experimentally infected with strain MEVB. In vitro infection of feline F81 cells with MEVB decreased cell viability and induced cell cycle arrest at G1 phase and apoptosis. By screening MEV nonstructural proteins (NS1 and NS2) and structural proteins (VP1 and VP2), we demonstrated that the MEV NS1 induced apoptosis in both F81 and human embryonic kidney 293T (HEK293T) cells, similar to that induced during MEV infection in minks. We found that the NS1 protein-induced apoptosis in HEK293T cells was mediated not by the death receptor but by the mitochondrial pathway, as demonstrated by mitochondrial depolarization, opening of mitochondrial transition pore, release of cytochrome c, and activation of caspase-9 and -3. Moreover, in NS1-transfected cells, we observed an increase of Bax expression and its translocation to the mitochondria, as well as an increased ratio of the Bax/Bcl-2, reactive oxygen species (ROS) production, and activated p38 mitogen-activated protein kinase (MAPK) and p53. Taken together, our results demonstrated that MEV induces apoptosis through activation of p38 MAPK and the p53-mediated mitochondrial apoptotic pathway induced by NS1 protein, which sheds light on the molecular pathogenesis of MEV infection.IMPORTANCE MEV causes fatal hemorrhagic enteritis in minks. Apoptosis is a cellular mechanism that effectively sacrifices virus-infected cells to maintain homeostasis between the virus and host. In this study, we demonstrated that MEV induces apoptosis both in vivo and in vitro Mechanistically, the viral large nonstructural protein NS1 activates p38 MAPK, which leads p53 phosphorylation to mediate the mitochondrial apoptotic pathway but not the death receptor-mediated apoptotic pathway. This is the first report to uncover the mechanism underlying MEV-induced apoptosis.
Collapse
|
5
|
Molecular Characterization and Evolutionary Analyses of Carnivore Protoparvovirus 1 NS1 Gene. Viruses 2019; 11:v11040308. [PMID: 30934948 PMCID: PMC6520740 DOI: 10.3390/v11040308] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
Carnivore protoparvovirus 1 is the etiological agent of a severe disease of terrestrial carnivores. This unique specie encompasses canine parvovirus type 2 (CPV-2) and feline panleukopenia virus (FPLV). Studies widely analyzed the main capsid protein (VP2), but limited information is available on the nonstructural genes (NS1/NS2). This paper analyzed the NS1 gene sequence of FPLV and CPV strains collected in Italy in 2009–2017, along with worldwide related sequences. Differently from VP2, only one NS1 amino-acid residue (248) clearly and constantly distinguished FPLV from CPV-2, while five possible convergent amino-acid changes were observed that may affect the functional domains of the NS1. Some synonymous mutation in NS1 were non-synonymous in NS2 and vice versa. No evidence for recombination between the two lineages was found, and the predominance of negative selection pressure on NS1 proteins was observed, with low and no overlap between the two lineages in negatively and positively selected codons, respectively. More sites were under selection in the CPV-2 lineage. NS1 phylogenetic analysis showed divergent evolution between FPLV and CPV, and strains were clustered mostly by country and year of detection. We highlight the importance of obtaining the NS1/NS2 coding sequence in molecular epidemiology investigations.
Collapse
|
6
|
Zhang J, Liu P, Wu Y, Wang M, Jia R, Zhu D, Liu M, Yang Q, Wu Y, Zhao X, Zhang S, Liu Y, Zhang L, Yu Y, You Y, Chen S, Cheng A. Growth characteristics of the novel goose parvovirus SD15 strain in vitro. BMC Vet Res 2019; 15:63. [PMID: 30782148 PMCID: PMC6381646 DOI: 10.1186/s12917-019-1807-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
Background Short beak and dwarfism syndrome (SBDS) was caused by novel goose parvovirus (NGPV)--a variant of goose parvovirus (GPV). Ducks infected with NGPV shows clinical signs including growth retardation and protrusion of the tongue from an atrophied beak. SBDS outbreak was first reported at the northern coastal provinces of China during 2015 and it was again reported in Sichuan, an inland province of China in 2016. The disease caused a huge economic loss in Chinese duck feeding industry. Results The SD15 strain of NGPV was isolated from liver and intestinal tract tissue samples of infected ducks. Real-time quantitative PCR (qPCR) was used to estimate viral load in embryonated eggs and cells infected with adapted virus. The data showed that duck embryo fibroblasts (DEFs) were permissive to NGPV, while goose embryo fibroblasts (GEFs) cells were not, and the copy numbers of SD15 in the allantoic fluid of infected eggs remained at 105.0–106.5 copies/ml. The adaption procession of the virus was determined via qPCR, and viral proliferation was detected through indirect fluorescent antibody assay (IFA) in DEFs. It was further determined that viral copy numbers peaked at 96 h post-inoculation (hpi), which is the best time to harvest the virus in DEFs. Cytotoxic effects and cell death were observed at 72 hpi in SD15 infected DEFs, yet SD15 did not induce apoptosis. Conclusions The growth characteristics of SD15 strain of NGPV determined would be beneficial for further molecular characterization of these viruses and develop potential vaccines if required.
Collapse
Affiliation(s)
- Jinyue Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China
| | - Peng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China
| | - Yuanyuan Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yu You
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China.,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China. .,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang District, Chengdu city, 611130, Sichuan province, China. .,Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
7
|
Genetic characterization of the complete genome of a mutant canine parvovirus isolated in China. Arch Virol 2017; 163:521-525. [PMID: 29127489 DOI: 10.1007/s00705-017-3586-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/19/2017] [Indexed: 01/21/2023]
Abstract
A field canine parvovirus (CPV) strain, CPV-SH14, was previously isolated from an outbreak of severe gastroenteritis in Shanghai in 2014. The complete genome of CPV-SH14 was determined by using PCR with modified primers. When compared to other CPV-2 strains, several insertions, deletions, and point mutations were identified in the 5' and 3' UTR, with key amino acid (aa) mutations (K19R, E572K in NS1 and F267Y, Y324I and T440A in VP2) also being observed in the coding regions of CPV-SH14. These results indicated that significant and unique genetic variations have occurred at key sites or residues in the genome of CPV-SH14, suggesting the presence of a novel genetic variant of new CPV-2a. Phylogenetic analysis of the VP2 gene revealed that CPV-SH14 may have the potential to spread worldwide. In conclusion, CPV-SH14 may be a novel genetic variant of new CPV-2a, potentially with a selective advantage over other strains.
Collapse
|
8
|
Gupta SK, Gandham RK, Sahoo AP, Tiwari AK. Viral genes as oncolytic agents for cancer therapy. Cell Mol Life Sci 2015; 72:1073-94. [PMID: 25408521 PMCID: PMC11113997 DOI: 10.1007/s00018-014-1782-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 12/20/2022]
Abstract
Many viruses have the ability to modulate the apoptosis, and to accomplish it; viruses encode proteins which specifically interact with the cellular signaling pathways. While some viruses encode proteins, which inhibit the apoptosis or death of the infected cells, there are viruses whose encoded proteins can kill the infected cells by multiple mechanisms, including apoptosis. A particular class of these viruses has specific gene(s) in their genomes which, upon ectopic expression, can kill the tumor cells selectively without affecting the normal cells. These genes and their encoded products have demonstrated great potential to be developed as novel anticancer therapeutic agents which can specifically target and kill the cancer cells leaving the normal cells unharmed. In this review, we will discuss about the viral genes having specific cancer cell killing properties, what is known about their functioning, signaling pathways and their therapeutic applications as anticancer agents.
Collapse
Affiliation(s)
- Shishir Kumar Gupta
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - Ravi Kumar Gandham
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. P. Sahoo
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| | - A. K. Tiwari
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122 UP India
| |
Collapse
|
9
|
Marchini A, Bonifati S, Scott EM, Angelova AL, Rommelaere J. Oncolytic parvoviruses: from basic virology to clinical applications. Virol J 2015; 12:6. [PMID: 25630937 PMCID: PMC4323056 DOI: 10.1186/s12985-014-0223-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 12/03/2014] [Indexed: 12/28/2022] Open
Abstract
Accumulated evidence gathered over recent decades demonstrated that some members of the Parvoviridae family, in particular the rodent protoparvoviruses H-1PV, the minute virus of mice and LuIII have natural anticancer activity while being nonpathogenic to humans. These studies have laid the foundations for the launch of a first phase I/IIa clinical trial, in which the rat H-1 parvovirus is presently undergoing evaluation for its safety and first signs of efficacy in patients with glioblastoma multiforme. After a brief overview of the biology of parvoviruses, this review focuses on the studies which unraveled the antineoplastic properties of these agents and supported their clinical use as anticancer therapeutics. Furthermore, the development of novel parvovirus-based anticancer strategies with enhanced specificity and efficacy is discussed, in particular the development of second and third generation vectors and the combination of parvoviruses with other anticancer agents. Lastly, we address the key challenges that remain towards a more rational and efficient use of oncolytic parvoviruses in clinical settings, and discuss how a better understanding of the virus life-cycle and of the cellular factors involved in virus infection, replication and cytotoxicity may promote the further development of parvovirus-based anticancer therapies, open new prospects for treatment and hopefully improve clinical outcome.
Collapse
Affiliation(s)
- Antonio Marchini
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Serena Bonifati
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Eleanor M Scott
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Assia L Angelova
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| | - Jean Rommelaere
- Infection and Cancer Program, Tumor Virology Division (F010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Doley J, Singh LV, Kumar GR, Sahoo AP, Saxena L, Chaturvedi U, Saxena S, Kumar R, Singh PK, Rajmani RS, Santra L, Palia SK, Tiwari S, Harish DR, Kumar A, Desai GS, Gupta S, Gupta SK, Tiwari AK. Canine parvovirus type 2a (CPV-2a)-induced apoptosis in MDCK involves both extrinsic and intrinsic pathways. Appl Biochem Biotechnol 2013; 172:497-508. [PMID: 24092455 DOI: 10.1007/s12010-013-0538-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 09/15/2013] [Indexed: 11/27/2022]
Abstract
The canine parvovirus type 2 (CPV-2) causes an acute disease in dogs. It has been found to induce cell cycle arrest and DNA damage leading to cellular lysis. In this paper, we evaluated the apoptotic potential of the "new CPV-2a" in MDCK cells and elucidated the mechanism of the induction of apoptosis. The exposure of MDCK cells to the virus was found to trigger apoptotic response. Apoptosis was confirmed by phosphatidylserine translocation, DNA fragmentation assays, and cell cycle analysis. Activation of caspases-3, -8, -9, and -12 and decrease in mitochondrial potential in CPV-2a-infected MDCK cells suggested that the CPV-2a-induced apoptosis is caspase dependent involving extrinsic, intrinsic, and endoplasmic reticulum pathways. Increase in p53 and Bax/Bcl2 ratio was also observed in CPV-2a-infected cells.
Collapse
Affiliation(s)
- Juwar Doley
- Molecular Biology Lab, Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lacroix J, Schlund F, Leuchs B, Adolph K, Sturm D, Bender S, Hielscher T, Pfister SM, Witt O, Rommelaere J, Schlehofer JR, Witt H. Oncolytic effects of parvovirus H-1 in medulloblastoma are associated with repression of master regulators of early neurogenesis. Int J Cancer 2013; 134:703-16. [PMID: 23852775 PMCID: PMC4232887 DOI: 10.1002/ijc.28386] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/24/2013] [Indexed: 12/31/2022]
Abstract
Based on extensive pre-clinical studies, the oncolytic parvovirus H-1 (H-1PV) is currently applied to patients with recurrent glioblastoma in a phase I/IIa clinical trial (ParvOryx01, NCT01301430). Cure rates of about 40% in pediatric high-risk medulloblastoma (MB) patients also indicate the need of new therapeutic approaches. In order to prepare a future application of oncolytic parvovirotherapy to MB, the present study preclinically evaluates the cytotoxic efficacy of H-1PV on MB cells in vitro and characterizes cellular target genes involved in this effect. Six MB cell lines were analyzed by whole genome oligonucleotide microarrays after treatment and the results were matched to known molecular and cytogenetic risk factors. In contrast to non-transformed infant astrocytes and neurons, in five out of six MB cell lines lytic H-1PV infection and efficient viral replication could be demonstrated. The cytotoxic effects induced by H-1PV were observed at LD50s below 0.05 p. f. u. per cell indicating high susceptibility. Gene expression patterns in the responsive MB cell lines allowed the identification of candidate target genes mediating the cytotoxic effects of H-1PV. H-1PV induced down-regulation of key regulators of early neurogenesis shown to confer poor prognosis in MB such as ZIC1, FOXG1B, MYC, and NFIA. In MB cell lines with genomic amplification of MYC, expression of MYC was the single gene most significantly repressed after H-1PV infection. H-1PV virotherapy may be a promising treatment approach for MB since it targets genes of functional relevance and induces cell death at very low titers of input virus.
Collapse
Affiliation(s)
- Jeannine Lacroix
- Division of Tumor Virology, Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, Heidelberg, Germany; Department of Pediatric Hematology, Oncology and Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 430, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Generation of an adenovirus-parvovirus chimera with enhanced oncolytic potential. J Virol 2012; 86:10418-31. [PMID: 22787235 DOI: 10.1128/jvi.00848-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, our goal was to generate a chimeric adenovirus-parvovirus (Ad-PV) vector that combines the high-titer and efficient gene transfer of adenovirus with the anticancer potential of rodent parvovirus. To this end, the entire oncolytic PV genome was inserted into a replication-defective E1- and E3-deleted Ad5 vector genome. As we found that parvoviral NS expression inhibited Ad-PV chimera production, we engineered the parvoviral P4 early promoter, which governs NS expression, by inserting into its sequence tetracycline operator elements. As a result of these modifications, P4-driven expression was blocked in the packaging T-REx-293 cells, which constitutively express the tetracycline repressor, allowing high-yield chimera production. The chimera effectively delivered the PV genome into cancer cells, from which fully infectious replication-competent parvovirus particles were generated. Remarkably, the Ad-PV chimera exerted stronger cytotoxic activities against various cancer cell lines, compared with the PV and Ad parental viruses, while being still innocuous to a panel of tested healthy primary human cells. This Ad-PV chimera represents a novel versatile anticancer agent which can be subjected to further genetic manipulations in order to reinforce its enhanced oncolytic capacity through arming with transgenes or retargeting into tumor cells.
Collapse
|
13
|
Allaume X, El-Andaloussi N, Leuchs B, Bonifati S, Kulkarni A, Marttila T, Kaufmann JK, Nettelbeck DM, Kleinschmidt J, Rommelaere J, Marchini A. Retargeting of rat parvovirus H-1PV to cancer cells through genetic engineering of the viral capsid. J Virol 2012; 86:3452-65. [PMID: 22258256 PMCID: PMC3302485 DOI: 10.1128/jvi.06208-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 01/03/2012] [Indexed: 11/20/2022] Open
Abstract
The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.
Collapse
Affiliation(s)
- Xavier Allaume
- Tumour Virology Division F010a and Inserm Unit 701,b German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mincberg M, Gopas J, Tal J. Minute virus of mice (MVMp) infection and NS1 expression induce p53 independent apoptosis in transformed rat fibroblast cells. Virology 2011; 412:233-43. [DOI: 10.1016/j.virol.2010.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/10/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
|
15
|
Abstract
The cytopathic effects induced during parvovirus infection have been widely documented. Parvovirus infection-induced cell death is often directly associated with disease outcomes (e.g., anemia resulting from loss of erythroid progenitors during parvovirus B19 infection). Apoptosis is the major form of cell death induced by parvovirus infection. However, nonapoptotic cell death, namely necrosis, has also been reported during infection of the minute virus of mice, parvovirus H-1 and bovine parvovirus. Recent studies have revealed multiple mechanisms underlying the cell death during parvovirus infection. These mechanisms vary in different parvoviruses, although the large nonstructural protein (NS)1 and the small NS proteins (e.g., the 11 kDa of parvovirus B19), as well as replication of the viral genome, are responsible for causing infection-induced cell death. Cell cycle arrest is also common, and contributes to the cytopathic effects induced during parvovirus infection. While viral NS proteins have been indicated to induce cell cycle arrest, increasing evidence suggests that a cellular DNA damage response triggered by an invading single-stranded parvoviral genome is the major inducer of cell cycle arrest in parvovirus-infected cells. Apparently, in response to infection, cell death and cell cycle arrest of parvovirus-infected cells are beneficial to the viral cell lifecycle (e.g., viral DNA replication and virus egress). In this article, we will discuss recent advances in the understanding of the mechanisms underlying parvovirus infection-induced cell death and cell cycle arrest.
Collapse
Affiliation(s)
- Aaron Yun Chen
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Mail Stop 3029, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | | |
Collapse
|
16
|
Through its nonstructural protein NS1, parvovirus H-1 induces apoptosis via accumulation of reactive oxygen species. J Virol 2010; 84:5909-22. [PMID: 20375165 DOI: 10.1128/jvi.01797-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The rat parvovirus H-1 (H-1PV) attracts high attention as an anticancer agent, because it is not pathogenic for humans and has oncotropic and oncosuppressive properties. The viral nonstructural NS1 protein is thought to mediate H-1PV cytotoxicity, but its exact contribution to this process remains undefined. In this study, we analyzed the effects of the H-1PV NS1 protein on human cell proliferation and cell viability. We show that NS1 expression is sufficient to induce the accumulation of cells in G(2) phase, apoptosis via caspase 9 and 3 activation, and cell lysis. Similarly, cells infected with wild-type H-1PV arrest in G(2) phase and undergo apoptosis. Furthermore, we also show that both expression of NS1 and H-1PV infection lead to higher levels of intracellular reactive oxygen species (ROS), associated with DNA double-strand breaks. Antioxidant treatment reduces ROS levels and strongly decreases NS1- and virus-induced DNA damage, cell cycle arrest, and apoptosis, indicating that NS1-induced ROS are important mediators of H-1PV cytotoxicity.
Collapse
|
17
|
Lacroix J, Leuchs B, Li J, Hristov G, Deubzer HE, Kulozik AE, Rommelaere J, Schlehofer JR, Witt O. Parvovirus H1 selectively induces cytotoxic effects on human neuroblastoma cells. Int J Cancer 2010; 127:1230-9. [DOI: 10.1002/ijc.25168] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Yang B, Cai D, Yu P, Dong X, Liu Z, Hu Z, Cao X, Zhang J, Hu Y. Non-structural proteins of Periplaneta fuliginosa densovirus inhibit cellular gene expression and induce necrosis in Sf9 cell cultures. Virus Genes 2009; 38:478-86. [PMID: 19294499 DOI: 10.1007/s11262-009-0346-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 03/02/2009] [Indexed: 11/27/2022]
Abstract
The non-structural protein NS1 of Periplaneta fuliginosa densovirus (PfDNV) is a multifunctional protein that has previously been shown to possess ATP-binding, ATPase, site-specific DNA-binding, helicase, and transcription activation activities. We report here an investigation of the cytopathogenicity of this viral non-structural (NS) protein, as well as other two NSs, NS2, and NS3, in cultured insect cells. The expression of NS1 alone potently inhibited cellular gene expression, whereas NS2 and NS3 did not produce a similar effect. The inhibition of gene expression by NS1 was confirmed to be specific and not a simple manifestation of toxicity. For example, NS1 inhibited expression of several reporter genes under the control of different RNA polymerase II promoters, whereas it did not inhibit expression from a T7 RNA polymerase promoter construct. Mapping analysis identified the carboxy-terminal peptide of this protein as the region important for the inhibition of cellular gene expression, suggesting that this inhibition is independent of its DNA-binding activity. Next, the mutagenesis assay showed that ATP-binding was essential for the unique function of this protein. Furthermore, we found that NS2 and NS3 cooperatively enhanced the NS1-induced transcription inhibition. Co-expression of all the three NS proteins in Sf9 cells also led to necrotic cell death by ATP depletion.
Collapse
Affiliation(s)
- Bo Yang
- Department of Biotechnology, Hubei University of Technology, Wuhan, 430068, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abdel-Latif L, Murray BK, Renberg RL, O'Neill KL, Porter H, Jensen JB, Johnson FB. Cell death in bovine parvovirus-infected embryonic bovine tracheal cells is mediated by necrosis rather than apoptosis. J Gen Virol 2006; 87:2539-2548. [PMID: 16894192 DOI: 10.1099/vir.0.81915-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The helper-independent bovine parvovirus (BPV) was studied to determine its effect on host embryonic bovine tracheal (EBTr) cells: whether the ultimate outcome of infection results in apoptotic cell death or cell death by necrosis. Infected cells were observed for changes marking apoptosis. Observations of alterations in nuclear morphology, membrane changes, apoptotic body formation, membrane phosphatidylserine inversions, caspase activation and cell DNA laddering in infected cells were not indicative of apoptosis. On the other hand, at the end of the virus replication cycle, infected cells released viral haemagglutinin and infectious virus particles, as would be expected from cell membrane failure. Moreover, the infected cells released lactate dehydrogenase (LDH), release of which is a marker of necrosis. LDH release into the cell medium correlated directly with viral m.o.i. and time post-infection. Furthermore, assessment of mitochondrial dehydrogenase activity was consistent with cell death by necrosis. Taken together, these findings indicate that cell death in BPV-infected EBTr cells is due to necrosis, as defined by infected-cell membrane failure and release of the cell contents into the extracellular environment.
Collapse
Affiliation(s)
- Lubna Abdel-Latif
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| | - Byron K Murray
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| | - Rebecca L Renberg
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| | - Kim L O'Neill
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| | - Heidi Porter
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| | - James B Jensen
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| | - F Brent Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, 887 WIDB, Provo, UT 84602, USA
| |
Collapse
|
20
|
Abschuetz A, Kehl T, Geibig R, Leuchs B, Rommelaere J, Régnier-Vigouroux A. Oncolytic murine autonomous parvovirus, a candidate vector for glioma gene therapy, is innocuous to normal and immunocompetent mouse glial cells. Cell Tissue Res 2006; 325:423-36. [PMID: 16699801 DOI: 10.1007/s00441-006-0199-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 03/08/2006] [Indexed: 10/24/2022]
Abstract
The sensitivity of brain tumour cells to wild-type or recombinant parvoviruses H1-PV and MVMp makes these agents promising candidates for gene therapy of astrocytoma. This application raises the question of whether parvoviruses exert deleterious or bystander effects on normal glial cells surrounding tumours. We addressed this question in the mouse model by using cell cultures derived from BALB/c, C57BL/6 and VM/Dk strains. Astrocytes and a large proportion of microglia cultures were competent for MVMp uptake. Infection was, however, abortive as replication-associated viral proteins synthesis took place in less than 10% of astrocytes and no progeny virions were produced. This restriction was even more pronounced for microglia in which no viral protein expression could be detected, save for a minute fraction of VM/Dk-derived cells. Infection with MVMp had no significant effect on glial cell survival and did not interfere with their immune potential. Indeed, neither the lipopolysaccharide (LPS)/interferon (IFN-gamma)-induced cytotoxicity of VM/Dk-derived microglia towards the mouse glioma (MT539MG) cell line, nor the glial cells capacity for tumour necrosis factor alpha production upon LPS stimulation or LPS/IFN-gamma stimulation were affected by infection with MVMp. Moreover, stimulation with LPS and/or IFN-gamma resulted in a decreased expression of the viral replicative and cytotoxic protein NS1. Together, our data indicate that, in the natural host, a majority of normal glial cells are not competent for MVMp replication and that the abortive infection taking place in a minor fraction of these cells fails to impede their survival and immunocompetence, giving credit to the consideration of autonomous parvoviruses for glioma therapy.
Collapse
Affiliation(s)
- Anette Abschuetz
- Infection and Cancer Program, INSERM, U701, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Ruiz Z, D'Abramo A, Tattersall P. Differential roles for the C-terminal hexapeptide domains of NS2 splice variants during MVM infection of murine cells. Virology 2006; 349:382-95. [PMID: 16504232 DOI: 10.1016/j.virol.2006.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 12/22/2005] [Accepted: 01/26/2006] [Indexed: 11/18/2022]
Abstract
The MVM NS2 proteins are required for viral replication in cells of its normal murine host, but are dispensable in transformed human 324K cells. Alternate splicing at the minor intron controls synthesis of three forms of this protein, which differ in their C-terminal hexapeptides and in their relative abundance, with NS2P and NS2Y, the predominant isoforms, being expressed at a 5:1 ratio. Mutant genomes were constructed with premature termination codons in the C-terminal exons of either NS2P or NS2Y, which resulted in their failure to accumulate in vivo. To modulate their expression levels, we also introduced a mutation at the putative splice branch point of the large intron, dubbed NS2(lo), that reduced total NS2 expression in murine A9 cells such that NS2P accumulated to approximately half the level normally seen for NS2Y. All mutants replicated productively in human 324K cells. In A9 cells, NS2Y(-) mutants replicated like wildtype, and the NS2(lo) mutants expressed NS1 and replicated duplex viral DNA like wildtype, although their progeny single-strand DNA synthesis was reduced. However, while NS2P(-) and NS2-null viruses initiated infection efficiently in A9 cells, they gave diminished NS1 levels, and viral macromolecular synthesis appeared to become paralyzed shortly after the onset of viral duplex DNA amplification, such that no progeny single-strand DNA could be detected. Thus, the NS2P isoform, even when expressed at a level lower than that of NS2Y, performs a critical role in infection of A9 cells that cannot be accomplished by the NS2Y isoform alone.
Collapse
Affiliation(s)
- Zandra Ruiz
- Graduate Program in Microbiology, Yale University, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
22
|
Liu J, Ran ZH, Xiao SD, Rommelaere J. Changes in gene expression profiles induced by parvovirus H-1 in human gastric cancer cells. ACTA ACUST UNITED AC 2005; 6:72-81. [PMID: 15904425 DOI: 10.1111/j.1443-9573.2005.00196.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The autonomous parvovirus H-1 exhibits preferential toxicity for transformed or tumor cells. The precise molecular mechanism of H-1 virus-associated cytotoxicity is not fully understood. The present study aimed at gaining more information about parvovirus-induced cellular disturbances. METHODS The H-1 virus-sensitive human gastric cancer cell line HGC27 was analyzed in the present study. cDNA microarrays were used to determine the global cellular gene expression changes which occur during the process of H-1 virus-induced death of HGC27 cells. A subset of differential expressed genes was further tested by RT-PCR and Northern blot analyzes. RESULTS A total of 920 genes belonging to various functional groups were found to be differentially expressed in H-1 virus- versus mock-infected cells in cDNA microarrays. Among them, 363 genes were upregulated, whilst 557 genes were downregulated. The differential expressions of some of these genes were further confirmed by RT-PCR and Northern blot analysis. CONCLUSION Some of genes known to be involved in cell signal transduction, apoptosis, DNA replication, DNA repair, DNA binding and transcription were differentially expressed after parvovirus H-1 infection, they might play a role in H-1 virus-induced gastric cancer cell death. These genes represent interesting candidates to be tested at the functional level for their contribution to the disturbances triggered by H-1 virus in tumor cells.
Collapse
Affiliation(s)
- Jiong Liu
- Shanghai Institute of Digestive Disease, Ren-ji Hospital, Shanghai Second Medical University, Shanghai, China
| | | | | | | |
Collapse
|
23
|
Arrese I, González P, Miranda P, Pérez-Núñez A, Pascual B, Lobato RD. [Oncolytic viral therapy of gliomas: review of the literature]. Neurocirugia (Astur) 2005; 16:158-68. [PMID: 15915305 DOI: 10.1016/s1130-1473(05)70421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Gliomas are the most frequent primary tumors of the brain. The standard treatment includes surgery, radiotherapy and chemotherapy, but the outcomes of patients with these tumors have remained nearly unchanged for past years. Hopefully, recent advances in molecular biology are rising new clinical expectation for patients with brain tumors. Among the novel techniques in this new field of research a new field of research, the use of oncolytic viruses has been explored in different trials during last years. In the present review we analyze the advances in the understanding of the oncolytic viral therapy of gliomas.
Collapse
Affiliation(s)
- I Arrese
- Servicio de Neurocirugía, Hospital Universitario 12 de Octubre, Madrid
| | | | | | | | | | | |
Collapse
|
24
|
Iseki H, Shimizukawa R, Sugiyama F, Kunita S, Iwama A, Onodera M, Nakauchi H, Yagami KI. Parvovirus nonstructural proteins induce an epigenetic modification through histone acetylation in host genes and revert tumor malignancy to benignancy. J Virol 2005; 79:8886-93. [PMID: 15994782 PMCID: PMC1168790 DOI: 10.1128/jvi.79.14.8886-8893.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 03/28/2005] [Indexed: 12/31/2022] Open
Abstract
Several malignant tumor cells become apoptotic and revert to the benign phenotype upon parvovirus infection. Recently, we demonstrated that the rat parvovirus RPV/UT also induces apoptosis in the rat thymic lymphoma cell line C58(NT)D. However, a minority of cells that escaped apoptosis showed properties different from the parental cells, such as resistance to apoptosis, enhanced cell adherence, and suppressed tumorigenicity. The present study was performed to determine the molecular mechanism of parvovirus-induced phenotypic modification, including oncosuppression. We demonstrated that the nonstructural (NS) proteins of RPV/UT induced apoptosis in C58(NT)D cells and suppressed tumor growth in vivo. Interestingly, NS proteins induced the expression of ciliary neurotrophic factor receptor alpha, which is up-regulated in revertant cell clones, and enhanced histone acetylation of its gene. These results indicate that parvoviral NS regulate host gene expression through histone acetylation, suggesting a possible mechanism of oncosuppression.
Collapse
Affiliation(s)
- Hiroyoshi Iseki
- Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Paterson A, Robinson E, Suchman E, Afanasiev B, Carlson J. Mosquito densonucleosis viruses cause dramatically different infection phenotypes in the C6/36 Aedes albopictus cell line. Virology 2005; 337:253-61. [PMID: 15919104 DOI: 10.1016/j.virol.2005.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 04/14/2005] [Accepted: 04/22/2005] [Indexed: 11/24/2022]
Abstract
Mosquito densoviruses generally establish persistent infections in mosquito cell lines including the C6/36 Aedes albopictus cell line. In contrast, the closely related Haemagogus equinus densovirus (HeDNV) causes dramatic cytopathic effects in the C6/36 Aedes albopictus cell line. Infection of C6/36 cells by HeDNV causes internucleosomal fragmentation of host chromosomal DNA, changes in cellular morphology (membrane budding, apoptotic bodies), caspase activation and exposure of phosphatidylserine on the cellular membrane. This is accompanied by a higher rate of infection and more vigorous production of virus in these cells. These observations are consistent with the induction of apoptosis during infection. In contrast, expression of AeDNV proteins in C6/36 cells does not cause obvious cytopathic effects although NS1 expression causes accumulation of cells in G2 phase. C6/36 cells persistently infected with AeDNV were not protected from superinfection with HeDNV. Thus, there does not seem to be an antiviral state induced by AeDNV persistent infection.
Collapse
Affiliation(s)
- Andrew Paterson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
26
|
El Bakkouri K, Servais C, Clément N, Cheong SC, Franssen JD, Velu T, Brandenburger A. In vivoanti-tumour activity of recombinant MVM parvoviral vectors carrying the human interleukin-2 cDNA. J Gene Med 2004; 7:189-97. [PMID: 15515141 DOI: 10.1002/jgm.653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The natural oncotropism and oncotoxicity of vectors derived from the autonomous parvovirus, minute virus of mice (prototype strain) [MVM(p)], combined with the immunotherapeutic properties of cytokine transgenes, make them interesting candidates for cancer gene therapy. METHODS The in vivo anti-tumour activity of a recombinant parvoviral vector, MVM-IL2, was evaluated in a syngeneic mouse melanoma model that is relatively resistant in vitro to the intrinsic cytotoxicity of wild-type MVM(p). RESULTS In vitro infection of the K1735 melanoma cells prior to their injection resulted in loss of tumorigenicity in 70% of mice (7/10). Tumour-free mice were protected against a challenge with non-infected parental cells. In addition, MVM-IL2-infected tumour cells induced an anti-tumour activity on parental cells injected at a distant location. These non-infected tumour cells were injected either at the same time or 7 days before the injection of MVM-IL2-infected cells. In the latter setting, which mimics a therapeutic model for small tumours, 4/10 mice were still tumour-free after 4 months. CONCLUSIONS Our results show that (i) the MVM-IL2 parvoviral vector efficiently transduces tumour cells; and (ii) the low multiplicity of infection (MOI = 1) used in our experiments was sufficient to elicit an anti-tumour effect on distant cells, which supports further studies on this vector as a new tool for cancer gene therapy.
Collapse
Affiliation(s)
- Karim El Bakkouri
- IBMM-IRIBHM, Université Libre de Bruxelles, rue des professeurs Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | |
Collapse
|
27
|
Herrero Y Calle M, Cornelis JJ, Herold-Mende C, Rommelaere J, Schlehofer JR, Geletneky K. Parvovirus H-1 infection of human glioma cells leads to complete viral replication and efficient cell killing. Int J Cancer 2004; 109:76-84. [PMID: 14735471 DOI: 10.1002/ijc.11626] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The extremely poor prognosis of malignant gliomas requires the investigation of other than standard therapies, i.e., the application of oncolytic viruses. In our study, we evaluated the effects of the oncosuppressive parvovirus H-1 on different established glioblastoma cell lines of rat and human origin and on short-term/low-passage cultures of human glioblastoma cells. We observed an efficient and dose-dependent killing of all glioma cell cultures at low multiplicities of infectious particles (MOI) per cell. Southern blot analysis of viral DNA amplification, RT-PCR analysis of viral RNA expression and Western blot analysis of the expression of viral structural (VP-1/VP-2) and nonstructural (NS-1) proteins demonstrated the biosynthesis of these viral macromolecular components in all of the cultures. Moreover, all the glioma cells were proficient for the production of infectious H-1 virus particles. The amount of virus production differed between a several fold increase of the input virus titer in most of the short-term/low-passage cultures up to 1,000-fold in one short-term glioma and in the rat cells. Glioma cells lines and, more importantly, short-term/low-passage cultures of human glioblastomas were found to be highly susceptible target cells for H-1 virus mediated cytotoxicity. The formation of fully infectious progeny particles in infected glioma cells offers the chance for the induction of secondary rounds of infection resulting in an advanced cytotoxic effect. These advantageous characteristics of H-1 virus infection of glioma cells, combined with the known low toxicity of H-1 virus in nontransformed cells, make parvovirus H-1 a promising candidate for oncolytic glioma therapy.
Collapse
|
28
|
Raykov Z, Aprahamian M, Galabov A, Rommelaere J. Oncolytic Parvoviruses as Tools for Cancer Gene Therapy. BIOTECHNOL BIOTEC EQ 2004. [DOI: 10.1080/13102818.2004.10819221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
29
|
Best SM, Shelton JF, Pompey JM, Wolfinbarger JB, Bloom ME. Caspase cleavage of the nonstructural protein NS1 mediates replication of Aleutian mink disease parvovirus. J Virol 2003; 77:5305-12. [PMID: 12692232 PMCID: PMC153974 DOI: 10.1128/jvi.77.9.5305-5312.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-induced apoptosis of infected cells can limit both the time and the cellular machinery available for virus replication. Hence, many viruses have evolved strategies to specifically inhibit apoptosis. However, Aleutian mink disease parvovirus (ADV) is the first example of a DNA virus that not only induces apoptosis but also utilizes caspase activity to facilitate virus replication. To determine the function of caspase activity during ADV replication, virus-infected cell lysates or purified ADV proteins were incubated with various purified caspases. Caspases cleaved the major nonstructural protein of ADV (NS1) at two caspase recognition sequences, whereas ADV structural proteins could not be cleaved. Importantly, the NS1 products could be identified in ADV-infected cells but were not present in infected cells pretreated with caspase inhibitors. By mutating putative caspase cleavage sites (D to E), we mapped the two cleavage sites to amino acid residues NS1:227 (INTD downward arrow S) and NS1:285 (DQTD downward arrow S). Replication of ADV containing either of these mutations was reduced 10(3)- to 10(4)-fold compared to that of wild-type virus, and a construct containing both mutations was replication defective. Immunofluorescent studies revealed that cleavage was required for nuclear localization of NS1. The requirement for caspase activity during permissive replication suggests that limitation of caspase activation and apoptosis in vivo may be a novel approach to restricting virus replication.
Collapse
Affiliation(s)
- Sonja M Best
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana 59840, USA
| | | | | | | | | |
Collapse
|
30
|
Best SM, Wolfinbarger JB, Bloom ME. Caspase activation is required for permissive replication of Aleutian mink disease parvovirus in vitro. Virology 2002; 292:224-34. [PMID: 11878925 DOI: 10.1006/viro.2001.1238] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aleutian mink disease parvovirus (ADV) is distinct among the parvoviruses as infection in vivo is persistent, restricted, and noncytopathic. In contrast, infections with other more prototypic parvoviruses, like mink enteritis virus (MEV), are acute, cytopathic, and characterized by permissive replication in vivo. Although apoptosis results in the death of cells acutely infected by parvoviruses, the role of apoptosis in ADV infections is unknown. Permissive infection of ADV resulted in apoptosis of Crandell feline kidney (CrFK) cells as indicated by TUNEL staining, Annexin-V staining, and characteristic changes in cell morphology. Pretreatment of infected cells with caspase 3 or broad-spectrum caspase inhibitors prevented apoptosis. In addition, treatment of infected cells with these inhibitors caused a 2 log(10) reduction in the yield of infectious virus compared to untreated cultures. This block in replication preceded substantial viral DNA amplification and gene expression. However, inhibitors of caspases 1, 6, and 8 did not have this effect. MEV also induced caspase-dependent apoptosis following infection of CrFK cells, although production of infectious progeny was not affected by inhibition of apoptosis. Thus, permissive replication of ADV in vitro depended upon activation of specific caspases. If ADV infection of cells in vivo fails to initiate caspase activation, the requirement of caspase activity for replication may not be met, thus providing a possible mechanism for persistent, restricted infection.
Collapse
Affiliation(s)
- Sonja M Best
- Laboratory of Persistent Viral Diseases, NIAID, NIH, Rocky Mountain Laboratories, 903 South Fourth Street, Hamilton, Montana 59840, USA
| | | | | |
Collapse
|
31
|
Olijslagers S, Dege AY, Dinsart C, Voorhoeve M, Rommelaere J, Noteborn MH, Cornelis JJ. Potentiation of a recombinant oncolytic parvovirus by expression of Apoptin. Cancer Gene Ther 2001; 8:958-65. [PMID: 11781658 DOI: 10.1038/sj.cgt.7700392] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2001] [Indexed: 01/14/2023]
Abstract
The oncotropic and oncolytic behaviors of certain autonomous rodent parvoviruses make them promising vectors for anticancer gene therapies. However, these parvoviruses are often not potent enough to kill all tumor cells equally well. With the aim of enhancing the intrinsic antitumor effect and the range of natural parvoviruses, a recombinant H1 parvovirus vector was constructed that produces the Apoptin protein, a tumor cell-specific, p53-independent, Bcl-2-insensitive apoptotic effector. We compared the apoptotic activity exerted by a recombinant hH1/Apoptin virus with that of a Green Fluorescent Protein (GFP)-transducing recombinant virus, hH1/GFP, in three human tumor cell lines differing in their susceptibility to wild-type parvovirus H1-induced killing. We found that in cells that were rather resistant to the basal cytotoxic effect of wild-type H1 or the GFP recombinant virus, a parvovirus that expressed Apoptin caused a pronounced, additional cytotoxic effect. In contrast to its enhanced cytotoxicity toward tumor cells, hH1/Apoptin virus was not more toxic to normal human fibroblasts than was the wild-type H1 virus. Taken together, these data indicate that enhancing the oncotropic behavior of wild-type H1 parvoviruses with the tumor-specific apoptotic potency of Apoptin should lead to an effective replicative parvoviral vector.
Collapse
Affiliation(s)
- S Olijslagers
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Kerr JR, Barah F, Mattey DL, Laing I, Hopkins SJ, Hutchinson IV, Tyrrell DAJ. Circulating tumour necrosis factor-alpha and interferon-gamma are detectable during acute and convalescent parvovirus B19 infection and are associated with prolonged and chronic fatigue. J Gen Virol 2001; 82:3011-3019. [PMID: 11714978 DOI: 10.1099/0022-1317-82-12-3011] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To investigate whether cytokine responses may have a bearing on the symptoms and outcome of parvovirus B19 infection, circulating cytokines were measured during acute infection (n=51), follow-up of acute infection (n=39) and in normal healthy controls (n=50). At acute B19 virus infection (serum anti-B19 IgM-positive), patients ranged in age from 4 to 54 years, with a mean age of 28.2 years. The male:female ratio was 1:4.1 and symptoms were rash (n=15), arthralgia (n=31), fatigue (n=8), lymphadenopathy (n=4), foetal hydrops (n=3), transient aplastic crisis (n=2), neutropenia (n=2), myelodysplasia (n=1), thrombocytopenia (n=1) and pancytopenia (n=1). Of these patients, 39 were contacted after a follow-up period of 2-37 months (mean of 22.5 months). In comparison with normal controls, detectable IL-6 was associated with acute B19 virus infection (26%; P=0.0003), but not with follow-up (6%; P=0.16). Detection of interferon (IFN)-gamma was associated with acute B19 virus infection (67%; P<0.0001) and follow-up (67%; P<0.0001). Detection of tumour necrosis factor (TNF)-alpha was associated with acute B19 virus infection (49%; P<0.0001) and follow-up (56%; P<0.0001). IL-1beta was detected in acute infection (20%), but not at follow-up. At acute B19 virus infection, detection of serum/plasma IL-6 was associated with rheumatoid factor (P=0.038) and IFN-gamma (> or =7 pg/ml) was associated with fatigue in those patients of > or =15 years of age (P=0.022). At follow-up, fatigue was associated with IFN-gamma (> or =7 pg/ml) and/or TNF-alpha (> or =40 pg/ml) (P=0.0275). Prolonged upregulation of serum IFN-gamma and TNF-alpha appears to represent a consistent host response to symptomatic B19 virus infection.
Collapse
Affiliation(s)
- Jonathan R Kerr
- Department of Microbiology, Royal Brompton Hospital, National Heart and Lung Institute, Imperial College School of Medicine, Sydney Street, London SW3 6NP, UK1
| | - Faraj Barah
- Department of Virology2, North Western Injury Research Centre5 and School of Biological Sciences6, University of Manchester, Manchester, UK
| | | | - Ian Laing
- Department of Biochemistry, Manchester Royal Infirmary, Manchester, UK4
| | - Stephen J Hopkins
- Department of Virology2, North Western Injury Research Centre5 and School of Biological Sciences6, University of Manchester, Manchester, UK
| | - Ian V Hutchinson
- Department of Virology2, North Western Injury Research Centre5 and School of Biological Sciences6, University of Manchester, Manchester, UK
| | - David A J Tyrrell
- Formerly of the MRC Common Cold Unit, Salisbury, Wiltshire, UK(now closed)7
| |
Collapse
|
33
|
Ueno Y, Harada T, Iseki H, Ohshima T, Sugiyama F, Yagami K. Propagation of rat parvovirus in thymic lymphoma cell line C58(NT)d and subsequent appearance of a resistant cell clone after lytic infection. J Virol 2001; 75:3965-70. [PMID: 11264385 PMCID: PMC114887 DOI: 10.1128/jvi.75.8.3965-3970.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Rat parvovirus (RPV) is nonpathogenic in rats but causes persistent lymphocytotropic infection. We found that RPV was propagated in rat thymic lymphoma cell line C58(NT)D and induced apoptosis. Interestingly, a resistant subclone, C58(NT)D/R, from surviving cells after lytic infection had differentiated phenotypic modifications, such as increased cell adherence, resistance to apoptosis, and suppressed tumorigenicity.
Collapse
Affiliation(s)
- Y Ueno
- Institute of Basic Medical Sciences and Laboratory Animal Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Corbau R, Duverger V, Rommelaere J, Nüesch JP. Regulation of MVM NS1 by protein kinase C: impact of mutagenesis at consensus phosphorylation sites on replicative functions and cytopathic effects. Virology 2000; 278:151-67. [PMID: 11112491 DOI: 10.1006/viro.2000.0600] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Minute virus of mice NS1, an 83-kDa mainly nuclear phosphoprotein, is the only viral nonstructural protein required in all cell types and it is involved in multiple processes necessary for virus propagation. The diversity of functions assigned to NS1, together with the variation of its complex phosphorylation pattern during infection, suggested that the various activities of NS1 could be regulated by distinct phosphorylation events. So far, it has been demonstrated that NS1 replicative functions, in particular, DNA-unwinding activities, are regulated by protein kinase C (PKC), as exemplified by the modulation of NS1 helicase activity by PKClambda phosphorylation. In order to determine further impact of phosphorylation on NS1 functions, including the induction of cytopathic effects, a mutational approach was pursued in order to produce NS1 variants harboring amino acid substitutions at candidate PKC target residues. Besides the determination of two additional in vivo phosphorylation sites in NS1, this mutagenesis allowed the segregation of distinct NS1 functions from one another, generating NS1 variants with a distinct activity profile. Thus, we obtained NS1 mutants that were fully proficient for trans activation of the viral P38 promoter, while being impaired in their replicative functions. Moreover, the alterations of specific PKC phosphorylation sites gave rise to NS1 polypeptides that exerted reduced cytotoxicity, leading to sustained gene expression, while keeping functions necessary for progeny virus production, i.e., viral DNA replication and activation of the capsid gene promoter. These data suggested that in the course of a viral infection, NS1 may undergo a shift from productive to cytotoxic functions as a result of a phosphorylation-dependent regulation.
Collapse
Affiliation(s)
- R Corbau
- Program of Applied Tumor Virology, Institut National de la Santé et de la Recherche Médicale U375, Heidelberg, Germany
| | | | | | | |
Collapse
|
35
|
Bauder B, Suchy A, Gabler C, Weissenböck H. Apoptosis in feline panleukopenia and canine parvovirus enteritis. JOURNAL OF VETERINARY MEDICINE. B, INFECTIOUS DISEASES AND VETERINARY PUBLIC HEALTH 2000; 47:775-84. [PMID: 11204132 DOI: 10.1046/j.1439-0450.2000.00411.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tissue samples of cats and dogs with panleukopenia and parvovirus enteritis, respectively, were examined for the presence of viral antigen-positive cells and apoptotic cells by immunohistochemistry and by TUNEL assay (Terminal Transferase-Mediated dUTP Nick End Labelling). Compared to control animals, infected cats and dogs generally had more TUNEL-positive cells. Cell types positive for parvovirus antigen, for example digestive tract epithelial and mesenchymal cells, and lymphocytes and macrophages in lymphoid tissues were also positive for TUNEL signals. Occasionally, TUNEL signal and viral antigen were present in the same tissue areas, suggesting a direct viral trigger of apoptosis. More frequently, however, there was no complete overlap of antigen and TUNEL-positive areas. The results of this study indicate that apoptotic cell death contributes significantly to the widespread tissue damage of parvovirus infection in cats and dogs.
Collapse
Affiliation(s)
- B Bauder
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, Vienna, Austria
| | | | | | | |
Collapse
|
36
|
Ran Z, Rayet B, Rommelaere J, Faisst S. Parvovirus H-1-induced cell death: influence of intracellular NAD consumption on the regulation of necrosis and apoptosis. Virus Res 1999; 65:161-74. [PMID: 10581389 DOI: 10.1016/s0168-1702(99)00115-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The autonomous parvovirus H-1 exerts tumor-suppressive effects in living organisms and has been shown to specifically interfere with the survival of transformed cells in culture. The mechanism(s) by which H-1 virus induces death of transformed cells is not yet well understood. It has recently been reported that H-1 virus induces apoptotic cell death in the human monocytic U937 cell line, as assessed by biochemical and morphological changes of infected cells (Rayet, B., Lopez-Guerrero, J.-A., Rommelaere, J., Dinsart, C., 1998. Induction of programmed cell death by parvovirus H-1 in U937 cells: connection with the TNFalpha signalling pathway. J. Virol. 72, 8893-8903). Here we show that parvovirus H-1 infection induced early biochemical changes pointing to apoptotic events also in the transformed human keratinocyte cell line, HeLa, and the transformed rat fibroblast cell line, P1. Morphologic changes, however, and in particular the early breakdown of plasma membrane integrity, suggested that apoptosis did not go to completion, leading to necrotic cell death as the major result of parvovirus infection of HeLa and P1 cells. Parvovirus infection of these, and to a significantly lesser extent of U937 cells, was accompanied by rapid depletion of intracellular NAD stores. Inhibition of NAD-consuming enzymes interfered with parvovirus-induced NAD depletion and increased the proportion of H-1 virus-infected cells displaying apoptotic features of cell death. In contrast, a similar prevention of NAD depletion through stimulation of NAD production had little influence on the cell death pathway, suggesting that NAD-consuming enzymes may promote necrosis in a direct way rather than through inducing the overall drop of intracellular NAD.
Collapse
Affiliation(s)
- Z Ran
- Applied Tumor Virology Program, Abt. F0100 and Institut National de la Santé et de la Recherche Médicale U 375, Deutsches Krebsforschungszentrum, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|