1
|
Muir RT, Callum JL, Yu AYX, Kapral MK, Swartz RH, Black SE, MacIntosh BJ, Fergusson DA, Kleinman S, Demchuk AD, Stys PK, Smith EE, Hill MD. Beta-Amyloid Related Neurodegenerative and Neurovascular Diseases: Potential Implications for Transfusion Medicine. Transfus Med Rev 2024; 38:150858. [PMID: 39413667 DOI: 10.1016/j.tmrv.2024.150858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 10/18/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is a progressive cerebrovascular and neurodegenerative disorder that is caused by the aberrant accumulation of soluble beta-amyloid isoforms in the small vessel walls of the cerebral and cerebellar cortices and the leptomeninges. Vascular beta-amyloid deposition increases vulnerability to intracerebral hemorrhage (ICH). Clinically, CAA can be the underlying cause of up to half of spontaneous lobar ICHs and can also present with convexity subarachnoid hemorrhage, transient focal neurologic episodes and progressive cognitive decline leading to dementia. The majority of CAA is sporadic, with increasing prevalence with age and often coexists with Alzheimer's Disease (AD). Genetic and iatrogenic etiologies are rare. Cases of CAA and AD have been linked to the use of cadaveric pituitary hormone and later life iatrogenic CAA has also been described following early-life neurosurgical procedures with cadaveric dura grafts. Together these data suggest a capacity of beta-amyloid transmissibility. A recent study found that in over 1 million transfusion recipients from donors who later developed (i) >1 ICH or (ii) one ICH event and dementia, had an elevated risk of developing future ICH. Considering prior reports of transfusion associated variant-Creutzfeldt Jakob Disease in humans and in vivo evidence in sheep, coupled with emerging data supporting beta-amyloid's prion-like properties, raises the question of whether CAA could be transmissible by blood transfusion. This would also have implications for screening, especially in an era of emerging plasma biomarkers of cerebral amyloidosis. Given the public health concerns raised by this biologically plausible question, there is a need for future studies with well-characterized definitions - and temporal ascertainment - of CAA exposure and outcomes to examine whether CAA is transfusion-transmissible, and, if so, with what frequency and timing of onset.
Collapse
Affiliation(s)
- Ryan T Muir
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Jeannie L Callum
- Department of Pathology and Molecular Medicine, Queen's University, Ontario, Canada; Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Amy Y X Yu
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; ICES (formerly Institute for Clinical Evaluative Sciences), Toronto, Ontario, Canada
| | - Moira K Kapral
- ICES (formerly Institute for Clinical Evaluative Sciences), Toronto, Ontario, Canada; Department of Medicine, General Internal Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Richard H Swartz
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada; ICES (formerly Institute for Clinical Evaluative Sciences), Toronto, Ontario, Canada
| | - Sandra E Black
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Bradley J MacIntosh
- Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Research Program Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Steven Kleinman
- Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew D Demchuk
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Peter K Stys
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Eric E Smith
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Michael D Hill
- Calgary Stroke Program, Department of Clinical Neurosciences, Calgary, Alberta, Canada; Hotchkiss Brain Institute, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Wang SS, Meng ZL, Zhang YW, Yan YS, Li LB. Prion protein E219K polymorphism: from the discovery of the KANNO blood group to interventions for human prion disease. Front Neurol 2024; 15:1392984. [PMID: 39050130 PMCID: PMC11266091 DOI: 10.3389/fneur.2024.1392984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
KANNO is a new human blood group that was recently discovered. The KANNO antigen shares the PRNP gene with the prion protein and the prion protein E219K polymorphism determines the presence or absence of the KANNO antigen and the development of anti-KANNO alloantibodies. These alloantibodies specifically react with prion proteins, which serve as substrates for conversion into pathological isoforms in some prion diseases and may serve as effective targets for resisting prion infection. These findings establish a potential link between the KANNO blood group and human prion disease via the prion protein E219K polymorphism. We reviewed the interesting correlation between the human PRNP gene's E219K polymorphism and the prion proteins it expresses, as well as human red blood cell antigens. Based on the immune serological principles of human blood cells, the prion protein E219K polymorphism may serve as a foundation for earlier molecular diagnosis and future drug development for prion diseases.
Collapse
Affiliation(s)
- Si-Si Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Li Meng
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yi-Wen Zhang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yi-Shuang Yan
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ling-Bo Li
- Aikang MedTech Co., Ltd., Shenzhen, China
| |
Collapse
|
3
|
Sweetland GD, Eggleston C, Bartz JC, Mathiason CK, Kincaid AE. Expression of the cellular prion protein by mast cells in the human carotid body. Prion 2023; 17:67-74. [PMID: 36943020 PMCID: PMC10038025 DOI: 10.1080/19336896.2023.2193128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Prion diseases are fatal neurologic disorders that can be transmitted by blood transfusion. The route for neuroinvasion following exposure to infected blood is not known. Carotid bodies (CBs) are specialized chemosensitive structures that detect the concentration of blood gasses and provide feedback for the neural control of respiration. Sensory cells of the CB are highly perfused and densely innervated by nerves that are synaptically connected to the brainstem and thoracic spinal cord, known to be areas of early prion deposition following oral infection. Given their direct exposure to blood and neural connections to central nervous system (CNS) areas involved in prion neuroinvasion, we sought to determine if there were cells in the human CB that express the cellular prion protein (PrPC), a characteristic that would support CBs serving as a route for prion neuroinvasion. We collected CBs from cadaver donor bodies and determined that mast cells located in the carotid bodies express PrPC and that these cells are in close proximity to blood vessels, nerves, and nerve terminals that are synaptically connected to the brainstem and spinal cord.
Collapse
Affiliation(s)
- Gregory D. Sweetland
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Connor Eggleston
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Anthony E. Kincaid
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE, USA
| |
Collapse
|
4
|
Eaton SL, Murdoch F, Rzechorzek NM, Thompson G, Hartley C, Blacklock BT, Proudfoot C, Lillico SG, Tennant P, Ritchie A, Nixon J, Brennan PM, Guido S, Mitchell NL, Palmer DN, Whitelaw CBA, Cooper JD, Wishart TM. Modelling Neurological Diseases in Large Animals: Criteria for Model Selection and Clinical Assessment. Cells 2022; 11:cells11172641. [PMID: 36078049 PMCID: PMC9454934 DOI: 10.3390/cells11172641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Issue: The impact of neurological disorders is recognised globally, with one in six people affected in their lifetime and few treatments to slow or halt disease progression. This is due in part to the increasing ageing population, and is confounded by the high failure rate of translation from rodent-derived therapeutics to clinically effective human neurological interventions. Improved translation is demonstrated using higher order mammals with more complex/comparable neuroanatomy. These animals effectually span this translational disparity and increase confidence in factors including routes of administration/dosing and ability to scale, such that potential therapeutics will have successful outcomes when moving to patients. Coupled with advancements in genetic engineering to produce genetically tailored models, livestock are increasingly being used to bridge this translational gap. Approach: In order to aid in standardising characterisation of such models, we provide comprehensive neurological assessment protocols designed to inform on neuroanatomical dysfunction and/or lesion(s) for large animal species. We also describe the applicability of these exams in different large animals to help provide a better understanding of the practicalities of cross species neurological disease modelling. Recommendation: We would encourage the use of these assessments as a reference framework to help standardise neurological clinical scoring of large animal models.
Collapse
Affiliation(s)
- Samantha L. Eaton
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Correspondence: (S.L.E.); (T.M.W.); Tel.: +44-(0)-131-651-9125 (S.L.E.); +44-(0)-131-651-9233 (T.M.W.)
| | - Fraser Murdoch
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Nina M. Rzechorzek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gerard Thompson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Department of Clinical Neurosciences, NHS Lothian, 50 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Claudia Hartley
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Benjamin Thomas Blacklock
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Chris Proudfoot
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Simon G. Lillico
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Peter Tennant
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Adrian Ritchie
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - James Nixon
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Paul M. Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Stefano Guido
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Bioresearch & Veterinary Services, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Nadia L. Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| | - David N. Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| | - C. Bruce A. Whitelaw
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Jonathan D. Cooper
- Departments of Pediatrics, Genetics, and Neurology, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Thomas M. Wishart
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Correspondence: (S.L.E.); (T.M.W.); Tel.: +44-(0)-131-651-9125 (S.L.E.); +44-(0)-131-651-9233 (T.M.W.)
| |
Collapse
|
5
|
Salamat MKF, Stewart P, Brown H, Tan KBC, Smith A, de Wolf C, Alejo Blanco AR, Turner M, Manson JC, McCutcheon S, Houston EF. Subclinical infection occurs frequently following low dose exposure to prions by blood transfusion. Sci Rep 2022; 12:10923. [PMID: 35764688 PMCID: PMC9240018 DOI: 10.1038/s41598-022-15105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
Infectious prion diseases have very long incubation periods, and the role that subclinical infections play in transmission, persistence and re-emergence of these diseases is unclear. In this study, we used a well-established model of vCJD (sheep experimentally infected with bovine spongiform encephalopathy, BSE) to determine the prevalence of subclinical infection following exposure by blood transfusion from infected donors. Many recipient sheep survived for years post-transfusion with no clinical signs and no disease-associated PrP (PrPSc) found in post mortem tissue samples by conventional tests. Using a sensitive protein misfolding cyclic amplification assay (PMCA), we found that the majority of these sheep had detectable PrPSc in lymph node samples, at levels approximately 105-106 times lower than in equivalent samples from clinically positive sheep. Further testing revealed the presence of PrPSc in other tissues, including brain, but not in blood samples. The results demonstrate that subclinical infection is a frequent outcome of low dose prion infection by a clinically relevant route for humans (blood transfusion). The long term persistence of low levels of infection has important implications for prion disease control and the risks of re-emergent infections in both humans and animals.
Collapse
Affiliation(s)
- M Khalid F Salamat
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Paula Stewart
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Helen Brown
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Kyle B C Tan
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Allister Smith
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Christopher de Wolf
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - A Richard Alejo Blanco
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Marc Turner
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Edinburgh, UK
| | - Jean C Manson
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - Sandra McCutcheon
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
| | - E Fiona Houston
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK.
| |
Collapse
|
6
|
Detection of Chronic Wasting Disease Prions in Fetal Tissues of Free-Ranging White-Tailed Deer. Viruses 2021; 13:v13122430. [PMID: 34960698 PMCID: PMC8705995 DOI: 10.3390/v13122430] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The transmission of chronic wasting disease (CWD) has largely been attributed to contact with infectious prions shed in excretions (saliva, urine, feces, blood) by direct animal-to-animal exposure or indirect contact with the environment. Less-well studied has been the role that mother-to-offspring transmission may play in the facile transmission of CWD, and whether mother-to-offspring transmission before birth may contribute to the extensive spread of CWD. We thereby focused on a population of free-ranging white-tailed deer from West Virginia, USA, in which CWD has been detected. Fetal tissues, ranging from 113 to 158 days of gestation, were harvested from the uteri of CWD+ dams in the asymptomatic phase of infection. Using serial protein misfolding amplification (sPMCA), we detected evidence of prion seeds in 7 of 14 fetuses (50%) from 7 of 9 pregnancies (78%), with the earliest detection at 113 gestational days. This is the first report of CWD detection in free ranging white-tailed deer fetal tissues. Further investigation within cervid populations across North America will help define the role and impact of mother-to-offspring vertical transmission of CWD.
Collapse
|
7
|
Variant CJD: Reflections a Quarter of a Century on. Pathogens 2021; 10:pathogens10111413. [PMID: 34832569 PMCID: PMC8619291 DOI: 10.3390/pathogens10111413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/18/2023] Open
Abstract
Twenty-five years has now passed since variant Creutzfeldt-Jakob disease (vCJD) was first described in the United Kingdom (UK). Early epidemiological, neuropathological and biochemical investigations suggested that vCJD represented a new zoonotic form of human prion disease resulting from dietary exposure to the bovine spongiform encephalopathy (BSE) agent. This hypothesis has since been confirmed though a large body of experimental evidence, predominantly using animal models of the disease. Today, the clinical, pathological and biochemical phenotype of vCJD is well characterized and demonstrates a unique and remarkably consistent pattern between individual cases when compared to other human prion diseases. While the numbers of vCJD cases remain reassuringly low, with 178 primary vCJD cases reported in the UK and a further 54 reported worldwide, concerns remain over the possible appearance of new vCJD cases in other genetic cohorts and the numbers of asymptomatic individuals in the population harboring vCJD infectivity. This review will provide a historical perspective on vCJD, examining the origins of this acquired prion disease and its association with BSE. We will investigate the epidemiology of the disease along with the unique clinicopathological and biochemical phenotype associated with vCJD cases. Additionally, this review will examine the impact vCJD has had on public health in the UK and the ongoing concerns raised by this rare group of disorders.
Collapse
|
8
|
Fructan Improves Survival and Function of Cryopreserved Rat Islets. Nutrients 2021; 13:nu13092959. [PMID: 34578837 PMCID: PMC8470660 DOI: 10.3390/nu13092959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
Cryopreservation of pancreatic islets enables their long-term storage and subsequent transplantation; however, post-cryopreservation, islets viability, and functions are reduced to a significant extent. Islet is composed of five cells (α cell, β cell, δ cell, ε cell, and PP cell), and blood vessels that carry the nutrition. Freezing technology of the organization has not developed a good method. This paper is studied using a fructan which has been found to effectively freeze protect a material of the cell. Islet transplantation has been established as an effective means of treating patients with type 1 diabetes. In this study, we demonstrated the effectiveness of using a fructan on the cryopreserved islets by showing valid results for diabetes. Isolated rat islets were cryopreserved using phosphate-buffered saline (PBS) supplemented with different concentrations of fructan and/or dimethyl sulfoxide (DMSO) in FBS. The survival rates of the islets were estimated at different time intervals, and insulin secretion function was tested in vitro. Furthermore, the in vivo function was tested by syngeneic transplantation into streptozotocin-induced diabetic rats, and the grafts were analyzed histologically and immunohistochemically. Fructan significantly increased islet survival; 30% fructan led to survival rates of more than 90% on day 3, which was significantly higher than those of the DMSO groups (p < 0.05). For both fructan and DMSO, the survival showed dose dependence, with the highest rates observed for 30% fructan and 10% DMSO, respectively (p < 0.05). The fructan groups showed a significantly increased insulin secretion volume in comparison to the DMSO groups (p < 0.05). Furthermore, cell clusters of pancreatic islets were well maintained in the fructan group, whereas margin collapse and vacuolation were observed in the DMSO group. Three days after transplantation of pancreatic islets preserved with 30% fructan, the blood glucose levels of diabetic rats were restored to the normal range, and removal of transplanted pancreatic islets from the kidney led to a profound increase in blood glucose levels. Together, these results show that a fructan is effective at cryopreserving rat pancreatic islets for subsequent transplantation.
Collapse
|
9
|
Balkema-Buschmann A, Ziegler U, Priemer G, Tauscher K, Köster F, Ackermann I, Fatola OI, Balkema D, Schinköthe J, Hammerschmidt B, Fast C, Ulrich R, Groschup MH. Absence of classical and atypical (H- and L-) BSE infectivity in the blood of bovines in the clinical end stage of disease as confirmed by intraspecies blood transfusion. J Gen Virol 2021; 102. [PMID: 32589123 PMCID: PMC8116782 DOI: 10.1099/jgv.0.001460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
While the presence of bovine spongiform encephalopathy (BSE) infectivity in the blood of clinically affected sheep has been proven by intraspecies blood-transfusion experiments, this question has remained open in the case of BSE-affected cattle. Although the absence of infectivity can be anticipated from the restriction of the agent to neuronal tissues in this species, evidence for this was still lacking. This particularly concerns the production and use of medicinal products and other applications containing bovine blood or preparations thereof. We therefore performed a blood-transfusion experiment from cattle in the clinical end stage of disease after experimental challenge with either classical (C-BSE) or atypical (H- and l-) BSE into calves at 4–6 months of age. The animals were kept in a free-ranging group for 10 years. Starting from 24 months post-transfusion, a thorough clinical examination was performed every 6 weeks in order to detect early symptoms of a BSE infection. Throughout the experiment, the clinical picture of all animals gave no indication of a BSE infection. Upon necropsy, the brainstem samples were analysed by BSE rapid test as well as by the highly sensitive Protein Misfolding Cyclic Amplification (PMCA), all with negative results. These results add resilient data to confirm the absence of BSE infectivity in the donor blood collected from C-, H- and l-BSE-affected cattle even in the final clinical phase of the disease. This finding has important implications for the risk assessment of bovine blood and blood products in the production of medicinal products and other preparations.
Collapse
Affiliation(s)
- Anne Balkema-Buschmann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Grit Priemer
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Kerstin Tauscher
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Frauke Köster
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Ivett Ackermann
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Olanrewaju I Fatola
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Daniel Balkema
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Jan Schinköthe
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald Insel Riems, Germany
| | - Bärbel Hammerschmidt
- Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald Insel Riems, Germany
| | - Christine Fast
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Leipzig University, Leipzig, Germany.,Friedrich-Loeffler-Institut, Department of Experimental Animal Facilities and Biorisk Management, Greifswald Insel Riems, Germany
| | - Martin H Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald Insel Riems, Germany
| |
Collapse
|
10
|
Classical and Atypical Scrapie in Sheep and Goats. Review on the Etiology, Genetic Factors, Pathogenesis, Diagnosis, and Control Measures of Both Diseases. Animals (Basel) 2021; 11:ani11030691. [PMID: 33806658 PMCID: PMC7999988 DOI: 10.3390/ani11030691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Prion diseases, such as scrapie, are neurodegenerative diseases with a fatal outcome, caused by a conformational change of the cellular prion protein (PrPC), originating with the pathogenic form (PrPSc). Classical scrapie in small ruminants is the paradigm of prion diseases, as it was the first transmissible spongiform encephalopathy (TSE) described and is the most studied. It is necessary to understand the etiological properties, the relevance of the transmission pathways, the infectivity of the tissues, and how we can improve the detection of the prion protein to encourage detection of the disease. The aim of this review is to perform an overview of classical and atypical scrapie disease in sheep and goats, detailing those special issues of the disease, such as genetic factors, diagnostic procedures, and surveillance approaches carried out in the European Union with the objective of controlling the dissemination of scrapie disease.
Collapse
|
11
|
Salamat MKF, Blanco ARA, McCutcheon S, Tan KBC, Stewart P, Brown H, Smith A, de Wolf C, Groschup MH, Becher D, Andréoletti O, Turner M, Manson JC, Houston EF. Preclinical transmission of prions by blood transfusion is influenced by donor genotype and route of infection. PLoS Pathog 2021; 17:e1009276. [PMID: 33600501 PMCID: PMC7891701 DOI: 10.1371/journal.ppat.1009276] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 11/23/2022] Open
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) is a human prion disease resulting from zoonotic transmission of bovine spongiform encephalopathy (BSE). Documented cases of vCJD transmission by blood transfusion necessitate on-going risk reduction measures to protect blood supplies, such as leucodepletion (removal of white blood cells, WBCs). This study set out to determine the risks of prion transmission by transfusion of labile blood components (red blood cells, platelets, plasma) commonly used in human medicine, and the effectiveness of leucodepletion in preventing infection, using BSE-infected sheep as a model. All components were capable of transmitting prion disease when donors were in the preclinical phase of infection, with the highest rates of infection in recipients of whole blood and buffy coat, and the lowest in recipients of plasma. Leucodepletion of components (<106 WBCs/unit) resulted in significantly lower transmission rates, but did not completely prevent transmission by any component. Donor PRNP genotype at codon 141, which is associated with variation in incubation period, also had a significant effect on transfusion transmission rates. A sensitive protein misfolding cyclic amplification (PMCA) assay, applied to longitudinal series of blood samples, identified infected sheep from 4 months post infection. However, in donor sheep (orally infected), the onset of detection of PrPSc in blood was much more variable, and generally later, compared to recipients (intravenous infection). This shows that the route and method of infection may profoundly affect the period during which an individual is infectious, and the test sensitivity required for reliable preclinical diagnosis, both of which have important implications for disease control. Our results emphasize that blood transfusion can be a highly efficient route of transmission for prion diseases. Given current uncertainties over the prevalence of asymptomatic vCJD carriers, this argues for the maintenance and improvement of current measures to reduce the risk of transmission by blood products. Variant Creutzfeldt-Jakob disease (vCJD) resulted from zoonotic transmission of bovine spongiform encephalopathy (BSE), and has also been transmitted by blood transfusion. One of the most important risk reduction measures introduced by human transfusion services to safeguard the blood supply is leucodepletion (removal of white blood cells) of blood components. This study represents the largest experimental analysis to date of the risks of prion infection associated with transfusion of labile blood components, and the effectiveness of leucodepletion in preventing transmission. Using a BSE-infected sheep model, we found that red blood cells, platelets and plasma from preclinical donors were all infectious, even after leucodepletion, although leucodepletion significantly reduced transmission rates. In addition, the time course of detection of prions in blood varied significantly depending on the route and method of infection. This has important implications for the risk of onward transmission, and suggests that further improvements in sensitivity of diagnostic tests will be required for reliable preclinical diagnosis of vCJD and other prion diseases. The results of this study support the continuation of current measures to reduce the risk of vCJD transmission by blood products, and suggest areas for further improvement.
Collapse
Affiliation(s)
- M. Khalid F. Salamat
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - A. Richard Alejo Blanco
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Sandra McCutcheon
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Kyle B. C. Tan
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Paula Stewart
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Helen Brown
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Allister Smith
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Christopher de Wolf
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - Martin H. Groschup
- Friedrich-Loeffler-Institut, Institute of Novel and Emerging Infectious Diseases, Greifswald, Germany
| | | | - Olivier Andréoletti
- UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Marc Turner
- Scottish National Blood Transfusion Service (SNBTS), The Jack Copland Centre, Edinburgh, United Kingdom
| | - Jean C. Manson
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
| | - E. Fiona Houston
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Ritchie DL, Barria MA. Prion Diseases: A Unique Transmissible Agent or a Model for Neurodegenerative Diseases? Biomolecules 2021; 11:biom11020207. [PMID: 33540845 PMCID: PMC7912988 DOI: 10.3390/biom11020207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer's disease (Aβ and tau), Parkinson's disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.
Collapse
|
13
|
Mammadova N, Cassmann ED, Moore SJ, Nicholson EM, Greenlee JJ. Experimental inoculation of CD11c + B1 lymphocytes, CD68 + macrophages, or platelet-rich plasma from scrapie-infected sheep into susceptible sheep results in variable infectivity. Access Microbiol 2020; 2:acmi000155. [PMID: 33195984 PMCID: PMC7656192 DOI: 10.1099/acmi.0.000155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/24/2020] [Indexed: 11/18/2022] Open
Abstract
Many studies have demonstrated prion infectivity in whole blood and blood components in a variety of transmissible spongiform encephalopathies of livestock and rodents, and variant Creutzfeldt–Jakob disease in humans, as well as an association between pathogenic prion protein (PrPSc) and different immune cells (e.g. follicular dendritic cells, T and B lymphocytes, monocytes and tingible body macrophages). To further investigate the role of various blood components in prion disease transmission, we intracranially inoculated genetically susceptible VRQ/ARQ and ARQ/ARQ sheep with inocula composed of CD11c+ B1 lymphocytes, CD68 +macrophages, or platelet-rich plasma derived from clinically ill sheep infected with the US no. 13–7 scrapie agent. At the completion of the study, we found that VRQ/ARQ and ARQ/ARQ sheep inoculated with CD11c+ B1 lymphocytes and CD68+ macrophages developed scrapie with detectable levels of PrPSc in the central nervous system and lymphoreticular system, while those inoculated with platelet-rich plasma did not develop disease and did not have detectable PrPSc by immunohistochemistry or enzyme immunoassay. This study complements and expands on earlier findings that white blood cells harbour prion infectivity, and reports CD11c+ B1 lymphocytes and CD68+ macrophages as additional targets for possible preclinical detection of prion infection in blood.
Collapse
Affiliation(s)
- Najiba Mammadova
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.,Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664
| | - Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.,Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664
| | - S Jo Moore
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.,Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
14
|
Ascari LM, Rocha SC, Gonçalves PB, Vieira TCRG, Cordeiro Y. Challenges and Advances in Antemortem Diagnosis of Human Transmissible Spongiform Encephalopathies. Front Bioeng Biotechnol 2020; 8:585896. [PMID: 33195151 PMCID: PMC7606880 DOI: 10.3389/fbioe.2020.585896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, arise from the structural conversion of the monomeric, cellular prion protein (PrPC) into its multimeric scrapie form (PrPSc). These pathologies comprise a group of intractable, rapidly evolving neurodegenerative diseases. Currently, a definitive diagnosis of TSE relies on the detection of PrPSc and/or the identification of pathognomonic histological features in brain tissue samples, which are usually obtained postmortem or, in rare cases, by brain biopsy (antemortem). Over the past two decades, several paraclinical tests for antemortem diagnosis have been developed to preclude the need for brain samples. Some of these alternative methods have been validated and can provide a probable diagnosis when combined with clinical evaluation. Paraclinical tests include in vitro cell-free conversion techniques, such as the real-time quaking-induced conversion (RT-QuIC), as well as immunoassays, electroencephalography (EEG), and brain bioimaging methods, such as magnetic resonance imaging (MRI), whose importance has increased over the years. PrPSc is the main biomarker in TSEs, and the RT-QuIC assay stands out for its ability to detect PrPSc in cerebrospinal fluid (CSF), olfactory mucosa, and dermatome skin samples with high sensitivity and specificity. Other biochemical biomarkers are the proteins 14-3-3, tau, neuron-specific enolase (NSE), astroglial protein S100B, α-synuclein, and neurofilament light chain protein (NFL), but they are not specific for TSEs. This paper reviews the techniques employed for definite diagnosis, as well as the clinical and paraclinical methods for possible and probable diagnosis, both those in use currently and those no longer employed. We also discuss current criteria, challenges, and perspectives for TSE diagnosis. An early and accurate diagnosis may allow earlier implementation of strategies to delay or stop disease progression.
Collapse
Affiliation(s)
- Lucas M. Ascari
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stephanie C. Rocha
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila B. Gonçalves
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Pharmaceutical Biotechnology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Abstract
Chronic wasting disease (CWD) is an emerging and fatal contagious prion disease that affects cervids, including mule deer, white-tailed deer, black-tailed deer, red deer reindeer, elk, and moose. CWD prions are widely distributed throughout the bodies of CWD-infected animals and are found in the nervous system, lymphoid tissues, muscle, blood, urine, feces, and antler velvet. The mechanism of CWD transmission in natural settings is unknown. Potential mechanisms of transmission include horizontal, maternal, or environmental routes. Due to the presence of prions in the blood of CWD-infected animals, the potential exists for invertebrates that feed on mammalian blood to contribute to the transmission of CWD. The geographic range of the Rocky Mountain Wood tick, Dermancentor andersoni, overlaps with CWD throughout the northwest United States and southwest Canada, raising the possibility that D. andersoni parasitization of cervids may be involved in CWD transmission. We investigated this possibility by examining the blood meal of D. andersoni that fed upon prion-infected hamsters for the presence of prion infectivity by animal bioassay. None of the hamsters inoculated with a D. andersoni blood meal that had been ingested from prion-infected hamsters developed clinical signs of prion disease or had evidence for a subclinical prion infection. Overall, the data do not demonstrate a role for D. andersoni in the transmission of prion disease.IMPORTANCE Chronic wasting disease (CWD) is an emerging prion disease that affects cervids, including mule deer, white-tailed deer, black-tailed deer, red deer reindeer, elk, and moose. The mechanism of CWD transmission in unknown. Due to the presence of prions in the blood of CWD-infected animals, it is possible for invertebrates that feed on cervid blood to contribute to the transmission of CWD. We examined the blood meal of D. andersoni, a tick with a similar geographic range as cervids, that fed upon prion-infected hamsters for the presence of prion infectivity by animal bioassay. None of the D. andersoni blood meals that had been ingested from prion-infected hamsters yielded evidence of prion infection. Overall, the data do not support a role of D. andersoni in the transmission of prion disease.
Collapse
|
16
|
McNulty EE, Nalls AV, Xun R, Denkers ND, Hoover EA, Mathiason CK. In vitro detection of haematogenous prions in white-tailed deer orally dosed with low concentrations of chronic wasting disease. J Gen Virol 2020; 101:347-361. [PMID: 31846418 PMCID: PMC7416609 DOI: 10.1099/jgv.0.001367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
Infectivity associated with prion disease has been demonstrated in blood throughout the course of disease, yet the ability to detect blood-borne prions by in vitro methods remains challenging. We capitalized on longitudinal pathogenesis studies of chronic wasting disease (CWD) conducted in the native host to examine haematogenous prion load by real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification. Our study demonstrated in vitro detection of amyloid seeding activity (prions) in buffy-coat cells harvested from deer orally dosed with low concentrations of CWD positive (+) brain (1 gr and 300 ng) or saliva (300 ng RT-QuIC equivalent). These findings make possible the longitudinal assessment of prion disease and deeper investigation of the role haematogenous prions play in prion pathogenesis.
Collapse
Affiliation(s)
- Erin E. McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Amy V. Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Randy Xun
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel D. Denkers
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Edward A. Hoover
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
17
|
El-Lahony DM, Saleh NY, Habib MS, Shehata MA, El-Hawy MA. The role of recombinant Human erythropoietin in neonatal anemia. Hematol Oncol Stem Cell Ther 2019; 13:147-151. [PMID: 31628923 DOI: 10.1016/j.hemonc.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/29/2019] [Accepted: 08/30/2019] [Indexed: 11/18/2022] Open
Abstract
AIM To estimate the blood level of Erythropoietin(EPO) in neonates with anemia of prematurity (APO) and in late hypo-regenerative anemia and to clarify role of EPO in correction of anemia and reducing the number of blood transfusions. METHODS This study was carried out on 60 neonates divided into; group I (30 preterm neonates) with AOP received EPO (250 IU/kg/dose subcutaneously 3 times weekly for 4 weeks), compared to group II (30 neonates) with AOP treated only with blood transfusion. CBC parameters and transfusion requirements were followed during therapy. Serum level of EPO was measured by ELISA technique. RESULTS By the end of the 4th week of therapy, there was significant increase in group I post r-Hu EPO compared to group II regarding reticulocyte counts (P < 0.001) leading to rise of the Hb (P < 0.001), Hct levels (P < 0.001) with subsequent reduction in the overall number of blood transfusions (P < 0.001). CONCLUSION EPO therapy in conjunction with iron, vitamin E and folic acid, stimulated erythropoiesis and significantly reduced the need for blood transfusion in AOP.
Collapse
Affiliation(s)
- Dalia M El-Lahony
- Pediatrics Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Nagwan Y Saleh
- Pediatrics Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mona S Habib
- Medical Biochemistry Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mohammed A Shehata
- Pediatrics Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Mahmoud A El-Hawy
- Pediatrics Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
| |
Collapse
|
18
|
Enhanced detection of prion infectivity from blood by preanalytical enrichment with peptoid-conjugated beads. PLoS One 2019; 14:e0216013. [PMID: 31513666 PMCID: PMC6742390 DOI: 10.1371/journal.pone.0216013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022] Open
Abstract
Prions cause transmissible infectious diseases in humans and animals and have been found to be transmissible by blood transfusion even in the presymptomatic stage. However, the concentration of prions in body fluids such as blood and urine is extremely low; therefore, direct diagnostic tests on such specimens often yield false-negative results. Quantitative preanalytical prion enrichment may significantly improve the sensitivity of prion assays by concentrating trace amounts of prions from large volumes of body fluids. Here, we show that beads conjugated to positively charged peptoids not only captured PrP aggregates from plasma of prion-infected hamsters, but also adsorbed prion infectivity in both the symptomatic and preclinical stages of the disease. Bead absorbed prion infectivity efficiently transmitted disease to transgenic indicator mice. We found that the readout of the peptoid-based misfolded protein assay (MPA) correlates closely with prion infectivity in vivo, thereby validating the MPA as a simple, quantitative, and sensitive surrogate indicator of the presence of prions. The reliable and sensitive detection of prions in plasma will enable a wide variety of applications in basic prion research and diagnostics.
Collapse
|
19
|
Wang Y, Liu S, He L. Prophylactic use of tranexamic acid reduces blood loss and transfusion requirements in patients undergoing cesarean section: A meta-analysis. J Obstet Gynaecol Res 2019; 45:1562-1575. [PMID: 31237747 DOI: 10.1111/jog.14013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 12/01/2022]
Abstract
AIM Tranexamic acid (TXA) has been used to treat peripartum hemorrhage, while preoperative use of TXA in cesarean section (CS) remains controversial. To assess the effectiveness and safety of prophylactic application of TXA, a meta-analysis was performed. METHODS Electronic databases (MEDLINE [PubMed], Cochrane central register of controlled trials and Embase) were searched up to November 2018. The relevant data and quality of included trail were analyzed by RevMan 5.3. The study was registered at PROSPERO (CRD42018111165). RESULTS Twenty-one randomized controlled trials with a total of 3852 patients were included. Only one research reported thromboembolic events. Compared with control groups, the intra-operative blood loss (mean difference [MD] -155.23 mL, 95% confidence interval [CI] -195.64 - 114.81; P<0.01), postoperative blood loss (MD -26.67 mL, 95% CI -32.98 to -20.36; P<0.01), total blood loss (MD -184.88 mL, 95% CI -218.83 to -150.94; P<0.01), transfusion requirements (relative risk [RR] 0.29, 95% CI 0.18-0.49, P<0.01), massive hemorrhage (RR 0.39, 95% CI 0.30 to 0.51; P<0.01) and additional uterotonic agents use (RR 0.40, 95% CI 0.30-0.55, P<0.01) were markedly reduced in TXA-treated patients. Besides, TXA yielded a significant reduction in hemoglobin drop (MD -0.80 g/dL, 95% CI -1.07 to -0.53; P<0.01) and hematocrit drop (MD -2.05, 95% CI -3.09 to -1.01; P<0.01) compared with control groups. CONCLUSION Prophylactic application of TXA can decrease perioperative blood loss and transfusion requirements in patients undergoing CS. More high-quality researches are needed to determine optimal dose of the drug.
Collapse
Affiliation(s)
- Yongjun Wang
- Transfusion Department, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Siyuan Liu
- Transfusion Department, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li He
- Transfusion Department, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Ferreira RS, da Silva DAF, Biscola NP, Sartori MMP, Denadai JC, Jorge AM, Dos Santos LD, Barraviera B. Traceability of animal protein byproducts in ruminants by multivariate analysis of isotope ratio mass spectrometry to prevent transmission of prion diseases. J Venom Anim Toxins Incl Trop Dis 2019; 25:e148718. [PMID: 31131007 PMCID: PMC6521725 DOI: 10.1590/1678-9199-jvatitd-1487-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
Background Ruminant feed containing animal byproduct proteins (ABPs) is prohibited in many countries due to its risk of transmitting prion diseases (PD). In most cases the entire herd is sacrificed, which causes great harm to the producer countries by preventing their exportation of ruminant derived-products. Methods We used stable isotope ratio mass spectrometry (IRMS) of carbon (13C/12C) and nitrogen (15N/14N) to trace the animal protein in the blood of 15 buffaloes (Bubalus bubalis) divided into three experimental groups: 1 - received only vegetable protein (VP) during 117 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets containing 13.7% bovine meat and bone meal (MBM) added to a vegetable diet (from days 21-117 in the AVP group and until day 47 in the AVPR group, when MBM was removed). Results On the 36th day, differences were detectable in the feeding profile (p <0.01) among the three experimental groups, which remained for a further 49 days (85th day). The AVPR group showed isotopic rate reversibility on the 110th day by presenting values similar to those in the control group (VP) (p> 0.05), indicating that it took 63 days to eliminate MBM in this group. Total atoms exchange (> 95%) of 13C and 15N was observed through incorporation of the diet into the AVP and AVPR groups. Conclusions IRMS is an accurate and sensitive technique for tracing the feeding profile of ruminants through blood analysis, thus enabling investigation of ABP use.
Collapse
Affiliation(s)
- Rui Seabra Ferreira
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - São Paulo State University, Botucatu, SP, Brazil.,Botucatu Medical School, UNESP - São Paulo State University, Botucatu, SP, Brazil
| | | | - Natália Perussi Biscola
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - São Paulo State University, Botucatu, SP, Brazil.,Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | - Juliana Célia Denadai
- Stable Isotopes Center (CIE), UNESP - São Paulo State University, Botucatu, SP, Brazil
| | - André Mendes Jorge
- College of Veterinary Medicine and Animal Husbandry (FMVZ), UNESP - São Paulo State University, Botucatu, SP, Brazil
| | - Lucilene Delazari Dos Santos
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - São Paulo State University, Botucatu, SP, Brazil.,Botucatu Medical School, UNESP - São Paulo State University, Botucatu, SP, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), UNESP - São Paulo State University, Botucatu, SP, Brazil.,Botucatu Medical School, UNESP - São Paulo State University, Botucatu, SP, Brazil
| |
Collapse
|
21
|
McNulty E, Nalls AV, Mellentine S, Hughes E, Pulscher L, Hoover EA, Mathiason CK. Comparison of conventional, amplification and bio-assay detection methods for a chronic wasting disease inoculum pool. PLoS One 2019; 14:e0216621. [PMID: 31071138 PMCID: PMC6508678 DOI: 10.1371/journal.pone.0216621] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/24/2019] [Indexed: 11/18/2022] Open
Abstract
Longitudinal studies of chronic wasting disease (CWD) in the native host have provided considerable understanding of how this prion disease continues to efficiently spread among cervid species. These studies entail great cost in animal, time and financial support. A variety of methods have emerged including transgenic mouse bioassay, western blot, enzyme-linked immunoassay (ELISA), immunohistochemistry (IHC), serial protein misfolding cyclic amplification (sPMCA) and real time quaking-induced conversion (RT-QuIC), that deepen our understanding of this and other protein misfolding disorders. To further characterize an inoculum source used for ongoing CWD studies and to determine how the readouts from each of these assays compare, we assayed a CWD-positive brain pool homogenate (CBP6) and a mouse dilutional bioassay of this homogenate using the above detection methods. We demonstrate that: (i) amplification assays enhanced detection of amyloid seeding activity in the CWD+ cervid brain pool to levels beyond mouse LD50, (ii) conventional detection methods (IHC and western blot) performed well in identifying the presence of PrPSc in terminal brain tissue yet lack sufficient detection sensitivity to identify all CWD-infected mice, and (iii) the incorporation of amplification assays enhanced detection of CWD-infected mice near the LD50. This cross-platform analysis provides a basis to calibrate the relative sensitivities of CWD detection assays.
Collapse
Affiliation(s)
- Erin McNulty
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Amy V. Nalls
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Samuel Mellentine
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Erin Hughes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Laura Pulscher
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Edward A. Hoover
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
22
|
Stone T, Brimacombe J, Keller C, Kelley D, Clery G. Residual Protein Contamination of ProSeal™ Laryngeal Mask Airways after Two Washing Protocols. Anaesth Intensive Care 2019; 32:390-3. [PMID: 15264736 DOI: 10.1177/0310057x0403200315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The risk of prion protein cross-infection has focussed attention on the potential hazards of protein contamination of re-usable medical devices. This study determined the frequency of protein contamination of ProSeal™ laryngeal mask airways (PLMA) after two cleaning procedures and tested the hypothesis that the combination of hand- and machine-washing removes protein contamination more effectively than hand-washing alone. After clinical use fifty-four PLMAs were randomly allocated to be washed by hand or by hand then machine. All PLMAs were then autoclaved at 134°C for 4 minutes. After processing, each PLMA was immersed in a 1.2% solution of erythrosin B and examined for uptake of stain. The site (outer surface, bowl and edges of the cuff, airway and drain tube, finger strap) and severity (nil/mild/moderate/severe) of staining was scored by a blinded observer. There were no differences in the site or severity of staining between the two cleaning procedures. Staining was detected on 89% of PLMAs that were hand-washed and 78% of PLMAs that were hand-, then machine-washed (P=0.27). When staining occurred, it was mild in 98%, moderate in 2% and was never severe. Staining was more frequent on the edge than at any other location (all comparisons: P≤0.01). The strap never had any staining. We conclude that residual contamination of PLMAs with protein deposits is common even when machine-washing is used to augment hand-washing before autoclaving. The infection risk associated with these deposits remains to be determined.
Collapse
Affiliation(s)
- T Stone
- Departments of Anaesthesia and Intensive Care, Cairns Base Hospital, James Cook University, Cairns, Queensland
| | | | | | | | | |
Collapse
|
23
|
Abstract
Darwin's gemmules were supposed to be "thrown off" by cells and were "inconceivably minute and numerous as the stars in heaven." They were capable of self-propagation and diffusion from cell to cell, and circulation through the system. The word "gene" coined by Wilhelm Johannsen, was derived from de Vries's term "pangen," itself a substitute for "gemmule" in Darwin's Pangenesis. Johannsen resisted the "morphological" conception of genes as particles with a certain structure. Morgan's genes were considered to be stable entities arranged in an orderly linear pattern on chromosomes, like beads on a string. In the late 1940s, McClintock challenged the concept of the stability of the gene when she discovered that some genes could move within a chromosome and between chromosomes. In 1948, Mandel and Metais reported the presence of cell-free nucleic acids in human blood for the first time. Over the past several decades, it has been universally accepted that almost all types of cells not only shed molecules such as cell-free DNA (including genomic DNA, tumor DNA and fetal DNA), RNAs (including mRNA and small RNAs) and prions, but also release into the extracellular environment diverse types of membrane vesicles (known as extracellular vesicles) containing DNA, RNA and proteins. Thus Darwin's speculative gemmules of the 19th century have become the experimentally demonstrated circulating cell-free DNA, mobile RNAs, prions and extracellular vesicles.
Collapse
Affiliation(s)
- Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China; Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
24
|
Seed CR, Hewitt PE, Dodd RY, Houston F, Cervenakova L. Creutzfeldt-Jakob disease and blood transfusion safety. Vox Sang 2018; 113:220-231. [PMID: 29359329 DOI: 10.1111/vox.12631] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs) are untreatable, fatal neurologic diseases affecting mammals. Human disease forms include sporadic, familial and acquired Creutzfeldt-Jakob disease (CJD). While sporadic CJD (sCJD) has been recognized for near on 100 years, variant CJD (vCJD) was first reported in 1996 and is the result of food-borne transmission of the prion of bovine spongiform encephalopathy (BSE, 'mad cow disease'). Currently, 230 vCJD cases have been reported in 12 countries, the majority in the UK (178) and France (27). Animal studies demonstrated highly efficient transmission of natural scrapie and experimental BSE by blood transfusion and fuelled concern that sCJD was potentially transfusion transmissible. No such case has been recorded and case-control evaluations and lookback studies indicate that, if transfusion transmission occurs at all, it is very rare. In contrast, four cases of apparent transfusion transmission of vCJD infectivity have been identified in the UK. Risk minimization strategies in response to the threat of vCJD include leucodepletion, geographically based donor deferrals and deferral of transfusion recipients. A sensitive and specific, high-throughput screening test would provide a potential path to mitigation but despite substantial effort no such test has yet appeared. The initial outbreak of vCJD appears to be over, but concern remains about subsequent waves of disease among those already infected. There is considerable uncertainty about the size of the infected population, and there will be at least a perception of some continuing risk to blood safety. Accordingly, at least some precautionary measures will remain in place and continued surveillance is necessary.
Collapse
Affiliation(s)
- C R Seed
- Australian Red Cross Blood Service, Perth, WA, Australia
| | | | - R Y Dodd
- American Red Cross Scientific Affairs, Gaithersburg, MD, USA
| | - F Houston
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland
| | - L Cervenakova
- The Plasma Protein Therapeutics Association (PPTA), Annapolis, MD, USA
| |
Collapse
|
25
|
Ainley LI, Hewitt PE. Haematology patients and the risk of transfusion transmitted infection. Br J Haematol 2018; 180:473-483. [DOI: 10.1111/bjh.15030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Louise I. Ainley
- Department of Haematology; Imperial College Healthcare NHS Trust; London UK
| | | |
Collapse
|
26
|
Asher DM, Gregori L. Human transmissible spongiform encephalopathies: historic view. HANDBOOK OF CLINICAL NEUROLOGY 2018; 153:1-17. [PMID: 29887130 DOI: 10.1016/b978-0-444-63945-5.00001-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first of several pivotal moments leading to current understanding of human transmissible spongiform encephalopathies (TSEs) occurred in 1959 when veterinary pathologist W.J. Hadlow first recognized several similarities between scrapie-a slow infection of sheep caused by an unusual infectious agent-and kuru, a fatal exotic neurodegenerative disease affecting only people of a single language group in the remote mountainous interior of New Guinea, described two years earlier by D.C. Gajdusek and V. Zigas. Based on the knowledge of scrapie, Gajdusek, C.J. Gibbs, Jr., and M.P. Alpers soon initiated efforts to transmit kuru by inoculating kuru brain tissue into non-human primates, that-although requiring several years-ultimately proved successful. In the same year that Hadlow first proposed that kuru and scrapie might have similar etiology, I. Klatzo noted that kuru's histopathology resembled that of Creutzfeldt-Jakob disease (CJD), another progressive fatal neurodegenerative disease of unknown etiology that A.M. Jakob had first described in 1921. Gajdusek and colleagues went on to demonstrate that not only the more common sporadic form of CJD but also familial CJD and a generally similar familial brain disease (Gerstmann-Sträussler-Scheinker syndrome) were also transmissible, first to non-human primates and later to other animals. (Other investigators later transmitted an even rarer brain disease, fatal familial insomnia, to animals.) Iatrogenic CJD (spread by human pituitary-derived hormones and tissue grafts) was also transmitted to animals. Much later, in 1996, a new variant of CJD was attributed to human infection with the agent of bovine spongiform encephalopathy; vCJD itself caused an iatrogenic TSE spread by blood transfusion (and probably by a human-plasma-derived clotting factor). Starting in the 1930s, the scrapie agent was found to have a unique constellation of physical properties (marked resistance to inactivation by chemicals, heat and radiation), eventually interpreted as suggesting that it might be an unconventional self-replicating pathogen based on protein and containing no nucleic acid. The work of S.B. Prusiner led to the recognition in the early 1980s that a misfolded form of a ubiquitous normal host protein was usually if not always detectable in tissues containing TSE agents, greatly facilitating the diagnosis and TSEs and understanding their pathogenesis. Prusiner proposed that the TSE agent was likely to be composed partly if not entirely of the abnormal protein, for which he coined the term "prion" protein and "prion" for the agent. Expression of the prion protein by animals-while not essential for life-was later found to be obligatory to infect them with TSEs, and a variety of mutations in the protein clearly tracked with TSEs in families, explaining the autosomal dominant pattern of disease and confirming a central role for the protein in pathogenesis. Prusiner's terminology and the prion hypothesis came to be widely though not universally accepted. A popular corollary proposal, that prions arise by spontaneous misfolding of normal prion protein leading to sporadic cases of CJD, BSE, and scrapie, is more problematic and may serve to discourage continued search for environmental sources of exposure to TSE agents.
Collapse
Affiliation(s)
- David M Asher
- Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, Division of Emerging and Transfusion-Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States.
| | - Luisa Gregori
- Laboratory of Bacterial and Transmissible Spongiform Encephalopathy Agents, Division of Emerging and Transfusion-Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
27
|
Mabbott NA. How do PrP Sc Prions Spread between Host Species, and within Hosts? Pathogens 2017; 6:pathogens6040060. [PMID: 29186791 PMCID: PMC5750584 DOI: 10.3390/pathogens6040060] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are sub-acute neurodegenerative diseases that affect humans and some domestic and free-ranging animals. Infectious prion agents are considered to comprise solely of abnormally folded isoforms of the cellular prion protein known as PrPSc. Pathology during prion disease is restricted to the central nervous system where it causes extensive neurodegeneration and ultimately leads to the death of the host. The first half of this review provides a thorough account of our understanding of the various ways in which PrPSc prions may spread between individuals within a population, both horizontally and vertically. Many natural prion diseases are acquired peripherally, such as by oral exposure, lesions to skin or mucous membranes, and possibly also via the nasal cavity. Following peripheral exposure, some prions accumulate to high levels within the secondary lymphoid organs as they make their journey from the site of infection to the brain, a process termed neuroinvasion. The replication of PrPSc prions within secondary lymphoid organs is important for their efficient spread to the brain. The second half of this review describes the key tissues, cells and molecules which are involved in the propagation of PrPSc prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. This section also considers how additional factors such as inflammation and aging might influence prion disease susceptibility.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
28
|
Ding X, Liu Y, Yang M, Li L, Miyahara H, Dai J, Xu Z, Matsumoto K, Mori M, Higuchi K, Sawashita J. Amyloidosis-inducing activity of blood cells in mouse AApoAII amyloidosis. Exp Anim 2017; 67:105-115. [PMID: 29081441 PMCID: PMC5955742 DOI: 10.1538/expanim.17-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mouse senile amyloidosis is a disorder in which apolipoprotein A-II (APOA2) deposits as
amyloid fibrils (AApoAII) in many organs. We previously reported that AApoAII amyloidosis
can be transmitted by feces, milk, saliva and muscle originating from mice with amyloid
deposition. In this study, the ability of blood components to transmit amyloidosis was
evaluated in our model system. Blood samples were collected from
SAMR1.SAMP1-Apoa2c amyloid-laden or amyloidosis-negative
mice. The samples were fractionated into plasma, white blood cell (WBC) and red blood cell
(RBC) fractions. Portions of each were further separated into soluble and insoluble
fractions. These fractions were then injected into recipient mice to determine
amyloidosis-induction activities (AIA). The WBC and RBC fractions from amyloid-laden mice
but not from amyloidosis-negative mice induced AApoAII amyloid deposition in the
recipients. The AIA of WBC fraction could be attributed to AApoAII amyloid fibrils because
amyloid fibril-like materials and APOA2 antiserum-reactive proteins were observed in the
insoluble fraction of the blood cells. Unexpectedly, the plasma of AApoAII
amyloidosis-negative as well as amyloid-laden mice showed AIA, suggesting the presence of
substances in mouse plasma other than AApoAII fibrils that could induce amyloid
deposition. These results indicated that AApoAII amyloidosis could be transmitted across
tissues and between individuals through blood cells.
Collapse
Affiliation(s)
- Xin Ding
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Yingye Liu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Mu Yang
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Lin Li
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Hiroki Miyahara
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Jian Dai
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Zhe Xu
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Kiyoshi Matsumoto
- Division of Animal Research, Research Center for Supports to Advanced Science, Shinshu University, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Masayuki Mori
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan.,Department of Advanced Medicine for Health Promotion, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Keiichi Higuchi
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| | - Jinko Sawashita
- Department of Aging Biology, Institute of Pathogenesis and Disease Prevention, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan.,Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto-shi, Nagano 390-8621, Japan
| |
Collapse
|
29
|
Soutyrine A, Huang H, Andrievskaia O, Walther I, Mitchell G. A novel approach for scrapie-associated prion (PrP Sc) detection in blood using the competitive affinity of an aggregate-specific antibody and streptavidin to PrP Sc. Res Vet Sci 2017; 113:115-121. [PMID: 28942337 DOI: 10.1016/j.rvsc.2017.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/24/2017] [Accepted: 09/03/2017] [Indexed: 11/17/2022]
Abstract
Scrapie is a fatal neurodegenerative disorder affecting sheep and goats, originating from exposure to disease-associated prions (PrPSc). An ante-mortem screening test that can detect native PrPSc in body fluids remains unavailable due to insufficient sensitivity of current detection methods that involve proteinase or denaturation treatments. We adopted an approach to detect PrPSc in whole blood using a simple proteinase- and denaturation-independent immunoassay, based on the competitive affinity of an aggregate-specific monoclonal antibody and streptavidin to PrPSc. First, we demonstrated the ability of native PrPSc to bind to streptavidin and the inhibition of this interaction by 15B3 antibody (P<0.05). This led to a new two-step assay that involved capturing native prions from infected blood on a solid-state matrix and detection of PrPSc aggregates by evaluating the conformation-dependent conjugate catalytic activity ratio in samples against a pre-determined threshold. This test showed capacity for detecting scrapie prions in 500μl of sheep whole blood spiked with scrapie brain homogenate containing approximately 5ng of total brain protein, and estimated to have 500fg of PrPSc. The test also discriminated between blood samples from scrapie-negative (6 sheep, 4 goats) and scrapie-infected animals (3 experimentally infected sheep, 7 naturally infected goats). Collectively, with the proposed high-throughput sample-processing platform, these initial studies provide insights into the development of a large-scale screening test for the routine diagnosis of scrapie.
Collapse
Affiliation(s)
- Andrei Soutyrine
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada.
| | - Hongsheng Huang
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Olga Andrievskaia
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Ines Walther
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Gordon Mitchell
- Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| |
Collapse
|
30
|
Eaton SL, Wishart TM. Bridging the gap: large animal models in neurodegenerative research. Mamm Genome 2017; 28:324-337. [PMID: 28378063 PMCID: PMC5569151 DOI: 10.1007/s00335-017-9687-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/25/2017] [Indexed: 01/08/2023]
Abstract
The world health organisation has declared neurological disorders as one of the greatest public health risks in the world today. Yet, despite this growing concern, the mechanisms underpinning many of these conditions are still poorly understood. This may in part be due to the seemingly diverse nature of the initiating insults ranging from genetic (such as the Ataxia's and Lysosomal storage disorders) through to protein misfolding and aggregation (i.e. Prions), and those of a predominantly unknown aetiology (i.e. Alzheimer's and Parkinson's disease). However, efforts to elucidate mechanistic regulation are also likely to be hampered because of the complexity of the human nervous system, the apparent selective regional vulnerability and differential degenerative progression. The key to elucidating these aetiologies is determining the regional molecular cascades, which are occurring from the early through to terminal stages of disease progression. Whilst much molecular data have been captured at the end stage of disease from post-mortem analysis in humans, the very early stages of disease are often conspicuously asymptomatic, and even if they were not, repeated sampling from multiple brain regions of "affected" patients and "controls" is neither ethical nor possible. Model systems therefore become fundamental for elucidating the mechanisms governing these complex neurodegenerative conditions. However, finding a model that precisely mimics the human condition can be challenging and expensive. Whilst cellular and invertebrate models are frequently used in neurodegenerative research and have undoubtedly yielded much useful data, the comparatively simplistic nature of these systems makes insights gained from such a stand alone model limited when it comes to translation. Given the recent advances in gene editing technology, the options for novel model generation in higher order species have opened up new and exciting possibilities for the field. In this review, we therefore explain some of the reasons why larger animal models often appear to give a more robust recapitulation of human neurological disorders and why they may be a critical stepping stone for effective therapeutic translation.
Collapse
Affiliation(s)
- S L Eaton
- Roslin Institute and Royal (Dick) Veterinary studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - T M Wishart
- Roslin Institute and Royal (Dick) Veterinary studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Euan MacDonald Centre for MND Research, Chancellor's Building, 49 Little France, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
31
|
Perrier V, Imberdis T, Lafon PA, Cefis M, Wang Y, Huetter E, Arnaud JD, Alvarez-Martinez T, Le Guern N, Maquart G, Lagrost L, Desrumaux C. Plasma cholesterol level determines in vivo prion propagation. J Lipid Res 2017; 58:1950-1961. [PMID: 28765208 PMCID: PMC5625119 DOI: 10.1194/jlr.m073718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 07/28/2017] [Indexed: 12/27/2022] Open
Abstract
Transmissible spongiform encephalopathies are fatal neurodegenerative diseases with an urgent need for therapeutic and prophylactic strategies. At the time when the blood-mediated transmission of prions was demonstrated, in vitro studies indicated a high binding affinity of the scrapie prion protein (PrPSc) with apoB-containing lipoproteins, i.e., the main carriers of cholesterol in human blood. The aim of the present study was to explore the relationship between circulating cholesterol-containing lipoproteins and the pathogenicity of prions in vivo. We showed that, in mice with a genetically engineered deficiency for the plasma lipid transporter, phospholipid transfer protein (PLTP), abnormally low circulating cholesterol concentrations were associated with a significant prolongation of survival time after intraperitoneal inoculation of the 22L prion strain. Moreover, when circulating cholesterol levels rose after feeding PLTP-deficient mice a lipid-enriched diet, a significant reduction in survival time of mice together with a marked increase in the accumulation rate of PrPSc deposits in their brain were observed. Our results suggest that the circulating cholesterol level is a determinant of prion propagation in vivo and that cholesterol-lowering strategies might be a successful therapeutic approach for patients suffering from prion diseases.
Collapse
Affiliation(s)
- Véronique Perrier
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France
| | - Thibaud Imberdis
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France
| | - Pierre-André Lafon
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France
| | - Marina Cefis
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France
| | - Yunyun Wang
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France.,Cellular Signaling Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Elisabeth Huetter
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France
| | - Jacques-Damien Arnaud
- Etablissement Confiné d'Expérimentation A3/L3, CECEMA, US009 Biocampus, UMS 3426, Université Montpellier, Montpellier, F-34095 France
| | - Teresa Alvarez-Martinez
- Etablissement Confiné d'Expérimentation A3/L3, CECEMA, US009 Biocampus, UMS 3426, Université Montpellier, Montpellier, F-34095 France
| | - Naig Le Guern
- INSERM, LNC UMR866, F-21000 Dijon, France and LNC UMR866, Université Bourgogne Franche-Comté, F-21000 Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Guillaume Maquart
- INSERM, LNC UMR866, F-21000 Dijon, France and LNC UMR866, Université Bourgogne Franche-Comté, F-21000 Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR866, F-21000 Dijon, France and LNC UMR866, Université Bourgogne Franche-Comté, F-21000 Dijon, France.,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France.,University Hospital of Dijon, F-21000 Dijon, France
| | - Catherine Desrumaux
- Université Montpellier and Inserm U1198, Montpellier, F-34095 France and EPHE, Paris, F-75007 France .,LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, F-21000 Dijon, France
| |
Collapse
|
32
|
Infectious Prions in the Pregnancy Microenvironment of Chronic Wasting Disease-Infected Reeves' Muntjac Deer. J Virol 2017; 91:JVI.00501-17. [PMID: 28539446 DOI: 10.1128/jvi.00501-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/05/2017] [Indexed: 11/20/2022] Open
Abstract
Ample evidence exists for the presence of infectious agents at the maternal-fetal interface, often with grave outcomes to the developing fetus (i.e., Zika virus, brucella, cytomegalovirus, and toxoplasma). While less studied, pregnancy-related transmissible spongiform encephalopathies (TSEs) have been implicated in several species, including humans. Our previous work has shown that prions can be transferred from mother to offspring, resulting in the development of clinical TSE disease in offspring born to muntjac dams infected with chronic wasting disease (CWD) (1). We further demonstrated protein misfolding cyclic amplification (PMCA)-competent prions within the female reproductive tract and in fetal tissues harvested from CWD experimentally and naturally exposed cervids (1, 2). To assess whether the PMCA-competent prions residing at the maternal-fetal interface were infectious and to determine if the real-time quaking-induced conversion (RT-QuIC) methodology may enhance our ability to detect amyloid fibrils within the pregnancy microenvironment, we employed a mouse bioassay and RT-QuIC. In this study, we have demonstrated RT-QuIC seeding activity in uterus, placentome, ovary, and amniotic fluid but not in allantoic fluids harvested from CWD-infected Reeves' muntjac dams showing clinical signs of infection (clinically CWD-infected) and in some placentomes from pre-clinically CWD-infected dams. Prion infectivity was confirmed within the uterus, amniotic fluid, and the placentome, the semipermeable interface that sustains the developing fetus, of CWD-infected dams. This is the first report of prion infectivity within the cervid pregnancy microenvironment, revealing a source of fetal CWD exposure prior to the birthing process, maternal grooming, or encounters with contaminated environments.IMPORTANCE The facile dissemination of chronic wasting disease within captive and free-range cervid populations has led to questions regarding the transmission dynamics of this disease. Direct contact with infected animals and indirect contact with infectious prions in bodily fluids and contaminated environments are suspected to explain the majority of this transmission. A third mode of transmission, from mother to offspring, may be underappreciated. The presence of pregnancy-related prion infectivity within the uterus, amniotic fluid, and the placental structure reveals that the developing fetus is exposed to a source of prions long before exposure to the infectious agent during and after the birthing process or via contact with contaminated environments. These findings have impact on our current concept of CWD disease transmission.
Collapse
|
33
|
Monzón M. Approaches to therapy against prion diseases focused on the individual defence system. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.3.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
34
|
Abstract
A Transmissible Spongiform Encephalopathy (TSE) agent from one species generally transmits poorly to a new species, a phenomenon known as the species barrier. However once in the new species it generally but not always adapts and then more readily transmits within the new host. No single test is available to determine accurately the ability of a prion strain to transmit between species. Evaluating the species barrier for any prion strain has to take into consideration as much information as can be gathered for that strain from surveillance and research. The interactions of the agent with a particular host can be measured by in vivo and in vitro methods and assessing the species barrier needs to make full use of all the tools available. This review will identify the important considerations that need to be made when evaluating the species barrier.
Collapse
|
35
|
Everest DJ, Waterhouse S, Kelly T, Velo-Rego E, Sauer MJ. Effectiveness of Capillary Electrophoresis Fluoroimniunoassay of Blood PrPSc for Evaluation of Scrapie Pathogenesis in Sheep. J Vet Diagn Invest 2016; 19:552-7. [PMID: 17823402 DOI: 10.1177/104063870701900516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Management of prion diseases in livestock would benefit greatly from availability of a validated blood test. A promising immunocapillary electrophoresis technique (also known as capillary electrophoresis fluoroimmunoassay) to detect abnormal prion protein in blood from live sheep is evaluated here. Capillary electrophoresis fluoroimmunoassay was applied to analysis of extracted blood from scrapie-exposed sheep ( n = 87; 347 samples) at various stages of incubation, and to control sheep ( n = 194; 489 samples). Overall, test values for the control and test populations were not significantly different, and a similar proportion of control (7%) and test (10%) sheep were classified as positive. Over 2−3 month intervals from birth until clinical disease, test specificity and sensitivity ranged from 66.7% to 100% and 0% to 66.7%, respectively, indicating poor diagnostic performance at all stages of pathogenesis. In routine application, in its present form, the capillary electrophoresis fluoroimmunoassay procedure proved to be insufficiently robust for use as a blood test for scrapie diagnosis.
Collapse
Affiliation(s)
- David J Everest
- Molecular Pathogenesis and Genetics Department, Veterinary Laboratories Agency (VLA-Weybridge), Addlestone, Surrey, UK
| | | | | | | | | |
Collapse
|
36
|
Adams DB. Prenatal transmission of scrapie in sheep and goats: A case study for veterinary public health. Open Vet J 2016; 6:194-214. [PMID: 27928518 PMCID: PMC5133396 DOI: 10.4314/ovj.v6i3.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/26/2016] [Indexed: 01/11/2023] Open
Abstract
Unsettled knowledge as to whether scrapie transmits prenatally in sheep and goats and transmits by semen and preimplantation embryos has a potential to compromise measures for controlling, preventing and eliminating the disease. The remedy may be analysis according to a systematic review, allowing comprehensive and accessible treatment of evidence and reasoning, clarifying the issue and specifying the uncertainties. Systematic reviews have clearly formulated questions, can identify relevant studies and appraise their quality and can summarise evidence and reasoning with an explicit methodology. The present venture lays a foundation for a possible systematic review and applies three lines of evidence and reasoning to two questions. The first question is whether scrapie transmits prenatally in sheep and goats. It leads to the second question, which concerns the sanitary safety of artificial breeding technologies, and is whether scrapie transmits in sheep and goats by means of semen and washed or unwashed in vivo derived embryos. The three lines of evidence derive from epidemiological, field and clinical studies, experimentation, and causal reasoning, where inferences are made from the body of scientific knowledge and an understanding of animal structure and function. Evidence from epidemiological studies allow a conclusion that scrapie transmits prenatally and that semen and embryos are presumptive hazards for the transmission of scrapie. Evidence from experimentation confirms that semen and washed or unwashed in vivo derived embryos are hazards for the transmission of scrapie. Evidence from causal reasoning, including experience from other prion diseases, shows that mechanisms exist for prenatal transmission and transmission by semen and embryos in both sheep and goats.
Collapse
Affiliation(s)
- D B Adams
- 24 Noala Street, Aranda, ACT 2614, Australia
| |
Collapse
|
37
|
Bioassay of prion-infected blood plasma in PrP transgenic Drosophila. Biochem J 2016; 473:4399-4412. [PMID: 27733649 DOI: 10.1042/bcj20160417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 01/27/2023]
Abstract
In pursuit of a tractable bioassay to assess blood prion infectivity, we have generated prion protein (PrP) transgenic Drosophila, which show a neurotoxic phenotype in adulthood after exposure to exogenous prions at the larval stage. Here, we determined the sensitivity of ovine PrP transgenic Drosophila to ovine prion infectivity by exposure of these flies to a dilution series of scrapie-infected sheep brain homogenate. Ovine PrP transgenic Drosophila showed a significant neurotoxic response to dilutions of 10-2 to 10-10 of the original scrapie-infected sheep brain homogenate. Significantly, we determined that this prion-induced neurotoxic response in ovine PrP transgenic Drosophila was transmissible to ovine PrP transgenic mice, which is indicative of authentic mammalian prion detection by these flies. As a consequence, we considered that PrP transgenic Drosophila were sufficiently sensitive to exogenous mammalian prions to be capable of detecting prion infectivity in the blood of scrapie-infected sheep. To test this hypothesis, we exposed ovine PrP transgenic Drosophila to scrapie-infected plasma, a blood fraction notoriously difficult to assess by conventional prion bioassays. Notably, pre-clinical plasma from scrapie-infected sheep induced neurotoxicity in PrP transgenic Drosophila and this effect was more pronounced after exposure to samples collected at the clinical phase of disease. The neurotoxic phenotype in ovine PrP transgenic Drosophila induced by plasma from scrapie-infected sheep was transmissible since head homogenate from these flies caused neurotoxicity in recipient flies during fly-to-fly transmission. Our data show that PrP transgenic Drosophila can be used successfully to bioassay prion infectivity in blood from a prion-diseased mammalian host.
Collapse
|
38
|
Niedermeyer S, Eiden M, Toumazos P, Papasavva-Stylianou P, Ioannou I, Sklaviadis T, Panagiotidis C, Langeveld J, Bossers A, Kuczius T, Kaatz M, Groschup MH, Fast C. Genetic, histochemical and biochemical studies on goat TSE cases from Cyprus. Vet Res 2016; 47:99. [PMID: 27716411 PMCID: PMC5053211 DOI: 10.1186/s13567-016-0379-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/24/2016] [Indexed: 11/12/2022] Open
Abstract
Scrapie and bovine spongiform encephalopathy (BSE) are transmissible spongiform encephalopathies (TSE’s) affecting sheep and goats. Susceptibility of goats to scrapie is influenced by polymorphisms of the prion protein gene (PRNP) of the host. Five polymorphisms are associated with reduced susceptibility to TSE’s. In the study presented here caprine samples from a scrapie eradication program on Cyprus were genotyped and further characterized using BioRad TeSeE rapid test, histological, immunohistochemical and biochemical methods. In total 42 goats from 20 flocks were necropsied from which 25 goats showed a positive result in the rapid test, a spongiform encephalopathy and an accumulation of pathological prion protein (PrPSc) in the obex. PrPSc deposits were demonstrated in the placenta, peripheral nervous and lymphoreticular system. Two animals showed PrPSc-accumulations in peripheral tissues only. By discriminatory immunoblots a scrapie infection could be confirmed for all cases. Nevertheless, slight deviations in the glycosylation pattern might indicate the presence of different scrapie strains. Furthermore scrapie samples from goats in the current study demonstrated less long term resistance to proteinase K than ovine or caprine BSE control samples. Reduced scrapie susceptibility according to the PRNP genotype was demonstrated (Fishers Exact test, p < 0.05) for the goats with at least one polymorphism (p = 0.023) at the six codons examined and in particular for those with polymorphisms at codon 146 (p = 0.016). This work characterizes scrapie in goats having implications for breeding and surveillance strategies.
Collapse
Affiliation(s)
- Susanne Niedermeyer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Pavlos Toumazos
- Veterinary Services, Ministry of Agriculture, Rural Development and Environment, 1417, Nicosia, Cyprus
| | | | - Ioannis Ioannou
- Veterinary Services, Ministry of Agriculture, Rural Development and Environment, 1417, Nicosia, Cyprus
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Cynthia Panagiotidis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jan Langeveld
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Alex Bossers
- Department of Infection Biology, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149, Münster, Germany
| | - Martin Kaatz
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Südufer 10, 17493, Greifswald-Isle of Riems, Germany.
| |
Collapse
|
39
|
Detecting animal by-product intake using stable isotope ratio mass spectrometry (IRMS). Vet J 2016; 217:119-125. [PMID: 27810202 DOI: 10.1016/j.tvjl.2016.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/20/2023]
Abstract
Sheep are used in many countries as food and for manufacturing bioproducts. However, when these animals consume animal by-products (ABP), which is widely prohibited, there is a risk of transmitting scrapie - a fatal prion disease in human beings. Therefore, it is essential to develop sensitive methods to detect previous ABP intake to select safe animals for producing biopharmaceuticals. We used stable isotope ratio mass spectrometry (IRMS) for 13C and 15N to trace animal proteins in the serum of three groups of sheep: 1 - received only vegetable protein (VP) for 89 days; 2 - received animal and vegetable protein (AVP); and 3 - received animal and vegetable protein with animal protein subsequently removed (AVPR). Groups 2 and 3 received diets with 30% bovine meat and bone meal (MBM) added to a vegetable diet (from days 16-89 in the AVP group and until day 49 in the AVPR group, when MBM was removed). The AVPR group showed 15N equilibrium 5 days after MBM removal (54th day). Conversely, 15N equilibrium in the AVP group occurred 22 days later (76th day). The half-life differed between these groups by 3.55 days. In the AVPR group, 15N elimination required 53 days, which was similar to this isotope's incorporation time. Turnover was determined based on natural 15N signatures. IRMS followed by turnover calculations was used to evaluate the time period for the incorporation and elimination of animal protein in sheep serum. The δ13C and δ15N values were used to track animal protein in the diet. This method is biologically and economically relevant for the veterinary field because it can track protein over time or make a point assessment of animal feed with high sensitivity and resolution, providing a low-cost analysis coupled with fast detection. Isotopic profiles could be measured throughout the experimental period, demonstrating the potential to use the method for traceability and certification assessments.
Collapse
|
40
|
Barron RM, King D, Jeffrey M, McGovern G, Agarwal S, Gill AC, Piccardo P. PrP aggregation can be seeded by pre-formed recombinant PrP amyloid fibrils without the replication of infectious prions. Acta Neuropathol 2016; 132:611-24. [PMID: 27376534 PMCID: PMC5023723 DOI: 10.1007/s00401-016-1594-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/08/2016] [Accepted: 06/26/2016] [Indexed: 12/22/2022]
Abstract
Mammalian prions are unusual infectious agents, as they are thought to consist solely of aggregates of misfolded prion protein (PrP). Generation of synthetic prions, composed of recombinant PrP (recPrP) refolded into fibrils, has been utilised to address whether PrP aggregates are, indeed, infectious prions. In several reports, neurological disease similar to transmissible spongiform encephalopathy (TSE) has been described following inoculation and passage of various forms of fibrils in transgenic mice and hamsters. However, in studies described here, we show that inoculation of recPrP fibrils does not cause TSE disease, but, instead, seeds the formation of PrP amyloid plaques in PrP-P101L knock-in transgenic mice (101LL). Importantly, both WT-recPrP fibrils and 101L-recPrP fibrils can seed plaque formation, indicating that the fibrillar conformation, and not the primary sequence of PrP in the inoculum, is important in initiating seeding. No replication of infectious prions or TSE disease was observed following both primary inoculation and subsequent subpassage. These data, therefore, argue against recPrP fibrils being infectious prions and, instead, indicate that these pre-formed seeds are acting to accelerate the formation of PrP amyloid plaques in 101LL Tg mice. In addition, these data reproduce a phenotype which was previously observed in 101LL mice following inoculation with brain extract containing in vivo-generated PrP amyloid fibrils, which has not been shown for other synthetic prion models. These data are reminiscent of the "prion-like" spread of aggregated forms of the beta-amyloid peptide (Aβ), α-synuclein and tau observed following inoculation of transgenic mice with pre-formed seeds of each misfolded protein. Hence, even when the protein is PrP, misfolding and aggregation do not reproduce the full clinicopathological phenotype of disease. The initiation and spread of protein aggregation in transgenic mouse lines following inoculation with pre-formed fibrils may, therefore, more closely resemble a seeded proteinopathy than an infectious TSE disease.
Collapse
Affiliation(s)
- Rona M Barron
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK.
| | - Declan King
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Martin Jeffrey
- Animal and Plant Health Agency, Pentlands Science Park, Midlothian, Scotland, UK
| | - Gillian McGovern
- Animal and Plant Health Agency, Pentlands Science Park, Midlothian, Scotland, UK
| | - Sonya Agarwal
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Andrew C Gill
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| | - Pedro Piccardo
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
41
|
Specificity, Size, and Frequency of Spaces That Characterize the Mechanism of Bulk Transepithelial Transport of Prions in the Nasal Cavities of Hamsters and Mice. J Virol 2016; 90:8293-301. [PMID: 27384659 DOI: 10.1128/jvi.01103-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Inhalation of infected brain homogenate results in transepithelial transport of prions across the nasal mucosa of hamsters, some of which occurs rapidly in relatively large amounts between cells (A. E. Kincaid, K. F. Hudson, M. W. Richey, and J. C. Bartz, J. Virol 86:12731-12740, 2012, doi:http://dx.doi.org/10.1128/JVI.01930-12). Bulk transepithelial transport in the nasal cavity has not been studied to date. In the present study, we characterized the frequency, size, and specificity of the intercellular spaces that mediate the bulk transport of inhaled prions between cells of mice or hamsters following extranasal inoculation with mock-infected brain homogenate, different strains of prion-infected brain homogenate, or brain homogenate mixed with India ink. Infected or mock-infected inoculum was identified within lymphatic vessels of the lamina propria and in spaces of >5 μm between a small number of cells of the nasal mucosa in >90% of animals from 5 to 60 min after inhalation. The width of the spaces between cells, the amount of the inoculum within the lumen of lymphatic vessels, and the timing of the transport indicate that this type of transport was taking place through preexisting spaces in the nasal cavity that were orders of magnitude wider than what is normally reported for paracellular transport. The indiscriminate rapid bulk transport of brain homogenate in the nasal cavity results in immediate entry into nasal cavity lymphatics following inhalation. This novel mechanism may underlie the recent report of the early detection of prions in blood following inhalation and has implications for horizontal prion transmission. IMPORTANCE The results of these studies demonstrate that the nasal mucosa of mice and hamsters is not an absolute anatomical barrier to inhaled prion-infected or uninfected brain homogenate. Relatively large amounts of infected and uninfected brain homogenate rapidly cross the nasal mucosa and enter the lumen of lymphatic vessels following inhalation. These bulk transepithelial transport events were relatively rare but present in >90% of animals 5 to 60 min following inhalation. This novel mechanism of bulk transepithelial transport was seen in experimental and control hamsters and mice, indicating that it was not species specific or in response to prion exposure. The indiscriminate bulk intercellular transport of inhaled pathogens across the nasal mucosa followed by entry into the lymphatic system may be a mechanism that underlies the entry and spread of other toxins and pathogens in olfactory system-driven animals.
Collapse
|
42
|
Ersdal C, Ulvund MJ, Espenes A, Benestad SL, Sarradin P, Landsverk T. Mapping PrPScPropagation in Experimental and Natural Scrapie in Sheep with Different PrP Genotypes. Vet Pathol 2016; 42:258-74. [PMID: 15872372 DOI: 10.1354/vp.42-3-258] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Twenty-one orally inoculated and seven naturally infected sheep with scrapie were examined for PrPScin peripheral tissues and in the central nervous system (CNS), using immunohistochemistry. In the inoculated group, VRQ (valine at codon 136, arginine at codon 154 and glutamine at codon 171)/VRQ sheep generally had a greater accumulation of the pathologic form of prion protein (PrPSc) in peripheral tissues, as compared with VRQ/ARQ (alanine at codon 136, arginine at codon 154, and glutamine at codon 171) animals at corresponding time points after inoculation. PrPScwas not detected in the ileal Peyer's patch, the spleen, the superficial cervical lymph node, and peripheral nervous tissues of several inoculated VRQ/ARQ animals. All inoculated VRQ/VRQ sheep, but only one of eight inoculated VRQ/ARQ animals, were PrPSc-positive in the CNS. Thus, the propagation of PrPScseemed slower and more limited in VRQ/ARQ animals. Tissue and cellular localization of PrPScsuggested that PrPScwas disseminated through three different routes. PrPSc-positive cells in lymph node sinuses and in lymphatics indicated spreading by lymph. The sequential appearance of PrPScin the peripheral nervous system and the CNS, with satellite cells as early targets, suggested the periaxonal transportation of PrPScthrough supportive cells. Focal areas of vascular amyloid-like PrPScin the brain of five sheep, suggested the hematogenous dissemination of PrPSc. There was a poor correlation between the amount of PrPScin the CNS and clinical signs. One subclinically affected sheep showed widespread PrPScaccumulation in the CNS, whereas three sheep had early clinical signs without detectable PrPScin the CNS. A VV136(homozygous for valine at codon 136) sheep inoculated with ARQ/ARR (alanine at codon 136, arginine at codon 154, and arginine at codon 171) tissue succumbed to disease, demonstrating successful heterologous transmission. Less susceptible sheep receiving VRQ/VRQ or ARQ/ARR material were PrPSc-negative by immunohistochemistry, enzyme-linked immunosorbent assay, and western blot.
Collapse
Affiliation(s)
- C Ersdal
- Norwegian School of Veterinary Science, PO Box 8146 Dep, 0033 Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
43
|
Darwin's Pangenesis as a molecular theory of inherited diseases. Gene 2016; 582:19-22. [DOI: 10.1016/j.gene.2016.01.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 01/05/2023]
|
44
|
Abstract
The neurodegenerative synucleinopathies, which include Parkinson disease, multiple-system atrophy, and Lewy body disease, are characterized by the presence of abundant neuronal inclusions called Lewy bodies and Lewy neurites. These disorders remain incurable, and a greater understanding of the pathologic processes is needed for effective treatment strategies to be developed. Recent data suggest that pathogenic misfolding of the presynaptic protein, α-synuclein (α-syn), and subsequent aggregation and accumulation are fundamental to the disease process. It is hypothesized that the misfolded isoform is able to induce misfolding of normal endogenous α-syn, much like what occurs in the prion diseases. Recent work highlighting the seeding effect of pathogenic α-syn has largely focused on the detergent-insoluble species of the protein. In this study, we performed intracerebral inoculations of the sarkosyl-insoluble or sarkosyl-soluble fractions of human Lewy body disease brain homogenate and show that both fractions induce CNS pathology in mice at 4 months after injection. Disease-associated deposits accumulated both near and distal to the site of the injection, suggesting a cell-to-cell spread via recruitment of α-syn. These results provide further insight into the prion-like mechanisms of α-syn and suggest that disease-associated α-syn is not homogeneous within a single patient but might exist in both soluble and insoluble isoforms.
Collapse
|
45
|
Infektionsschutz und spezielle Hygienemaßnahmen in klinischen Disziplinen. KRANKENHAUS- UND PRAXISHYGIENE 2016. [PMCID: PMC7152143 DOI: 10.1016/b978-3-437-22312-9.00005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
|
47
|
Lim K, Kim SY, Lee B, Segarra C, Kang S, Ju Y, Schmerr MJ, Coste J, Kim SY, Yokoyama T, An SSA. Magnetic microparticle-based multimer detection system for the detection of prion oligomers in sheep. Int J Nanomedicine 2015; 10:241-50. [PMID: 26425091 PMCID: PMC4583538 DOI: 10.2147/ijn.s88377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are zoonotic fatal neurodegenerative diseases in animals and humans. TSEs are commonly known as bovine spongiform encephalopathy in cattle, scrapie in sheep and goats, chronic wasting disease in cervids, and Creutzfeldt–Jakob disease in humans. The putative transmissible agents are infectious prion proteins (PrPSc), which are formed by the conversion of the normal prion protein on the glycoprotein cell surface in the presence of other PrPSc. Reports of the transmission of TSEs through blood raised considerable concern about the safety of blood and blood products. To address this issue, many laboratories attempted to develop a sensitive and accurate blood diagnostic test to detect PrPSc. Previously, we reported that, compared to normal controls, the multimer detection system (MDS) was more efficient in detecting PrPSc in infected hamster brain homogenate, mouse plasma spiked with purified PrPSc from scrapie mouse brain, and scrapie-infected hamster plasmas. MDS differentiates prion multimers from the cellular monomer through the multimeric expression of epitopes on prion multimers, in contrast to the monomeric form. In this study, MDS detected PrPSc in plasma samples from scrapie-infected sheep expressing clinical symptoms, demonstrating 100% sensitivity and specificity in these samples. Plasma samples from asymptomatic lambs at the preclinical stage (8-month-old naturally infected offspring of scrapie-infected parents expressing a highly susceptible genotype) tested positive with 50% sensitivity and 100% specificity. In the first of two coded analyses using clinical scrapie-infected sheep and normal healthy samples, MDS successfully identified all but one of the clinical samples with 92% sensitivity and 100% specificity. Similar results were obtained in the second coded analysis using preclinical samples. MDS again successfully identified all but one of the samples with 87% sensitivity and 100% specificity. The false-negative sample was subjected to a protease pretreatment. In conclusion, MDS could accurately detect scrapie in plasma samples at both preclinical and clinical stages. From these studies, we conclude that MDS could be a promising tool for the early diagnosis of TSEs from blood samples.
Collapse
Affiliation(s)
- Kuntaek Lim
- Department of Research and Development, PeopleBio Inc., Seoul, Republic of Korea
| | - Su Yeon Kim
- Department of Arborbiology, Korean Center for Diseases and Control (KCDC), Seoul, Republic of Korea
| | - Byoungsub Lee
- Department of Research and Development, PeopleBio Inc., Seoul, Republic of Korea
| | - Christiane Segarra
- Department of Blood Screening, Etablissement Français Du Sang (EFS), Montpellier, France
| | - Sungmin Kang
- Department of Research and Development, PeopleBio Inc., Seoul, Republic of Korea
| | - Youngran Ju
- Department of Arborbiology, Korean Center for Diseases and Control (KCDC), Seoul, Republic of Korea
| | - Mary Jo Schmerr
- Ames Laboratories, US Department of Energy (USDOE), Iowa State University, Ames, IA, USA
| | - Joliette Coste
- Department of Blood Screening, Etablissement Français Du Sang (EFS), Montpellier, France
| | - Sang Yun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Sungnam-si, Republic of Korea
| | - Takashi Yokoyama
- Department of Prion Research, National Institute of Animal Health, Tsukuba, Japan
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Sungnam-si, Republic of Korea
| |
Collapse
|
48
|
Immediate and Ongoing Detection of Prions in the Blood of Hamsters and Deer following Oral, Nasal, or Blood Inoculations. J Virol 2015; 89:7421-4. [PMID: 25926635 DOI: 10.1128/jvi.00760-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infectious prions traverse epithelial barriers to gain access to the circulatory system, yet the temporal parameters of transepithelial transport and persistence in the blood over time remain unknown. We used whole-blood real-time quaking-induced conversion (wbRT-QuIC) to analyze whole blood collected from transmissible spongiform encephalopathy (TSE)-inoculated deer and hamsters throughout the incubation period for the presence of common prion protein-conversion competent amyloid (PrPCCCA). We observed PrPC-CCA in the blood of TSE-inoculated hosts throughout the disease course from minutes postexposure to terminal disease.
Collapse
|
49
|
Does current evidence support the use of intraoperative cell salvage in reducing the need for blood transfusion in caesarean section? Curr Opin Obstet Gynecol 2015; 26:425-30. [PMID: 25259949 DOI: 10.1097/gco.0000000000000116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW An important cause of maternal morbidity and direct maternal death is obstetric haemorrhage at caesarean section. Concerns regarding allogeneic blood safety, limited blood supplies and rising health costs have collectively generated enthusiasm for the utility of methods intended to reduce the use of allogeneic blood transfusion in cases of haemorrhage at caesarean section. This can be achieved by intraoperative cell salvage (IOCS). The aim of this review is to summarize and examine the evidence for the efficacy of IOCS during caesarean section, in women at risk of haemorrhage, in reducing the need for allogeneic blood transfusion. RECENT FINDINGS The majority of the evidence currently available is from case reports and case series. Although this evidence appears to support the use of IOCS in obstetrics, strong clinical evidence or economic effectiveness from clinical trials are essential to support the routine practice of IOCS in obstetrics. SUMMARY Current evidence is limited to reported case series and two small controlled studies. Overall, IOCS may reduce the need for allogeneic blood transfusions during caesarean section. Future large randomized trials are required to assess effectiveness, cost effectiveness and safety. The results of the current ongoing SALVO (A randomised controlled trial of intra-operative cell salvage during caesarean section in women at risk of haemorrhage) trial will shed light on these aspects.
Collapse
|
50
|
Abdel-Haq H. Detection of water-soluble disease-associated PrP species in blood and brain of scrapie-infected hamster. Arch Virol 2015; 160:2219-29. [PMID: 26105967 DOI: 10.1007/s00705-015-2487-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/06/2015] [Indexed: 12/21/2022]
Abstract
The high-speed supernatant (S(HS)) of scrapie-infected hamster brain homogenate contains a soluble infectivity similar to that of the plasma that escapes leukodepletion and can transmit prion infection. This recent finding highlights the fact that soluble prion infectivity could be relevant for prion disease propagation and progression. PrP(Sc) is essential in prion disease pathogenesis, but little to nothing is known about the PrP(Sc) species that may be associated with this form of prion infectivity. Scrapie-infected hamster plasma and S(HS) were subjected to biochemical analysis, and the results demonstrate for the first time that soluble infectivity is associated with a water-soluble PrP(Sc) species with substantially different properties from classical PrP(Sc), the concentration of which seems to correlate with the magnitude and efficiency of the soluble infectivity. Such characteristics suggest that this species might represent the soluble prion agent itself or its vehicle, highlighting the need to adequately revise the strategies involved in prion removal, diagnosis, and therapy.
Collapse
Affiliation(s)
- Hanin Abdel-Haq
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy,
| |
Collapse
|