1
|
George Pryzdial EL, Perrier JR, Rashid MU, West HE, Sutherland MR. Viral coagulation: pushing the envelope. J Thromb Haemost 2024:S1538-7836(24)00500-2. [PMID: 39260743 DOI: 10.1016/j.jtha.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Many virus types affect the blood clotting system with correlations to pathology that range widely from thrombosis to hemorrhage linking to inflammation. Here we overview the intricate crosstalk induced by infection between proteins on the virus encoded by either the host or virus genomes, coagulation proteins, platelets, leukocytes, and endothelial cells. For blood-borne viruses with an outer covering acquired from the host cell, the envelope, a key player may be the cell-derived trigger of coagulation on the virus surface, tissue factor (TF). TF is a multifunctional transmembrane cofactor that accelerates factor (F)VIIa-dependent activation of FX to FXa, leading to clot formation. However, the nascent TF/FVIIa/FXa complex also facilitates G protein-coupled modulation of cells via protease-activated receptor 2. As a viral envelope constituent, TF can bypass the physiological modes of regulation, thereby initiating the activation of neighboring platelets, leukocytes, and endothelial cells. A thromboinflammatory environment is predicted due to feedback amplification in response to cellular release of cytokines, procoagulant proteins, neutrophil extracellular traps, and stimulus-induced accessibility of adhesive receptors, resulting in cellular aggregates. The pathobiological effects of thromboinflammation ultimately contribute to innate and adaptive immunity for viral clearance. In contrast, the preceding stages of viral infection may be enhanced via the TF-protease axis.
Collapse
Affiliation(s)
- Edward Louis George Pryzdial
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.
| | - John Ruggles Perrier
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Mahamud-Ur Rashid
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Henry Euan West
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Michael Ross Sutherland
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Basant A, Way M. The amount of Nck rather than N-WASP correlates with the rate of actin-based motility of Vaccinia virus. Microbiol Spectr 2023; 11:e0152923. [PMID: 37855608 PMCID: PMC10883800 DOI: 10.1128/spectrum.01529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/03/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Vaccinia virus is a large double-stranded DNA virus and a close relative of Mpox and Variola virus, the causative agent of smallpox. During infection, Vaccinia hijacks its host's transport systems and promotes its spread into neighboring cells by recruiting a signaling network that stimulates actin polymerization. Over the years, Vaccinia has provided a powerful model to understand how signaling networks regulate actin polymerization. Nevertheless, we still lack important quantitative information about the system, including the precise number of viral and host molecules required to induce actin polymerization. Using quantitative fluorescence microscopy techniques, we have determined the number of viral and host signaling proteins accumulating on virions during their egress. Our analysis has uncovered two unexpected new aspects of this process: the number of viral proteins in the virion is not fixed and the velocity of virus movement depends on the level of a single adaptor within the signaling network.
Collapse
Affiliation(s)
- Angika Basant
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute , London, United Kingdom
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute , London, United Kingdom
- Department of Infectious Disease, Imperial College , London, United Kingdom
| |
Collapse
|
3
|
Boselli D, Panigada M, Di Terlizzi S, Romanò M, Canonico E, Villa C, Minici C, van Anken E, Soprana E, Siccardi AG. Time- and cost-effective production of untagged recombinant MVA by flow virometry and direct virus sorting. J Transl Med 2023; 21:495. [PMID: 37482614 PMCID: PMC10364397 DOI: 10.1186/s12967-023-04353-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Recombinant MVAs (rMVAs) are widely used both in basic and clinical research. Our previously developed Red-to-Green Gene Swapping Method (RGGSM), a cytometry-based Cell-Sorting protocol, revolves around the transient expression of a green fluorescent cytoplasmic marker, to subsequently obtain purified untagged rMVA upon loss of that marker by site-specific recombination. The standard RGSSM is quite costly in terms of bench work, reagents, and Sorting Facility fees. Although faster than other methods to obtain recombinant MVAs, the standard RGSSM still is time-consuming, taking at least 25 days to yield the final product. METHODS The direct sorting of fluorescent virions is made amenable by the marker HAG, a flu hemagglutinin/EGFP fusion protein, integrated into the external envelope of extracellular enveloped virions (EEVs). Fluorescent EEVs-containing supernatants of infected cultures are used instead of purified virus. Direct Virus-Sorting was performed on BD FACSAria Fusion cell sorter equipped with 4 lasers and a 100-mm nozzle, with 20 psi pressure and a minimal flow rate, validated using Megamix beads. RESULTS Upon infection of cells with recombinant EEVs, at the first sorting step virions that contain HAG are harvested and cloned, while the second sorting step yields EEVs that have lost HAG, allowing to clone untagged rMVA. Because only virion-containing supernatants are used, no virus purification steps and fewer sortings are necessary. Therefore, the final untagged rMVA product can be obtained in a mere 8 days. CONCLUSIONS Altogether, we report that the original RGSSM has been markedly improved in terms of time- and cost efficiency by substituting Cell-Sorting with direct Virus-Sorting from the supernatants of infected cells. The improved virometry-based RGGSM may find wide applicability, considering that rMVAs hold great promise to serve as personalized vaccines for therapeutic intervention against cancer and various types of infectious diseases.
Collapse
Affiliation(s)
| | - Maddalena Panigada
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Monica Romanò
- FRACTAL - San Raffaele Scientific Institute, Milan, Italy
| | | | - Chiara Villa
- FRACTAL - San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Minici
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Elisa Soprana
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio G Siccardi
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
4
|
Yu J, Murthy V, Liu SL. Relating GPI-Anchored Ly6 Proteins uPAR and CD59 to Viral Infection. Viruses 2019; 11:E1060. [PMID: 31739586 PMCID: PMC6893729 DOI: 10.3390/v11111060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022] Open
Abstract
The Ly6 (lymphocyte antigen-6)/uPAR (urokinase-type plasminogen activator receptor) superfamily protein is a group of molecules that share limited sequence homology but conserved three-fingered structures. Despite diverse cellular functions, such as in regulating host immunity, cell adhesion, and migration, the physiological roles of these factors in vivo remain poorly characterized. Notably, increasing research has focused on the interplays between Ly6/uPAR proteins and viral pathogens, the results of which have provided new insight into viral entry and virus-host interactions. While LY6E (lymphocyte antigen 6 family member E), one key member of the Ly6E/uPAR-family proteins, has been extensively studied, other members have not been well characterized. Here, we summarize current knowledge of Ly6/uPAR proteins related to viral infection, with a focus on uPAR and CD59. Our goal is to provide an up-to-date view of the Ly6/uPAR-family proteins and associated virus-host interaction and viral pathogenesis.
Collapse
Affiliation(s)
- Jingyou Yu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Vaibhav Murthy
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA; (J.Y.); (V.M.)
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Abstract
While host proteins incorporated into virions during viral budding from infected cell are known to play essential roles in multiple process of the life cycle of progeny virus, these characteristics have been largely neglected in studies on rabies virus (RABV). Here, we purified the RABV virions with good purity and integrity, and analyzed their proteome by nano LC–MS/MS, followed by the confirmation with immunoblot and immuno-electronic microscopy. In addition to the 5 viral proteins, 49 cellular proteins were reproducibly identified to be incorporated into matured RABV virions. Function annotation suggested that 24 of them were likely involved in virus replication. Furthermore, cryo-EM was employed to observe the purified RABV virions, generating high-resolution pictures of the bullet-shaped virion structure of RABV. This study has provided new insights into the host proteins composition in RABV virion and shed the light for further investigation on molecular mechanisms of RABV infection, as well as the discovery of new anti-RABV therapeutics.
Collapse
|
6
|
Nakatake M, Kurosaki H, Kuwano N, Horita K, Ito M, Kono H, Okamura T, Hasegawa K, Yasutomi Y, Nakamura T. Partial Deletion of Glycoprotein B5R Enhances Vaccinia Virus Neutralization Escape while Preserving Oncolytic Function. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:159-171. [PMID: 31236440 PMCID: PMC6580015 DOI: 10.1016/j.omto.2019.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/09/2019] [Indexed: 11/12/2022]
Abstract
Vaccinia virus (VV) has been utilized in oncolytic virotherapy, but it risks a host antiviral immune response. VV has an extracellular enveloped virus (EEV) form consisting of a normal virion covered with a host-derived outer membrane that enables its spread via circulation while evading host immune mechanisms. However, the immune resistance of EEV is only partial, owing to expression of the surface protein B5R, which has four short consensus repeat (SCR) domains that are targeted by host immune factors. To engineer a more effective virus for oncolytic virotherapy, we developed an enhanced immune-evading oncolytic VV by removing the SCRs from the attenuated strain LC16mO. Although deletion of only the SCRs preserved viral replication, progeny production, and oncolytic activity, deletion of whole B5R led to attenuation of the virus. Importantly, SCR-deleted EEV had higher neutralization resistance than did B5R-wild-type EEV against VV-immunized animal serum; moreover, it retained oncolytic function, thereby prolonging the survival of tumor-bearing mice treated with anti-VV antibody. These results demonstrate that partial SCR deletion increases neutralization escape without affecting the oncolytic potency of VV, making it useful for the treatment of tumors under the anti-virus antibody existence.
Collapse
Affiliation(s)
- Motomu Nakatake
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hajime Kurosaki
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Nozomi Kuwano
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Kosuke Horita
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Mai Ito
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hiromichi Kono
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka-City, Saitama 350-1298, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Takafumi Nakamura
- Division of Molecular Medicine, Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
7
|
Comparative Characterization of the Sindbis Virus Proteome from Mammalian and Invertebrate Hosts Identifies nsP2 as a Component of the Virion and Sorting Nexin 5 as a Significant Host Factor for Alphavirus Replication. J Virol 2018; 92:JVI.00694-18. [PMID: 29743363 PMCID: PMC6026752 DOI: 10.1128/jvi.00694-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/27/2018] [Indexed: 01/08/2023] Open
Abstract
Recent advances in mass spectrometry methods and instrumentation now allow for more accurate identification of proteins in low abundance. This technology was applied to Sindbis virus, the prototypical alphavirus, to investigate the viral proteome. To determine if host proteins are specifically packaged into alphavirus virions, Sindbis virus (SINV) was grown in multiple host cells representing vertebrate and mosquito hosts, and total protein content of purified virions was determined. This analysis identified host factors not previously associated with alphavirus entry, replication, or egress. One host protein, sorting nexin 5 (SNX5), was shown to be critical for the replication of three different alphaviruses, Sindbis, Mayaro, and Chikungunya viruses. The most significant finding was that in addition to the host proteins, SINV nonstructural protein 2 (nsP2) was detected within virions grown in all host cells examined. The protein and RNA-interacting capabilities of nsP2 coupled with its presence in the virion support a role for nsP2 during packaging and/or entry of progeny virus. This function has not been identified for this protein. Taken together, this strategy identified at least one host factor integrally involved in alphavirus replication. Identification of other host proteins provides insight into alphavirus-host interactions during viral replication in both vertebrate and invertebrate hosts. This method of virus proteome analysis may also be useful for the identification of protein candidates for host-based therapeutics. IMPORTANCE Pathogenic alphaviruses, such as Chikungunya and Mayaro viruses, continue to plague public health in developing and developed countries alike. Alphaviruses belong to a group of viruses vectored in nature by hematophagous (blood-feeding) insects and are termed arboviruses (arthropod-borne viruses). This group of viruses contains many human pathogens, such as dengue fever, West Nile, and Yellow fever viruses. With few exceptions, there are no vaccines or prophylactics for these agents, leaving one-third of the world population at risk of infection. Identifying effective antivirals has been a long-term goal for combating these diseases not only because of the lack of vaccines but also because they are effective during an ongoing epidemic. Mass spectrometry-based analysis of the Sindbis virus proteome can be effective in identifying host genes involved in virus replication and novel functions for virus proteins. Identification of these factors is invaluable for the prophylaxis of this group of viruses.
Collapse
|
8
|
Nagendraprabhu P, Khatiwada S, Chaulagain S, Delhon G, Rock DL. A parapoxviral virion protein targets the retinoblastoma protein to inhibit NF-κB signaling. PLoS Pathog 2017; 13:e1006779. [PMID: 29244863 PMCID: PMC5747488 DOI: 10.1371/journal.ppat.1006779] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/29/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Poxviruses have evolved multiple strategies to subvert signaling by Nuclear Factor κB (NF-κB), a crucial regulator of host innate immune responses. Here, we describe an orf virus (ORFV) virion-associated protein, ORFV119, which inhibits NF-κB signaling very early in infection (≤ 30 min post infection). ORFV119 NF-κB inhibitory activity was found unimpaired upon translation inhibition, suggesting that virion ORFV119 alone is responsible for early interference in signaling. A C-terminal LxCxE motif in ORFV119 enabled the protein to interact with the retinoblastoma protein (pRb) a multifunctional protein best known for its tumor suppressor activity. Notably, experiments using a recombinant virus containing an ORFV119 mutation which abrogates its interaction with pRb together with experiments performed in cells lacking or with reduced pRb levels indicate that ORFV119 mediated inhibition of NF-κB signaling is largely pRb dependent. ORFV119 was shown to inhibit IKK complex activation early in infection. Consistent with IKK inhibition, ORFV119 also interacted with TNF receptor associated factor 2 (TRAF2), an adaptor protein recruited to signaling complexes upstream of IKK in infected cells. ORFV119-TRAF2 interaction was enhanced in the presence of pRb, suggesting that ORFV119-pRb complex is required for efficient interaction with TRAF2. Additionally, transient expression of ORFV119 in uninfected cells was sufficient to inhibit TNFα-induced IKK activation and NF-κB signaling, indicating that no other viral proteins are required for the effect. Infection of sheep with ORFV lacking the ORFV119 gene led to attenuated disease phenotype, indicating that ORFV119 contributes to virulence in the natural host. ORFV119 represents the first poxviral protein to interfere with NF-κB signaling through interaction with pRb.
Collapse
Affiliation(s)
- Ponnuraj Nagendraprabhu
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana- Champaign, Urbana, IL, United States of America
| | - Sushil Khatiwada
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana- Champaign, Urbana, IL, United States of America
| | - Sabal Chaulagain
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana- Champaign, Urbana, IL, United States of America
| | - Gustavo Delhon
- School of Veterinary and Biomedical Sciences, Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
- * E-mail: (GD); (DLR)
| | - Daniel L. Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana- Champaign, Urbana, IL, United States of America
- * E-mail: (GD); (DLR)
| |
Collapse
|
9
|
Combined Proteomics/Genomics Approach Reveals Proteomic Changes of Mature Virions as a Novel Poxvirus Adaptation Mechanism. Viruses 2017; 9:v9110337. [PMID: 29125539 PMCID: PMC5707544 DOI: 10.3390/v9110337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022] Open
Abstract
DNA viruses, like poxviruses, possess a highly stable genome, suggesting that adaptation of virus particles to specific cell types is not restricted to genomic changes. Cowpox viruses are zoonotic poxviruses with an extraordinarily broad host range, demonstrating their adaptive potential in vivo. To elucidate adaptation mechanisms of poxviruses, we isolated cowpox virus particles from a rat and passaged them five times in a human and a rat cell line. Subsequently, we analyzed the proteome and genome of the non-passaged virions and each passage. While the overall viral genome sequence was stable during passaging, proteomics revealed multiple changes in the virion composition. Interestingly, an increased viral fitness in human cells was observed in the presence of increased immunomodulatory protein amounts. As the only minor variant with increasing frequency during passaging was located in a viral RNA polymerase subunit and, moreover, most minor variants were found in transcription-associated genes, protein amounts were presumably regulated at transcription level. This study is the first comparative proteome analysis of virus particles before and after cell culture propagation, revealing proteomic changes as a novel poxvirus adaptation mechanism.
Collapse
|
10
|
Carpentier DCJ, Hollinshead MS, Ewles HA, Lee SA, Smith GL. Tagging of the vaccinia virus protein F13 with mCherry causes aberrant virion morphogenesis. J Gen Virol 2017; 98:2543-2555. [PMID: 28933687 PMCID: PMC5725974 DOI: 10.1099/jgv.0.000917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Vaccinia virus produces two distinct infectious virions; the single-enveloped intracellular mature virus (IMV), which remains in the cell until cell lysis, and the double-enveloped extracellular enveloped virus (EEV), which mediates virus spread. The latter is derived from a triple-enveloped intracellular enveloped virus (IEV) precursor, which is transported to the cell periphery by the kinesin-1 motor complex. This transport involves the viral protein A36 as well as F12 and E2. A36 is an integral membrane protein associated with the outer virus envelope and is the only known direct link between virion and kinesin-1 complex. Yet in the absence of A36 virion egress still occurs on microtubules, albeit at reduced efficiency. In this paper double-fluorescent labelling of the capsid protein A5 and outer-envelope protein F13 was exploited to visualize IEV transport by live-cell imaging in the absence of either A36 or F12. During the generation of recombinant viruses expressing both A5-GFP and F13-mCherry a plaque size defect was identified that was particularly severe in viruses lacking A36. Electron microscopy showed that this phenotype was caused by abnormal wrapping of IMV to form IEV, and this resulted in reduced virus egress to the cell surface. The aberrant wrapping phenotype suggests that the fluorescent fusion protein interferes with an interaction of F13 with the IMV surface that is required for tight association between IMVs and wrapping membranes. The severity of this defect suggests that these viruses are imperfect tools for characterizing virus egress.
Collapse
Affiliation(s)
- David C J Carpentier
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Michael S Hollinshead
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Helen A Ewles
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Stacey-Ann Lee
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.,Present address: The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
11
|
Khatiwada S, Delhon G, Nagendraprabhu P, Chaulagain S, Luo S, Diel DG, Flores EF, Rock DL. A parapoxviral virion protein inhibits NF-κB signaling early in infection. PLoS Pathog 2017; 13:e1006561. [PMID: 28787456 PMCID: PMC5560748 DOI: 10.1371/journal.ppat.1006561] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 08/17/2017] [Accepted: 07/31/2017] [Indexed: 12/16/2022] Open
Abstract
Poxviruses have evolved unique proteins and mechanisms to counteract the nuclear factor κB (NF-κB) signaling pathway, which is an essential regulatory pathway of host innate immune responses. Here, we describe a NF-κB inhibitory virion protein of orf virus (ORFV), ORFV073, which functions very early in infected cells. Infection with ORFV073 gene deletion virus (OV-IA82Δ073) led to increased accumulation of NF-κB essential modulator (NEMO), marked phosphorylation of IκB kinase (IKK) subunits IKKα and IKKβ, IκBα and NF-κB subunit p65 (NF-κB-p65), and to early nuclear translocation of NF-κB-p65 in virus-infected cells (≤ 30 min post infection). Expression of ORFV073 alone was sufficient to inhibit TNFα induced activation of the NF-κB signaling in uninfected cells. Consistent with observed inhibition of IKK complex activation, ORFV073 interacted with the regulatory subunit of the IKK complex NEMO. Infection of sheep with OV-IA82Δ073 led to virus attenuation, indicating that ORFV073 is a virulence determinant in the natural host. Notably, ORFV073 represents the first poxviral virion-associated NF-κB inhibitor described, highlighting the significance of viral inhibition of NF-κB signaling very early in infection.
Collapse
Affiliation(s)
- Sushil Khatiwada
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Gustavo Delhon
- School of Veterinary Medicine and Biomedical Science, Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Ponnuraj Nagendraprabhu
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sabal Chaulagain
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Shuhong Luo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Diego G. Diel
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Eduardo F. Flores
- Departamento de Medicina Veterinária Preventiva, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Daniel L. Rock
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
12
|
Carpentier DCJ, Van Loggerenberg A, Dieckmann NMG, Smith GL. Vaccinia virus egress mediated by virus protein A36 is reliant on the F12 protein. J Gen Virol 2017. [PMID: 28631604 PMCID: PMC5656793 DOI: 10.1099/jgv.0.000816] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Egress of vaccinia virus from its host cell is mediated by the microtubule-associated motor kinesin-1, and three viral proteins, A36 and the F12/E2 complex, have been implicated in this process. Deletion of F12 expression causes a more severe reduction in egress than deletion of A36 but whether these proteins are involved in the same or different mechanisms of kinesin-1 recruitment is unknown. Here it is shown that a virus lacking both proteins forms a smaller plaque than mutants lacking either gene alone, indicating non-redundant functions. A36 not only links virions directly to kinesin-1 but also nucleates actin polymerization to propel surface virions away from the host cell. To address the relative importance of these functions for virus spread, a panel of recombinant viruses was constructed in which the ability of A36 to bind kinesin-1 or to nucleate actin polymerization was abrogated individually or together, in the presence or absence of F12 expression. Analysis of these viruses revealed that in the presence of the F12 protein, loss of kinesin-1 interaction made a greater contribution to plaque size than did the formation of actin tails. However in the absence of F12, the ability of A36 to promote egress was abrogated. Therefore, the ability of A36 to promote egress by kinesin-1 is reliant on the F12 protein.
Collapse
Affiliation(s)
- David C J Carpentier
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | - Nele M G Dieckmann
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.,Present address: Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
13
|
Gao WND, Carpentier DCJ, Ewles HA, Lee SA, Smith GL. Vaccinia virus proteins A36 and F12/E2 show strong preferences for different kinesin light chain isoforms. Traffic 2017; 18:505-518. [PMID: 28485852 PMCID: PMC5519951 DOI: 10.1111/tra.12494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 12/27/2022]
Abstract
Vaccinia virus (VACV) utilizes microtubule‐mediated trafficking at several stages of its life cycle, of which virus egress is the most intensely studied. During egress VACV proteins A36, F12 and E2 are involved in kinesin‐1 interactions; however, the roles of these proteins remain poorly understood. A36 forms a direct link between virions and kinesin‐1, yet in its absence VACV egress still occurs on microtubules. During a co‐immunoprecipitation screen to seek an alternative link between virions and kinesin, A36 was found to bind isoform KLC1 rather than KLC2. The F12/E2 complex associates preferentially with the C‐terminal tail of KLC2, to a region that overlaps the binding site of cellular 14‐3‐3 proteins. F12/E2 displaces 14‐3‐3 from KLC and, unlike 14‐3‐3, does not require phosphorylation of KLC for its binding. The region determining the KLC1 specificity of A36 was mapped to the KLC N‐terminal heptad repeat region that is responsible for its association with kinesin heavy chain. Despite these differing binding properties F12/E2 can co‐operatively enhance A36 association with KLC, particularly when using a KLC1‐KLC2 chimaera that resembles several KLC1 spliceforms and can bind A36 and F12/E2 efficiently. This is the first example of a pathogen encoding multiple proteins that co‐operatively associate with kinesin‐1.
Collapse
Affiliation(s)
- William N D Gao
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Helen A Ewles
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Stacey-Ann Lee
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
14
|
Kolegraff K, Bostik P, Ansari AA. Characterization and Role of Lentivirus-Associated Host Proteins. Exp Biol Med (Maywood) 2016; 231:252-63. [PMID: 16514170 DOI: 10.1177/153537020623100303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enveloped viruses obtain their envelopes during the process of budding from infected cells. During this process, however, these viruses acquire parts of the host cell membranes and host cell-derived proteins as integral parts of their mature envelopes. These host-derived components of viral envelopes may subsequently exhibit various effects on the life cycle of the virus; virus cell interactions, especially host response to virus-incorporated self-proteins; and the pathogenesis of the disease induced by these viruses. Although it was known for some time that various viruses incorporate host cell-derived proteins, the issue of the role of these proteins has received increased attention, specifically in connection with human immunodeficiency virus (HIV) infection and development of acquired immunodeficiency syndrome (AIDS) in humans. The aim of this review is to summarize our current knowledge of the analysis and role of host-derived proteins associated with enveloped viruses, with emphasis on the potential role of these proteins in the pathogenesis of AIDS. Clearly, differences in the clinical outcome of those nonhuman primates infected with simian immunodeficiency virus (SIV) that are disease resistant compared with SIV-infected species that are disease susceptible provide a unique opportunity to determine whether differences in the incorporation of distinct sets of host proteins play a role with distinct clinical outcomes.
Collapse
Affiliation(s)
- Keli Kolegraff
- Department of Pathology and Laboratory Medicine, Emory University, WMB Room 2309, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
15
|
Bidgood SR, Mercer J. Cloak and Dagger: Alternative Immune Evasion and Modulation Strategies of Poxviruses. Viruses 2015; 7:4800-25. [PMID: 26308043 PMCID: PMC4576205 DOI: 10.3390/v7082844] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/20/2022] Open
Abstract
As all viruses rely on cellular factors throughout their replication cycle, to be successful they must evolve strategies to evade and/or manipulate the defence mechanisms employed by the host cell. In addition to their expression of a wide array of host modulatory factors, several recent studies have suggested that poxviruses may have evolved unique mechanisms to shunt or evade host detection. These potential mechanisms include mimicry of apoptotic bodies by mature virions (MVs), the use of viral sub-structures termed lateral bodies for the packaging and delivery of host modulators, and the formation of a second, “cloaked” form of infectious extracellular virus (EVs). Here we discuss these various strategies and how they may facilitate poxvirus immune evasion. Finally we propose a model for the exploitation of the cellular exosome pathway for the formation of EVs.
Collapse
Affiliation(s)
- Susanna R Bidgood
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Jason Mercer
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Carpentier DCJ, Gao WND, Ewles H, Morgan GW, Smith GL. Vaccinia virus protein complex F12/E2 interacts with kinesin light chain isoform 2 to engage the kinesin-1 motor complex. PLoS Pathog 2015; 11:e1004723. [PMID: 25760349 PMCID: PMC4356562 DOI: 10.1371/journal.ppat.1004723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/01/2015] [Indexed: 11/18/2022] Open
Abstract
During vaccinia virus morphogenesis, intracellular mature virus (IMV) particles are wrapped by a double lipid bilayer to form triple enveloped virions called intracellular enveloped virus (IEV). IEV are then transported to the cell surface where the outer IEV membrane fuses with the cell membrane to expose a double enveloped virion outside the cell. The F12, E2 and A36 proteins are involved in transport of IEVs to the cell surface. Deletion of the F12L or E2L genes causes a severe inhibition of IEV transport and a tiny plaque size. Deletion of the A36R gene leads to a smaller reduction in plaque size and less severe inhibition of IEV egress. The A36 protein is present in the outer membrane of IEVs, and over-expressed fragments of this protein interact with kinesin light chain (KLC). However, no interaction of F12 or E2 with the kinesin complex has been reported hitherto. Here the F12/E2 complex is shown to associate with kinesin-1 through an interaction of E2 with the C-terminal tail of KLC isoform 2, which varies considerably between different KLC isoforms. siRNA-mediated knockdown of KLC isoform 1 increased IEV transport to the cell surface and virus plaque size, suggesting interaction with KLC isoform 1 is somehow inhibitory of IEV transport. In contrast, knockdown of KLC isoform 2 did not affect IEV egress or plaque formation, indicating redundancy in virion egress pathways. Lastly, the enhancement of plaque size resulting from loss of KLC isoform 1 was abrogated by removal of KLC isoforms 1 and 2 simultaneously. These observations suggest redundancy in the mechanisms used for IEV egress, with involvement of KLC isoforms 1 and 2, and provide evidence of interaction of F12/E2 complex with the kinesin-1 complex. Viruses often hijack the cellular transport systems to facilitate their movement within and between cells. Vaccinia virus (VACV), the smallpox vaccine, is very adept at this and exploits cellular transport machinery at several stages during its life cycle. For instance, during transport of new virus particles to the cell surface VACV interacts with a protein motor complex called kinesin-1 that moves cargo on microtubules. However, details of the cellular and viral components needed and the molecular mechanisms involved remain poorly understood. Hitherto, only the VACV protein A36 has been shown to interact with kinesin-1, however viruses lacking A36 still reach the cell surface, albeit at reduced efficiency, indicating other factors are involved. Here we describe an interaction between kinesin-1 and a complex of VACV proteins F12 and E2, which are both needed for virus transport. The F12/E2 complex associates with a subset of kinesin-1 molecules (kinesin light chain isoform 2) with a region thought to be involved in modulation of cargo binding and kinesin-1 motor activity. Further study of this interaction will enhance understanding of the VACV life cycle and of the roles of different kinesin-1 subtypes in cellular processes and the mechanisms that regulate them.
Collapse
Affiliation(s)
| | - William N. D. Gao
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Helen Ewles
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Gareth W. Morgan
- Department of Virology, Imperial College London, St. Mary’s Campus, London, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Poxvirus membrane biogenesis. Virology 2015; 479-480:619-26. [PMID: 25728299 DOI: 10.1016/j.virol.2015.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 12/18/2022]
Abstract
Poxviruses differ from most DNA viruses by replicating entirely within the cytoplasm. The first discernible viral structures are crescents and spherical immature virions containing a single lipoprotein membrane bilayer with an external honeycomb lattice. Because this viral membrane displays no obvious continuity with a cellular organelle, a de novo origin was suggested. Nevertheless, transient connections between viral and cellular membranes could be difficult to resolve. Despite the absence of direct evidence, the intermediate compartment (ERGIC) between the endoplasmic reticulum (ER) and Golgi apparatus and the ER itself were considered possible sources of crescent membranes. A break-through in understanding poxvirus membrane biogenesis has come from recent studies of the abortive replication of several vaccinia virus null mutants. Novel images showing continuity between viral crescents and the ER and the accumulation of immature virions in the expanded ER lumen provide the first direct evidence for a cellular origin of this poxvirus membrane.
Collapse
|
18
|
Wunschel D, Tulman E, Engelmann H, Clowers BH, Geary S, Robinson A, Liao X. Forensic proteomics of poxvirus production. Analyst 2013; 138:6385-97. [PMID: 23979794 DOI: 10.1039/c3an00711a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of microbial forensics has recently sought to develop methods to discern biological signatures to indicate production methods for biological agents. Viral agents have received less attention to date. Their obligate propagation in living cells makes purification from cellular material a challenge. This leads to potential carryover of protein-rich signatures of their production system. Here we have explored a proteomic analysis of vaccinia virus as a model poxvirus system in which to compare samples of virus propagated in different cell lines and subjected to different purification schemes. The proteomic data sets indicated viral, host cell and culture medium proteins. Several layers of data analysis were applied to build confidence in the peptide identification and capture information on the taxonomic utility of each. The analysis showed clear shifts in protein profiles with virus purification, with successive gradient purification steps showing different levels of viral protein enrichment. Peptides from cellular proteins, including those present in purified virus preparations, provided signatures which enabled discrimination of cell line substrates, including distinguishing between cells derived from different primate species. The ability to discern multiple aspects of viral production demonstrates the potential value of proteomic analysis as tool for microbial forensics.
Collapse
Affiliation(s)
- David Wunschel
- Chemical and Biological Signature Sciences Group, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ma-Lauer Y, Lei J, Hilgenfeld R, von Brunn A. Virus-host interactomes--antiviral drug discovery. Curr Opin Virol 2013; 2:614-21. [PMID: 23057872 PMCID: PMC7102765 DOI: 10.1016/j.coviro.2012.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 12/21/2022]
Abstract
One of the key questions in virology is how viruses, encoding relatively few genes, gain temporary or constant control over their hosts. To understand pathogenicity of a virus it is important to gain knowledge on the function of the individual viral proteins in the host cell, on their interactions with viral and cellular proteins and on the consequences of these interactions on cellular signaling pathways. A combination of transcriptomics, proteomics, high-throughput technologies and the bioinformatical analysis of the respective data help to elucidate specific cellular antiviral drug target candidates. In addition, viral and human interactome analyses indicate that different viruses target common, central human proteins for entering cellular signaling pathways and machineries which might constitute powerful broad-spectrum antiviral targets.
Collapse
Affiliation(s)
- Yue Ma-Lauer
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstrasse 9a, 80336 München, Germany
| | - Jian Lei
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- German Center for Infection Research (DZIF), University of Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- German Center for Infection Research (DZIF), University of Lübeck, Germany
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Rd., Shanghai 201203, China
| | - Albrecht von Brunn
- Max-von-Pettenkofer Institute, Ludwig-Maximilians-University (LMU) Munich, Pettenkoferstrasse 9a, 80336 München, Germany
| |
Collapse
|
20
|
Thirunavukarasu P, Sathaiah M, Gorry MC, O'Malley ME, Ravindranathan R, Austin F, Thorne SH, Guo ZS, Bartlett DL. A rationally designed A34R mutant oncolytic poxvirus: improved efficacy in peritoneal carcinomatosis. Mol Ther 2013; 21:1024-33. [PMID: 23439499 DOI: 10.1038/mt.2013.27] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Oncolytic poxviruses have demonstrated initial promising results in patients with cancer in clinical trials, yet further improvements are needed. It has been shown that a single point mutation in the A34R gene resulted in the production of more total progeny virus and more extracellular enveloped virus (EEV), a form that can be immune-evasive and with enhanced spread. We have genetically engineered a new oncolytic poxvirus (designated vA34R) by incorporating this mutated A34R gene into a viral backbone (vvDD) which was designed for tumor-selective replication. This rationally designed virus can evade neutralization from antipoxvirus antibodies and is highly cytotoxic to cancer cells. It demonstrates improved spread and increased replication within the peritoneal cavity resulting in improved antitumor effects in a peritoneal carcinomatosis (PC) model of MC38 colon cancer. Impressively, after carrier cell-mediated delivery in the preimmunized host, vA34R displayed high replication in tumor nodules yet low accumulation in normal tissues thus enhancing the therapeutic index leading to 70% long-term cures. These results demonstrate that vA34R gains an enhanced therapeutic index for PC via immune evasion, increased spread, and production of more progeny virus. Thus, vA34R may be a potent oncolytic virus (OV) for patients with PC, even after prior exposure to vaccinia virus (VV).
Collapse
|
21
|
Stegen C, Yakova Y, Henaff D, Nadjar J, Duron J, Lippé R. Analysis of virion-incorporated host proteins required for herpes simplex virus type 1 infection through a RNA interference screen. PLoS One 2013; 8:e53276. [PMID: 23301054 PMCID: PMC3536771 DOI: 10.1371/journal.pone.0053276] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/27/2012] [Indexed: 12/17/2022] Open
Abstract
Viruses are strictly dependent on cells to propagate and many incorporate host proteins in their viral particles, but the significance of this incorporation is poorly understood. Recently, we performed the first comprehensive characterization of the mature herpes simplex virus type 1 (HSV-1) in which up to 49 distinct cellular proteins were identified by mass spectrometry. In the present study, we sought to identify if these cellular factors are relevant for the HSV-1 life cycle. To this end, we performed a small interfering RNA functional screen and found that 15 of these host proteins altered HSV-1 proliferation in cell culture, without any significant effect on cell viability. Moreover, the siRNA used had no negative consequences for Adenovirus type 5 propagation (with one exception) indicating that the modulation was specific for HSV-1 and not merely due to unhealthy cells. The positive host proteins include several Rab GTPases and other intracellular transport components as well as proteins involved in signal transduction, gene regulation and immunity. Remarkably, in most cases when virions were depleted for one of the above proteins, they replicated more poorly in subsequent infections in wild type cells. This highlights for the first time that both the cellular and virion-associated pools of many of these proteins actively contribute to viral propagation. Altogether, these findings underscore the power and biological relevance of combining proteomics and RNA interference to identify novel host-pathogen interactions.
Collapse
Affiliation(s)
- Camille Stegen
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Yordanka Yakova
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Daniel Henaff
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Julien Nadjar
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Johanne Duron
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Roger Lippé
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
22
|
Orubu T, Alharbi NK, Lambe T, Gilbert SC, Cottingham MG. Expression and cellular immunogenicity of a transgenic antigen driven by endogenous poxviral early promoters at their authentic loci in MVA. PLoS One 2012; 7:e40167. [PMID: 22761956 PMCID: PMC3384612 DOI: 10.1371/journal.pone.0040167] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/02/2012] [Indexed: 01/12/2023] Open
Abstract
CD8(+) T cell responses to vaccinia virus are directed almost exclusively against early gene products. The attenuated strain modified vaccinia virus Ankara (MVA) is under evaluation in clinical trials of new vaccines designed to elicit cellular immune responses against pathogens including Plasmodium spp., M. tuberculosis and HIV-1. All of these recombinant MVAs (rMVA) utilize the well-established method of linking the gene of interest to a cloned poxviral promoter prior to insertion into the viral genome at a suitable locus by homologous recombination in infected cells. Using BAC recombineering, we show that potent early promoters that drive expression of non-functional or non-essential MVA open reading frames (ORFs) can be harnessed for immunogenic expression of recombinant antigen. Precise replacement of the MVA orthologs of C11R, F11L, A44L and B8R with a model antigen positioned to use the same translation initiation codon allowed early transgene expression similar to or slightly greater than that achieved by the commonly-used p7.5 or short synthetic promoters. The frequency of antigen-specific CD8(+) T cells induced in mice by single shot or adenovirus-prime, rMVA-boost vaccination were similarly equal or marginally enhanced using endogenous promoters at their authentic genomic loci compared to the traditional constructs. The enhancement in immunogenicity observed using the C11R or F11L promoters compared with p7.5 was similar to that obtained with the mH5 promoter compared with p7.5. Furthermore, the growth rates of the viruses were unimpaired and the insertions were genetically stable. Insertion of a transgenic ORF in place of a viral ORF by BAC recombineering can thus provide not only a potent promoter, but also, concomitantly, a suitable insertion site, potentially facilitating development of MVA vaccines expressing multiple recombinant antigens.
Collapse
Affiliation(s)
- Toritse Orubu
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
23
|
Lippé R. Deciphering novel host-herpesvirus interactions by virion proteomics. Front Microbiol 2012; 3:181. [PMID: 22783234 PMCID: PMC3390586 DOI: 10.3389/fmicb.2012.00181] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/27/2012] [Indexed: 12/15/2022] Open
Abstract
Over the years, a vast array of information concerning the interactions of viruses with their hosts has been collected. However, recent advances in proteomics and other system biology techniques suggest these interactions are far more complex than anticipated. One particularly interesting and novel aspect is the analysis of cellular proteins incorporated into mature virions. Though sometimes considered purification contaminants in the past, their repeated detection by different laboratories suggests that a number of these proteins are bona fide viral components, some of which likely contribute to the viral life cycles. The present mini review focuses on cellular proteins detected in herpesviruses. It highlights the common cellular functions of these proteins, their potential implications for host–pathogen interactions, discusses technical limitations, the need for complementing methods and probes potential future research avenues.
Collapse
Affiliation(s)
- Roger Lippé
- Department of Pathology and Cell biology, University of Montreal Montreal, QC, Canada
| |
Collapse
|
24
|
Lorenzo MM, Sánchez-Puig JM, Blasco R. Mutagenesis of the palmitoylation site in vaccinia virus envelope glycoprotein B5. J Gen Virol 2012; 93:733-743. [PMID: 22238237 DOI: 10.1099/vir.0.039016-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The outer envelope of vaccinia virus extracellular virions is derived from intracellular membranes that, at late times in infection, are enriched in several virus-encoded proteins. Although palmitoylation is common in vaccinia virus envelope proteins, little is known about the role of palmitoylation in the biogenesis of the enveloped virus. We have studied the palmitoylation of B5, a 42 kDa type I transmembrane glycoprotein comprising a large ectodomain and a short (17 aa) cytoplasmic tail. Mutation of two cysteine residues located in the cytoplasmic tail in close proximity to the transmembrane domain abrogated palmitoylation of the protein. Virus mutants expressing non-palmitoylated versions of B5 and/or lacking most of the cytoplasmic tail were isolated and characterized. Cell-to-cell virus transmission and extracellular virus formation were only slightly affected by those mutations. Notably, B5 versions lacking palmitate showed decreased interactions with proteins A33 and F13, but were still incorporated into the virus envelope. Expression of mutated B5 by transfection into uninfected cells showed that both the cytoplasmic tail and palmitate have a role in the intracellular transport of B5. These results indicate that the C-terminal portion of protein B5, while involved in protein transport and in protein-protein interactions, is broadly dispensable for the formation and egress of infectious extracellular virus and for virus transmission.
Collapse
Affiliation(s)
- María M Lorenzo
- Departamento de Biotecnología - I.N.I.A. Ctra, La Coruña km 7, E-28040 Madrid, Spain
| | - Juana M Sánchez-Puig
- Departamento de Biotecnología - I.N.I.A. Ctra, La Coruña km 7, E-28040 Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología - I.N.I.A. Ctra, La Coruña km 7, E-28040 Madrid, Spain
| |
Collapse
|
25
|
Modulation of NKp30- and NKp46-mediated natural killer cell responses by poxviral hemagglutinin. PLoS Pathog 2011; 7:e1002195. [PMID: 21901096 PMCID: PMC3161980 DOI: 10.1371/journal.ppat.1002195] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 06/22/2011] [Indexed: 01/05/2023] Open
Abstract
Natural killer (NK) cells are an important element in the immune defense against the orthopox family members vaccinia virus (VV) and ectromelia virus (ECTV). NK cells are regulated through inhibitory and activating signaling receptors, the latter involving NKG2D and the natural cytotoxicity receptors (NCR), NKp46, NKp44 and NKp30. Here we report that VV infection results in an upregulation of ligand structures for NKp30 and NKp46 on infected cells, whereas the binding of NKp44 and NKG2D was not significantly affected. Likewise, infection with ectromelia virus (ECTV), the mousepox agent, enhanced binding of NKp30 and, to a lesser extent, NKp46. The hemagglutinin (HA) molecules from VV and ECTV, which are known virulence factors, were identified as novel ligands for NKp30 and NKp46. Using NK cells with selectively silenced NCR expression and NCR-CD3ζ reporter cells, we observed that HA present on the surface of VV-infected cells, or in the form of recombinant soluble protein, was able to block NKp30-triggered activation, whereas it stimulated the activation through NKp46. The net effect of this complex influence on NK cell activity resulted in a decreased NK lysis susceptibility of infected cells at late time points of VV infection when HA was expression was pronounced. We conclude that poxviral HA represents a conserved ligand of NCR, exerting a novel immune escape mechanism through its blocking effect on NKp30-mediated activation at a late stage of infection.
Collapse
|
26
|
Hwa SH, Iams KP, Hall JS, Kingstad BA, Osorio JE. Characterization of recombinant raccoonpox vaccine vectors in chickens. Avian Dis 2011; 54:1157-65. [PMID: 21313834 DOI: 10.1637/9315-032410-reg.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Raccoonpox virus (RCN) has been used as a recombinant vector against several mammalian pathogens but has not been tested in birds. The replication of RCN in chick embryo fibroblasts (CEFs) and chickens was studied with the use of highly pathogenic avian influenza virus H5N1 hemagglutinin (HA) as a model antigen and luciferase (luc) as a reporter gene. Although RCN replicated to low levels in CEFs, it efficiently expressed recombinant proteins and, in vivo, elicited anti-HA immunoglobulin yolk (IgY) antibody responses comparable to inactivated influenza virus. Biophotonic in vivo imaging of 1-wk-old chicks with RCN-luc showed strong expression of the luc reporter gene lasting up to 3 days postinfection. These studies demonstrate the potential of RCN as a vaccine vector for avian influenza and other poultry pathogens.
Collapse
Affiliation(s)
- Shi-Hsia Hwa
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
27
|
Capturing the natural diversity of the human antibody response against vaccinia virus. J Virol 2010; 85:1820-33. [PMID: 21147924 DOI: 10.1128/jvi.02127-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The eradication of smallpox (variola) and the subsequent cessation of routine vaccination have left modern society vulnerable to bioterrorism employing this devastating contagious disease. The existing, licensed vaccines based on live vaccinia virus (VACV) are contraindicated for a substantial number of people, and prophylactic vaccination of large populations is not reasonable when there is little risk of exposure. Consequently, there is an emerging need to develop efficient and safe therapeutics to be used shortly before or after exposure, either alone or in combination with vaccination. We have characterized the human antibody response to smallpox vaccine (VACV Lister) in immunized volunteers and isolated a large number of VACV-specific antibodies that recognize a variety of different VACV antigens. Using this broad antibody panel, we have generated a fully human, recombinant analogue to plasma-derived vaccinia immunoglobulin (VIG), which mirrors the diversity and specificity of the human antibody immune response and offers the advantage of unlimited supply and reproducible specificity and activity. The recombinant VIG was found to display a high specific binding activity toward VACV antigens, potent in vitro VACV neutralizing activity, and a highly protective efficacy against VACV challenge in the mouse tail lesion model when given either prophylactically or therapeutically. Altogether, the results suggest that this compound has the potential to be used as an effective postexposure prophylaxis or treatment of disease caused by orthopoxviruses.
Collapse
|
28
|
Poxvirus complement control proteins are expressed on the cell surface through an intermolecular disulfide bridge with the viral A56 protein. J Virol 2010; 84:11245-54. [PMID: 20719953 DOI: 10.1128/jvi.00372-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus (VACV) complement control protein (VCP) is an immunomodulatory protein that is both secreted from and expressed on the surface of infected cells. Surface expression of VCP occurs though an interaction with the viral transmembrane protein A56 and is dependent on a free N-terminal cysteine of VCP. Although A56 and VCP have been shown to interact in infected cells, the mechanism remains unclear. To investigate if A56 is sufficient for surface expression, we transiently expressed VCP and A56 in eukaryotic cell lines and found that they interact on the cell surface in the absence of other viral proteins. Since A56 contains three extracellular cysteines, we hypothesized that one of the cysteines may be unpaired and could therefore form a disulfide bridge with VCP. To test this, we generated a series of A56 mutants in which each cysteine was mutated to a serine, and we found that mutation of cysteine 162 abrogated VCP cell surface expression. We also tested the ability of other poxvirus complement control proteins to bind to VACV A56. While the smallpox homolog of VCP is able to bind VACV A56, the ectromelia virus (ECTV) VCP homolog is only able to bind the ECTV homolog of A56, indicating that these proteins may have coevolved. Surface expression of poxvirus complement control proteins may have important implications in viral pathogenesis, as a virus that does not express cell surface VCP is attenuated in vivo. This suggests that surface expression of VCP may contribute to poxvirus pathogenesis.
Collapse
|
29
|
Lipid membranes in poxvirus replication. Viruses 2010; 2:972-986. [PMID: 21994664 PMCID: PMC3185658 DOI: 10.3390/v2040972] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 01/25/2023] Open
Abstract
Poxviruses replicate in the cytoplasm, where they acquire multiple lipoprotein membranes. Although a proposal that the initial membrane arises de novo has not been substantiated, there is no accepted explanation for its formation from cellular membranes. A subsequent membrane-wrapping step involving modified trans-Golgi or endosomal cisternae results in a particle with three membranes. These wrapped virions traverse the cytoplasm on microtubules; the outermost membrane is lost during exocytosis, the middle one is lost just prior to cell entry, and the remaining membrane fuses with the cell to allow the virus core to enter the cytoplasm and initiate a new infection.
Collapse
|
30
|
Okeke MI, Nilssen Ø, Moens U, Tryland M, Traavik T. In vitro host range, multiplication and virion forms of recombinant viruses obtained from co-infection in vitro with a vaccinia-vectored influenza vaccine and a naturally occurring cowpox virus isolate. Virol J 2009; 6:55. [PMID: 19435511 PMCID: PMC2690591 DOI: 10.1186/1743-422x-6-55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 05/12/2009] [Indexed: 12/31/2022] Open
Abstract
Background Poxvirus-vectored vaccines against infectious diseases and cancer are currently under development. We hypothesized that the extensive use of poxvirus-vectored vaccine in future might result in co-infection and recombination between the vaccine virus and naturally occurring poxviruses, resulting in hybrid viruses with unpredictable characteristics. Previously, we confirmed that co-infecting in vitro a Modified vaccinia virus Ankara (MVA) strain engineered to express influenza virus haemagglutinin (HA) and nucleoprotein (NP) genes with a naturally occurring cowpox virus (CPXV-NOH1) resulted in recombinant progeny viruses (H Hansen, MI Okeke, Ø Nilssen, T Traavik, Vaccine 23: 499–506, 2004). In this study we analyzed the biological properties of parental and progeny hybrid viruses. Results Five CPXV/MVA progeny viruses were isolated based on plaque phenotype and the expression of influenza virus HA protein. Progeny hybrid viruses displayed in vitro cell line tropism of CPXV-NOH1, but not that of MVA. The HA transgene or its expression was lost on serial passage of transgenic viruses and the speed at which HA expression was lost varied with cell lines. The HA transgene in the progeny viruses or its expression was stable in African Green Monkey derived Vero cells but became unstable in rat derived IEC-6 cells. Hybrid viruses lacking the HA transgene have higher levels of virus multiplication in mammalian cell lines and produced more enveloped virions than the transgene positive progenitor virus strain. Analysis of the subcellular localization of the transgenic HA protein showed that neither virus strain nor cell line have effect on the subcellular targets of the HA protein. The influenza virus HA protein was targeted to enveloped virions, plasma membrane, Golgi apparatus and cytoplasmic vesicles. Conclusion Our results suggest that homologous recombination between poxvirus-vectored vaccine and naturally circulating poxviruses, genetic instability of the transgene, accumulation of non-transgene expressing vectors or hybrid virus progenies, as well as cell line/type specific selection against the transgene are potential complications that may result if poxvirus vectored vaccines are extensively used in animals and man.
Collapse
Affiliation(s)
- Malachy Ifeanyi Okeke
- Department of Microbiology and Virology, Faculty of Medicine, University of Tromsø, Tromsø, Norway.
| | | | | | | | | |
Collapse
|
31
|
Tan JL, Ueda N, Mercer AA, Fleming SB. Investigation of orf virus structure and morphogenesis using recombinants expressing FLAG-tagged envelope structural proteins: evidence for wrapped virus particles and egress from infected cells. J Gen Virol 2009; 90:614-625. [PMID: 19218206 DOI: 10.1099/vir.0.005488-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orf virus (ORFV) is the type species of the genus Parapoxvirus, but little is known about the structure or morphogenesis of the virus. In contrast, the structure and morphogenesis of vaccinia virus (VACV) has been extensively studied. VACV has two main infectious forms, mature virion (MV) and extracellular virion (EV). The MV is wrapped by two additional membranes derived from the trans-Golgi to produce a wrapped virion (WV), the outermost of which is lost by cellular membrane fusion during viral egress to form the EV. Genome sequencing of ORFV has revealed that it has homologues of almost all of the VACV structural genes. Notable exceptions are A36R, K2L, A56R and B5R, which are associated with WV and EV envelopes. This study investigated the morphogenesis and structure of ORFV by fusing FLAG peptide to the structural proteins 10 kDa, F1L and ORF-110 to form recombinant viruses. 10 kDa and F1L are homologues of VACV A27L and H3L MV membrane proteins, whilst ORF-110 is homologous to VACV A34R, an EV membrane protein. Immunogold labelling of FLAG proteins on virus particles isolated from lysed cells showed that FLAG-F1L and FLAG-10 kDa were displayed on the surface of infectious particles, whereas ORF-110-FLAG could not be detected. Western blot analysis of solubilized recombinant ORF-110-FLAG particles revealed that ORF-110-FLAG was abundant and undergoes post-translational modification indicative of endoplasmic reticulum trafficking. Fluorescent microscopy confirmed the prediction that ORF-110-FLAG localized to the Golgi in virus-infected cells. Finally, immunogold labelling of EVs showed that ORF-110-FLAG became exposed on the surface of EV-like particles as a result of egress from the cell.
Collapse
Affiliation(s)
- Joanne L Tan
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Norihito Ueda
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
32
|
Spehner D, Drillien R. Extracellular vesicles containing virus-encoded membrane proteins are a byproduct of infection with modified vaccinia virus Ankara. Virus Res 2008; 137:129-36. [PMID: 18662728 DOI: 10.1016/j.virusres.2008.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/26/2008] [Accepted: 07/01/2008] [Indexed: 10/21/2022]
Abstract
Vaccinia virus is a structurally complex virus that multiplies in the cell cytoplasm. The assembly of Vaccinia virus particles and their egress from infected cells exploit cellular pathways. Most notably, intracellular mature viral particles are enwrapped by Golgi-derived or endosomal vesicles. These enveloped particles, enriched in virus-encoded proteins, migrate to the cell surface where they are released into the extracellular space through fusion of their outer envelope with the cell membrane. We report that baby hamster kidney cells productively infected with the modified vaccinia virus Ankara strain (MVA) also release extracellular vesicles containing virus-encoded envelope proteins but devoid of any virus cargo. Such vesicles were visualized on the cell surface by electron microscopy and immunogold labelling of the B5 envelope protein. A portion of the B5 protein was found to be associated with non-viral material in high speed ultracentrifugation pellets and displayed a buoyant density characteristic of exosomes released by some cell types. An unrelated transmembrane protein (CD40 ligand) encoded by the MVA genome was also incorporated into extracellular vesicles but not into the envelopes that surround extracellular enveloped virus. High speed pellets obtained by centrifugation of culture medium from cells infected with MVA encoding CD40 ligand displayed the ability to induce dendritic cell maturation suggesting that the ligand is on the outer surface of the extracellular vesicles. We propose that the formation of extracellular vesicles after vaccinia virus infection is a byproduct of the pathway leading to the formation of extracellular enveloped virus.
Collapse
Affiliation(s)
- Danièle Spehner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U596/CNRS UMR7104, Université Louis Pasteur, Illkirch, France.
| | | |
Collapse
|
33
|
Barrett L, Gallant M, Howley C, Bowmer MI, Hirsch G, Peltekian K, Grant M. Enhanced IL-10 production in response to hepatitis C virus proteins by peripheral blood mononuclear cells from human immunodeficiency virus-monoinfected individuals. BMC Immunol 2008; 9:28. [PMID: 18554409 PMCID: PMC2443791 DOI: 10.1186/1471-2172-9-28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 06/13/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Multiple immune evasion strategies by which HCV establishes chronic infection have been proposed, including manipulation of cytokine responses. Prior infection with HIV increases the likelihood of chronic HCV infection and accelerates development of HCV-related morbidity. Therefore, we investigated in vitro cytokine responses to HCV structural and non-structural proteins in peripheral blood mononuclear cells (PBMC) from uninfected, HIV-infected, HCV-infected and HIV/HCV-coinfected individuals. RESULTS Intracellular flow cytometry was used to assess IL-2, IL-10, IL-12, and IFN-gamma production by freshly isolated PBMC incubated for 16 hours with recombinant HCV core, non-structural protein 3 (NS3), and NS4 proteins. Anti-HCV cellular responses were assessed in HIV/HCV-coinfected individuals by 3H-thymidine proliferation assay. Exposure to HCV antigens increased IL-10 production by PBMC, especially in uninfected and HIV-monoinfected individuals. This IL-10 response was attenuated in chronic HCV infection even with HCV/HIV-coinfection. The cells producing IL-10 in response to HCV proteins in vitro matched a PBMC subset recently shown to constitutively produce IL-10 in vivo. This subset was found at similar frequencies in uninfected, HIV-infected, HCV-infected and HIV/HCV-coinfected individuals before exposure to HCV proteins. HCV-specific T cell proliferation was detectable in only one HIV/HCV-coinfected individual who demonstrated no HCV-induced IL-10 response. CONCLUSION This pattern suggests that selective induction of IL-10 in uninfected individuals and especially in HIV-monoinfected individuals plays a role in establishing chronic HCV infection and conversely, that attenuation of this response, once chronic infection is established, favours development of hepatic immunopathology.
Collapse
Affiliation(s)
- Lisa Barrett
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St, John's, Canada.
| | | | | | | | | | | | | |
Collapse
|
34
|
Purification of infectious human herpesvirus 6A virions and association of host cell proteins. Virol J 2007; 4:101. [PMID: 17949490 PMCID: PMC2164960 DOI: 10.1186/1743-422x-4-101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 10/19/2007] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viruses that are incorporating host cell proteins might trigger autoimmune diseases. It is therefore of interest to identify possible host proteins associated with viruses, especially for enveloped viruses that have been suggested to play a role in autoimmune diseases, like human herpesvirus 6A (HHV-6A) in multiple sclerosis (MS). RESULTS We have established a method for rapid and morphology preserving purification of HHV-6A virions, which in combination with parallel analyses with background control material released from mock-infected cells facilitates qualitative and quantitative investigations of the protein content of HHV-6A virions. In our iodixanol gradient purified preparation, we detected high levels of viral DNA by real-time PCR and viral proteins by metabolic labelling, silver staining and western blots. In contrast, the background level of cellular contamination was low in the purified samples as demonstrated by the silver staining and metabolic labelling analyses. Western blot analyses showed that the cellular complement protein CD46, the receptor for HHV-6A, is associated with the purified and infectious virions. Also, the cellular proteins clathrin, ezrin and Tsg101 are associated with intact HHV-6A virions. CONCLUSION Cellular proteins are associated with HHV-6A virions. The relevance of the association in disease and especially in autoimmunity will be further investigated.
Collapse
|
35
|
García AD, Meseda CA, Mayer AE, Kumar A, Merchlinsky M, Weir JP. Characterization and use of mammalian-expressed vaccinia virus extracellular membrane proteins for quantification of the humoral immune response to smallpox vaccines. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1032-44. [PMID: 17596428 PMCID: PMC2044493 DOI: 10.1128/cvi.00050-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 05/04/2007] [Accepted: 06/19/2007] [Indexed: 11/20/2022]
Abstract
The licensed smallpox vaccine Dryvax is used as the standard in comparative immunogenicity and protection studies of new smallpox vaccine candidates. Although the correlates of protection against smallpox are unknown, recent studies have shown that a humoral response against the intracellular mature virion and extracellular enveloped virion (EV) forms of vaccinia virus is crucial for protection. Using a recombinant Semliki Forest virus (rSFV) vector system, we expressed a set of full-length EV proteins for the development of EV antigen-specific enzyme-linked immunosorbent assays (ELISAs) and the production of monospecific antisera. The EV-specific ELISAs were used to evaluate the EV humoral response elicited by Dryvax and the nonreplicating modified vaccinia virus Ankara (MVA) in mouse vaccination experiments comparing doses and routes of vaccination. Quantitatively similar titers of antibodies against EV antigens A33R, A56R, and B5R were measured in mice vaccinated with Dryvax and MVA when MVA was administered at a dose of 10(8) plaque-forming units. Further, a substantial increase in the EV-specific antibody response was induced in mice inoculated with MVA by using a prime-boost schedule. Finally, we investigated the abilities of the EV-expressing rSFV vectors to elicit the production of polyclonal monospecific antisera against the corresponding EV proteins in mice. The monospecific serum antibody levels against A33R, A56R, and B5R were measurably higher than the antibody levels induced by Dryvax. The resulting polyclonal antisera were used in Western blot analysis and immunofluorescence assays, indicating that rSFV particles are useful vectors for generating monospecific antisera.
Collapse
Affiliation(s)
- Alonzo D García
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics and Evaluation and Research/FDA, 1401 Rockville Pike, HFM-457, Rockville, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Alzhanova D, Hruby DE. A host cell membrane protein, golgin-97, is essential for poxvirus morphogenesis. Virology 2007; 362:421-7. [PMID: 17276477 PMCID: PMC2680701 DOI: 10.1016/j.virol.2007.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 12/18/2006] [Accepted: 01/02/2007] [Indexed: 11/20/2022]
Abstract
Acquisition of the membrane and genome encapsidation is an important step in the replication of enveloped viruses. The biogenesis of the poxviral primary membrane and the core as well as the mechanisms of their maturation are poorly understood. Using RNA interference approach, we demonstrate that a cellular trans-Golgi network membrane protein, golgin-97, is essential for virus replication. Analysis of the virion morphology in the cells depleted of golgin-97 shows that the protein is required for the virus morphogenesis and, in particular, for the formation of the first infectious virus form, mature virus, but not its precursor, immature virus. This suggests that golgin-97 may be involved in the maturation of the virus core and, potentially, the virus membrane.
Collapse
Affiliation(s)
| | - Dennis E. Hruby
- Corresponding author. Mailing address: Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR 97331, USA. Phone: +1-541-737-1849. Fax: +1-541-737-2440. E-mail address:
| |
Collapse
|
37
|
Perdiguero B, Blasco R. Interaction between vaccinia virus extracellular virus envelope A33 and B5 glycoproteins. J Virol 2006; 80:8763-77. [PMID: 16912323 PMCID: PMC1563889 DOI: 10.1128/jvi.00598-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular form of vaccinia virus acquires its outer envelope by wrapping with cytoplasmic membranes that contain at least seven virus-encoded proteins, of which four are glycoproteins. We searched for interactions between the vaccinia virus A33 glycoprotein and proteins A34, A36, B5, F12, and F13. First, when myc epitope-tagged A33 was expressed in combination with other envelope proteins, A33 colocalized with B5 and A36, suggesting that direct A33-B5 and A33-A36 interactions occur in the absence of infection. A recombinant vaccinia virus (vA33Rmyc) was constructed by introduction of the myc-tagged A33 version (A33myc) into A33-deficient vaccinia virus. A33myc partially restored plaque formation and colocalized with enveloped virions in infected cells. Coimmunoprecipitation experiments with extracts of vA33Rmyc-infected cells confirmed the existence of a physical association of A33 with A36 and B5. Of these, the A33-B5 interaction is a novel finding, whereas the interaction between A33 and A36 has been previously characterized. A collection of vaccinia viruses expressing mutated versions of the B5 protein was used to investigate the domain(s) of B5 required for interaction with A33. Both the cytoplasmic domain and most of the extracellular domain, but not the transmembrane domain, of the B5 protein were dispensable for binding to A33. Mutations in the extracellular portions of B5 and A33 that enhance extracellular virus release did not affect the interaction between the two. In contrast, substituting the B5 transmembrane domain with that of the vesicular stomatitis virus G glycoprotein prevented the association with A33. Immunofluorescence experiments on virus mutants indicated that B5 is required for efficient targeting of A33 into enveloped virions. These results point to the transmembrane domain of B5 as the major determinant of the A33-B5 interaction and demonstrate that protein-protein interactions are crucial in determining the composition of the virus envelope.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Departamento de Biotecnología, INIA, Ctra. La Coruña km 7.5, Madrid, Spain
| | | |
Collapse
|
38
|
Alzhanova D, Hruby DE. A trans-Golgi network resident protein, golgin-97, accumulates in viral factories and incorporates into virions during poxvirus infection. J Virol 2006; 80:11520-7. [PMID: 16987983 PMCID: PMC1642589 DOI: 10.1128/jvi.00287-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Poxviruses are the only DNA viruses known to replicate and assemble in the cytoplasm of infected cells. Poxvirus morphogenesis is a complicated process in which four distinct infectious forms of the virus are produced: intracellular mature virus, intracellular enveloped virus, cell-associated enveloped virus, and extracellular enveloped virus. The source of primary membrane wrapping the intracellular mature virus, the first infectious form, is still unknown. Although the membrane was suggested to originate from the endoplasmic reticulum-Golgi intermediate compartment, none of the marker proteins from this or any other cell compartments has been found in the intracellular mature virus. Thus, it was hypothesized that the membrane is either extensively modified by the virus or synthesized de novo. In the work described here, we demonstrate that a host cell protein residing in the trans-Golgi network membrane, golgin-97, is transported to the sites of virus replication and assembly and becomes incorporated into the virions during poxvirus infection. Inside the virion, golgin-97 is associated with the insoluble core protein fraction. Being able to adopt a long rod-like structure, the protein apparently extends through the virion envelope and protrudes from its surface. Here we discuss the potential role and functions of golgin-97 in poxvirus replication and propose two working models.
Collapse
Affiliation(s)
- Dina Alzhanova
- Oregon State University, Department of Microbiology, 220 Nash Hall, Corvallis, OR 97331-3804, USA
| | | |
Collapse
|
39
|
Najarro P, Gubser C, Hollinshead M, Fox J, Pease J, Smith GL. Yaba-like disease virus chemokine receptor 7L, a CCR8 orthologue. J Gen Virol 2006; 87:809-816. [PMID: 16528029 DOI: 10.1099/vir.0.81427-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yaba-like disease virus (YLDV) gene 7L encodes a seven-transmembrane G protein-coupled receptor with 53 % amino acid identity to human CC chemokine receptor 8 (CCR8). Initial characterization of 7L showed that this 56 kDa cell-surface glycoprotein binds human CCL1 with high affinity (K
d=0·6 nM) and induces signal transduction by activation of heterotrimeric G proteins and downstream protein kinases. Further characterization of YLDV 7L is presented here and shows that murine CC chemokines can induce G-protein activation via the 7L receptor, despite having a low binding affinity for this receptor. In addition, when expressed by recombinant vaccinia virus (VACV), YLDV 7L was found on the outer envelope of VACV extracellular enveloped virus. The contribution of 7L to poxvirus pathogenesis was investigated by infection of mice with a recombinant VACV expressing 7L (vΔB8R-7L) and was compared with the outcome of infection by parental and revertant control viruses. In both intranasal and intradermal models, expression of 7L caused attenuation of VACV. The role of this protein in viral virulence is discussed.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Cell Line
- Chemokines, CC/metabolism
- Humans
- Injections, Intradermal
- Mice
- Mice, Inbred BALB C
- Receptors, CCR8
- Receptors, Chemokine/chemistry
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- Recombination, Genetic
- Signal Transduction
- Vaccinia/pathology
- Vaccinia/virology
- Vaccinia virus/genetics
- Vaccinia virus/metabolism
- Vaccinia virus/pathogenicity
- Virion/metabolism
- Virulence
- Yatapoxvirus/genetics
- Yatapoxvirus/metabolism
- Yatapoxvirus/pathogenicity
Collapse
Affiliation(s)
- Pilar Najarro
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Caroline Gubser
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Michael Hollinshead
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - James Fox
- Department of Leukocyte Biology, Faculty of Medicine, Imperial College London, South Kensington Campus, Exhibition Road, London SW1 2AZ, UK
| | - James Pease
- Department of Leukocyte Biology, Faculty of Medicine, Imperial College London, South Kensington Campus, Exhibition Road, London SW1 2AZ, UK
| | - Geoffrey L Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
40
|
Cantin R, Méthot S, Tremblay MJ. Plunder and stowaways: incorporation of cellular proteins by enveloped viruses. J Virol 2005; 79:6577-87. [PMID: 15890896 PMCID: PMC1112128 DOI: 10.1128/jvi.79.11.6577-6587.2005] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Réjean Cantin
- Laboratory of Human Immuno-Retrovirology, Research Center in Infectious Diseases, CHUL Research Center, Quebec (QC), Canada
| | | | | |
Collapse
|
41
|
Takashima Y, Tsukamoto M, Ota H, Matsumoto Y, Hayashi Y, Otsuka H. Immunization with pseudorabies virus harboring Fc domain of IgG makes a contribution to protection of mice from lethal challenge. Vaccine 2005; 23:3775-82. [PMID: 15893614 DOI: 10.1016/j.vaccine.2005.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 01/21/2005] [Accepted: 02/18/2005] [Indexed: 11/19/2022]
Abstract
To enhance the efficacy of an inactivated vaccine against pseudorabies virus (PRV), we evaluated the adjuvant properties of Fc domain of IgG. A cell line expressing mouse IgG Fc chimera on its surface was established. We found that when PRV was propagated in the cells expressing the Fc chimera, PRV virion incorporated the Fc. Immunization of BALB/c mice with inactivated PRV harboring Fc, which had been propagated in the cells expressing Fc on its surface, induced higher antibody production against PRV and protected mice more effectively from lethal challenge of virulent strain, comparing to the immunization with normal inactivated virus. Virus harboring Fc has a great potential as a new inactivated vaccine.
Collapse
Affiliation(s)
- Yasuhiro Takashima
- Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Bereta M, Bereta J, Park J, Medina F, Kwak H, Kaufman HL. Immune properties of recombinant vaccinia virus encoding CD154 (CD40L) are determined by expression of virally encoded CD40L and the presence of CD40L protein in viral particles. Cancer Gene Ther 2005; 11:808-18. [PMID: 15359290 DOI: 10.1038/sj.cgt.7700762] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Expression of costimulatory molecules by recombinant poxviruses is a promising strategy for enhancing therapeutic vaccines. CD40-CD40L interactions are critical for conditioning dendritic cells (DC) and priming T- and B-cell immunity. We constructed a vaccinia virus expressing murine CD40L (rV-CD40L) and studied its immunomodulatory properties in vitro. Direct DC infection with control vaccinia or psoralen/UV-inactivated rV-CD40L stimulated high levels of interleukin 12 (IL-12) release. However, replication-competent rV-CD40L did not stimulate IL-12 under similar conditions. We observed a high level of CD40L protein on purified viral particles and demonstrated that induction of IL-12 by nonreplicating rV-CD40L was blocked by anti-CD40 antibodies suggesting that functional CD40L on viral particles contributed to alterations in IL-12 synthesis. Since cross-presentation of tumor-associated antigens by DC is augmented by viral infection of tumor cells, we infected MC38 murine colon carcinoma cells with rV-CD40L. Infected cells stimulated IL-12 secretion by DC and proliferation of B cells and DX5(+) (NK/NKT) cells through direct CD40-CD40L interaction. A subpopulation of NKT cells expressing CD40 (NK1.1(+), CD3(lo)) appeared to be a major effector population responding to MC38/rV-CD40L. These results highlight the complex immune regulatory effects of rV-CD40L defined by the cumulative effects of CD40L expression, presence of CD40L protein in viral particles, and the replication potential of the virus.
Collapse
Affiliation(s)
- Michal Bereta
- Department of Surgery and Pathology, Columbia University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Vaccinia virus (VACV) is the prototypic member of the Poxviridae a group of large DNA viruses that replicate in the cell cytoplasm. The entry and exit of VACV are complicated by the existence of two distinct forms of virus, intracellular mature virus (IMV) and extracellular enveloped virus (EEV), that are surrounded by different numbers of lipid membranes and have different surface proteins. Here the mechanisms used by these different forms of VACV to leave the infected cell are reviewed. Whereas some enveloped viruses complete virus assembly by budding through the plasma membrane, infectious poxvirus particles (IMV) are produced within the cytoplasm. These particles are either further enveloped by intracellular membranes to form intracellular enveloped virus (IEV) that are transported to the cell surface on microtubules and exposed on the cell surface by exocytosis, or are released after cell lysis. If the enveloped virion remains attached to the cell surface it is called cell-associated enveloped virus (CEV) and is propelled into surrounding cells by growing actin tails beneath the plasma membrane. Alternatively, the surface virion may be released as EEV.
Collapse
Affiliation(s)
- Geoffrey L Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus Norfolk Place, London W2 1PG, UK.
| | | |
Collapse
|
44
|
Kwak H, Mustafa W, Speirs K, Abdool AJ, Paterson Y, Isaacs SN. Improved protection conferred by vaccination with a recombinant vaccinia virus that incorporates a foreign antigen into the extracellular enveloped virion. Virology 2004; 322:337-48. [PMID: 15110531 DOI: 10.1016/j.virol.2004.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 08/18/2003] [Accepted: 02/16/2004] [Indexed: 10/26/2022]
Abstract
Recombinant poxviruses have shown promise as vaccine vectors. We hypothesized that improved cellular immune responses could be developed to a foreign antigen by incorporating it as part of the extracellular enveloped virion (EEV). We therefore constructed a recombinant vaccinia virus that replaced the cytoplasmic domain of the B5R protein with a test antigen, HIV-1 Gag. Mice immunized with the virus expressing Gag fused to B5R had significantly better primary CD4 T-cell responses than recombinant virus expressing HIV-Gag from the TK-locus. The CD8 T-cell responses were less different between the two groups. Importantly, although we saw differences in the immune response to the test antigen, the vaccinia virus-specific immune responses were similar with both constructs. When groups of vaccinated mice were challenged 30 days later with a recombinant Listeria monocytogenes that expresses HIV-Gag, mice inoculated with the virus that expresses the B5R-Gag fusion protein had lower colony counts of Listeria in the liver and spleen than mice vaccinated with the standard recombinant. Thus, vaccinia virus expressing foreign antigen incorporated into EEV may be a better vaccine strategy than standard recombinant vaccinia virus.
Collapse
Affiliation(s)
- Heesun Kwak
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6073, USA
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Vaccinia virus (VV), the virus smallpox vaccine, replicates in the cytoplasm of infected cells. The intracellular movement of this large virus would be inefficient without specific transport mechanisms; therefore, VV uses microtubules for movement during both entry and egress. In addition, the dissemination of virus from infected cells to adjacent cells is promoted by the polymerization of actin beneath cell surface virions to drive virus particles away from the cell. Last, the roles of different VV particles in virus movement within and between hosts are discussed.
Collapse
Affiliation(s)
- Geoffrey L Smith
- Department of Virology, The Wright-Fleming Institute, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom.
| | | | | |
Collapse
|
46
|
Husain M, Moss B. Evidence against an essential role of COPII-mediated cargo transport to the endoplasmic reticulum-Golgi intermediate compartment in the formation of the primary membrane of vaccinia virus. J Virol 2003; 77:11754-66. [PMID: 14557660 PMCID: PMC229368 DOI: 10.1128/jvi.77.21.11754-11766.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus assembles two distinct lipoprotein membranes. The primary membrane contains nonglycosylated proteins, appears as crescents in the cytoplasm, and delimits immature and mature intracellular virions. The secondary or wrapping membrane contains glycoproteins, is derived from virus-modified trans-Golgi or endosomal cisternae, forms a loose coat around some intracellular mature virions, and becomes the envelope of extracellular virions. Although the mode of formation of the wrapping membrane is partially understood, we know less about the primary membrane. Recent reports posit that the primary membrane originates from the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). According to this model, viral primary membrane proteins are cotranslationally inserted into the ER and accumulate in the ERGIC. To test the ERGIC model, we employed Sar1(H79G), a dominant negative form of the Sar1 protein, which is an essential component of coatomer protein II (COPII)-mediated cargo transport from the ER to the ERGIC and other post-ER compartments. Overexpression of Sar1(H79G) by transfection or by a novel recombinant vaccinia virus with an inducible Sar1(H79G) gene resulted in retention of ERGIC 53 in the ER but did not interfere with localization of viral primary membrane proteins in factory regions or with formation of viral crescent membranes and infectious intracellular mature virions. Wrapping of intracellular mature virions and formation of extracellular virions did not occur, however, because some proteins that are essential for the secondary membrane were retained in the ER as a consequence of Sar1(H79G) overexpression. Our data argue against an essential role of COPII-mediated cargo transport and the ERGIC in the formation of the viral primary membrane. Instead, viral membranes may be derived directly from the ER or by a novel mechanism.
Collapse
Affiliation(s)
- Matloob Husain
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA
| | | |
Collapse
|
47
|
Carter GC, Rodger G, Murphy BJ, Law M, Krauss O, Hollinshead M, Smith GL. Vaccinia virus cores are transported on microtubules. J Gen Virol 2003; 84:2443-2458. [PMID: 12917466 DOI: 10.1099/vir.0.19271-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection with Vaccinia virus (VV) produces several distinct virions called intracellular mature virus (IMV), intracellular enveloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV). In this report, we have investigated how incoming virus cores derived from IMV are transported within the cell. To do this, recombinant VVs (vA5L-EGFP-N and vA5L-EGFP-C) were generated in which the A5L virus core protein was fused with the enhanced green fluorescent protein (EGFP) at the N or C terminus. These viruses were viable, induced formation of actin tails and had a plaque size similar to wild-type. Immunoblotting showed the A5L-EGFP fusion protein was present in IMV particles and immunoelectron microscopy showed that the fusion protein was incorporated into VV cores. IMV made by vA5L-EGFP-N were used to follow the location and movement of cores after infection of PtK(2) cells. Confocal microscopy showed that virus cores were stained with anti-core antibody only after they had entered the cell and, once intracellular, were negative for the IMV surface protein D8L. These cores co-localized with microtubules and moved in a stop-start manner with an average speed of 51.8 (+/-3.9) microm min(-1), consistent with microtubular movement. Treatment of cells with nocodazole or colchicine inhibited core movement, but addition of cytochalasin D did not. These data show that VV cores derived from IMV use microtubules for intracellular transport after entry.
Collapse
Affiliation(s)
- Gemma C Carter
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Gaener Rodger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Brendan J Murphy
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Mansun Law
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Oliver Krauss
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Michael Hollinshead
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Geoffrey L Smith
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
48
|
Smith GL, Vanderplasschen A, Law M. The formation and function of extracellular enveloped vaccinia virus. J Gen Virol 2002; 83:2915-2931. [PMID: 12466468 DOI: 10.1099/0022-1317-83-12-2915] [Citation(s) in RCA: 392] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus produces four different types of virion from each infected cell called intracellular mature virus (IMV), intracellular enveloped virus (IEV), cell-associated enveloped virus (CEV) and extracellular enveloped virus (EEV). These virions have different abundance, structure, location and roles in the virus life-cycle. Here, the formation and function of these virions are considered with emphasis on the EEV form and its precursors, IEV and CEV. IMV is the most abundant form of virus and is retained in cells until lysis; it is a robust, stable virion and is well suited to transmit infection between hosts. IEV is formed by wrapping of IMV with intracellular membranes, and is an intermediate between IMV and CEV/EEV that enables efficient virus dissemination to the cell surface on microtubules. CEV induces the formation of actin tails that drive CEV particles away from the cell and is important for cell-to-cell spread. Lastly, EEV mediates the long-range dissemination of virus in cell culture and, probably, in vivo. Seven virus-encoded proteins have been identified that are components of IEV, and five of them are present in CEV or EEV. The roles of these proteins in virus morphogenesis and dissemination, and as targets for neutralizing antibody are reviewed. The production of several different virus particles in the VV replication cycle represents a coordinated strategy to exploit cell biology to promote virus spread and to aid virus evasion of antibody and complement.
Collapse
Affiliation(s)
- Geoffrey L Smith
- Department of Virology, Room 333, The Wright-Fleming Institute, Faculty of Medicine, Imperial College of Science, Technology & Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK1
| | - Alain Vanderplasschen
- Department of Virology, Room 333, The Wright-Fleming Institute, Faculty of Medicine, Imperial College of Science, Technology & Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK1
| | - Mansun Law
- Department of Virology, Room 333, The Wright-Fleming Institute, Faculty of Medicine, Imperial College of Science, Technology & Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, UK1
| |
Collapse
|