1
|
Porto PS, Rivera A, Moonrinta R, Wobus CE. Entry and egress of human astroviruses. Adv Virus Res 2023; 117:81-119. [PMID: 37832992 DOI: 10.1016/bs.aivir.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Astroviruses encapsidate a positive-sense, single-stranded RNA genome into ∼30nm icosahedral particles that infect a wide range of mammalian and avian species, but their biology is not well understood. Human astroviruses (HAstV) are divided into three clades: classical HAstV serotypes 1-8, and novel or non-classical HAstV of the MLB and VA clades. These viruses are part of two genogroups and phylogenetically cluster with other mammalian astroviruses, highlighting their zoonotic potential. HAstV are a highly prevalent cause of nonbacterial gastroenteritis, primarily in children, the elderly and immunocompromised. Additionally, asymptomatic infections and extraintestinal disease (e.g., encephalitis), are also observed, mostly in immunocompetent or immunocompromised individuals, respectively. While these viruses are highly prevalent, no approved vaccines or antivirals are available to prevent or treat infections. This is in large part due to their understudied nature and the limited understanding of even very basic features of their life cycle and pathogenesis at the cellular and organismal level. This review will summarize molecular features of human astrovirus biology, pathogenesis, and tropism, and then focus on two stages of the viral life cycle, namely entry and egress, since these are proven targets for therapeutic interventions. We will further highlight gaps in knowledge in hopes of stimulating future research into these understudied viruses.
Collapse
Affiliation(s)
- Pedro Soares Porto
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Andres Rivera
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Rootjikarn Moonrinta
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United states.
| |
Collapse
|
2
|
Pankovics P, Boros Á, László Z, Szekeres S, Földvári G, Altan E, Delwart E, Reuter G. Genome characterization, prevalence and tissue distribution of astrovirus, hepevirus and norovirus among wild and laboratory rats (Rattus norvegicus) and mice (Mus musculus) in Hungary. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104942. [PMID: 34044191 DOI: 10.1016/j.meegid.2021.104942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022]
Abstract
Rodents including rats are reservoir of several pathogens capable of affecting human health. In this study, faecal and different organ specimens from free-living Norway rats (Rattus norvegicus) (N = 18) and faecal samples from laboratory rodents (rats N = 21 and mice N = 20) collected from different geographic areas in Hungary between 2017 and 2020 were investigated by viral metagenomics and conventional RT-PCR methods. The complete genome of three different RNA viruses, rat astrovirus, rat norovirus and rat hepevirus were characterized and analysed in detail. Rat norovirus was detected in faecal (17.6%, 3/17) and kidney (7.1%, 1/14) samples; rat astrovirus in faecal (23.5%, 4/17) and spleen (13.3%, 2/15) samples, and rat hepevirus in 43% to 67% the faecal, liver, kidney, lung, heart, muscle, brain and blood samples from Norway rats, respectively. Rat norovirus was also identifiable in 5% (1/21) of laboratory rats and rat astrovirus in 40% (8/20) of faecal samples from laboratory mice. Co-infections were found in 28% (5/18) wild Norway rats. The highest RNA viral load of astrovirus (1.81 × 108 copy/g) and norovirus (3.49 × 107 copy/g) were measured in faecal samples; while the highest RNA viral load of hepevirus (1.16 × 109 copy/g) was found in liver samples of Norway rats, respectively. This study confirms the wide geographic distribution and high prevalence of astrovirus, norovirus and hepevirus among wild rats in Hungary with confirmation of different organ involvement of as well as the detection of norovirus and astrovirus in laboratory rats and mice, respectively. This finding further strengthens the role of rodents in the spread of viral pathogens especially infecting human.
Collapse
Affiliation(s)
- Péter Pankovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary.
| | - Ákos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Zoltán László
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| | - Sándor Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
| | - Gábor Földvári
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Eda Altan
- Vitalant Research Institute, San Francisco, CA, USA
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Gábor Reuter
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
3
|
Detection of Astrovirus in a Cow with Neurological Signs by Nanopore Technology, Italy. Viruses 2020; 12:v12050530. [PMID: 32403368 PMCID: PMC7290991 DOI: 10.3390/v12050530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 01/16/2023] Open
Abstract
In this study, starting from nucleic acids purified from the brain tissue, Nanopore technology was used to identify the etiological agent of severe neurological signs observed in a cow which was immediately slaughtered. Histological examination revealed acute non-suppurative encephalomyelitis affecting the brainstem, cerebrum, cerebellum, and medulla oblongata, while by using PCR-based assays, the nucleic acids of major agents for neurological signs were not detected. By using Nanopore technology, 151 sequence reads were assigned to Bovine Astrovirus (BoAstV). Real-time RT-PCR and in situ hybridization (ISH) confirmed the presence of viral RNA in the brain. Moreover, using the combination of fluorescent ISH and immunofluorescence (IF) techniques, it was possible to detect BoAstV RNA and antigens in the same cells, suggesting the active replication of the virus in infected neurons. The nearly whole genome of the occurring strain (BoAstV PE3373/2019/Italy), obtained by Illumina NextSeq 500, showed the highest nucleotide sequence identity (94.11%) with BoAstV CH13/NeuroS1 26,730 strain, an encephalitis-associated bovine astrovirus. Here, we provide further evidence of the role of AstV as a neurotropic agent. Considering that in a high proportion of non-suppurative encephalitis cases, which are mostly indicative of a viral infection, the etiologic agent remains unknown, our result underscores the value and versatility of Nanopore technology for a rapid diagnosis when the PCR-based algorithm gives negative results.
Collapse
|
4
|
Cortez V, Meliopoulos VA, Karlsson EA, Hargest V, Johnson C, Schultz-Cherry S. Astrovirus Biology and Pathogenesis. Annu Rev Virol 2017; 4:327-348. [PMID: 28715976 DOI: 10.1146/annurev-virology-101416-041742] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astroviruses are nonenveloped, positive-sense single-stranded RNA viruses that cause gastrointestinal illness. Although a leading cause of pediatric diarrhea, human astroviruses are among the least characterized enteric RNA viruses. However, by using in vitro methods and animal models to characterize virus-host interactions, researchers have discovered several important properties of astroviruses, including the ability of the astrovirus capsid to act as an enterotoxin, disrupting the gut epithelial barrier. Improved animal models are needed to study this phenomenon, along with the pathogenesis of astroviruses, particularly in those strains that can cause extraintestinal disease. Much like for other enteric viruses, the current dogma states that astroviruses infect in a species-specific manner; however, this assumption is being challenged by growing evidence that these viruses have potential to cross species barriers. This review summarizes these remarkable facets of astrovirus biology, highlighting critical steps toward increasing our understanding of this unique enteric pathogen.
Collapse
Affiliation(s)
- Valerie Cortez
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Erik A Karlsson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Virginia Hargest
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , , .,Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Cydney Johnson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105; , , , , ,
| |
Collapse
|
5
|
Bouzalas IG, Wüthrich D, Selimovic-Hamza S, Drögemüller C, Bruggmann R, Seuberlich T. Full-genome based molecular characterization of encephalitis-associated bovine astroviruses. INFECTION GENETICS AND EVOLUTION 2016; 44:162-168. [PMID: 27378415 DOI: 10.1016/j.meegid.2016.06.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023]
Abstract
Novel types of astrovirus have been identified recently in association with neurological disease in cattle. Among those viruses is bovine astrovirus CH13 (BoAstV CH13) that has been identified in Switzerland in a cow with encephalitis. Molecular testing by a combination of reverse transcription (RT-) PCR and in situ hybridization (ISH) indicated that astrovirus infection accounts for around one quarter of viral encephalitis cases of unknown etiology in cattle. Yet, it remained to be explored whether these animals were infected by BoAstV CH13 or other astrovirus species. In the present study we sequenced the entire astrovirus genome in brain tissues of eight RT-PCR and/or ISH positive cattle. Phylogenetic comparison of the genomic RNA and the encoded non-structural and structural proteins revealed that all these astrovirus strains were very similar to BoAstV CH13 as well as to a bovine encephalitis strain reported from the USA (BoAstV NeuroS1), and clearly distinct from other previously reported astroviruses. Conserved 5' and 3' untranslated regions (UTRs) were predicted to display distinct secondary RNA structures, which likely play a role in viral RNA replication and/or protein translation. Based on these data we propose that BoAstV CH13/NeuroS1 represents a new genotype species within the genus Mammastrovirus. The high degree of similarity between the strains and their relative distance to other genotype species suggest that during evolution some astroviruses acquired factors that specifically contribute to neuroinvasion.
Collapse
Affiliation(s)
- Ilias G Bouzalas
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern,Bremgartenstrasse 109a, CH-3012 Bern, Switzerland.
| | - Daniel Wüthrich
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Baltzerstrasse 6, CH-3012 Bern, Switzerland.
| | - Senija Selimovic-Hamza
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern,Bremgartenstrasse 109a, CH-3012 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland.
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, CH-3012 Bern, Switzerland.
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern and Swiss Institute of Bioinformatics, Baltzerstrasse 6, CH-3012 Bern, Switzerland.
| | - Torsten Seuberlich
- NeuroCenter, Division of Neurological Sciences, Vetsuisse Faculty, University of Bern,Bremgartenstrasse 109a, CH-3012 Bern, Switzerland.
| |
Collapse
|
6
|
|
7
|
Structural, Mechanistic, and Antigenic Characterization of the Human Astrovirus Capsid. J Virol 2015; 90:2254-63. [PMID: 26656707 PMCID: PMC4810704 DOI: 10.1128/jvi.02666-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/03/2015] [Indexed: 11/20/2022] Open
Abstract
Human astroviruses (HAstVs) are nonenveloped, positive-sense, single-stranded RNA viruses that are a leading cause of viral gastroenteritis. HAstV particles display T=3 icosahedral symmetry formed by 180 copies of the capsid protein (CP), which undergoes proteolytic maturation to generate infectious HAstV particles. Little is known about the molecular features that govern HAstV particle assembly, maturation, infectivity, and immunogenicity. Here we report the crystal structures of the two main structural domains of the HAstV CP: the core domain at 2.60-Å resolution and the spike domain at 0.95-Å resolution. Fitting of these structures into the previously determined 25-Å-resolution electron cryomicroscopy density maps of HAstV allowed us to characterize the molecular features on the surfaces of immature and mature T=3 HAstV particles. The highly electropositive inner surface of HAstV supports a model in which interaction of the HAstV CP core with viral RNA is a driving force in T=3 HAstV particle formation. Additionally, mapping of conserved residues onto the HAstV CP core and spike domains in the context of the immature and mature HAstV particles revealed dramatic changes to the exposure of conserved residues during virus maturation. Indeed, we show that antibodies raised against mature HAstV have reactivity to both the HAstV CP core and spike domains, revealing for the first time that the CP core domain is antigenic. Together, these data provide new molecular insights into HAstV that have practical applications for the development of vaccines and antiviral therapies. IMPORTANCE Astroviruses are a leading cause of viral diarrhea in young children, immunocompromised individuals, and the elderly. Despite the prevalence of astroviruses, little is known at the molecular level about how the astrovirus particle assembles and is converted into an infectious, mature virus. In this paper, we describe the high-resolution structures of the two main astrovirus capsid proteins. Fitting these structures into previously determined low-resolution maps of astrovirus allowed us to characterize the molecular surfaces of immature and mature astroviruses. Our studies provide the first evidence that astroviruses undergo viral RNA-dependent assembly. We also provide new insight into the molecular mechanisms that lead to astrovirus maturation and infectivity. Finally, we show that both capsid proteins contribute to the adaptive immune response against astrovirus. Together, these studies will help to guide the development of vaccines and antiviral drugs targeting astrovirus.
Collapse
|
8
|
Abstract
Human astroviruses (HAtVs) are positive-sense single-stranded RNA viruses that were discovered in 1975. Astroviruses infecting other species, particularly mammalian and avian, were identified and classified into the genera Mamastrovirus and Avastrovirus. Through next-generation sequencing, many new astroviruses infecting different species, including humans, have been described, and the Astroviridae family shows a high diversity and zoonotic potential. Three divergent groups of HAstVs are recognized: the classic (MAstV 1), HAstV-MLB (MAstV 6), and HAstV-VA/HMO (MAstV 8 and MAstV 9) groups. Classic HAstVs contain 8 serotypes and account for 2 to 9% of all acute nonbacterial gastroenteritis in children worldwide. Infections are usually self-limiting but can also spread systemically and cause severe infections in immunocompromised patients. The other groups have also been identified in children with gastroenteritis, but extraintestinal pathologies have been suggested for them as well. Classic HAstVs may be grown in cells, allowing the study of their cell cycle, which is similar to that of caliciviruses. The continuous emergence of new astroviruses with a potential zoonotic transmission highlights the need to gain insights on their biology in order to prevent future health threats. This review focuses on the basic virology, pathogenesis, host response, epidemiology, diagnostic assays, and prevention strategies for HAstVs.
Collapse
Affiliation(s)
- Albert Bosch
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Rosa M Pintó
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Susana Guix
- Enteric Virus Laboratory, Department of Microbiology and Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Stenglein MD, Velazquez E, Greenacre C, Wilkes RP, Ruby JG, Lankton JS, Ganem D, Kennedy MA, DeRisi JL. Complete genome sequence of an astrovirus identified in a domestic rabbit (Oryctolagus cuniculus) with gastroenteritis. Virol J 2012; 9:216. [PMID: 22998755 PMCID: PMC3502403 DOI: 10.1186/1743-422x-9-216] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 09/14/2012] [Indexed: 11/13/2022] Open
Abstract
A colony of domestic rabbits in Tennessee, USA, experienced a high-mortality (~90%) outbreak of enterocolitis. The clinical characteristics were one to six days of lethargy, bloating, and diarrhea, followed by death. Heavy intestinal coccidial load was a consistent finding as was mucoid enteropathy with cecal impaction. Preliminary analysis by electron microscopy revealed the presence of virus-like particles in the stool of one of the affected rabbits. Analysis using the Virochip, a viral detection microarray, suggested the presence of an astrovirus, and follow-up PCR and sequence determination revealed a previously uncharacterized member of that family. Metagenomic sequencing enabled the recovery of the complete viral genome, which contains the characteristic attributes of astrovirus genomes. Attempts to propagate the virus in tissue culture have yet to succeed. Although astroviruses cause gastroenteric disease in other mammals, the pathogenicity of this virus and the relationship to this outbreak remains to be determined. This study therefore defines a viral species and a potential rabbit pathogen.
Collapse
Affiliation(s)
- Mark D Stenglein
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jeong HS, Jeong A, Cheon DS. Epidemiology of astrovirus infection in children. KOREAN JOURNAL OF PEDIATRICS 2012; 55:77-82. [PMID: 22474461 PMCID: PMC3315622 DOI: 10.3345/kjp.2012.55.3.77] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/25/2012] [Indexed: 11/27/2022]
Abstract
Human astrovirus (HAstV) is a major cause of acute diarrhea among children, resulting in outbreaks of diarrhea and occasionally hospitalization. Improved surveillance and application of sensitive molecular diagnostics have further defined the impact of HAstV infections in children. These studies have shown that HAstV infections are clinically milder (diarrhea, vomiting, fever) than infections with other enteric agents. Among the 8 serotypes of HAstV identified, serotype 1 is the predominant strain worldwide. In addition to serotype 1, the detection rate of HAstV types 2 to 8 has increased by using newly developed assays. HAstV is less common compared with other major gastroenteritis viruses, including norovirus and rotavirus; however, it is a potentially important viral etiological agent with a significant role in acute gastroenteritis. A better understanding of the molecular epidemiology and characteristics of HAstV strains may be valuable to develop specific prevention strategies.
Collapse
Affiliation(s)
- Hye Sook Jeong
- Division of Enteric and Hepatitis Viruses, Center for Infectious Disease, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongwon, Korea
| | | | | |
Collapse
|
11
|
Finkbeiner SR, Holtz LR. New Human Astroviruses. ASTROVIRUS RESEARCH 2012. [PMCID: PMC7120454 DOI: 10.1007/978-1-4614-4735-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first human astrovirus was discovered in 1975 by Madeley and Cosgrove through visualization of viral particles in stool using electron microscopy. Over the course of the next ∼20 years, an additional seven serotypes of human astroviruses were discovered. In the last decade, new technological advances in microarrays and sequencing strategies enabled more sophisticated methods for detecting viruses in clinical and environmental specimens. These methods led to the discovery of many novel viruses from a variety of virus families. They also brought about a dramatic realization that more astroviruses can be found in humans than previously recognized. In fact, the number of astroviruses associated with humans has nearly doubled within the last few years. Furthermore, the discovery of novel astroviruses in human specimens revealed that there is more diversity amongst them than was assumed based on the high level of similarity between human astroviruses 1 and 8. This chapter will describe the discovery and early characterization of the five novel astroviruses initially identified in human stool samples in 2008 and 2009.
Collapse
|
12
|
Abstract
Astrovirus infections cause gastroenteritis in mammals and have been identified as causative agents of diverse pathologies in birds such as hepatitis in ducks and poult enteritis mortality syndrome (PEMS), which causes enteritis and thymic and bursal atrophy in turkeys. Human astroviruses are recognized as the second leading cause of childhood viral gastroenteritis worldwide. Eight traditional astrovirus serotypes have been identified in humans, but recently novel astrovirus strains isolated from humans have been associated with diseases other than gastroenteritis. Herein we summarize our current knowledge of the astrovirus life cycle. Though there are gaps in our understanding of astrovirus replication, similarities can be drawn from Picornaviridae and Caliciviridae virus families. There are, however, unique characteristics of the astrovirus life cycle, including intracellular proteolytic processing of viral particles by cellular caspases, which has been shown to be required for the maturation and exit of viral progeny.
Collapse
Affiliation(s)
- Stacey Schultz-Cherry
- , Infectious Diseases, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, 38105 Tennessee USA
| |
Collapse
|
13
|
Schultz-Cherry S. Astrovirus Structure and Assembly. ASTROVIRUS RESEARCH 2012. [PMCID: PMC7120587 DOI: 10.1007/978-1-4614-4735-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recent structural studies on the astrovirus virion and viral proteins have yielded exciting new insights into the molecular mechanisms of the astrovirus life cycle. The 25 Å-resolution cryo-electron microscopy (Cryo-EM) reconstructions of the astrovirus virion reveal a solid capsid shell studded with spikes. Proteolytic maturation of the virus particle results in capsid conformational changes, most prominently at the spikes. High-resolution crystal structures of the human and avian astrovirus capsid spike domains have shed light on potential host receptors and species specificity. Together, both the structural studies on the astrovirus virion and capsid spike domains have revealed similarities to hepatitis E virus, suggesting an evolutionary relationship. The only other structural information on astrovirus is from the high-resolution crystal structure of the protease that is involved in nonstructural polyprotein processing. Overall, these structural studies have led a better understanding of the astrovirus life cycle, including astrovirus assembly, virus release, maturation, receptor binding, antibody neutralization, and nonstructural polyprotein processing.
Collapse
Affiliation(s)
- Stacey Schultz-Cherry
- , Infectious Diseases, St Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, 38105 Tennessee USA
| |
Collapse
|
14
|
De Benedictis P, Schultz-Cherry S, Burnham A, Cattoli G. Astrovirus infections in humans and animals - molecular biology, genetic diversity, and interspecies transmissions. INFECTION GENETICS AND EVOLUTION 2011; 11:1529-44. [PMID: 21843659 PMCID: PMC7185765 DOI: 10.1016/j.meegid.2011.07.024] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/28/2011] [Accepted: 07/30/2011] [Indexed: 01/09/2023]
Abstract
Astroviruses are small, non-enveloped, positive sense, single-stranded RNA viruses first identified in 1975 in children suffering from diarrhea and then described in a wide variety of animals. To date, the list of animal species susceptible to astrovirus infection has expanded to 22 animal species or families, including domestic, synantropic and wild animals, avian, and mammalian species in the terrestrial and aquatic environments. Astrovirus infections are considered among the most common cause of gastroenteritis in children, second only to rotavirus infections, but in animals their association with enteric diseases is not well documented, with the exception of turkey and mink astrovirus infection. Genetic variability has been described in almost all astrovirus species sufficiently examined infecting mammals and birds; however, antigenic variability has been demonstrated for human astroviruses but is far less investigated in animal viruses. Interestingly, there is an increasing evidence of recombination events occurring in astroviruses, which contributes to increase the genetic variability of this group of viruses. A wide variety of species infected, the evident virus genetic diversity and the occurrence of recombination events indicate or imply either cross-species transmission and subsequent virus adaptation to new hosts or the co-infection of the same host with different astroviruses. This can also favor the emergence of novel astroviruses infecting animals or with a zoonotic potential. After more than 30 years from their first description in humans, there are many exciting streams of research to be explored and intriguing questions that remain to be answered about the relatively under-studied Astroviridae family. In the present work, we will review the existing knowledge concerning astrovirus infections in humans and animals, with particular focus on the molecular biology, interspecies transmission and zoonotic potential of this group of viruses.
Collapse
Affiliation(s)
- Paola De Benedictis
- OIE Collaborating Centre for Diseases at the Animal-Human Interface, Research & Innovation Department, Division of Biomedical Science, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | | | | |
Collapse
|
15
|
Tse H, Chan WM, Tsoi HW, Fan RYY, Lau CCY, Lau SKP, Woo PCY, Yuen KY. Rediscovery and genomic characterization of bovine astroviruses. J Gen Virol 2011; 92:1888-1898. [PMID: 21508185 DOI: 10.1099/vir.0.030817-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The genus Mamastrovirus belongs to the family Astroviridae and consists of at least six members infecting different mammalian hosts, including humans, cattle and pigs. In recent years, novel astroviruses have been identified in other mammalian species like roe deer, bats and sea lions. While the bovine astrovirus was one of the earliest astroviruses to have been studied, no further research has been performed recently and its genome sequence remains uncharacterized. In this report, we describe the detection and genomic characterization of astroviruses in bovine faecal specimens obtained in Hong Kong. Five of 209 specimens were found to be positive for astrovirus by RT-PCR. Two of the positive specimens were found to contain sequences from two different astrovirus strains. Complete genome sequences of approximately 6.3 kb in length were obtained for four strains, which showed similar organization of the genome compared to other astroviruses. Phylogenetic analysis confirmed their identities as members of the genus Mamastrovirus, and showed them to be most closely related to the Capreolus capreolus astrovirus. Based on the pairwise genetic distances among their full-length ORF2 sequences, these bovine astroviruses may be assigned into at least three different genotype species. Sequence analysis revealed evidence of potential recombination in ORF2. In summary, we report the first genome sequences of bovine astroviruses and clearly establish the species status of the virus. Additionally, our study is among the first to report co-infection by different astrovirus genotypes in the same host, which is an essential step for recombination to occur.
Collapse
Affiliation(s)
- Herman Tse
- Research Centre of Infection and Immunity, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR.,State Key Laboratory of Emerging Infectious Diseases, Hong Kong Special Administration Region, Hong Kong SAR
| | - Wan-Mui Chan
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Hoi-Wah Tsoi
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Rachel Y Y Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Candy C Y Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Susanna K P Lau
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong Special Administration Region, Hong Kong SAR.,Research Centre of Infection and Immunity, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Patrick C Y Woo
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong Special Administration Region, Hong Kong SAR.,Research Centre of Infection and Immunity, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong Special Administration Region, Hong Kong SAR.,Research Centre of Infection and Immunity, The University of Hong Kong, Hong Kong SAR.,Department of Microbiology, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
16
|
The C-terminal nsP1a protein of human astrovirus is a phosphoprotein that interacts with the viral polymerase. J Virol 2011; 85:4470-9. [PMID: 21325412 DOI: 10.1128/jvi.01515-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human astrovirus nonstructural C-terminal nsP1a protein (nsP1a/4) colocalizes with the endoplasmic reticulum and viral RNA. It has been suggested that nsP1a/4 protein is involved in the RNA replication process in endoplasmic reticulum-derived intracellular membranes. A hypervariable region (HVR) is contained in the nsP1a/4 protein, and different replicative patterns can be distinguished depending on its variability. In the present work, both the astrovirus RNA-dependent RNA polymerase and four types (IV, V, VI, and XII) of nsP1a/4 proteins have been cloned and expressed in the baculovirus system to analyze their interactions. Different isoforms of each of the nsP1a/4 proteins exist: a nonphosphorylated isoform and different phosphorylated isoforms. While the polymerase accumulates as a monomer, the nsP1a/4 proteins accumulate as oligomers. The oligomerization domain of nsP1a/4-V is mapped between residues 176 and 209. For all studied genotypes, oligomers mainly contain the nonphosphorylated isoform. When RNA polymerase is coexpressed with nsP1a/4 proteins, they interact, likely forming heterodimers. The polymerase binding region has been mapped in the nsP1a/4-V protein between residues 88 and 176. Phosphorylated isoforms of nsP1a/4 type VI show a stronger interactive pattern with the polymerase than the nonphosphorylated isoform. This difference is not observed in genotypes IV and V, suggesting a role of the HVR in modulating the interaction of the nsP1a/4 protein with the polymerase through phosphorylation/dephosphorylation of some critical residues.
Collapse
|
17
|
Characterization of Bafinivirus main protease autoprocessing activities. J Virol 2010; 85:1348-59. [PMID: 21068254 DOI: 10.1128/jvi.01716-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of functional nidovirus replication-transcription complexes involves extensive proteolytic processing by virus-encoded proteases. In this study, we characterized the viral main protease (M(pro)) of the type species, White bream virus (WBV), of the newly established genus Bafinivirus (order Nidovirales, family Coronaviridae, subfamily Torovirinae). Comparative sequence analysis and mutagenesis data confirmed that the WBV M(pro) is a picornavirus 3C-like serine protease that uses a Ser-His-Asp catalytic triad embedded in a predicted two-β-barrel fold, which is extended by a third domain at its C terminus. Bacterially expressed WBV M(pro) autocatalytically released itself from flanking sequences and was able to mediate proteolytic processing in trans. Using N-terminal sequencing of autoproteolytic processing products we tentatively identified Gln↓(Ala, Thr) as a substrate consensus sequence. Mutagenesis data provided evidence to suggest that two conserved His and Thr residues are part of the S1 subsite of the enzyme's substrate-binding pocket. Interestingly, we observed two N-proximal and two C-proximal autoprocessing sites in the bacterial expression system. The detection of two major forms of M(pro), resulting from processing at two different N-proximal and one C-proximal site, in WBV-infected epithelioma papulosum cyprini cells confirmed the biological relevance of the biochemical data obtained in heterologous expression systems. To our knowledge, the use of alternative M(pro) autoprocessing sites has not been described previously for other nidovirus M(pro) domains. The data presented in this study lend further support to our previous conclusion that bafiniviruses represent a distinct group of viruses that significantly diverged from other phylogenetic clusters of the order Nidovirales.
Collapse
|
18
|
Cai G, Myers K, Hillman BI, Fry WE. A novel virus of the late blight pathogen, Phytophthora infestans, with two RNA segments and a supergroup 1 RNA-dependent RNA polymerase. Virology 2009; 392:52-61. [DOI: 10.1016/j.virol.2009.06.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/10/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
|
19
|
Speroni S, Rohayem J, Nenci S, Bonivento D, Robel I, Barthel J, Luzhkov VB, Coutard B, Canard B, Mattevi A. Structural and biochemical analysis of human pathogenic astrovirus serine protease at 2.0 A resolution. J Mol Biol 2009; 387:1137-52. [PMID: 19249313 DOI: 10.1016/j.jmb.2009.02.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 11/29/2022]
Abstract
Astroviruses are single-stranded RNA viruses with a replication strategy based on the proteolytic processing of a polyprotein precursor and subsequent release of the viral enzymes of replication. So far, the catalytic properties of the astrovirus protease as well as its structure have remained uncharacterized. In this study, the three-dimensional crystal structure of the predicted protease of human pathogenic astrovirus has been solved to 2.0 A resolution. The protein displays the typical properties of trypsin-like enzymes but also several characteristic features: (i) a catalytic Asp-His-Ser triad in which the aspartate side chain is oriented away from the histidine, being replaced by a water molecule; (ii) a non-common conformation and composition of the S1 pocket; and (iii) the lack of the typical surface beta-ribbons together with a "featureless" shape of the substrate-binding site. Hydrolytic activity assays indicate that the S1 pocket recognises Glu and Asp side chains specifically, which, therefore, are predicted to occupy the P1 position on the substrate cleavage site. The positive electrostatic potential featured by the S1 region underlies this specificity. The comparative structural analysis highlights the peculiarity of the astrovirus protease, and differentiates it from the human and viral serine proteases.
Collapse
Affiliation(s)
- Silvia Speroni
- Department of Genetics and Microbiology, University of Pavia, via Ferrata 1, Pavia, 27100 Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Finkbeiner SR, Kirkwood CD, Wang D. Complete genome sequence of a highly divergent astrovirus isolated from a child with acute diarrhea. Virol J 2008; 5:117. [PMID: 18854035 PMCID: PMC2576171 DOI: 10.1186/1743-422x-5-117] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/14/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Astroviruses infect a variety of mammals and birds and are causative agents of diarrhea in humans and other animal hosts. We have previously described the identification of several sequence fragments with limited sequence identity to known astroviruses in a stool specimen obtained from a child with acute diarrhea, suggesting that a novel virus was present. RESULTS In this study, the complete genome of this novel virus isolate was sequenced and analyzed. The overall genome organization of this virus paralleled that of known astroviruses, with 3 open reading frames identified. Phylogenetic analysis of the ORFs indicated that this virus is highly divergent from all previously described animal and human astroviruses. Molecular features that are highly conserved in human serotypes 1-8, such as a 3'NTR stem-loop structure and conserved nucleotide motifs present in the 5'NTR and ORF1b/2 junction, were either absent or only partially conserved in this novel virus. CONCLUSION Based on the analyses described herein, we propose that this newly discovered virus represents a novel species in the family Astroviridae. It has tentatively been named Astrovirus MLB1.
Collapse
Affiliation(s)
- Stacy R Finkbeiner
- Departments of Molecular Microbiology and Pathology & Immunology, Washington University School of Medicine, St, Louis, MO, USA.
| | | | | |
Collapse
|
21
|
Guix S, Caballero S, Fuentes C, Bosch A, Pintó RM. Genetic analysis of the hypervariable region of the human astrovirus nsP1a coding region: design of a new RFLP typing method. J Med Virol 2008; 80:306-15. [PMID: 18098163 DOI: 10.1002/jmv.21058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human astroviruses (HAstV) are causative agents of viral gastroenteritis worldwide. A hypervariable region (HVR) is located close to the C-terminus of the nsP1a, and recent data support the involvement of the HVR-containing nonstructural protein in viral RNA replication processes, suggesting a correlation between variability in this region and pathogenic properties. The HVR of the C-terminal nsP1a coding region of 104 wild-type and reference isolates of HAstV was sequenced. A phylogenetic analysis was performed to identify different genotypes, and a restriction fragment length polymorphism (RFLP) method was designed. An extensive nucleotide and deduced amino acid sequence variability was observed, as well as many insertions and deletions that retained the reading frame. The resultant phylogenetic tree supported the subdivision of HAstV into the two previously described major genetic groups, genogroup A and B, and the identification of 12 genotypes (9 within genogroup A, and 3 within genogroup B), which could be identified by RFLP. A correlation analysis was performed between genotype information and viral load using information from 35 clinical samples. Significant differences were observed between the viral load in clinical samples and certain HAstV genotypes that belonged to the same serotype, confirming the influence of C-terminal nsP1a variability on the viral replication phenotype. The use of the new RFLP typing method based on the HVR of the C-terminal nsP1a coding region by diagnosticians would help to understand the relationship between different genotypes and the severity of the gastroenteritis.
Collapse
Affiliation(s)
- Susana Guix
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
22
|
|
23
|
van Hemert FJ, Lukashov VV, Berkhout B. Different rates of (non-)synonymous mutations in astrovirus genes; correlation with gene function. Virol J 2007; 4:25. [PMID: 17343744 PMCID: PMC1828050 DOI: 10.1186/1743-422x-4-25] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 03/07/2007] [Indexed: 11/30/2022] Open
Abstract
Background Complete genome sequences of the Astroviridae include human, non-human mammalian and avian species. A consensus topology of astroviruses has been derived from nucleotide substitutions in the full-length genomes and from non-synonymous nucleotide substitutions in each of the three ORFs. Analyses of synonymous substitutions displayed a loss of tree structure, suggesting either saturation of the substitution model or a deviant pattern of synonymous substitutions in certain virus species. Results We analyzed the complete Astroviridae family for the inference of adaptive molecular evolution at sites and in branches. High rates of synonymous mutations are observed among the non-human virus species. Deviant patterns of synonymous substitutions are found in the capsid structural genes. Purifying selection is a dominant force among all astrovirus genes and only few codon sites showed values for the dN/dS ratio that may indicate site-specific molecular adaptation during virus evolution. One of these sites is the glycine residue of a RGD motif in ORF2 of human astrovirus serotype 1. RGD or similar integrin recognition motifs are present in nearly all astrovirus species. Conclusion Phylogenetic analysis directed by maximum likelihood approximation allows the inclusion of significantly more evolutionary history and thereby, improves the estimation of dN and dS. Sites with enhanced values for dN/dS are prominent at domains in charge of environmental communication (f.i. VP27 and domain 4 in ORF1a) more than at domains dedicated to intrinsic virus functions (f.i. VP34 and ORF1b (the virus polymerase)). Integrin recognition may play a key role in astrovirus to target cell attachment.
Collapse
Affiliation(s)
- Formijn J van Hemert
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Vladimir V Lukashov
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
24
|
Molecular Virology of Enteric Viruses (with Emphasis on Caliciviruses). VIRUSES IN FOODS 2006:43-100. [PMCID: PMC7120911 DOI: 10.1007/0-387-29251-9_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
25
|
Abstract
Coat proteins of non-enveloped, icosahedral viruses must perform a variety of functions during their life cycle such as assembly of the coat protein subunits into a closed shell, specific encapsidation of the viral nucleic acid, maturation of the capsid, interaction with host receptors, and disassembly to deliver the genetic information into the newly infected cell. A thorough understanding of the multiple capsid properties at the molecular level is required in order to identify potential targets for antiviral therapy and the prevention of viral disease. The system we have chosen for study is the astrovirus, a family of icosahedral, single-stranded RNA viruses that cause disease in mammals and birds. Very little is known about what regions of the coat protein contribute to the diverse capsid functions. This review will present novel structural predictions for the coat protein sequence of different astrovirus family members. Based on these predictions, we hypothesize that the assembly and RNA packaging functions of the astrovirus coat protein constitutes an individual domain distinct from the determinants required for receptor binding and internalization. Information derived from these structural predictions will serve as an important tool in designing experiments to understand astrovirus biology.
Collapse
Affiliation(s)
- Neel K Krishna
- Department of Pediatrics and the Center for Pediatric Research, Norfolk, VA 23510, USA.
| |
Collapse
|
26
|
Guix S, Caballero S, Bosch A, Pintó RM. Human astrovirus C-terminal nsP1a protein is involved in RNA replication. Virology 2005; 333:124-31. [PMID: 15708598 DOI: 10.1016/j.virol.2004.12.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/07/2004] [Accepted: 12/20/2004] [Indexed: 11/23/2022]
Abstract
Human astrovirus nonstructural C-terminal nsP1a protein, which contains a hypervariable region (HVR) and colocalizes with the endoplasmic reticulum and viral RNA, has been suggested to be involved in the RNA replication process. Four viruses differing only in their C-terminal nsP1a protein, corresponding to HVR-derived genotypes IV, V, VI, and XII, were all able to replicate in CaCo-2 cells but displayed differences in their RNA replication and growth properties. Two overall patterns of replication were observed: types IV and V on one side, and types VI and XII on the other. The main detected differences were on the levels of antigenomic and subgenomic RNAs, being the latter significantly higher in types IV and V. Accordingly, quantification of viral RNA load in feces from children with gastroenteritis showed that HVR-derived genotypes IV and V occur in significantly higher numbers. In consequence, it may be concluded that the variability of the C-terminal nsP1a gene affects the virus replication phenotype.
Collapse
Affiliation(s)
- Susana Guix
- Department of Microbiology, Enteric Virus Laboratory, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
27
|
Guix S, Caballero S, Bosch A, Pintó RM. C-terminal nsP1a protein of human astrovirus colocalizes with the endoplasmic reticulum and viral RNA. J Virol 2004; 78:13627-36. [PMID: 15564473 PMCID: PMC533902 DOI: 10.1128/jvi.78.24.13627-13636.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Computational and biological approaches were undertaken to characterize the role of the human astrovirus nonstructural protein nsP1a/4, located at the C-terminal fragment of nsP1a. Computer analysis reveals sequence similarities to other nonstructural viral proteins involved in RNA replication and/or transcription and allows the identification of a glutamine- and proline-rich region, the prediction of many phosphorylation and O-glycosylation sites, and the occurrence of a KKXX-like endoplasmic reticulum retention signal. Immunoprecipitation analysis with an antibody against a synthetic peptide of the nsP1a/4 sequence detected polyprotein precursors of 160, 75, and 38 to 40 kDa as well as five smaller proteins in the range of 21 to 27 kDa. Immunofluorescence labeling showed that the nsP1a/4 protein is accumulated at the perinuclear region, in association with the endoplasmic reticulum and the viral RNA. These results suggest the involvement of nsP1a/4 protein in the RNA replication process in endoplasmic reticulum-derived intracellular membranes.
Collapse
Affiliation(s)
- Susana Guix
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Avda Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
28
|
Guix S, Bosch A, Ribes E, Dora Martínez L, Pintó RM. Apoptosis in astrovirus-infected CaCo-2 cells. Virology 2004; 319:249-61. [PMID: 14980485 PMCID: PMC7127648 DOI: 10.1016/j.virol.2003.10.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Revised: 10/20/2003] [Accepted: 10/23/2003] [Indexed: 02/08/2023]
Abstract
Cell death processes during human astrovirus replication in CaCo-2 cells and their underlying mechanisms were investigated. Morphological and biochemical alterations typical of apoptosis were analyzed in infected cells using a combination of techniques, including DAPI staining, the sub-G0/G1 technique and the TUNEL assay. The onset of apoptosis was directly proportional to the virus multiplicity of infection. Transient expression experiments showed a direct link between astrovirus ORF1a encoded proteins and apoptosis induction. A computer analysis of the astrovirus genome revealed the presence of a death domain in the nonstructural protein p38 of unknown function, encoded in ORF1a. Apoptosis inhibition experiments suggested the involvement of caspase 8 in the apoptotic response, and led to a reduction in the infectivity of the virus progeny released to the supernatant. We conclude that apoptotic death of host cells seems necessary for efficient human astrovirus replication and particle maturation.
Collapse
Affiliation(s)
- Susana Guix
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Spain
| | - Albert Bosch
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Spain
- Corresponding author. Department of Microbiology, School of Biology, University of Barcelona, Avda Diagonal 645, 08028 Barcelona, Spain. Fax: +34-93-4034629.
| | - Enric Ribes
- Enteric Virus Group, Department of Cell Biology, University of Barcelona, Spain
| | - L. Dora Martínez
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Spain
| | - Rosa M. Pintó
- Enteric Virus Group, Department of Microbiology, University of Barcelona, Spain
| |
Collapse
|
29
|
Mittelholzer C, Hedlund KO, Englund L, Dietz HH, Svensson L. Molecular characterization of a novel astrovirus associated with disease in mink. J Gen Virol 2003; 84:3087-3094. [PMID: 14573813 DOI: 10.1099/vir.0.19267-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pre-weaning diarrhoea is a well-known problem in mink farming in Europe, causing morbidity that varies between farms, regions and season. Different causalities for the disease have been proposed, but only most recently has a novel astrovirus been identified as an important risk factor. In this report, the molecular characterization, origin and evolution of this novel astrovirus of mink are discussed. The polyadenylated, positive-stranded RNA genome was sequenced and found to contain 6610 nt, organized into three ORFs and two short UTRs. A ribosomal frameshift sequence links the 5' two ORFs, containing sequence motifs for a serine protease (ORF1a) and an RNA-dependent RNA polymerase (ORF1b). The structural proteins are encoded by ORF2 and, presumably, are expressed as a polyprotein precursor to be cleaved into the mature capsid proteins. These results indicate that mink astrovirus (MiAstV) has all of the features typical of members of the Astroviridae. Phylogenetic analyses revealed that MiAstV is distantly related to established astroviruses, showing less than 67 % similarity at the nucleotide level with its closest relative, ovine astrovirus, and even lower identities at the predicted amino acid level. Nevertheless, sequence analysis of MiAstV isolates from geographically distinct Swedish and Danish farms showed much less diversity. This suggests either the spread in the mink population of a virus that has evolved a long time ago or the recent introduction of an ancient virus into a new host species.
Collapse
Affiliation(s)
- Christian Mittelholzer
- Department of Virology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden
| | - Kjell-Olof Hedlund
- Department of Molecular Epidemiology and Biotechnology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden
| | - Lena Englund
- Department of Small Animals, National Veterinary Institute, S-751 89 Uppsala, Sweden
| | - Hans-Henrik Dietz
- Department of Poultry, Fish and Fur Animals, Danish Veterinary Institute, DK-8200 Århus, Denmark
| | - Lennart Svensson
- Department of Virology, Swedish Institute for Infectious Disease Control, S-171 82 Solna, Sweden
| |
Collapse
|
30
|
Méndez E, Salas-Ocampo MPE, Munguía ME, Arias CF. Protein products of the open reading frames encoding nonstructural proteins of human astrovirus serotype 8. J Virol 2003; 77:11378-84. [PMID: 14557623 PMCID: PMC229263 DOI: 10.1128/jvi.77.21.11378-11384.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Accepted: 08/04/2003] [Indexed: 11/20/2022] Open
Abstract
Human astroviruses have a positive-strand RNA genome, which contains three open reading frames (ORF1a, ORF1b, and ORF2). The genomic RNA is translated into two nonstructural polyproteins, nsp1a and nsp1ab, that contain sequences derived from ORF1a and from both ORF1a and ORF1b, respectively. Proteins nsp1a and nsp1ab are thought to be proteolytically processed to yield the viral proteins implicated in the replication of the virus genome; however, the intermediate and final products of this processing have been poorly characterized. To identify the cleavage products of the nonstructural polyproteins of a human astrovirus serotype 8 strain, antisera to selected recombinant proteins were produced and were used to analyze the viral proteins synthesized in astrovirus-infected Caco-2 cells and in cells transfected with recombinant plasmids expressing the ORF1a and ORF1b polyproteins. Pulse-chase experiments identified proteins of approximately 145, 88, 85, and 75 kDa as cleavage intermediates during the polyprotein processing. In addition, these experiments and kinetic analysis of the synthesis of the viral proteins identified polypeptides of 57, 20, and 19 kDa, as well as two products of around 27 kDa, as final cleavage products, with the 57-kDa polypeptide most probably being the virus RNA polymerase and the two approximately 27-kDa products being the viral protease. Based on the differential reactivities of the astrovirus proteins with the various antisera used, the individual polypeptides detected were mapped to the virus ORF1a and ORF1b regions.
Collapse
Affiliation(s)
- Ernesto Méndez
- Departamento de Genética y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Colonia Miraval, Cuernavaca, Morelos 62250, Mexico.
| | | | | | | |
Collapse
|
31
|
Dalton RM, Pastrana EP, Sánchez-Fauquier A. Vaccinia virus recombinant expressing an 87-kilodalton polyprotein that is sufficient to form astrovirus-like particles. J Virol 2003; 77:9094-8. [PMID: 12885927 PMCID: PMC167206 DOI: 10.1128/jvi.77.16.9094-9098.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human astrovirus is an important cause of acute gastroenteritis. We have generated, for the first time, a vaccinia virus recombinant expressing the astrovirus 87-kDa structural polyprotein. The results demonstrate that this expression results in the formation of virus-like particles in the absence of other astrovirus proteins and genomic RNA. The purified trypsin-activated virus-like particles strongly resemble the complete astrovirus particles.
Collapse
Affiliation(s)
- Rosa M Dalton
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Public health concerns related to enteric viral agents, such as astroviruses and caliciviruses, include their ability to cause sporadic diarrhea, large outbreaks of gastroenteritis, and hospitalizations or deaths resulting from vomiting, diarrhea, and dehydration. Improved surveillance and application of sensitive molecular assays has increased awareness of these enteric pathogens and reduced the 'diagnostic gap' or unknown causes of non-bacterial gastroenteritis. RECENT FINDINGS Molecular assays have been applied to further describe the epidemiology of human astroviruses from a variety of geographic areas. The burden of astrovirus infections compared with other enteric viral agents, including rotaviruses, caliciviruses, and enteric adenoviruses have been reported. New methods for detection of astroviruses such as reverse transcription-polymerase chain reaction and molecular typing methods have advanced the understanding of the epidemiology. Additional molecular studies have described the protein processing mechanisms of this single-stranded RNA virus. SUMMARY Astroviruses are increasingly recognized as significant gastrointestinal pathogens. The understanding of molecular epidemiology and molecular processing of the virus may lead to specific prevention strategies.
Collapse
Affiliation(s)
- Jolan E Walter
- Center for Pediatric Research, Children's Hospital of The King's Daughters and Eastern Virginia Medical School, Norfolk, Virginia 23510-1001, USA
| | | |
Collapse
|
33
|
Jonassen CM, Jonassen T TØ, Sveen TM, Grinde B. Complete genomic sequences of astroviruses from sheep and turkey: comparison with related viruses. Virus Res 2003; 91:195-201. [PMID: 12573498 DOI: 10.1016/s0168-1702(02)00269-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The genomes of astroviruses infecting sheep and turkey were sequenced. Detailed analyses of these sequences were performed, including comparison with the other complete astrovirus sequences available as well as with other RNA virus sequences, with focus on the non-structural proteins and RNA sequences. Earlier postulated functional astrovirus RNA motifs and protein domains could in most cases be recognised in the sheep and turkey astrovirus sequences. In addition, analyses of the available astrovirus sequences revealed: two protein regions with the potential for forming coiled coils, differences in the postulated transmembrane region, a similarity between the putative astrovirus nuclear localisation signal and calicivirus genome-linked proteins, and a stretch of a highly conserved RNA sequence with a possible role in the astrovirus capsid gene expression. The present analyses contribute to the deciphering of pertinent functions of the astrovirus genomes.
Collapse
Affiliation(s)
- Christine M Jonassen
- Division of Infectious Disease Control, Norwegian Institute of Public Health, PO Box 4404 Nydalen, NO-0403, Oslo, Norway
| | | | | | | |
Collapse
|
34
|
Geigenmüller U, Chew T, Ginzton N, Matsui SM. Processing of nonstructural protein 1a of human astrovirus. J Virol 2002; 76:2003-8. [PMID: 11799197 PMCID: PMC135888 DOI: 10.1128/jvi.76.4.2003-2008.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Accepted: 11/13/2001] [Indexed: 11/20/2022] Open
Abstract
Astrovirus contains three open reading frames (ORF) on its genomic RNA, ORF1a, ORF1b, and ORF2. ORF1a encodes a 920-amino-acid (aa) nonstructural protein, nsP1a, which displays a 3C-like serine protease motif. Little is known about the processing of nsP1a or whether the protease it contains is active and involved in autocatalytic processing. Here we address both of these matters. Intact and N-terminally deleted forms of ORF1a from human astrovirus serotype 1 were expressed in BHK cells, and nsP1a-derived processing products were immunoprecipitated with an nsP1a-specific antibody or an antibody specific for an N-terminally linked epitope tag. The mapping of the main processing products, p20 and p27, suggests cleavage sites near aa 170, 410, and 655 of nsP1a. Cleavages at around aa 410 and 655, but not aa 170, were abolished when a 9-aa substitution was introduced into the protease motif in nsP1a. The p27 processing product was also found in Caco-2 cells that had been infected with human astrovirus serotype 1, confirming the presence of the cleavage sites at approximately aa 410 and 655.
Collapse
Affiliation(s)
- Ute Geigenmüller
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | |
Collapse
|