1
|
Zhang D, Yang J, Huang Q, Zhao D, Wang T, Yu D, Qin L, Zhang K. Molecular functions of HAX1 during disease progress. Virus Genes 2024; 60:435-445. [PMID: 38992331 DOI: 10.1007/s11262-024-02081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024]
Abstract
HCLS1-associated protein X-1 (HAX1) is a newly discovered multifunctional cell regulatory protein that is widely expressed in cells and has a close relationship with multiple cellular proteins. HAX1 plays important roles in various processes, including the regulation of apoptosis, maintenance of mitochondrial membrane potential stability and calcium homeostasis, occurrence and development of diseases, post-transcriptional regulation of gene expression, and host immune response after viral infection. In this article, we have reviewed the research progress on the biological functions of HAX1, thereby laying a theoretical foundation for further exploration of its underlying mechanisms and targeted application.
Collapse
Affiliation(s)
- Dajun Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China
| | - Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Qi Huang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China
| | - Dengshuai Zhao
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China
| | - Tianyu Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China
| | - Dixi Yu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China
| | - Limei Qin
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China.
| | - Keshan Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China.
| |
Collapse
|
2
|
Ayee R, Ofori MEO, Wright E, Quaye O. Epstein Barr Virus Associated Lymphomas and Epithelia Cancers in Humans. J Cancer 2020; 11:1737-1750. [PMID: 32194785 PMCID: PMC7052849 DOI: 10.7150/jca.37282] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Epstein Barr virus (EBV) is a cosmopolitan oncogenic virus, infecting about 90% of the world's population and it is associated to tumors originating from both epithelia and hematopoietic cells. Transmission of the virus is mainly through oral secretions; however, transmission through organ transplantation and blood transfusion has been reported. In order to evade immune recognition, EBV establishes latent infection in B lymphocytes where it expresses limited sets of proteins called EBV transcription programs (ETPs), including six nuclear antigens (EBNAs), three latent membrane proteins (LMP), and untranslated RNA called EBV encoded RNA (EBER), shown to efficiently transform B cells into lymphoblastic cells. These programs undergo different patterns of expression which determine the occurrence of distinct types of latency in the pathogenesis of a particular tumor. Hematopoietic cell derived tumors include but not limited to Burkitt's lymphoma, Hodgkin lymphoma, post-transplant lymphoproliferative disorders, and natural killer (NK)/T cell lymphoma. EBV undergoes lytic infection in epithelia cells for amplification of the viral particle for transmission where it expresses lytic stage genes. However, for reasons yet to be unveiled, EBV switches from the expression of lytic stage genes to the expression of ETPs in epithelia cells. The expression of the ETPs lead to the transformation of epithelia cells into permanently proliferating cells, resulting in epithelia cell derived malignancies such as nasopharyngeal cancer, gastric cancer, and breast cancer. In this review, we have summarized the current updates on EBV associated epithelial and B cell-derived malignancies, and the role of EBV latency gene products in the pathogenesis of the cancers, and have suggested areas for future studies when considering therapeutic measures.
Collapse
Affiliation(s)
- Richmond Ayee
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| | | | - Edward Wright
- Department of Biochemistry, University of Sussex, Brighton, U.K
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
3
|
Hu YL, Feng Y, Ma P, Wang F, Huang H, Guo YB, Li P, Mao QS, Xue WJ. HAX-1 promotes the migration and invasion of hepatocellular carcinoma cells through the induction of epithelial-mesenchymal transition via the NF-κB pathway. Exp Cell Res 2019; 381:66-76. [PMID: 31047882 DOI: 10.1016/j.yexcr.2019.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022]
Abstract
The expression of HS-1-associated protein X-1 (HAX-1) plays a major role in the development of hepatocellular carcinoma (HCC). However, the function of HAX-1 in HCC metastasis is unclear. Quantitative real-time PCR and western blotting were used to examine HAX-1 expression in HCC cell lines with different metastatic potential, and in tumor tissues with or without intrahepatic metastasis. HCC tissue arrays (n = 144) were used to assess correlations between clinicopathological parameters and HAX-1 expression. We also examined the effect of HAX-1 on promoting HCC cell metastasis in vivo and in vitro. The results showed that the expression levels of HAX-1 were higher in metastatic HCC cell lines than in non-metastatic HCC cell lines. HAX-1 was also significantly upregulated in primary HCC tissues with intrahepatic metastasis compared with those without intrahepatic metastasis. HCC in patients with high HAX-1 expression is more likely to metastasize. HAX-1 expression was associated with malignant progression and poor prognosis, and HAX1 silencing inhibited HCC cell migration and invasion in vitro and decreased HCC cell lung metastasis in vivo, whereas HAX-1 overexpression had the inverse effect. Moreover, HAX-1 increased HCC cell metastasis by promoting the epithelial-mesenchymal transition (EMT) process. Finally, we revealed that HAX-1 modulated EMT in HCC cells by increasing NF-κB/p65 nuclear translocation. In conclusion, HAX-1 promotes HCC metastasis by EMT through activating the NF-κB pathway, suggesting that HAX-1 could be a potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Yi-Lin Hu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Ying Feng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Peng Ma
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Fei Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Yi-Bing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Peng Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Qin-Sheng Mao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - Wan-Jiang Xue
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
4
|
Wolkerstorfer S, Schwaiger E, Rinnerthaler M, Karina Gratz I, Zoegg T, Brandstetter H, Achatz-Straussberger G. HAX1 deletion impairs BCR internalization and leads to delayed BCR-mediated apoptosis. Cell Mol Immunol 2016; 13:451-61. [PMID: 25864916 PMCID: PMC4947813 DOI: 10.1038/cmi.2015.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 02/11/2015] [Indexed: 12/25/2022] Open
Abstract
Deletion of HAX1 in mice causes a severe reduction in the numbers of lymphocytes in the bone marrow and in the spleen. Additionally, B220(+) B progenitor cells in the bone marrow are reduced, suggesting an important function of HAX1 in B cell development. HAX1 is thought to play a protective role in apoptotic processes; therefore, we investigated the role of HAX1 in bone marrow B progenitor cells and splenic B cells. We did not observe an effect on the survival of Hax1(-/-) bone marrow cells but detected enhanced survival of splenic Hax1(-/-) B cells upon in vitro starvation/growth-factor withdrawal. To explain this apparent inconsistency with previous reports of HAX1 function, we also studied the B cell receptor (BCR)-induced apoptosis of IgM-stimulated splenic naïve B cells and found that apoptosis decreased in these cells. We further found impaired internalization of the BCR from Hax1(-/-) splenic B cells after IgM crosslinking; this impaired internalization may result in decreased BCR signaling and, consequently, decreased BCR-mediated apoptosis. We measured HAX1 binding to the cytoplasmic domains of different Ig subtypes and identified KVKWI(V)F as the putative binding motif for HAX1 within the cytoplasmic domains. Because this motif can be found in almost all Ig subtypes, it is likely that HAX1 plays a general role in BCR-mediated internalization events and BCR-mediated apoptosis.
Collapse
Affiliation(s)
| | | | - Mark Rinnerthaler
- Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Iris Karina Gratz
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
- Department of Dermatology, University of California San Francisco, CA, USA
- Department of Dermatology, Division of Molecular Dermatology and EB House Austria, Paracelsus Medical University, Salzburg, Austria
| | - Thomas Zoegg
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Hans Brandstetter
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
5
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
6
|
HAX1 deletion impairs BCR internalization and leads to delayed BCR-mediated apoptosis. Cell Mol Immunol 2015. [DOI: 10.1038/cmi.2015.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
7
|
Clinical significance of HAX-1 expression in laryngeal carcinoma. Auris Nasus Larynx 2014; 42:299-304. [PMID: 25554539 DOI: 10.1016/j.anl.2014.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/27/2014] [Accepted: 12/05/2014] [Indexed: 01/18/2023]
Abstract
OBJECTIVE HS1-associated protein X-1 (HAX-1) is a multifunctional protein that has been highlighted as an important marker in many types of cancers. However, little is known about the role of HAX-1 in laryngeal carcinoma. The purpose of the present study is to explore HAX-1 expression status and its associations with clinicopathologic features and survival in a well-defined cohort of laryngeal carcinoma. METHODS We examined the expression of HAX-1 at protein and mRNA levels in laryngeal carcinoma tissues and adjacent non-tumor tissues by immunohistochemistry, Western blotting and two-step quantitative real-time PCR analysis, respectively. RESULTS We observed that HAX-1 was significantly elevated in laryngeal carcinoma. The relationship between the levels of HAX-1 expression and clinicopathologic characteristics was then analyzed. Overexpression of HAX-1 was significantly correlated with T classification, lymph node metastasis, clinical stage, and pathology. Survival curves were plotted using the Kaplan-Meier method and compared using the log-rank test. We find that patients with overexpression of HAX-1 had shorter overall survival rates. Finally, the significance of various survival variables was analyzed using multivariate Cox proportional hazards model. We found that overexpression of HAX-1 was an independent prognostic factor for patients with laryngeal carcinoma. CONCLUSION Our findings hinted that overexpression of HAX-1 was a potentially unfavorable factor in the progression and prognosis of laryngeal carcinoma.
Collapse
|
8
|
Pathogenic mechanisms and clinical implications of congenital neutropenia syndromes. Curr Opin Allergy Clin Immunol 2013; 13:596-606. [DOI: 10.1097/aci.0000000000000014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Comment on "HAX1 Augments Cell Proliferation, Migration, Adhesion, and Invasion Induced by Urokinase-Type Plasminogen Activator Receptor". JOURNAL OF ONCOLOGY 2013; 2013:782327. [PMID: 23762058 PMCID: PMC3674746 DOI: 10.1155/2013/782327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/09/2013] [Indexed: 12/02/2022]
|
10
|
Boztug K, Klein C. Genetics and Pathophysiology of Severe Congenital Neutropenia Syndromes Unrelated to Neutrophil Elastase. Hematol Oncol Clin North Am 2013; 27:43-60, vii. [DOI: 10.1016/j.hoc.2012.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Cellular protein HAX1 interacts with the influenza A virus PA polymerase subunit and impedes its nuclear translocation. J Virol 2012; 87:110-23. [PMID: 23055567 DOI: 10.1128/jvi.00939-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transcription and replication of the influenza A virus RNA genome occur in the nucleus through the viral RNA-dependent RNA polymerase consisting of PB1, PB2, and PA. Cellular factors that associate with the viral polymerase complex play important roles in these processes. To look for cellular factors that could associate with influenza A virus PA protein, we have carried out a yeast two-hybrid screen using a HeLa cell cDNA library. We identified six cellular proteins that may interact with PA. We focused our study on one of the new PA-interacting proteins, HAX1, a protein with antiapoptotic function. By using glutathione S-transferase pulldown and coimmunoprecipitation assays, we demonstrate that HAX1 specifically interacts with PA in vitro and in vivo and that HAX1 interacts with the nuclear localization signal domain of PA. Nuclear accumulation of PA was increased in HAX1-knockdown cells, and this phenotype could be reversed by reexpression of HAX1, indicating that HAX1 can impede nuclear transport of PA. As a consequence, knockdown of HAX1 resulted in a significant increase in virus yield and polymerase activity in a minigenome assay, and this phenotype could be reversed by reexpression of HAX1, indicating that HAX1 can inhibit influenza A virus propagation. Together, these results not only provide insight into the mechanism underlying nuclear transport of PA but also identify an intrinsic host factor that restricts influenza A virus infection.
Collapse
|
12
|
Yap SV, Koontz JM, Kontrogianni-Konstantopoulos A. HAX-1: A family of apoptotic regulators in health and disease. J Cell Physiol 2011; 226:2752-61. [DOI: 10.1002/jcp.22638] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Klein C. Genetic defects in severe congenital neutropenia: emerging insights into life and death of human neutrophil granulocytes. Annu Rev Immunol 2011; 29:399-413. [PMID: 21219176 DOI: 10.1146/annurev-immunol-030409-101259] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of genetic defects causing congenital neutropenia has illuminated mechanisms controlling differentiation, circulation, and decay of neutrophil granulocytes. Deficiency of the mitochondrial proteins HAX1 and AK2 cause premature apoptosis of myeloid progenitor cells associated with dissipation of the mitochondrial membrane potential, whereas mutations in ELA2/ELANE and G6PC3 are associated with signs of increased endoplasmic reticulum stress. Mutations in the transcriptional repressor GFI1 and the cytoskeletal regulator WASP also lead to defective neutrophil production. This unexpected diversity of factors suggests that multiple pathways are involved in the pathogenesis of congenital neutropenia.
Collapse
Affiliation(s)
- Christoph Klein
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Germany.
| |
Collapse
|
14
|
Simmen T. Hax-1: a regulator of calcium signaling and apoptosis progression with multiple roles in human disease. Expert Opin Ther Targets 2011; 15:741-51. [DOI: 10.1517/14728222.2011.561787] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Jing YY, Li XL, Shi Q, Wang ZY, Guo Y, Pan MM, Tian C, Zhu SY, Chen C, Gong HS, Han J, Gao C, Dong XP. A Novel PrP Partner HS-1 Associated Protein X-1 (HAX-1) Protected the Cultured Cells Against the Challenge of H2O2. J Mol Neurosci 2011; 45:216-28. [DOI: 10.1007/s12031-011-9498-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Accepted: 01/20/2011] [Indexed: 01/28/2023]
|
16
|
Peckl-Schmid D, Wolkerstorfer S, Königsberger S, Achatz-Straussberger G, Feichtner S, Schwaiger E, Zaborsky N, Huemer M, Gratz IK, Schibli R, Lamers M, Crameri R, Moser K, Luger EO, Achatz G. HAX1 deficiency: impact on lymphopoiesis and B-cell development. Eur J Immunol 2010; 40:3161-72. [PMID: 20865787 DOI: 10.1002/eji.200940221] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 11/05/2022]
Abstract
HAX1 was originally described as HS1-associated protein with a suggested function in receptor-mediated apoptotic and proliferative responses of lymphoid cells. Recent publications refer to a complex and multifunctional role of this protein. To investigate the in vivo function of HAX1 (HS1-associated protein X1) in B cells, we generated a Hax1-deficient mouse strain. Targeted deletion of Hax1 resulted in premature death around the age of 12 wk accompanied by a severe reduction of lymphocytes in spleen, thymus and bone marrow. In the bone marrow, all B-cell populations were lost comparably. In the spleen, B220(+) cells were reduced by almost 70%. However, as investigated by adoptive transfer experiments, this impairment is not exclusively B-cell intrinsic and we hypothesize that a HAX1-deficient environment cannot sufficiently provide the essential factors for proper lymphocyte development, trafficking and survival. Hax1(-/-) B cells show a significantly reduced expression of CXCR4, which might have an influence on the observed defects in B-cell development.
Collapse
Affiliation(s)
- Doris Peckl-Schmid
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kokoszyńska K, Rychlewski L, Wyrwicz LS. Distant homologs of anti-apoptotic factor HAX1 encode parvalbumin-like calcium binding proteins. BMC Res Notes 2010; 3:197. [PMID: 20633251 PMCID: PMC2914655 DOI: 10.1186/1756-0500-3-197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/15/2010] [Indexed: 12/02/2022] Open
Abstract
Background Apoptosis is a highly ordered and orchestrated multiphase process controlled by the numerous cellular and extra-cellular signals, which executes the programmed cell death via release of cytochrome c alterations in calcium signaling, caspase-dependent limited proteolysis and DNA fragmentation. Besides the general modifiers of apoptosis, several tissue-specific regulators of this process were identified including HAX1 (HS-1 associated protein X-1) - an anti-apoptotic factor active in myeloid cells. Although HAX1 was the subject of various experimental studies, the mechanisms of its action and a functional link connected with the regulation of apoptosis still remains highly speculative. Findings Here we provide the data which suggests that HAX1 may act as a regulator or as a sensor of calcium. On the basis of iterative similarity searches, we identified a set of distant homologs of HAX1 in insects. The applied fold recognition protocol gives us strong evidence that the distant insects' homologs of HAX1 are novel parvalbumin-like calcium binding proteins. Although the whole three EF-hands fold is not preserved in vertebrate our analysis suggests that there is an existence of a potential single EF-hand calcium binding site in HAX1. The molecular mechanism of its action remains to be identified, but the risen hypothesis easily translates into previously reported lines of various data on the HAX1 biology as well as, provides us a direct link to the regulation of apoptosis. Moreover, we also report that other family of myeloid specific apoptosis regulators - myeloid leukemia factors (MLF1, MLF2) share the homologous C-terminal domain and taxonomic distribution with HAX1. Conclusions Performed structural and active sites analyses gave new insights into mechanisms of HAX1 and MLF families in apoptosis process and suggested possible role of HAX1 in calcium-binding, still the analyses require further experimental verification.
Collapse
Affiliation(s)
- Katarzyna Kokoszyńska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland.
| | | | | |
Collapse
|
18
|
Johns HL, Doceul V, Everett H, Crooke H, Charleston B, Seago J. The classical swine fever virus N-terminal protease N(pro) binds to cellular HAX-1. J Gen Virol 2010; 91:2677-86. [PMID: 20631090 DOI: 10.1099/vir.0.022897-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The positive-stranded RNA genome of classical swine fever virus (CSFV) encodes 12 known proteins. The first protein to be translated is the N-terminal protease (N(pro)). N(pro) helps evade the innate interferon response by targeting interferon regulatory factor-3 for proteasomal degradation and also participates in the evasion of dsRNA-induced apoptosis. To elucidate the mechanisms by which N(pro) functions, we performed a yeast two-hybrid screen in which the anti-apoptotic protein HAX-1 was identified. The N(pro)-HAX-1 interaction was confirmed using co-precipitation assays. A dramatic redistribution of both N(pro) and HAX-1 was observed in co-transfected cells, as well as in transfected cells infected with wild-type CSFV, but not in cells infected with an N(pro)-deleted CSFV strain.
Collapse
Affiliation(s)
- Helen L Johns
- Veterinary Laboratories Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | | | | | | | | | | |
Collapse
|
19
|
Trebinska A, Rembiszewska A, Ciosek K, Ptaszynski K, Rowinski S, Kupryjanczyk J, Siedlecki JA, Grzybowska EA. HAX-1 overexpression, splicing and cellular localization in tumors. BMC Cancer 2010; 10:76. [PMID: 20196840 PMCID: PMC2843675 DOI: 10.1186/1471-2407-10-76] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 03/02/2010] [Indexed: 12/01/2022] Open
Abstract
Background HAX-1 has been described as a protein potentially involved in carcinogenesis and especially metastasis. Its involvement in regulation of apoptosis and cell migration along with some data indicating its overexpression in cancer cell lines and tumors suggests that HAX-1 may play a role in neoplastic transformation. Here we present the first systematic analysis of HAX-1 expression in several solid tumors. Methods Using quantitative RT-PCR, we have determined the mRNA levels of HAX1 splice variant I in several solid tumors. We have also analyzed by semiquantitative and quantitative RT-PCR the expression of five HAX-1 splice variants in breast cancer samples and in normal tissue from the same individuals. Quantitative PCR was also employed to analyze the effect of estrogen on HAX1 expression in breast cancer cell line. Immunohistochemical analysis of HAX-1 was performed on normal and breast cancer samples. Results The results reveal statistically important HAX1 up-regulation in breast cancer, lung cancer and melanoma, along with some minor variations in the splicing pattern. HAX-1 up-regulation in breast cancer samples was confirmed by immunohistochemical analysis, which also revealed an intriguing HAX-1 localization in the nuclei of the tumor cells, associated with strong ER status. Conclusion HAX-1 elevated levels in cancer tissues point to its involvement in neoplastic transformation, especially in breast cancer. The connection between HAX-1 nuclear location and ER status in breast cancer samples remains to be clarified.
Collapse
|
20
|
The anti-apoptotic protein HAX-1 is a regulator of cardiac function. Proc Natl Acad Sci U S A 2009; 106:20776-81. [PMID: 19920172 DOI: 10.1073/pnas.0906998106] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The HS-1 associated protein X-1 (HAX-1) is a ubiquitously expressed protein that protects cardiomyocytes from programmed cell death. Here we identify HAX-1 as a regulator of contractility and calcium cycling in the heart. HAX-1 overexpression reduced sarcoplasmic reticulum Ca-ATPase (SERCA2) pump activity in isolated cardiomyocytes and in vivo, leading to depressed myocyte calcium kinetics and mechanics. Conversely, downregulation of HAX-1 enhanced calcium cycling and contractility. The inhibitory effects of HAX-1 were abolished upon phosphorylation of phospholamban, which plays a fundamental role in controlling basal contractility and constitutes a key downstream effector of the beta-adrenergic signaling cascade. Mechanistically, HAX-1 promoted formation of phospholamban monomers, the active/inhibitory units of the calcium pump. Indeed, ablation of PLN rescued HAX-1 inhibition of contractility in vivo. Thus, HAX-1 represents a regulatory mechanism in cardiac calcium cycling and its responses to sympathetic stimulation, implicating its importance in calcium homeostasis and cell survival.
Collapse
|
21
|
Yap SV, Vafiadaki E, Strong J, Kontrogianni-Konstantopoulos A. HAX-1: a multifaceted antiapoptotic protein localizing in the mitochondria and the sarcoplasmic reticulum of striated muscle cells. J Mol Cell Cardiol 2009; 48:1266-79. [PMID: 19913549 DOI: 10.1016/j.yjmcc.2009.10.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 10/23/2009] [Accepted: 10/30/2009] [Indexed: 11/27/2022]
Abstract
HAX-1 comprises a family of ubiquitously expressed proteins with antiapoptotic properties. In the current study, we investigated HAX-1's temporospatial distribution in rat striated muscles during development and in adulthood. In cardiocytes, HAX-1 is organized at the level of Z-disks throughout embryogenesis and adulthood; however, in skeletal myofibers, it is in register with M-bands during embryonic and early postnatal life and Z-disks during late postnatal and adult life. Immunoelectron microscopy and subcellular fractionation demonstrated that HAX-1 proteins localize at the mitochondrial and sarcoplasmic reticulum (SR) membranes, as well as at sites where the two are closely apposed. Variants I and II selectively concentrate in the mitochondrial membranes, whereas variants III, IV, and V localize in both organelles, albeit to varying extents. Deletion analysis combined with cellular transfections indicated that elimination of HAX-1's NH(2)-terminus abolishes its mitochondrial targeting and attenuates its antiapoptotic capacity, while removal of its binding site for the SR protein phospholamban (PLN) prevents its translocation to the SR. Consistent with this, HAX-1 is preferentially lost from the SR of PLN-deficient hearts. Our findings are the first to present a comprehensive characterization of HAX-1's expression in striated muscles and to provide insights on the mechanisms through which it may modulate apoptosis.
Collapse
Affiliation(s)
- Solomon V Yap
- University of Maryland, School of Medicine, Department of Biochemistry and Molecular Biology, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
22
|
Fadeel B, Grzybowska E. HAX-1: a multifunctional protein with emerging roles in human disease. Biochim Biophys Acta Gen Subj 2009; 1790:1139-48. [PMID: 19524642 DOI: 10.1016/j.bbagen.2009.06.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/31/2009] [Accepted: 06/06/2009] [Indexed: 11/25/2022]
Abstract
HS-1-associated protein X-1 (HAX-1) was identified more than 10 years ago as a novel protein with ubiquitous tissue expression and a predominantly mitochondrial localization at the subcellular level. Recent studies have shown that homozygous mutations in the HAX1 gene are associated with autosomal recessive forms of severe congenital neutropenia (also known as Kostmann disease), and results from studies in mice and men are beginning to unravel a prominent role for HAX-1 in apoptosis signaling not only in the hematopoietic compartment, but also in the central nervous system. Moreover, several different cellular and viral binding partners of HAX-1 have been identified thus pointing toward a complex and multifunctional role of this protein. HAX-1 has also been shown to bind to the 3' untranslated regions of certain mRNAs and could therefore contribute to the regulation of transport and/or stability of such transcripts. The present review discusses the emerging and divergent roles of HAX-1, including its involvement in cell migration, apoptosis signaling, and mRNA surveillance. The importance of HAX-1 in human disease is also highlighted and outstanding questions that remain to be addressed are identified.
Collapse
Affiliation(s)
- Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | |
Collapse
|
23
|
Nuclear-cytoplasmic shuttling is not required for the Epstein-Barr virus EBNA-LP transcriptional coactivation function. J Virol 2009; 83:7109-16. [PMID: 19403674 DOI: 10.1128/jvi.00654-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) EBNA-LP is a transcriptional coactivator of EBNA2 that works though interaction with the promyelocytic leukemia nuclear-body-associated protein Sp100A. EBNA-LP localizes predominantly in the nucleus through the action of nuclear localization signals in the repeated regions of the protein. EBNA-LP has also been detected in the cytoplasm, and a previous study suggested that some of the EBNA-LP coactivation function is mediated by relocalizing histone deacetylase 4 (HDAC4) from the nucleus to the cytoplasm. Although EBNA-LP can be found in the cytoplasm, it has no obvious nuclear export signal, and there is no direct evidence for active shuttling between these cellular compartments. Whether active shuttling between the nucleus and cytoplasm is required for coactivation remains to be clarified. To address these issues, we tested a variety of EBNA-LP isoforms and mutants for nuclear-cytoplasmic shuttling activity in an interspecies heterokaryon assay and for the ability to associate with HDAC4. EBNA-LP isoforms smaller than 42 kDa shuttle efficiently in the heterokaryon assay via a crm-1-independent mechanism. In addition, no specific EBNA-LP domain that mediates nuclear export could be identified. In contrast, an EBNA-LP 62-kDa isoform does not demonstrate detectable shuttling in the heterokaryon assay yet still coactivates EBNA2 similarly to the smaller EBNA-LP isoforms. All of the EBNA-LP mutants tested, including the coactivation-deficient DeltaCR3 mutant and the nonshuttling 62-kDa isoform, were capable of associating with HDAC4. Taken together, our results suggest that simple diffusion may account for the nuclear export observed with smaller isoforms of EBNA-LP, that nuclear-cytoplasmic shuttling is not required for efficient EBNA-LP coactivation function, and that competence for HDAC4 association is not sufficient to mediate nuclear-cytoplasmic shuttling or EBNA-LP coactivation in the absence of a functional interaction with Sp100A.
Collapse
|
24
|
Vafiadaki E, Arvanitis DA, Pagakis SN, Papalouka V, Sanoudou D, Kontrogianni-Konstantopoulos A, Kranias EG. The anti-apoptotic protein HAX-1 interacts with SERCA2 and regulates its protein levels to promote cell survival. Mol Biol Cell 2008; 20:306-18. [PMID: 18971376 DOI: 10.1091/mbc.e08-06-0587] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cardiac contractility is regulated through the activity of various key Ca(2+)-handling proteins. The sarco(endo)plasmic reticulum (SR) Ca(2+) transport ATPase (SERCA2a) and its inhibitor phospholamban (PLN) control the uptake of Ca(2+) by SR membranes during relaxation. Recently, the antiapoptotic HS-1-associated protein X-1 (HAX-1) was identified as a binding partner of PLN, and this interaction was postulated to regulate cell apoptosis. In the current study, we determined that HAX-1 can also bind to SERCA2. Deletion mapping analysis demonstrated that amino acid residues 575-594 of SERCA2's nucleotide binding domain are required for its interaction with the C-terminal domain of HAX-1, containing amino acids 203-245. In transiently cotransfected human embryonic kidney 293 cells, recombinant SERCA2 was specifically targeted to the ER, whereas HAX-1 selectively concentrated at mitochondria. On triple transfections with PLN, however, HAX-1 massively translocated to the ER membranes, where it codistributed with PLN and SERCA2. Overexpression of SERCA2 abrogated the protective effects of HAX-1 on cell survival, after hypoxia/reoxygenation or thapsigargin treatment. Importantly, HAX-1 overexpression was associated with down-regulation of SERCA2 expression levels, resulting in significant reduction of apparent ER Ca(2+) levels. These findings suggest that HAX-1 may promote cell survival through modulation of SERCA2 protein levels and thus ER Ca(2+) stores.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
25
|
Forsman A, Rüetschi U, Ekholm J, Rymo L. Identification of intracellular proteins associated with the EBV-encoded nuclear antigen 5 using an efficient TAP procedure and FT-ICR mass spectrometry. J Proteome Res 2008; 7:2309-19. [PMID: 18457437 DOI: 10.1021/pr700769e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epstein-Barr virus nuclear antigen 5 (EBNA5) is one of the first viral proteins detected after primary EBV infection and has been shown to be required for efficient transformation of B lymphocytes. EBNA5 is a protein that has many suggested functions but the underlying biology remains to be clarified. To gain further insight into the biological roles of the proposed multifunctional EBNA5, we isolated EBNA5 containing protein complexes using a modified tandem affinity purification (TAP) method and identified the protein components by LC-MS/MS analysis of tryptic digests on a LTQ-FT-ICR mass spectrometer. The modified TAP tag contained a Protein A domain and a StrepTagII sequence separated by two Tobacco Etch Virus protease cleavage sites and was fused to the C-terminus of EBNA5. Our results confirmed the wide applicability of this two-step affinity purification strategy for purification of protein complexes in mammalian cells. A total of 147 novel putative EBNA5 interaction partners were identified, 37 of which were validated with LC-MS/MS in split-tag experiments or in co-immuno precipitates from HEK293 cell extracts. This subgroup included the Bcl2-associated Athanogene 2 (BAG2) co-chaperone involved in protein folding and renaturation, the 26S proteasome subunit 2 involved in regulation of ubiquitin/proteasome protein degradation, and the heterogeneous ribonucleoprotein M (hnRNP M) involved in pre-mRNA processing. These EBNA5 interactors were further verified by co-immunoprecipitations from cell extracts of three EBV-positive lymphoblastoid lines. The combination of the Hsp70, Hsc70, BAG2 and 26S proteasome subunit 2 interactors suggests that EBNA5 might have a functional relationship with protein quality control systems that recognize proteins with abnormal structures and either refold them to normal conformation or target them for degradation. Our study also confirms previously identified interactors including HA95, Hsp70, Hsc70, Hsp27, HAX-1, Prolyl 4-hydroxylase, S3a, and alpha- and beta-tubulin.
Collapse
Affiliation(s)
- Alma Forsman
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
26
|
Vafiadaki E, Papalouka V, Arvanitis DA, Kranias EG, Sanoudou D. The role of SERCA2a/PLN complex, Ca2+ homeostasis, and anti-apoptotic proteins in determining cell fate. Pflugers Arch 2008; 457:687-700. [DOI: 10.1007/s00424-008-0506-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 03/22/2008] [Indexed: 12/14/2022]
|
27
|
Ramsay AG, Keppler MD, Jazayeri M, Thomas GJ, Parsons M, Violette S, Weinreb P, Hart IR, Marshall JF. HS1-associated protein X-1 regulates carcinoma cell migration and invasion via clathrin-mediated endocytosis of integrin alphavbeta6. Cancer Res 2007; 67:5275-84. [PMID: 17545607 DOI: 10.1158/0008-5472.can-07-0318] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Enhanced expression levels of integrin alphavbeta6 have been linked to more aggressive invasive carcinoma cell behavior and poorer clinical prognosis. However, how alphavbeta6 determines invasion and the dynamics of integrin alphavbeta6 regulation in tumor cells are poorly understood. We have identified the 35-kDa HS1-associated protein X-1 (HAX-1) protein as a novel binding partner of the beta6 cytoplasmic tail using a yeast two-hybrid screen. We show that alphavbeta6-dependent migration is blocked following small interfering RNA (siRNA)-mediated depletion of HAX-1 in oral squamous cell carcinoma cell lines. Using both siRNA and membrane-permeable peptides, we show that alphavbeta6-dependent migration and invasion require HAX-1 to bind directly to beta6 and thereby regulate clathrin-mediated endocytosis of alphavbeta6 integrins. Progression of oral cancer is associated with enhanced expression of alphavbeta6 and HAX-1 proteins in patient tissue. This report establishes that integrin endocytosis is required for alphavbeta6-dependent carcinoma cell motility and invasion and suggests that this process is an important mechanism in cancer progression.
Collapse
Affiliation(s)
- Alan G Ramsay
- Centre for Tumour Biology, Institute of Cancer and Cancer Research UK Clinical Centre, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Garibal J, Hollville E, Bell AI, Kelly GL, Renouf B, Kawaguchi Y, Rickinson AB, Wiels J. Truncated form of the Epstein-Barr virus protein EBNA-LP protects against caspase-dependent apoptosis by inhibiting protein phosphatase 2A. J Virol 2007; 81:7598-607. [PMID: 17494066 PMCID: PMC1933342 DOI: 10.1128/jvi.02435-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 05/03/2007] [Indexed: 12/31/2022] Open
Abstract
The Epstein-Barr virus (EBV)-encoded leader protein, EBNA-LP, strongly activates the EBNA2-mediated transcriptional activation of cellular and viral genes and is therefore important for EBV-induced B-cell transformation. However, a truncated form of EBNA-LP is produced in cells infected with variant EBV strains lacking EBNA2 due to a genetic deletion. The function of this truncated form is unknown. We show here that some Burkitt's lymphoma cells harboring defective EBV strains are specifically resistant to the caspase-dependent apoptosis induced by verotoxin 1 (VT-1) or staurosporine. These cells produced low-molecular-weight Y1Y2-truncated isoforms of EBNA-LP, which were partly localized in the cytoplasm. The transfection of sensitive cells with constructs encoding truncated EBNA-LP isoforms, but not full-length EBNA-LP, induced resistance to caspase-mediated apoptosis. Furthermore, VT-1 induced protein phosphatase 2A (PP2A) activation in sensitive cells but not in resistant cells, in which the truncated EBNA-LP interacted with this protein. Thus, the resistance to apoptosis observed in cells harboring defective EBV strains most probably results from the inactivation of PP2A via interactions with low-molecular-weight Y1Y2-truncated EBNA-LP isoforms.
Collapse
Affiliation(s)
- Julie Garibal
- UMR 8126 CNRS, University Paris-Sud, Institut Gustave Roussy, Rue Camille Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Vafiadaki E, Sanoudou D, Arvanitis DA, Catino DH, Kranias EG, Kontrogianni-Konstantopoulos A. Phospholamban Interacts with HAX-1, a Mitochondrial Protein with Anti-apoptotic Function. J Mol Biol 2007; 367:65-79. [PMID: 17241641 DOI: 10.1016/j.jmb.2006.10.057] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/11/2006] [Accepted: 10/16/2006] [Indexed: 01/29/2023]
Abstract
Phospholamban (PLN) is a key regulator of Ca(2+) homeostasis and contractility in the heart. Its regulatory effects are mediated through its interaction with the sarcoplasmic reticulum Ca(2+)-ATPase, (SERCA2a), resulting in alterations of its Ca(2+)-affinity. To identify additional proteins that may interact with PLN, we used the yeast-two-hybrid system to screen an adult human cardiac cDNA library. HS-1 associated protein X-1 (HAX-1) was identified as a PLN-binding partner. The minimal binding regions were mapped to amino acid residues 203-245 for HAX-1 and residues 16-22 for PLN. The interaction between the two proteins was confirmed using GST-HAX-1, bound to the glutathione-matrix, which specifically adsorbed native PLN from human or mouse cardiac homogenates, while in reciprocal binding studies, recombinant His-HAX-1 bound GST-PLN. Kinetic studies using surface plasmon resonance yielded a K(D) of approximately 1 muM as the binding affinity for the PLN/HAX-1 complex. Phosphorylation of PLN by cAMP-dependent protein kinase reduced binding to HAX-1, while increasing concentrations of Ca(2+) diminished the PLN/HAX-1 interaction in a dose-dependent manner. HAX-1 concentrated to mitochondria, but upon transient co-transfection of HEK 293 cells with PLN, HAX-1 redistributed and co-localized with PLN at the endoplasmic reticulum. Analysis of the anti-apoptotic function of HAX-1 revealed that the presence of PLN enhanced the HAX-1 protective effects from hypoxia/reoxygenation-induced cell death. These findings suggest a possible link between the Ca(2+) handling by the sarcoplasmic reticulum and cell survival mediated by the PLN/HAX-1 interaction.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Center for Basic Research, Foundation for Biomedical Research of the Academy of Athens, Soranou Efesiou 4, Athens 115 27, Greece
| | | | | | | | | | | |
Collapse
|
30
|
Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schäffer AA, Rathinam C, Boztug K, Schwinzer B, Rezaei N, Bohn G, Melin M, Carlsson G, Fadeel B, Dahl N, Palmblad J, Henter JI, Zeidler C, Grimbacher B, Welte K. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 2006; 39:86-92. [PMID: 17187068 DOI: 10.1038/ng1940] [Citation(s) in RCA: 341] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Accepted: 11/13/2006] [Indexed: 11/09/2022]
Abstract
Autosomal recessive severe congenital neutropenia (SCN) constitutes a primary immunodeficiency syndrome associated with increased apoptosis in myeloid cells, yet the underlying genetic defect remains unknown. Using a positional cloning approach and candidate gene evaluation, we identified a recurrent homozygous germline mutation in HAX1 in three pedigrees. After further molecular screening of individuals with SCN, we identified 19 additional affected individuals with homozygous HAX1 mutations, including three belonging to the original pedigree described by Kostmann. HAX1 encodes the mitochondrial protein HAX1, which has been assigned functions in signal transduction and cytoskeletal control. Here, we show that HAX1 is critical for maintaining the inner mitochondrial membrane potential and protecting against apoptosis in myeloid cells. Our findings suggest that HAX1 is a major regulator of myeloid homeostasis and underline the significance of genetic control of apoptosis in neutrophil development.
Collapse
Affiliation(s)
- Christoph Klein
- Department of Pediatric Hematology/Oncology, Hannover Medical School, Carl Neuberg Strasse 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lauriat TL, Dracheva S, Kremerskothen J, Duning K, Haroutunian V, Buxbaum JD, Hyde TM, Kleinman JE, McInnes LA. Characterization of KIAA0513, a novel signaling molecule that interacts with modulators of neuroplasticity, apoptosis, and the cytoskeleton. Brain Res 2006; 1121:1-11. [PMID: 17010949 DOI: 10.1016/j.brainres.2006.08.099] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/23/2006] [Accepted: 08/24/2006] [Indexed: 11/19/2022]
Abstract
KIAA0513 was previously identified as upregulated in the dorsolateral prefrontal cortex of subjects with schizophrenia by microarray analysis. In the present study, the differential expression in the schizophrenic subjects was confirmed by quantitative RT-PCR. The limited homology to proteins of known function and lack of functional domains in the encoded protein have made it difficult to predict a function for KIAA0513. We used in situ hybridization, RNA blots, western blots, and immunocytochemistry to examine KIAA0513 expression in normal brain and peripheral tissues. The gene is ubiquitously expressed but is enriched in the brain, particularly in the cerebellum. Finally, interacting proteins were identified using a yeast two-hybrid screen to functionally characterize the protein. KIAA0513 interacts with KIBRA, HAX-1, and INTS4, which also interact with proteins involved in neuroplasticity, apoptosis, and cytoskeletal regulation. Therefore, KIAA0513 is likely to be involved in signaling pathways related to these processes.
Collapse
Affiliation(s)
- Tara L Lauriat
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hippe A, Bylaite M, Chen M, von Mikecz A, Wolf R, Ruzicka T, Walz M. Expression and tissue distribution of mouse Hax1. Gene 2006; 379:116-26. [PMID: 16814492 DOI: 10.1016/j.gene.2006.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 04/20/2006] [Accepted: 04/28/2006] [Indexed: 10/24/2022]
Abstract
HAX1 is an ubiquitously expressed human gene. Though a number of cellular and viral proteins are known to interact with HAX1, its function is still not completely understood. On the basis of these identified interaction partners, HAX1 seems to play a role in apoptosis and the organization of the cytoskeleton. The cDNAs for human and mouse Hax1 share 86% identity and 80% identity at the protein level, suggesting a similar functional importance. To date, no conclusive data on the tissue specific expression of the murine Hax1 are available and only one interaction partner has been identified. Here, we show a detailed expression analysis for the murine ortholog by RT-PCR, Northern and Western blot. Furthermore, the distribution of Hax1 within different mouse tissues was studied by immunohistochemistry (IHC). In general, we found a good correlation between the results obtained from different detection techniques. Similar to its human counterpart, mouse Hax1 seems to be ubiquitously expressed. At the RNA level, we found the highest expression of Hax1 in liver, kidney and testis. In sharp contrast to the human HAX1 which is highly expressed in skeletal muscle, the mouse ortholog was detected only at very low levels. Using a specific antibody, we detected Hax1 in the majority of mouse tissues by IHC. Interestingly, the most prominent expression of Hax1 was found in epithelial, endothelial and muscle cells. Surprisingly, thymus, spleen and pancreas did not show detectable immunostaining. Furthermore, we have studied the subcellular localisation of Hax1 in a keratinocyte and a neuronal cell line by immunofluorescence. We found Hax1 to be localised mainly in the cytoplasm and detected a partial colocalisation with mitochondria. The results presented here summarize for the first time the expression of the murine Hax1 in different tissues and two cell lines. Further studies will elucidate the functional importance of this protein in individual cell types with respect to structural aspects, cell mobility and apoptosis.
Collapse
Affiliation(s)
- Andreas Hippe
- Department of Dermatology, Heinrich-Heine University, Moorenstrasse 5, D-40225 Duesseldorf, Germany.
| | | | | | | | | | | | | |
Collapse
|
33
|
Han Y, Chen YS, Liu Z, Bodyak N, Rigor D, Bisping E, Pu WT, Kang PM. Overexpression of HAX-1 Protects Cardiac Myocytes From Apoptosis Through Caspase-9 Inhibition. Circ Res 2006; 99:415-23. [PMID: 16857965 DOI: 10.1161/01.res.0000237387.05259.a5] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Caspase-9 is a critical regulator of mitochondria-mediated apoptosis. We found that adult cardiac myocytes, but not nonmyocytes, have high caspase-9 expression, and exhibit relative resistance to caspase-9–induced cell death. Thus, we hypothesized that cardiac myocytes possess factors that resist apoptosis. Through a yeast two-hybrid screening of adult human heart cDNA library, we identified HS-1 associated protein-1 (HAX-1), a 35-kD BH-domain containing protein localized to the mitochondria as one of the molecules that interacts with caspase-9. Recombinant HAX-1 protein inhibited caspase-9 processing in a dose-dependent manner in a cell-free caspase activation assay. Overexpression of HAX-1 in adult cardiac myocytes conferred 30% protection from apoptosis as compared with the control. Suppression of HAX-1 expression using siRNA-HAX-1 resulted in significant cell death in adult cardiac myocytes, suggesting the importance of HAX-1 in cardiac myocyte resistance to apoptotic stimulation. On apoptotic stimulation, some caspase-9 translocated to the mitochondria and co-localized with HAX-1, confirming the spatial proximity of caspase-9 and HAX-1. In summary, HAX-1 is a newly identified anti-apoptotic factor and its mechanism of action is through caspase-9 inhibition.
Collapse
Affiliation(s)
- Yuchi Han
- Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Mass 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Oberndorfer I, Schmid D, Geisberger R, Achatz-Straussberger G, Crameri R, Lamers M, Achatz G. HS1-associated protein X-1 interacts with membrane-bound IgE: impact on receptor-mediated internalization. THE JOURNAL OF IMMUNOLOGY 2006; 177:1139-45. [PMID: 16818771 DOI: 10.4049/jimmunol.177.2.1139] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Engagement of the BCR triggers signals that control affinity maturation, memory induction, differentiation, and various other physiological processes in B cells. In previous work, we showed that truncation of the cytoplasmic tail of membrane-bound Ig (mIg)E in vivo resulted in lower serum IgE levels, decreased numbers of IgE-secreting plasma cells, and the abrogation of specific secondary responses correlating with a defect in the selection of high-affinity Abs during the germinal center reaction. We concluded that the Ag receptor is necessary at all times during Ab responses not only for the maturation process, but also for the expansion of Ag-specific B cells. Based on these results, we asked whether the cytoplasmic tail of mIgE, or specific proteins binding the cytoplasmic tail in vivo commit a signal transduction accompanying the B cell along its differentiation process. In this study, we present the identification of HS1-associated protein X-1 as a novel protein interacting with the cytoplasmic tail of mIgE. ELISA, surface plasmon resonance analysis, and coimmunoprecipitation experiments confirmed the specific interaction in vitro. In functional assays, we clearly showed that HS1-associated protein X-1 expression levels influence the efficiency of BCR-mediated Ag internalization.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibody Affinity
- Bacteriophages/genetics
- Cell Line, Tumor
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cytoplasm/immunology
- Cytoplasm/metabolism
- Endocytosis/genetics
- Endocytosis/immunology
- Female
- Immunoglobulin E/metabolism
- Immunoprecipitation
- Intracellular Signaling Peptides and Proteins
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Peptide Fragments/metabolism
- Protein Interaction Mapping
- Proteins/genetics
- Proteins/isolation & purification
- Proteins/metabolism
- RNA, Small Interfering/genetics
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/physiology
- Recombinant Proteins/genetics
- Recombinant Proteins/isolation & purification
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Iris Oberndorfer
- Department of Molecular Biology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
35
|
Grzybowska EA, Sarnowska E, Konopiński R, Wilczyńska A, Sarnowski TJ, Siedlecki JA. Identification and expression analysis of alternative splice variants of the rat Hax-1 gene. Gene 2006; 371:84-92. [PMID: 16516414 DOI: 10.1016/j.gene.2005.11.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 11/14/2005] [Accepted: 11/16/2005] [Indexed: 11/21/2022]
Abstract
Hax-1 protein, which has been studied in mice and humans, shows a potent anti-apoptotic activity and is involved in regulation of cell motility. Cloning of the rat Hax-1 cDNA has revealed seven alternative transcripts, which differ mostly in their 5' region. Alternative splicing concerns exon 1, skipped in 5 transcripts, intron 1 which is partially retained in these transcripts, exon 2, which can be partially skipped, and intron 2, retained in one variant. The existence of different splicing variants was confirmed by exon-junction-specific RT-PCR and RNase protection assay. Analysis of expression indicates that overall Hax-1 mRNA level is relatively low in most tissues and very high in testes, and that the expression pattern of the variants is similar in different tissues. Presence of different transcripts implies the existence of several protein isoforms, with three putative start codons. The existence of at least three protein isoforms was confirmed by Western blot. Interestingly, high mRNA level in testes does not translate into high protein level, suggesting the existence of tissue-specific translational regulation or regulated protein degradation.
Collapse
|
36
|
Vernon SD, Whistler T, Cameron B, Hickie IB, Reeves WC, Lloyd A. Preliminary evidence of mitochondrial dysfunction associated with post-infective fatigue after acute infection with Epstein Barr virus. BMC Infect Dis 2006; 6:15. [PMID: 16448567 PMCID: PMC1373655 DOI: 10.1186/1471-2334-6-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 01/31/2006] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Acute infectious diseases are typically accompanied by non-specific symptoms including fever, malaise, irritability and somnolence that usually resolve on recovery. However, in some individuals these symptoms persist in what is commonly termed post-infective fatigue. The objective of this pilot study was to determine the gene expression correlates of post-infective fatigue following acute Epstein Barr virus (EBV) infection. METHODS We followed 5 people with acute mononucleosis who developed post-infective fatigue of more than 6 months duration and 5 HLA-matched control subjects who recovered within 3 months. Subjects had peripheral blood mononuclear cell (PBMC) samples collected at varying time points including at diagnosis, then every 2 weeks for 3 months, then every 3 months for a year. Total RNA was extracted from the PBMC samples and hybridized to microarrays spotted with 3,800 oligonucleotides. RESULTS Those who developed post-infective fatigue had gene expression profiles indicative of an altered host response during acute mononucleosis compared to those who recovered uneventfully. Several genes including ISG20 (interferon stimulated gene), DNAJB2 (DnaJ [Hsp40] homolog and CD99), CDK8 (cyclin-dependent kinase 8), E2F2 (E2F transcription factor 2), CDK8 (cyclin-dependent kinase 8), and ACTN2 (actinin, alpha 2), known to be regulated during EBV infection, were differentially expressed in post-infective fatigue cases. Several of the differentially expressed genes affect mitochondrial functions including fatty acid metabolism and the cell cycle. CONCLUSION These preliminary data provide insights into alterations in gene transcripts associated with the varied clinical outcomes from acute infectious mononucleosis.
Collapse
Affiliation(s)
- Suzanne D Vernon
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333, USA
| | - Toni Whistler
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333, USA
| | | | - Ian B Hickie
- Brain and Mind Research Institute, University of Sydney, New South Wales, Sydney 2006, Australia
| | - William C Reeves
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, Georgia 30333, USA
| | - Andrew Lloyd
- University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
37
|
Yedavalli VSRK, Shih HM, Chiang YP, Lu CY, Chang LY, Chen MY, Chuang CY, Dayton AI, Jeang KT, Huang LM. Human immunodeficiency virus type 1 Vpr interacts with antiapoptotic mitochondrial protein HAX-1. J Virol 2005; 79:13735-46. [PMID: 16227293 PMCID: PMC1262574 DOI: 10.1128/jvi.79.21.13735-13746.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Human immunodeficiency virus type 1 viral protein R (Vpr) is required for viral pathogenesis and has been implicated in T-cell apoptosis through its activation of caspase 3 and caspase 9 and perturbation of mitochondrial membrane potential. To understand better Vpr-mitochondria interaction, we report here the identification of antiapoptotic mitochondrial protein HAX-1 as a novel Vpr target. We show that Vpr and HAX-1 physically associate with each other. Overexpression of Vpr in cells dislocates HAX-1 from its normal residence in mitochondria and creates mitochondrion instability and cell death. Conversely, overexpression of HAX-1 suppressed the proapoptotic activity of Vpr.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, Maryland 20892-0460, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ling PD, Peng RS, Nakajima A, Yu JH, Tan J, Moses SM, Yang WH, Zhao B, Kieff E, Bloch KD, Bloch DB. Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J 2005; 24:3565-75. [PMID: 16177824 PMCID: PMC1276704 DOI: 10.1038/sj.emboj.7600820] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 08/25/2005] [Indexed: 12/15/2022] Open
Abstract
The Epstein-Barr virus (EBV) EBNA-LP protein is important for EBV-mediated B-cell immortalization and is a potent gene-specific coactivator of the viral transcriptional activator, EBNA2. The mechanism(s) by which EBNA-LP functions as a coactivator remains an important question in the biology of EBV-induced B-cell immortalization. In this study, we found that EBNA-LP interacts with the promyelocytic leukemia nuclear body (PML NB)-associated protein Sp100 and displaces Sp100 and heterochromatin protein 1alpha (HP1alpha) from PML NBs. Interaction between EBNA-LP and Sp100 was mediated through conserved region 3 in EBNA-LP and the PML NB targeting domain in Sp100. Overexpression of Sp100 lacking the N-terminal PML NB targeting domain, but not a mutant form of Sp100 lacking the HP1alpha interaction domain, was sufficient to coactivate EBNA2 in a gene-specific manner independent of EBNA-LP. These findings suggest that Sp100 is a major mediator of EBNA-LP coactivation. These studies indicate that modulation of PML NB-associated proteins may be important for establishment of latent viral infections, and also identify a convenient model system to investigate the functions of Sp100.
Collapse
Affiliation(s)
- Paul D Ling
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Rong Sheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Ayako Nakajima
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Jiang H Yu
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Jie Tan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Stephanie M Moses
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Wei-Hong Yang
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Bo Zhao
- Departments of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elliott Kieff
- Departments of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kenneth D Bloch
- Department of Medicine, Harvard Medical School and Cardiovascular Research Center of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| | - Donald B Bloch
- Department of Medicine, Harvard Medical School and Center for Immunology and Inflammatory Diseases of the General Medical Services, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
39
|
Peng R, Moses SC, Tan J, Kremmer E, Ling PD. The Epstein-Barr virus EBNA-LP protein preferentially coactivates EBNA2-mediated stimulation of latent membrane proteins expressed from the viral divergent promoter. J Virol 2005; 79:4492-505. [PMID: 15767449 PMCID: PMC1061541 DOI: 10.1128/jvi.79.7.4492-4505.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanistic contribution of the Epstein-Barr virus (EBV) EBNA-LP protein to B-cell immortalization remains an enigma. However, previous studies have indicated that EBNA-LP may contribute to immortalization by enhancing EBNA2-mediated transcriptional activation of the LMP-1 gene. To gain further insight into the potential role EBNA-LP has in EBV-mediated B-cell immortalization, we asked whether it is a global or gene-specific coactivator of EBNA2 and whether coactivation requires interaction between these proteins. In type I Burkitt's lymphoma cells, we found that EBNA-LP strongly coactivated EBNA2 stimulation of LMP-1 and LMP2B RNAs, which are expressed from the viral divergent promoter. Surprisingly, the viral LMP2A gene and cellular CD21 and Hes-1 genes were induced by EBNA2 but showed no further induction after EBNA-LP coexpression. We also found that EBNA-LP did not stably interact with EBNA2 in coimmunoprecipitation assays, even though the conditions were adequate to observe specific interactions between EBNA2 and its cellular cofactor, CBF1. Colocalization between EBNA2 and EBNA-LP was not detectable in EBV-transformed cell lines or transfected type I Burkitt's cells. Finally, no significant interactions between EBNA2 and EBNA-LP were found with mammalian two-hybrid assays. From this data, we conclude that EBNA-LP is not a global coactivator of EBNA2 targets, but it preferentially coactivates EBNA2 stimulation of the viral divergent promoter. While this may require specific transient interactions between these proteins that only occur in the context of the divergent promoter, our data strongly suggest that EBNA-LP also cooperates with EBNA2 through mechanisms that do not require direct or indirect complex formation between these proteins.
Collapse
Affiliation(s)
- Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
40
|
Cilenti L, Soundarapandian MM, Kyriazis GA, Stratico V, Singh S, Gupta S, Bonventre JV, Alnemri ES, Zervos AS. Regulation of HAX-1 Anti-apoptotic Protein by Omi/HtrA2 Protease during Cell Death. J Biol Chem 2004; 279:50295-301. [PMID: 15371414 DOI: 10.1074/jbc.m406006200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Omi/HtrA2 is a nuclear-encoded mitochondrial serine protease that has a pro-apoptotic function in mammalian cells. Upon induction of apoptosis, Omi translocates to the cytoplasm and participates in caspase-dependent apoptosis by binding and degrading inhibitor of apoptosis proteins. Omi can also initiate caspase-independent apoptosis in a process that relies entirely on its ability to function as an active protease. To investigate the mechanism of Omi-induced apoptosis, we set out to isolate novel substrates that are cleaved by this protease. We identified HS1-associated protein X-1 (HAX-1), a mitochondrial anti-apoptotic protein, as a specific Omi interactor that is cleaved by Omi both in vitro and in vivo. HAX-1 degradation follows Omi activation in cells treated with various apoptotic stimuli. Using a specific inhibitor of Omi, HAX-1 degradation is prevented and cell death is reduced. Cleavage of HAX-1 was not observed in a cell line derived from motor neuron degeneration 2 mice that carry a mutated form of Omi that affects its proteolytic activity. Degradation of HAX-1 is an early event in the apoptotic process and occurs while Omi is still confined in the mitochondria. Our results suggest that Omi has a unique pro-apoptotic function in mitochondria that involves removal of the HAX-1 anti-apoptotic protein. This function is distinct from its ability to activate caspase-dependent apoptosis in the cytoplasm by degrading inhibitor of apoptosis proteins.
Collapse
Affiliation(s)
- Lucia Cilenti
- Biomolecular Science Center, Burnett College of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ortiz DF, Moseley J, Calderon G, Swift AL, Li S, Arias IM. Identification of HAX-1 as a protein that binds bile salt export protein and regulates its abundance in the apical membrane of Madin-Darby canine kidney cells. J Biol Chem 2004; 279:32761-70. [PMID: 15159385 DOI: 10.1074/jbc.m404337200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette (ABC)-type proteins are essential for bile formation in vertebrate liver. BSEP, MDR1, MDR2, and MRP2 ABC transporters are targeted to the apical (canalicular) membrane of hepatocytes where they execute ATP-dependent transport of bile acids, drugs, amphipathic cations, phospholipids, and conjugated organic anions, respectively. Changes in activity and abundance of transporters in the canalicular membrane regulate bile flow; however, little is known regarding cellular proteins that bind ABC transporters and regulate their trafficking. A yeast two-hybrid screen identified HAX-1 as a binding partner for BSEP, MDR1, and MDR2. The interactions were validated biochemically by glutathione S-transferase pull-down and co-immunoprecipitation assays. BSEP and HAX-1 were over-represented in rat liver subcellular fractions enriched for canalicular membrane vesicles, microsomes, and clathrin-coated vesicles. HAX-1 was bound to BSEP, MDR1, and MDR2 in canalicular membrane vesicles and co-localized with BSEP and MDR1 in the apical membrane of Madin-Darby canine kidney (MDCK) cells. RNA interference of HAX-1 increased BSEP levels in the apical membrane of MDCK cells by 71%. Pulse-chase studies indicated that HAX-1 depletion did not affect BSEP translation, post-translational modification, delivery to the plasma membrane, or half-life. HAX-1 depletion resulted in an increased peak of metabolically labeled apical membrane BSEP at 4 h and enhanced retention at 6 and 9 h. HAX-1 also interacts with cortactin. Expression of dominant negative cortactin increased steady state levels of BSEP 2-fold in the apical membrane of MDCK cells, as did expression of dominant negative EPS15. These findings suggest that HAX-1 and cortactin participate in BSEP internalization from the apical membrane.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 11
- ATP-Binding Cassette Transporters/metabolism
- Adaptor Proteins, Signal Transducing
- Amino Acid Sequence
- Animals
- Bile Acids and Salts/chemistry
- Biological Transport
- Biotinylation
- Cations
- Cell Line
- Cell Membrane/metabolism
- Cortactin
- Dogs
- Escherichia coli/metabolism
- Genes, Dominant
- Glutathione Transferase/metabolism
- Hepatocytes/metabolism
- Humans
- Immunoblotting
- Liver/metabolism
- Microfilament Proteins/metabolism
- Microscopy, Fluorescence
- Models, Biological
- Molecular Sequence Data
- Phospholipids/chemistry
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Biosynthesis
- Protein Processing, Post-Translational
- Protein Transport
- Proteins/chemistry
- Proteins/physiology
- RNA Interference
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Subcellular Fractions
- Time Factors
- Transfection
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Daniel F Ortiz
- Department of Physiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Mirmohammadsadegh A, Tartler U, Michel G, Baer A, Walz M, Wolf R, Ruzicka T, Hengge UR. HAX-1, identified by differential display reverse transcription polymerase chain reaction, is overexpressed in lesional psoriasis. J Invest Dermatol 2003; 120:1045-51. [PMID: 12787133 DOI: 10.1046/j.1523-1747.2003.12247.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Psoriasis is a chronic inflammatory disease characterized by epidermal hyperplasia and an inflammatory infiltrate. The normal differentiation from basal to granular keratinocytes with subsequent apoptosis and cornification is disturbed in the akanthotic epidermis. This could be due to both an excess of mitogenic stimuli with hyperproliferation and/or resistance to apoptosis. By mRNA differential display we found HAX-1 to be overexpressed in lesional psoriatic skin. The overexpression of HAX-1 was verified at the mRNA level by Northern blot and in situ hybridization, as well as at the protein level by Western blot and immunohistochemistry. Detection of HAX-1 in mRNA from different tissues showed strong expression in the brain, pancreas, skeletal muscle, and heart. In contrast to primary keratinocytes and melanocytes we found HAX-1 highly expressed in human immortalized keratinocytes (HaCaT) and different melanoma cell lines. In HaCaT cells as a model for psoriatic keratinocytes we found an increased ultraviolet-induced apoptosis after expression of HAX-1 antisense mRNA. In psoriasis, the epidermal differentiation could be disturbed due to the increased expression of HAX-1 and hence a prolonged resistance to terminal differentiation. Antiapoptotic mechanisms are an emerging concept for the understanding of the pathogenesis of this disease possibly leading to clinical applications.
Collapse
|
43
|
Matsuda G, Nakajima K, Kawaguchi Y, Yamanashi Y, Hirai K. Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) forms complexes with a cellular anti-apoptosis protein Bcl-2 or its EBV counterpart BHRF1 through HS1-associated protein X-1. Microbiol Immunol 2003; 47:91-9. [PMID: 12636258 DOI: 10.1111/j.1348-0421.2003.tb02790.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) plays a critical role in EBV-induced transformation. An earlier report (Y. Kawaguchi et al., J. Virol. 74: 10104-10111, 2000) showed that EBNA-LP interacts with a cellular protein HS1-associated protein X-1 (HAX-1). The predicted amino acid sequence of HAX-1 exhibits similarity to that of another cellular protein Nip3 which has been shown to interact with cellular and viral anti-apoptotic proteins such as Bcl-2 and BHRF1, an EBV homolog of Bcl-2. Here we investigated whether HAX-1, like Nip3, interacts with Bcl-2 proteins and report the following. (i) A purified chimeric protein consisting of gluthathione S-transferase (GST) fused to BHRF1 (GST-BHRF1) or Bcl-2 (GST-Bcl-2) specifically pulled down HAX-1 transiently expressed in COS-7 cells. (ii) GST-BHRF1 or GST-Bcl-2 was not able to pull down EBNA-LP transiently expressed in COS-7 cells, whereas each of the GST fusion proteins formed complexes with EBNA-LP in the presence of RAX-1. These results indicated that EBNA-LP interacts with the viral and cellular Bcl-2 proteins through HAX-1, suggesting that EBNA-LP possesses a potential function in the regulation of apoptosis in EBV-infected cells.
Collapse
Affiliation(s)
- Go Matsuda
- Department of Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | |
Collapse
|
44
|
Middeldorp JM, Brink AATP, van den Brule AJC, Meijer CJLM. Pathogenic roles for Epstein-Barr virus (EBV) gene products in EBV-associated proliferative disorders. Crit Rev Oncol Hematol 2003; 45:1-36. [PMID: 12482570 DOI: 10.1016/s1040-8428(02)00078-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with a still growing spectrum of clinical disorders, ranging from acute and chronic inflammatory diseases to lymphoid and epithelial malignancies. Based on a combination of in vitro and in vivo findings, EBV is thought to contribute in the pathogenesis of these diseases. The different EBV gene expression patterns in the various disorders, suggest different EBV-mediated pathogenic mechanisms. In the following pages, an overview of the biology of EBV-infection is given and functional aspects of EBV-proteins are discussed and their putative role in the various EBV-associated disorders is described. EBV gene expression patterns and possible pathogenic mechanisms are discussed. In addition, expression of the cellular genes upregulated by EBV in vitro is discussed, and a comparison with the in vivo situation is made.
Collapse
Affiliation(s)
- Jaap M Middeldorp
- Department of Pathology, Vrije Universiteit Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
45
|
McCann EM, Kelly GL, Rickinson AB, Bell AI. Genetic analysis of the Epstein-Barr virus-coded leader protein EBNA-LP as a co-activator of EBNA2 function. J Gen Virol 2001; 82:3067-3079. [PMID: 11714985 DOI: 10.1099/0022-1317-82-12-3067] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Co-operation between the Epstein-Barr virus (EBV)-coded leader protein EBNA-LP and the nuclear antigen EBNA2 appears to be critical for efficient virus-induced B cell transformation. Here we report the genetic analysis of EBNA-LP function using two transient co-transfection assays of co-operativity, activation of latent membrane protein 1 (LMP1) expression from a resident EBV genome in Akata-BL cells and activation of an EBNA2-responsive reporter construct. Small deletions were introduced into each of five conserved regions (CRs) of EBNA-LP sequence present in type 1 and type 2 EBV strains and in several primate lymphocryptovirus EBNA-LP homologues. Deletions within all three CRs in the EBNA-LP W1W2 repeat domain completely abrogated function, through inhibition of nuclear localization in the cases of CR1 and CR2 but not of CR3; deletions within CR4 and CR5 in the Y1Y2 unique domain had relatively little effect, yet loss of the whole Y2 sequence blocked activity. Alanine substitution of serine residues within potential phosphorylation sites identified two mutants of particular interest. Substitution of three such residues (S34,36,63) within W1W2 not only abrogated EBNA-LP activity but was associated with a complete loss of EBNA2 detectability in co-transfected cells, implying possible destabilization of the co-expressed EBNA2 protein. More importantly the individual substitution of S36 completely blocked EBNA-LP/EBNA2 co-operativity while retaining EBNA2 expression. We infer critical roles for the CR3 domain and for the S36 residue in EBNA-LP's co-operative function.
Collapse
Affiliation(s)
- Eamon M McCann
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK1
| | - Gemma L Kelly
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK1
| | - Alan B Rickinson
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK1
| | - Andrew I Bell
- CRC Institute for Cancer Studies, The University of Birmingham, Edgbaston, Birmingham B15 2TA, UK1
| |
Collapse
|