1
|
Kannan P, Baskaran H, Juliana Selvaraj JB, Saeid A, Kiruba Nester JM. Mycotransformation of Commercial Grade Cypermethrin Dispersion by Aspergillus terreus PDB-B Strain Isolated from Lake Sediments of Kulamangalam, Madurai. Molecules 2024; 29:1446. [PMID: 38611726 PMCID: PMC11012587 DOI: 10.3390/molecules29071446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
A fungal isolate Aspergillus terreus PDB-B (accession number: MT774567.1), which could tolerate up to 500 mg/L of cypermethrin, was isolated from the lake sediments of Kulamangalam tropical lake, Madurai, and identified by internal transcribed spacer (ITS) sequencing followed by phylogenetic analysis. The biotransformation potential of the strain was compared with five other strains (A, J, UN2, M1 and SM108) as a consortium, which were tentatively identified as Aspergillus glaucus, Aspergillus niger, Aspergillus flavus, Aspergillus terreus, and Aspergillus flavus, respectively. Batch culture and soil microcosm studies were conducted to explore biotransformation using plate-based enzymatic screening and GC-MS. A mycotransformation pathway was predicted based on a comparative analysis of the transformation products (TPs) obtained. The cytotoxicity assay revealed that the presence of (3-methylphenyl) methanol and isopropyl ether could be relevant to the high rate of lethality.
Collapse
Affiliation(s)
- Priyadharshini Kannan
- Department of Microbiology, The American College, Madurai 625002, Tamil Nadu, India; (P.K.); (H.B.)
| | - Hidayah Baskaran
- Department of Microbiology, The American College, Madurai 625002, Tamil Nadu, India; (P.K.); (H.B.)
| | | | - Agnieszka Saeid
- Department of Chemical Engineering, Politechnika Wroclawska, 50-370 Wroclaw, Poland;
| | | |
Collapse
|
2
|
Wang Y, Liao X, Shang W, Qin J, Xu X, Hu X. The secreted feruloyl esterase of Verticillium dahliae modulates host immunity via degradation of GhDFR. MOLECULAR PLANT PATHOLOGY 2024; 25:e13431. [PMID: 38353627 PMCID: PMC10866084 DOI: 10.1111/mpp.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Feruloyl esterase (ferulic acid esterase, FAE) is an essential component of many biological processes in both eukaryotes and prokaryotes. This research aimed to investigate the role of FAE and its regulation mechanism in plant immunity. We identified a secreted feruloyl esterase VdFAE from the hemibiotrophic plant pathogen Verticillium dahliae. VdFAE acted as an important virulence factor during V. dahliae infection, and triggered plant defence responses, including cell death in Nicotiana benthamiana. Deletion of VdFAE led to a decrease in the degradation of ethyl ferulate. VdFAE interacted with Gossypium hirsutum protein dihydroflavanol 4-reductase (GhDFR), a positive regulator in plant innate immunity, and promoted the degradation of GhDFR. Furthermore, silencing of GhDFR led to reduced resistance of cotton plants against V. dahliae. The results suggested a fungal virulence strategy in which a fungal pathogen secretes FAE to interact with host DFR and interfere with plant immunity, thereby promoting infection.
Collapse
Affiliation(s)
- Yajuan Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiwen Liao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Wenjing Shang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jun Qin
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB East MallingWest MallingUK
| | - Xiaoping Hu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
3
|
Dutschei T, Beidler I, Bartosik D, Seeßelberg JM, Teune M, Bäumgen M, Ferreira SQ, Heldmann J, Nagel F, Krull J, Berndt L, Methling K, Hein M, Becher D, Langer P, Delcea M, Lalk M, Lammers M, Höhne M, Hehemann JH, Schweder T, Bornscheuer UT. Marine Bacteroidetes enzymatically digest xylans from terrestrial plants. Environ Microbiol 2023; 25:1713-1727. [PMID: 37121608 DOI: 10.1111/1462-2920.16390] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Marine Bacteroidetes that degrade polysaccharides contribute to carbon cycling in the ocean. Organic matter, including glycans from terrestrial plants, might enter the oceans through rivers. Whether marine bacteria degrade structurally related glycans from diverse sources including terrestrial plants and marine algae was previously unknown. We show that the marine bacterium Flavimarina sp. Hel_I_48 encodes two polysaccharide utilization loci (PULs) which degrade xylans from terrestrial plants and marine algae. Biochemical experiments revealed activity and specificity of the encoded xylanases and associated enzymes of these PULs. Proteomics indicated that these genomic regions respond to glucuronoxylans and arabinoxylans. Substrate specificities of key enzymes suggest dedicated metabolic pathways for xylan utilization. Some of the xylanases were active on different xylans with the conserved β-1,4-linked xylose main chain. Enzyme activity was consistent with growth curves showing Flavimarina sp. Hel_I_48 uses structurally different xylans. The observed abundance of related xylan-degrading enzyme repertoires in genomes of other marine Bacteroidetes indicates similar activities are common in the ocean. The here presented data show that certain marine bacteria are genetically and biochemically variable enough to access parts of structurally diverse xylans from terrestrial plants as well as from marine algal sources.
Collapse
Affiliation(s)
- Theresa Dutschei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Irena Beidler
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Daniel Bartosik
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Julia-Maria Seeßelberg
- Department of Protein Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michelle Teune
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Marcus Bäumgen
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Soraia Querido Ferreira
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Julia Heldmann
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| | - Felix Nagel
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Joris Krull
- Institute of Marine Biotechnology e.V., Greifswald, Germany
- Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Leona Berndt
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Karen Methling
- Department of Cellular Biochemistry and Metabolomics, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Martin Hein
- Department of Organic Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Peter Langer
- Department of Organic Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Mihaela Delcea
- Department of Biophysical Chemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Department of Cellular Biochemistry and Metabolomics, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Michael Lammers
- Department of Synthetic and Structural Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Matthias Höhne
- Department of Protein Biochemistry, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Jan-Hendrik Hehemann
- Institute of Marine Biotechnology e.V., Greifswald, Germany
- Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Thomas Schweder
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Shen Y, Wang Y, Wei X, Wen B, Liu S, Tan H, Zhang J, Shao S, Xin F. Engineering the Active Site Pocket to Enhance the Catalytic Efficiency of a Novel Feruloyl Esterase Derived From Human Intestinal Bacteria Dorea formicigenerans. Front Bioeng Biotechnol 2022; 10:936914. [PMID: 35795165 PMCID: PMC9251316 DOI: 10.3389/fbioe.2022.936914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The human gut microbiota play essential roles in metabolism and human health, especially by enzymatically utilizing dietary fiber that the host cannot directly digest and releasing functional components including short-chain fatty acids (SCFAs) and hydroxycinnamic acids (e.g., ferulic acid). In our previous study, seven potential feruloyl esterase (FAE) genes were identified from the gut microbiota. In the current work, one of the genes encoding a novel FAE (DfFAE) from Dorea formicigenerans of Firmicutes was bacterially expressed, purified and characterized. The 30.5 kDa type-A DfFAE has an optimum pH and temperature of 8.4 and 40 °C, respectively, exhibiting a higher substrate specificity toward short-chain acyl-ester substrate (pNPA). The AlphaFold2 based ab initio structural modeling revealed a five α-helices cap domain that shaped an unusually narrow and deep active site pocket containing a specific substrate access tunnel in DfFAE. Furthermore, rational design strategy was subjected to the active site pocket in an aim of improving its enzymatic activities. The mutants V252A, N156A, W255A, P149A, and P186A showed 1.8 to 5.7-fold increase in catalytic efficiency toward pNPA, while W255A also exhibited altered substrate preference toward long-chain substrate pNPO (45.5-fold). This study highlighted an unusual active site architecture in DfFAE that influenced its substrate selectivity and illustrated the applicability of rational design for enhanced enzymatic properties.
Collapse
Affiliation(s)
- Yang Shen
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, China
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Boting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shujun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huishuang Tan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jingjian Zhang
- Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Shuli Shao
- Department of Life Science and Agroforestry, Qiqihar University, Qiqihar, China
- *Correspondence: Fengjiao Xin, ; Shuli Shao,
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Fengjiao Xin, ; Shuli Shao,
| |
Collapse
|
5
|
The Effect of Different Lactic Acid Bacteria Inoculants on Silage Quality, Phenolic Acid Profiles, Bacterial Community and In Vitro Rumen Fermentation Characteristic of Whole Corn Silage. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Corn silage is an important source of forage, but whether or not bacterial inoculants should be applied is somewhat controversial in ruminant feeding practice. In the present study, chopped whole corn plants treated with a single inoculant of Lactobacillus buchneri (LB), Lactobacillus plantarum (LP), Pediococcus pentosaceus (PP) served as either homofermentation (e.g., lactate only) or heterofermentation (e.g., lactate and acetate) controls and compared with those treated with either a mixture of the lactic acid bacteria (QA: 60% LP, 10%PP, 30% LB) or a mixture of the lactic acid bacteria (QB: 60% LP, 15% PP, 25% LB), to investigate their effects on the fermentation quality, ester-linked phenolic acids, and in vitro digestibility. After 60 day ensiling, the addition of QA exhibited the lowest pH (3.51) with greater lactic acid (LA) production. The ester-linked ferulic acid (FAest) and p-coumaric acid (pCAest) concentrations were significantly decreased during 60 days ensiling. And among all these groups, the LB and QA treated group showed a lower concentration of FAest and pCAest than other groups. After 60 days ensiling, Lactobacillus was the dominant genus in all LAB treated groups. Meanwhile, negative correlations of Bacillus, Bacteroides, Bifidobacterium, Blautia, Prevotella, Ruminococcus, and Roseburia with FAest content after 60 days ensiling occurred in the present study. Komagataeibacter was mainly found in LB and PP addition silages, and presented a significant negative effect with the level of acid detergent fiber (ADF). To explore whether the addition of LABs can improve digestibility of whole corn silage, an in vitro rumen fermentation was conducted using the 60 day ensiled whole corn silages as substrates. The QA addition group exhibited a greater 48 h and 96 h in vitro dry matter and ADF disappearance, greater 48 h gas production and less methane emissions. Even though there were the same neutral NDF levels in corn silages treated with LB and QA after 60 days ensiling, the QA treated silages with lower FAest and pCAest presented higher IVDMD after 96 h and 48 h in vitro fermentation. In brief, the addition of mixed inoculants of 60% LB,10% PP, 30% LB compared with the addition of whichever single HoLAB or HeLAB inoculants, facilitated the release of ester-linked phenolic acids (e.g., ferulic and p-coumaric acids) and remarkably, improved silage quality in terms of sharp pH decline and greater lactate production. Taken together with the improvement in rumen microbial fermentation, the results obtained in the present study provided concrete evidence for the role of mixed LAB application in corn silage preparation for ruminant feeding practices.
Collapse
|
6
|
Zhang Z, Gao X, Dong W, Huang B, Wang Y, Zhu M, Wang C. Plant cell wall breakdown by hindgut microorganisms: can we get scientific insights from rumen microorganisms? J Equine Vet Sci 2022; 115:104027. [PMID: 35661771 DOI: 10.1016/j.jevs.2022.104027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/20/2023]
Abstract
Equines and ruminants have evolved as grazing herbivores with specialized gastrointestinal tracts capable of utilizing a wide range of fibrous feeds. In China, agricultural by-products, including corn straw, wheat straw, peanut vine, wheat husk, rice husk, and grass hay, have been extensively included in both equine and ruminant diets. These plant materials, which are composed predominantly of cellulose, hemicellulose, noncellulosic polysaccharides, and lignin, are largely undegradable by equines and ruminants themselves. Their breakdown is accomplished by communities of resident microorganisms that live in symbiotic or mutualistic associations with the host. Information relating to microbial composition in the hindgut and rumen has become increasingly available. Rumen fermentation is unique in that plant cell wall breakdown relies on the cooperation between microorganisms that produce fibrolytic enzymes and that ruminant animals provide an anaerobic fermentation chamber. Similar to the rumen, the equine hindgut is also an immensely enlarged fermentative chamber that includes an extremely abundant and highly complex community of microorganisms. However, few studies have characterized the microbial functions and their utilization process of lignocellulosic feeds within the equine hindgut. The process of understanding and describing plant cell wall degradation mechanisms in the equine hindgut ecosystem is important for providing information for proper feeding practices to be implemented. In the present study, we gather existing information on the rumen and equine ecosystem and provide scientific insights for understanding the process of plant cell wall breakdown within the hindgut.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Xu Gao
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Wanting Dong
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Yonghui Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Mingxia Zhu
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China.
| |
Collapse
|
7
|
Abd‐Aziz S, Jenol MA, Ramle IK. Biovanillin from Oil Palm Biomass. BIOREFINERY OF OIL PRODUCING PLANTS FOR VALUE‐ADDED PRODUCTS 2022:493-514. [DOI: 10.1002/9783527830756.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
da Costa RMF, Winters A, Hauck B, Martín D, Bosch M, Simister R, Gomez LD, Batista de Carvalho LAE, Canhoto JM. Biorefining Potential of Wild-Grown Arundo donax, Cortaderia selloana and Phragmites australis and the Feasibility of White-Rot Fungi-Mediated Pretreatments. FRONTIERS IN PLANT SCIENCE 2021; 12:679966. [PMID: 34276732 PMCID: PMC8283202 DOI: 10.3389/fpls.2021.679966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/10/2021] [Indexed: 05/29/2023]
Abstract
Arundo donax, Cortaderia selloana and Phragmites australis are high-biomass-producing perennial Poalean species that grow abundantly and spontaneously in warm temperate regions, such as in Mediterranean-type climates, like those of Southern Europe, Western United States coastal areas, or in regions of South America, South Africa and Australia. Given their vigorous and spontaneous growth, biomass from the studied grasses often accumulates excessively in unmanaged agro-forestry areas. Nonetheless, this also creates the demand and opportunity for the valorisation of these biomass sources, particularly their cell wall polymers, for biorefining applications. By contrast, a related crop, Miscanthus × giganteus, is a perennial grass that has been extensively studied for lignocellulosic biomass production, as it can grow on low-input agricultural systems in colder climates. In this study Fourier transform mid-infrared spectroscopy (FTIR), high-performance anion-exchange chromatography (HPAEC) and lignin content determinations were used for a comparative compositional characterisation of A. donax, C. selloana and P. australis harvested from the wild, in relation to a trial field-grown M. × giganteus high-yielding genotype. A high-throughput saccharification assay showed relatively high sugar release values from the wild-grown grasses, even with a 0.1M NaOH mild alkali pretreatment. In addition to this alkaline pretreatment, biomass was treated with white-rot fungi (WRF), which preferentially degrade lignin more readily than holocellulose. Three fungal species were used: Ganoderma lucidum, Pleurotus ostreatus and Trametes versicolor. Our results showed that neutral sugar contents are not significantly altered, while some lignin is lost during the pretreatments. Furthermore, sugar release upon enzymatic saccharification was enhanced, and this was dependent on the plant biomass and fungal species used in the treatment. To maximise the potential for lignocellulose valorisation, the liquid fractions from the pretreatments were analysed by high performance liquid chromatography - photodiode array detection - electrospray ionisation tandem mass spectrometry (HPLC-PDA-ESI-MS n ). This study is one of the first to report on the composition of WRF-treated grass biomass, while assessing the potential relevance of breakdown products released during the treatments, beyond more traditional sugar-for-energy applications. Ultimately, we expect that our data will help promote the valorisation of unused biomass resources, create economic value, while contributing to the implementation of sustainable biorefining systems.
Collapse
Affiliation(s)
- Ricardo M. F. da Costa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Barbara Hauck
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Daniel Martín
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Leonardo D. Gomez
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | | | - Jorge M. Canhoto
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Xu J, Zhao X, Yao Q, Zong W, Dai S, Deng Z, Liu S, Yun J, Yang X, Li H. Cloning, characterization of a novel acetyl xylan esterase, and its potential application on wheat straw utilization. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1947393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jin Xu
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| | - Xiaoshen Zhao
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| | - Qian Yao
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| | - Wei Zong
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| | - Shuang Dai
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| | - Zujun Deng
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| | - Shan Liu
- Guangzhou Basic Clean Cosmetics Manufacturing Co., Ltd, Guangzhou, People’s Republic of China
| | - Jeonyun Yun
- Guangzhou Basic Clean Cosmetics Manufacturing Co., Ltd, Guangzhou, People’s Republic of China
| | - Xiong Yang
- Guangzhou Basic Clean Cosmetics Manufacturing Co., Ltd, Guangzhou, People’s Republic of China
| | - He Li
- School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Wei X, Wang YL, Wen BT, Liu SJ, Wang L, Sun L, Gu TY, Li Z, Bao Y, Fan SL, Zhou H, Wang F, Xin F. The α-Helical Cap Domain of a Novel Esterase from Gut Alistipes shahii Shaping the Substrate-Binding Pocket. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6064-6072. [PMID: 33979121 DOI: 10.1021/acs.jafc.1c00940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The human gut microbiota regulates nutritional metabolism, especially by encoding specific ferulic acid esterases (FAEs) to release functional ferulic acid (FA) from dietary fiber. In our previous study, we observed seven upregulated FAE genes during in vitro fecal slurry fermentation using wheat bran. Here, a 29 kDa FAE (AsFAE) from Alistipes shahii of Bacteroides was characterized and identified as the type-A FAE. The X-ray structure of AsFAE has been determined, revealing a unique α-helical domain comprising five α-helices, which was first characterized in FAEs from the gut microbiota. Further molecular docking analysis and biochemical studies revealed that Tyr100, Thr122, Tyr219, and Ile220 are essential for substrate binding and catalytic efficiency. Additionally, Glu129 and Lys130 in the cap domain shaped the substrate-binding pocket and affected the substrate preference. This is the first report on A. shahii FAE, providing a theoretical basis for the dietary metabolism in the human gut.
Collapse
Affiliation(s)
- Xue Wei
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yu-Lu Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo-Ting Wen
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shu-Jun Liu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Luyao Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lichao Sun
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tian-Yi Gu
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhen Li
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuming Bao
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi-Long Fan
- Key Laboratory of Ministry of Education for Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Fengzhong Wang
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengjiao Xin
- Laboratory of Biomanufacturing and Food Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Effects of Ferulic Acid Esterase-Producing Lactic Acid Bacteria and Storage Temperature on the Fermentation Quality, In Vitro Digestibility and Phenolic Acid Extraction Yields of Sorghum ( Sorghum bicolor L.) Silage. Microorganisms 2021; 9:microorganisms9010114. [PMID: 33418910 PMCID: PMC7825037 DOI: 10.3390/microorganisms9010114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 11/22/2022] Open
Abstract
Two lactic acid bacteria (LAB) strains with different ferulic acid esterase (FAE) activities were isolated: Lactobacillus farciminis (LF18) and Lactobacillus plantarum (LP23). The effects of these strains on the fermentation quality, in vitro digestibility and phenolic acid extraction yields of sorghum (Sorghum bicolor L.) silage were studied at 20, 30 and 40 °C. Sorghum was ensiled with no additive (control), LF18 or LP23 for 45 days. At 40 °C, the lactic acid content decreased, whereas the ammonia nitrogen (NH3-N) content significantly increased (p < 0.05). At all three temperatures, the inoculants significantly improved the lactic acid contents and reduced the NH3-N contents (p < 0.05). Neither LP23 nor LF18 significantly improved the digestibility of sorghum silages (p > 0.05). The LP23 group exhibited higher phenolic acid extraction yields at 30 °C (p < 0.05), and the corresponding yields of the LF18 and control groups were improved at 40 °C (p < 0.05). FAE-producing LABs might partially ameliorate the negative effects of high temperature and improve the fermentation quality of sorghum silage. The screened FAE-producing LABs could be candidate strains for preserving sorghum silage at high temperature, and some further insights into the relationship between FAE-producing LABs and ensiling temperatures were obtained.
Collapse
|
12
|
Transcriptome analysis of the brown rot fungus Gloeophyllum trabeum during lignocellulose degradation. PLoS One 2020; 15:e0243984. [PMID: 33315957 PMCID: PMC7735643 DOI: 10.1371/journal.pone.0243984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022] Open
Abstract
Brown rot fungi have great potential in biorefinery wood conversion systems because they are the primary wood decomposers in coniferous forests and have an efficient lignocellulose degrading system. Their initial wood degradation mechanism is thought to consist of an oxidative radical-based system that acts sequentially with an enzymatic saccharification system, but the complete molecular mechanism of this system has not yet been elucidated. Some studies have shown that wood degradation mechanisms of brown rot fungi have diversity in their substrate selectivity. Gloeophyllum trabeum, one of the most studied brown rot species, has broad substrate selectivity and even can degrade some grasses. However, the basis for this broad substrate specificity is poorly understood. In this study, we performed RNA-seq analyses on G. trabeum grown on media containing glucose, cellulose, or Japanese cedar (Cryptomeria japonica) as the sole carbon source. Comparison to the gene expression on glucose, 1,129 genes were upregulated on cellulose and 1,516 genes were upregulated on cedar. Carbohydrate Active enZyme (CAZyme) genes upregulated on cellulose and cedar media by G. trabeum included glycoside hyrolase family 12 (GH12), GH131, carbohydrate esterase family 1 (CE1), auxiliary activities family 3 subfamily 1 (AA3_1), AA3_2, AA3_4 and AA9, which is a newly reported expression pattern for brown rot fungi. The upregulation of both terpene synthase and cytochrome P450 genes on cedar media suggests the potential importance of these gene products in the production of secondary metabolites associated with the chelator-mediated Fenton reaction. These results provide new insights into the inherent wood degradation mechanism of G. trabeum and the diversity of brown rot mechanisms.
Collapse
|
13
|
Liu S, Zhao L, Liao Y, Luo Z, Wang H, Wang P, Zhao H, Xia J, Huang CF. Dysfunction of the 4-coumarate:coenzyme A ligase 4CL4 impacts aluminum resistance and lignin accumulation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1233-1250. [PMID: 32989851 DOI: 10.1111/tpj.14995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 05/22/2023]
Abstract
The root cell wall is the first and primary target of aluminum (Al) toxicity. Monocots such as rice (Oryza sativa) can accumulate appreciable levels of hydroxycinnamic acids (HCAs) to modify and cross-link hemicellulose and/or lignin of the cell wall. Nevertheless, it is unclear whether this HCA-mediated modification of the cell wall is important for Al accumulation and resistance. We previously isolated and characterized a rice ral1 (resistance to aluminum 1) mutant that shows enhanced Al resistance. In this study, we cloned RAL1 and found that it encodes the 4-coumarate:coenzyme A ligase 4CL4, an enzyme putatively involved in lignin biosynthesis. Mutation of RAL1/4CL4 reduces lignin content and increases the accumulation of its substrates 4-coumaric acid (PA) and ferulic acid (FA). We demonstrate that altered lignin accumulation is not required for the enhanced Al resistance in ral1/4cl4 mutants. We found that the increased accumulation of PA and FA can reduce Al binding to hemicellulose and consequently enhance Al resistance in ral1/4cl4 mutants. Al stress is able to trigger PA and FA accumulation, which is likely caused by the repression of the expression of RAL1/4CL4 and its homologous genes. Our results thus reveal that Al-induced PA and FA accumulation is actively and positively involved in Al resistance in rice through the modification of the cell wall and thereby the reduced Al binding to the cell wall.
Collapse
Affiliation(s)
- Shuo Liu
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Zhao
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yonghui Liao
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenling Luo
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Chao-Feng Huang
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
14
|
Jiang S, Zheng X, Li L. De novo assembly of Auricularia polytricha transcriptome and discovery of genes involved in the degradation of lignocellulose. Biotechnol Appl Biochem 2020; 68:983-991. [PMID: 32786100 DOI: 10.1002/bab.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 07/27/2020] [Indexed: 11/10/2022]
Abstract
Auricularia polytricha belonging to Basidiomycota has the ability to degrade lignocellulose. However, there has been no resource in public databases examining the transcriptome of A. polytricha. In this study, high-throughput sequencing platform BGISEQ-500 was used to generate large amount of transcript sequences from A. polytricha for gene discovery and molecular marker development. A total of 28,102 unigenes were discovered from the assembly of clean reads. In addition, functional categorization of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) metabolic pathways revealed several important biological processes. GO annotation analysis presented 47 categories, with the major subcategories being catalytic activity, binding, cellular process, metabolic process, and cell. Among the five functional categories and 21 subcategories of processes discovered from KEGG, global and overview maps, carbohydrate metabolism, transport, and catabolism are the main subcategories. Furthermore, among the unigenes related to lignocellulosic degradation discovered by KEGG pathway enrichment analysis, 2, 5, and 16 unigenes in de novo assembly of A. polytricha transcriptome were found to relate to cellulose, hemicellulose, and lignin degradation, respectively. The study provided valuable information on the degradation of lignocellulose to facilitate research on the degradation mechanism, molecular marker, functional research, gene mapping, and other multigenomic studies of species containing lignocellulose.
Collapse
Affiliation(s)
- Shiyu Jiang
- College of Grain and Food science, Henan University of Technology, Zhengzhou, Henan, People's Republic of China
| | - Xueling Zheng
- College of Grain and Food science, Henan University of Technology, Zhengzhou, Henan, People's Republic of China
| | - Li Li
- College of Grain and Food science, Henan University of Technology, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
15
|
Phuengmaung P, Sunagawa Y, Makino Y, Kusumoto T, Handa S, Sukhumsirichart W, Sakamoto T. Identification and characterization of ferulic acid esterase from Penicillium chrysogenum 31B: de-esterification of ferulic acid decorated with l-arabinofuranoses and d-galactopyranoses in sugar beet pectin. Enzyme Microb Technol 2019; 131:109380. [PMID: 31615673 DOI: 10.1016/j.enzmictec.2019.109380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 01/06/2023]
Abstract
We previously described the fungus Penicillium chrysogenum 31B, which has high performance to produce the ferulic acid esterase (FAE) for de-esterifying ferulic acids (FAs) from sugar beet pulp. However, the characteristics of this fungus have not yet been determined. Therefore, in this study, we evaluated the molecular characteristics and natural substrate specificity of the Pcfae1 gene from Penicillium chrysogenum and examined its synergistic effects on sugar beet pectin. The Pcfae1 gene was cloned and overexpressed in Pichia pastoris KM71H, and the recombinant enzyme, named PcFAE1, was characterized. The 505 amino acids of PcFAE1 possessed a GCSTG motif (Gly164 to Gly168), characteristic of the serine esterase family. By comparing the amino acid sequence of PcFAE1 with that of the FAE (AoFaeB) of Aspergillus oryzae, Ser166, Asp379, and His419 were identified as the catalytic triad. PcFAE1 was purified through two steps using anion-exchange column chromatography. Its molecular mass without the signal peptide was 75 kDa. Maximum PcFAE1 activity was achieved at pH 6.0-7.0 and 50 °C. The enzyme was stable up to 37 °C and at a pH range of 3-8. PcFAE1 activity was only inhibited by Hg2+, and the enzyme had activity toward methyl FA, methyl caffeic acid, and methyl p-coumaric acid, with specific activities of 6.97, 4.65, and 9.32 U/mg, respectively, but not on methyl sinapinic acid. These results indicated that PcFAE1 acted similar to FaeB type according the Crepin classification. PcFAE1 de-esterified O-[6-O-feruloyl-β-d-galactopyranosyl-(1→4)]-d-galactopyranose, O-[2-O-feruloyl-α-l-arabinofuranosyl-(1→5)]-l-arabinofuranose, and O-[5-O-feruloyl-α-l-arabinofuranosyl-(1→3)]-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose, indicating that the enzyme could de-esterify FAs decorated with both β-d-galactopyranosidic and α-l-arabinofuranosidic residues in pectin and xylan. PcFAE1 acted in synergy with endo-α-1,5-arabinanase and α-l-arabinofuranosidase, which releases FA linked to arabinan, to digest the sugar beet pectin. Moreover, when PcFAE1 was allowed to act on sugar beet pectin together with Driselase, approximately 90% of total FA in the substrate was released. Therefore, PcFAE1 may be an interesting candidate for hydrolysis of lignocellulosic materials and could have applications as a tool for production of FA from natural substrates.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand.
| | - Yoichi Sunagawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Yosuke Makino
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Takafumi Kusumoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Satoshi Handa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Wasana Sukhumsirichart
- Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, 114 Sukhumvit 23, Bangkok 10110, Thailand.
| | - Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
16
|
Wu S, Nan F, Jiang J, Qiu J, Zhang Y, Qiao B, Li S, Xin Z. Molecular cloning, expression and characterization of a novel feruloyl esterase from a soil metagenomic library with phthalate-degrading activity. Biotechnol Lett 2019; 41:995-1006. [PMID: 31102076 DOI: 10.1007/s10529-019-02693-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/10/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To discover novel feruloyl esterases (FAEs) by the function-driven screening procedure from soil metagenome. RESULTS A novel FAE gene bds4 was isolated from a soil metagenomic library and over-expressed in Escherichia coli. The recombinant enzyme BDS4 was purified to homogeneity with a predicted molecular weight of 38.8 kDa. BDS4 exhibited strong activity (57.05 U/mg) toward methyl ferulate under the optimum pH and temperature of 8.0 and 37°C. Based on its amino acid sequence and model substrates specificity, BDS4 was classified as a type-C FAE. The quantity of the releasing ferulic acid can be enhanced significantly in the presence of xylanase compared with BDS4 alone from de-starched wheat bran. In addition, BDS4 can also hydrolyze several phthalates such as diethyl phthalate, dimethyl phthalate and dibutyl phthalate. CONCLUSION The current investigation discovered a novel FAE with phthalate-degrading activity and highlighted the usefulness of metagenomic approaches as a powerful tool for discovery of novel FAEs.
Collapse
Affiliation(s)
- Shenglu Wu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Fang Nan
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Junwei Jiang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiarong Qiu
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yueqi Zhang
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Beibei Qiao
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shan Li
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhihong Xin
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
17
|
da Costa RMF, Pattathil S, Avci U, Winters A, Hahn MG, Bosch M. Desirable plant cell wall traits for higher-quality miscanthus lignocellulosic biomass. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:85. [PMID: 31011368 PMCID: PMC6463665 DOI: 10.1186/s13068-019-1426-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/05/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignocellulosic biomass from dedicated energy crops such as Miscanthus spp. is an important tool to combat anthropogenic climate change. However, we still do not exactly understand the sources of cell wall recalcitrance to deconstruction, which hinders the efficient biorefining of plant biomass into biofuels and bioproducts. RESULTS We combined detailed phenotyping, correlation studies and discriminant analyses, to identify key significantly distinct variables between miscanthus organs, genotypes and most importantly, between saccharification performances. Furthermore, for the first time in an energy crop, normalised total quantification of specific cell wall glycan epitopes is reported and correlated with saccharification. CONCLUSIONS In stems, lignin has the greatest impact on recalcitrance. However, in leaves, matrix glycans and their decorations have determinant effects, highlighting the importance of biomass fine structures, in addition to more commonly described cell wall compositional features. The results of our interrogation of the miscanthus cell wall promote the concept that desirable cell wall traits for increased biomass quality are highly dependent on the target biorefining products. Thus, for the development of biorefining ideotypes, instead of a generalist miscanthus variety, more realistic and valuable approaches may come from defining a collection of specialised cultivars, adapted to specific conditions and purposes.
Collapse
Affiliation(s)
- Ricardo M. F. da Costa
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EE UK
- Present Address: Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- Present Address: Mascoma LLC (Lallemand, Inc.), 67 Etna Road, Lebanon, NH 03766 USA
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- Present Address: Faculty of Engineering, Bioengineering Department, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EE UK
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602-4712 USA
- DOE-BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EE UK
| |
Collapse
|
18
|
Arai T, Biely P, Uhliariková I, Sato N, Makishima S, Mizuno M, Nozaki K, Kaneko S, Amano Y. Structural characterization of hemicellulose released from corn cob in continuous flow type hydrothermal reactor. J Biosci Bioeng 2018; 127:222-230. [PMID: 30143337 DOI: 10.1016/j.jbiosc.2018.07.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/22/2018] [Accepted: 07/18/2018] [Indexed: 11/18/2022]
Abstract
Hydrothermal reaction is known to be one of the most efficient procedures to extract hemicelluloses from lignocellulosic biomass. We investigated the molecular structure of xylooligosaccharides released from corn cob in a continuous flow type hydrothermal reactor designed in our group. The fraction precipitable from the extract with four volumes of ethanol was examined by 1H-NMR spectroscopy and MALDI-TOF MS before and after enzymatic treatment with different purified enzymes. The released water-soluble hemicellulose was found to correspond to a mixture of wide degree of polymerization range of acetylarabinoglucuronoxylan fragments (further as corn cob xylan abbreviated CX). Analysis of enzymatic hydrolyzates of CX with an acetylxylan esterase, GH3 β-xylosidase, GH10 and GH11 xylanases revealed that the main chain contains unsubstituted regions mixed with regions of xylopyranosyl residues partially acetylated and occasionally substituted by 4-O-methyl-d-glucuronic acid and arabinofuranose esterified with ferulic or coumaric acid. Single 2- and 3-O-acetylation was accompanied by 2,3-di-O-acetylation and 3-O-acetylation of Xylp residues substituted with MeGlcA. Most of the non-esterified arabinofuranose side residues were lost during the hydrodynamic process. Despite reduced branching, the acetylation and ferulic acid modification of pentose residues contribute to high yields and high solubility of the extracted CX. It is also shown that different enzyme treatments of CX may lead to various types of xylooligosaccharides of different biomedical potential.
Collapse
Affiliation(s)
- Tsutomu Arai
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Peter Biely
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovak Republic
| | - Iveta Uhliariková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 38 Bratislava, Slovak Republic
| | - Nobuaki Sato
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; B Food Science Co. Ltd., 24-12 Kitahamamachi, Chita 478-0046, Japan
| | - Satoshi Makishima
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; B Food Science Co. Ltd., 24-12 Kitahamamachi, Chita 478-0046, Japan
| | - Masahiro Mizuno
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Kouichi Nozaki
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Satoshi Kaneko
- Department of Subtropical Bioscience and Biotechnology, University of the Ryukyus, Nishiara, Okinawa 903-0213, Japan
| | - Yoshihiko Amano
- Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan; Institute of Engineering, Academic Assembly, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| |
Collapse
|
19
|
Site-specific hydrolysis of chlorogenic acids by selected Lactobacillus species. Food Res Int 2018; 109:426-432. [DOI: 10.1016/j.foodres.2018.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/26/2018] [Accepted: 04/23/2018] [Indexed: 11/23/2022]
|
20
|
A type D ferulic acid esterase from Streptomyces werraensis affects the volume of wheat dough pastries. Appl Microbiol Biotechnol 2017; 102:1269-1279. [PMID: 29188331 DOI: 10.1007/s00253-017-8637-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 01/04/2023]
Abstract
A type D ferulic acid esterase (FAE) was identified in the culture supernatant of Streptomyces werraensis, purified, sequenced, and heterologously produced in E. coli BL21(DE3)Star by co-expressing chaperones groES-groEL (69 U L-1). The unique enzyme with a mass of about 48 kDa showed no similarity to other FAEs, and only moderate homology (78.5%) to a Streptomycete β-xylosidase. The purified reSwFAED exhibited a temperature optimum of 40 °C, a pH optimum in the range from pH seven to eight and a clear preference for bulky natural substrates, such as 5-O-trans-feruloyl-L-arabinofuranose (FA) and β-D-xylopyranosyl-(1→2)-5-O-trans-feruloyl-L-arabinofuranose (FAX), compared to the synthetic standard substrate methyl ferulate. Treatment of wheat dough with as little as 0.03 U or 0.3 U kg-1 reSwFAED activity resulted in a significant increase of the bun volume (8.0 or 9.7%, resp.) after baking when combined with polysaccharide-degrading enzymes from Aspergillus. For the first time, the long-standing, but rarely proven positive effect of a FAE in baking was confirmed.
Collapse
|
21
|
Reducing cell wall feruloylation by expression of a fungal ferulic acid esterase in Festuca arundinacea modifies plant growth, leaf morphology and the turnover of cell wall arabinoxylans. PLoS One 2017; 12:e0185312. [PMID: 28934356 PMCID: PMC5608373 DOI: 10.1371/journal.pone.0185312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/11/2017] [Indexed: 11/19/2022] Open
Abstract
A feature of cell wall arabinoxylan in grasses is the presence of ferulic acid which upon oxidative coupling by the action of peroxidases forms diferuloyl bridges between formerly separated arabinoxylans. Ferulate cross-linking is suspected of playing various roles in different plant processes. Here we investigate the role of cell wall feruloyaltion in two major processes, that of leaf growth and the turnover of cell wall arabinoxylans on leaf senescence in tall fescue using plants in which the level of cell wall ferulates has been reduced by targeted expression of the Aspergillus niger ferulic acid esterase A (FAEA) to the apoplast or Golgi. Analysis of FAE expressing plants showed that all the lines had shorter and narrower leaves compared to control, which may be a consequence of the overall growth rate being lower and occurring earlier in FAE expressing leaves than in controls. Furthermore, the final length of epidermal cells was shorter than controls, indicating that their expansion was curtailed earlier than in control leaves. This may be due to the observations that the deposition of both ether and ester linked monomeric hydroxycinnamic acids and ferulate dimerization stopped earlier in FAE expressing leaves but at a lower level than controls, and hydroxycinnamic acid deposition started to slow down when peroxidase levels increased. It would appear therefore that one of the possible mechanisms for controlling overall leaf morphology such as leaf length and width in grasses, where leaf morphology is highly variable between species, may be the timing of hydroxycinnamic acid deposition in the expanding cell walls as they emerge from cell division into the elongation zone, controlled partially by the onset of peroxidase activity in this region.
Collapse
|
22
|
Characterization of Cinnamoyl Esterases from Different Lactobacilli and Bifidobacteria. Curr Microbiol 2016; 74:247-256. [DOI: 10.1007/s00284-016-1182-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
|
23
|
An unusual feruloyl esterase from Aspergillus oryzae: two tryptophan residues play a crucial role for the activity. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Shahidi F, Yeo JD. Insoluble-Bound Phenolics in Food. Molecules 2016; 21:molecules21091216. [PMID: 27626402 PMCID: PMC6274541 DOI: 10.3390/molecules21091216] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
This contribution provides a review of the topic of insoluble-bound phenolics, especially their localization, synthesis, transfer and formation in plant cells, as well as their metabolism in the human digestive system and corresponding bioactivities. In addition, their release from the food matrix during food processing and extraction methods are discussed. The synthesis of phenolics takes place mainly at the endoplasmic reticulum and they are then transferred to each organ through transport proteins such as the ATP-binding cassette (ABC) and multidrug and toxic compound extrusion (MATE) transporter at the organ’s compartment membrane or via transport vesicles such as cytoplasmic and Golgi vesicles, leading to the formation of soluble and insoluble-bound phenolics at the vacuole and cell wall matrix, respectively. This part has not been adequately discussed in the food science literature, especially regarding the synthesis site and their transfer at the cellular level, thus this contribution provides valuable information to the involved scientists. The bound phenolics cannot be absorbed at the small intestine as the soluble phenolics do (5%–10%), thus passing into the large intestine and undergoing fermentation by a number of microorganisms, partially released from cell wall matrix of foods. Bound phenolics such as phenolic acids and flavonoids display strong bioactivities such as anticancer, anti-inflammation and cardiovascular disease ameliorating effects. They can be extracted by several methods such as acid, alkali and enzymatic hydrolysis to quantify their contents in foods. In addition, they can also be released from the cell wall matrix during food processing procedures such as fermentation, germination, roasting, extrusion cooking and boiling. This review provides critical information for better understanding the insoluble-bound phenolics in food and fills an existing gap in the literature.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Ju-Dong Yeo
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
25
|
Cao LC, Chen R, Xie W, Liu YH. Enhancing the Thermostability of Feruloyl Esterase EstF27 by Directed Evolution and the Underlying Structural Basis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8225-33. [PMID: 26329893 DOI: 10.1021/acs.jafc.5b03424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
To improve the thermostability of EstF27, two rounds of random mutagenesis were performed. A thermostable mutant, M6, with six amino acid substitutions was obtained. The half-life of M6 at 55 °C is 1680 h, while that of EstF27 is 0.5 h. The Kcat/Km value of M6 is 1.9-fold higher than that of EstF27. The concentrations of ferulic acid released from destarched wheat bran by EstF27 and M6 at their respective optimal temperatures were 223.2 ± 6.8 and 464.8 ± 11.9 μM, respectively. To further understand the structural basis of the enhanced thermostability, the crystal structure of M6 is determined at 2.0 Å. Structural analysis shows that a new disulfide bond and hydrophobic interactions formed by the mutations may play an important role in stabilizing the protein. This study not only provides us with a robust catalyst, but also enriches our knowledge about the structure-function relationship of feruloyl esterase.
Collapse
Affiliation(s)
- Li-chuang Cao
- School of Life Sciences, ‡State Key Laboratory for Biocontrol, School of Life Sciences, and §South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| | - Ran Chen
- School of Life Sciences, ‡State Key Laboratory for Biocontrol, School of Life Sciences, and §South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| | - Wei Xie
- School of Life Sciences, ‡State Key Laboratory for Biocontrol, School of Life Sciences, and §South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| | - Yu-huan Liu
- School of Life Sciences, ‡State Key Laboratory for Biocontrol, School of Life Sciences, and §South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, People's Republic of China
| |
Collapse
|
26
|
Blackman LM, Cullerne DP, Torreña P, Taylor J, Hardham AR. RNA-Seq Analysis of the Expression of Genes Encoding Cell Wall Degrading Enzymes during Infection of Lupin (Lupinus angustifolius) by Phytophthora parasitica. PLoS One 2015; 10:e0136899. [PMID: 26332397 PMCID: PMC4558045 DOI: 10.1371/journal.pone.0136899] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/10/2015] [Indexed: 11/18/2022] Open
Abstract
RNA-Seq analysis has shown that over 60% (12,962) of the predicted transcripts in the Phytophthora parasitica genome are expressed during the first 60 h of lupin root infection. The infection transcriptomes included 278 of the 431 genes encoding P. parasitica cell wall degrading enzymes. The transcriptome data provide strong evidence of global transcriptional cascades of genes whose encoded proteins target the main categories of plant cell wall components. A major cohort of pectinases is predominantly expressed early but as infection progresses, the transcriptome becomes increasingly dominated by transcripts encoding cellulases, hemicellulases, β-1,3-glucanases and glycoproteins. The most highly expressed P. parasitica carbohydrate active enzyme gene contains two CBM1 cellulose binding modules and no catalytic domains. The top 200 differentially expressed genes include β-1,4-glucosidases, β-1,4-glucanases, β-1,4-galactanases, a β-1,3-glucanase, an α-1,4-polygalacturonase, a pectin deacetylase and a pectin methylesterase. Detailed analysis of gene expression profiles provides clues as to the order in which linkages within the complex carbohydrates may come under attack. The gene expression profiles suggest that (i) demethylation of pectic homogalacturonan occurs before its deacetylation; (ii) cleavage of the backbone of pectic rhamnogalacturonan I precedes digestion of its side chains; (iii) early attack on cellulose microfibrils by non-catalytic cellulose-binding proteins and enzymes with auxiliary activities may facilitate subsequent attack by glycosyl hydrolases and enzymes containing CBM1 cellulose-binding modules; (iv) terminal hemicellulose backbone residues are targeted after extensive internal backbone cleavage has occurred; and (v) the carbohydrate chains on glycoproteins are degraded late in infection. A notable feature of the P. parasitica infection transcriptome is the high level of transcription of genes encoding enzymes that degrade β-1,3-glucanases during middle and late stages of infection. The results suggest that high levels of β-1,3-glucanases may effectively degrade callose as it is produced by the plant during the defence response.
Collapse
Affiliation(s)
- Leila M. Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT, Australia
- * E-mail:
| | - Darren P. Cullerne
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT, Australia
- Agriculture Flagship, CSIRO, Canberra ACT, Australia
| | - Pernelyn Torreña
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT, Australia
| | - Jen Taylor
- Agriculture Flagship, CSIRO, Canberra ACT, Australia
| | - Adrienne R. Hardham
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT, Australia
| |
Collapse
|
27
|
Comparative Analysis of Extremely Thermophilic Caldicellulosiruptor Species Reveals Common and Unique Cellular Strategies for Plant Biomass Utilization. Appl Environ Microbiol 2015; 81:7159-70. [PMID: 26253670 DOI: 10.1128/aem.01622-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/26/2015] [Indexed: 11/20/2022] Open
Abstract
Microbiological, genomic and transcriptomic analyses were used to examine three species from the bacterial genus Caldicellulosiruptor with respect to their capacity to convert the carbohydrate content of lignocellulosic biomass at 70°C to simple sugars, acetate, lactate, CO2, and H2. Caldicellulosiruptor bescii, C. kronotskyensis, and C. saccharolyticus solubilized 38%, 36%, and 29% (by weight) of unpretreated switchgrass (Panicum virgatum) (5 g/liter), respectively, which was about half of the amount of crystalline cellulose (Avicel; 5 g/liter) that was solubilized under the same conditions. The lower yields with C. saccharolyticus, not appreciably greater than the thermal control for switchgrass, were unexpected, given that its genome encodes the same glycoside hydrolase 9 (GH9)-GH48 multidomain cellulase (CelA) found in the other two species. However, the genome of C. saccharolyticus lacks two other cellulases with GH48 domains, which could be responsible for its lower levels of solubilization. Transcriptomes for growth of each species comparing cellulose to switchgrass showed that many carbohydrate ABC transporters and multidomain extracellular glycoside hydrolases were differentially regulated, reflecting the heterogeneity of lignocellulose. However, significant differences in transcription levels for conserved genes among the three species were noted, indicating unexpectedly diverse regulatory strategies for deconstruction for these closely related bacteria. Genes encoding the Che-type chemotaxis system and flagellum biosynthesis were upregulated in C. kronotskyensis and C. bescii during growth on cellulose, implicating motility in substrate utilization. The results here show that capacity for plant biomass deconstruction varies across Caldicellulosiruptor species and depends in a complex way on GH genome inventory, substrate composition, and gene regulation.
Collapse
|
28
|
Buanafina MMDO, Dalton S, Langdon T, Timms-Taravella E, Shearer EA, Morris P. Functional co-expression of a fungal ferulic acid esterase and a β-1,4 endoxylanase in Festuca arundinacea (tall fescue) modifies post-harvest cell wall deconstruction. PLANTA 2015; 242:97-111. [PMID: 25854601 DOI: 10.1007/s00425-015-2288-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
Improved post-harvest cell wall deconstruction of tall fescue leaves has been demonstrated by in-planta co-expression of a constitutively expressed ferulic acid esterase together with a senescence-induced β-1,4 endoxylanase. Tall fescue plants (Festuca arundinacea) constitutively expressing vacuole- or apoplast-targeted ferulic acid esterase from Aspergillus niger were retransformed with a senescence-induced and apoplast-targeted β-1,4 endo-xylanase from Trichoderma reesei. Enzyme activities in co-expressing plants stabilized after repeated vegetative propagation, with xylanase activity in senescent leaves increasing and ferulic acid esterase activity decreasing after tillering. Plants co-expressing both enzymes in the apoplast, with the lowest levels of ferulate monomers and dimers and the lowest levels of cell wall arabinoxylans, released ten times more cell wall hydroxycinnamic acids and five times more arabinoxylan from the cell wall on autodigestion compared to expression of ferulic acid esterase or xylanase alone. These plants also showed a 31 % increase in cellulase-mediated release of reducing sugars, a 5 % point increase in in vitro dry matter digestibility and a 23 % increase in acetyl bromide-soluble lignin. However, plant growth was adversely affected by expressing FAE in the apoplast, giving plants with narrower shorted leaves, and a 71 % decrease in biomass.
Collapse
Affiliation(s)
- Marcia M de O Buanafina
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA,
| | | | | | | | | | | |
Collapse
|
29
|
Kim JH, Baik SH. Properties of recombinant novel cinnamoyl esterase from Lactobacillus acidophilus F46 isolated from human intestinal bacterium. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Blackman LM, Cullerne DP, Hardham AR. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genomics 2014; 15:785. [PMID: 25214042 PMCID: PMC4176579 DOI: 10.1186/1471-2164-15-785] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022] Open
Abstract
Background A critical aspect of plant infection by the majority of pathogens is penetration of the plant cell wall. This process requires the production and secretion of a broad spectrum of pathogen enzymes that target and degrade the many complex polysaccharides in the plant cell wall. As a necessary framework for a study of the expression of cell wall degrading enzymes (CWDEs) produced by the broad host range phytopathogen, Phytophthora parasitica, we have conducted an in-depth bioinformatics analysis of the entire complement of genes encoding CWDEs in this pathogen’s genome. Results Our bioinformatic analysis indicates that 431 (2%) of the 20,825 predicted proteins encoded by the P. parasitica genome, are carbohydrate-active enzymes (CAZymes) involved in the degradation of cell wall polysaccharides. Of the 431 proteins, 337 contain classical N-terminal secretion signals and 67 are predicted to be targeted to the non-classical secretion pathway. Identification of CAZyme catalytic activity based on primary protein sequence is difficult, nevertheless, detailed comparisons with previously characterized enzymes has allowed us to determine likely enzyme activities and targeted substrates for many of the P. parasitica CWDEs. Some proteins (12%) contain more than one CAZyme module but, in most cases, multiple modules are from the same CAZyme family. Only 12 P. parasitica CWDEs contain both catalytically-active (glycosyl hydrolase) and non-catalytic (carbohydrate binding) modules, a situation that contrasts with that in fungal phytopathogens. Other striking differences between the complements of CWDEs in P. parasitica and fungal phytopathogens are seen in the CAZyme families that target cellulose, pectins or β-1,3-glucans (e.g. callose). About 25% of P. parasitica CAZymes are solely directed towards pectin degradation, with the majority coming from pectin lyase or carbohydrate esterase families. Fungal phytopathogens typically contain less than half the numbers of these CAZymes. The P. parasitica genome, like that of other Oomycetes, is rich in CAZymes that target β-1,3-glucans. Conclusions This detailed analysis of the full complement of P. parasitica cell wall degrading enzymes provides a framework for an in-depth study of patterns of expression of these pathogen genes during plant infection and the induction or repression of expression by selected substrates. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-785) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leila M Blackman
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra ACT 0200, Australia.
| | | | | |
Collapse
|
31
|
Koseki T, Mimasaka N, Hashizume K, Shiono Y, Murayama T. Stimulatory Effect of Ferulic Acid on the Production of Extracellular Xylanolytic Enzymes byAspergillus kawachii. Biosci Biotechnol Biochem 2014; 71:1785-7. [PMID: 17617704 DOI: 10.1271/bbb.70101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Production of extracellular beta-1,4-xylanase, alpha-L-arabinofuranosidase, feruloyl esterase, and acetyl xylan esterase from Aspergillus kawachii was higher in a culture supplemented with ferulic acid than in a counterpart. Culture supernatant grown on oat spelt xylan supplemented with ferulic acid exhibited an increase in ferulic acid-releasing activity from insoluble arabinoxylan relative as compared to that from the ferulic acid-free culture.
Collapse
Affiliation(s)
- Takuya Koseki
- Department of Bioresource Engineering, Faculty of Agriculture, Yamagata University., Tsuruoka, Japan.
| | | | | | | | | |
Collapse
|
32
|
Dietary supplementation with rice bran fermented with Lentinus edodes increases interferon-γ activity without causing adverse effects: a randomized, double-blind, placebo-controlled, parallel-group study. Nutr J 2014; 13:35. [PMID: 24755139 PMCID: PMC4008373 DOI: 10.1186/1475-2891-13-35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/14/2014] [Indexed: 11/13/2022] Open
Abstract
Background The purpose of this study was to investigate the hypothesis that dietary supplementation with rice bran fermented with Lentinus edodes (rice bran exo-biopolymer, RBEP), a substance known to contain arabinoxylan, enhances natural killer (NK) cell activity and modulates cytokine production in healthy adults. Methods This study was designed in a randomized, double-blind, placebo-controlled, and parallel-group format. Eighty healthy participants with white blood cell counts of 4,000-8,000 cells/μL were randomly assigned to take six capsules per day of either 3 g RBEP or 3 g placebo for 8 weeks. Three participants in the placebo group were excluded after initiation of the protocol; no severe adverse effects from RBEP supplementation were reported. NK cell activity of peripheral blood mononuclear cells was measured using nonradioactive cytotoxicity assay kits and serum cytokine concentrations included interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-4, IL-10, and IL-12 were measured by Bio-Plex cytokine assay kit. This study was registered with the Clinical Research Information Service (KCT0000536). Results Supplementation of RBEP significantly increased IFN-γ production compared with the placebo group (P = 0.012). However, RBEP supplementation did not affect either NK cell activity or cytokine levels, including IL-2, IL-4, IL-10, IL-12, and TNF-α, compared with the placebo group. Conclusions The data obtained in this study indicate that RBEP supplementation increases IFN-γ secretion without causing significant adverse effects, and thus may be beneficial to healthy individuals. This new rice bran-derived product may therefore be potentially useful to include in the formulation of solid and liquid foods designed for treatment and prevention of pathological states associated with defective immune responses.
Collapse
|
33
|
Badhan A, Jin L, Wang Y, Han S, Kowalczys K, Brown DCW, Ayala CJ, Latoszek-Green M, Miki B, Tsang A, McAllister T. Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:39. [PMID: 24650274 PMCID: PMC3999942 DOI: 10.1186/1754-6834-7-39] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/21/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Alfalfa (Medicago sativa) is an important forage crop in North America owing to its high biomass production, perennial nature and ability to fix nitrogen. Feruloyl esterase (EC 3.1.1.73) hydrolyzes ester linkages in plant cell walls and has the potential to further improve alfalfa as biomass for biofuel production. RESULTS In this study, faeB [GenBank:AJ309807] was synthesized at GenScript and sub-cloned into a novel pEACH vector containing different signaling peptides to target type B ferulic acid esterase (FAEB) proteins to the apoplast, chloroplast, endoplasmic reticulum and vacuole. Four constructs harboring faeB were transiently expressed in Nicotiana leaves, with FAEB accumulating at high levels in all target sites, except chloroplast. Stable transformed lines of alfalfa were subsequently obtained using Agrobacterium tumefaciens (LBA4404). Out of 136 transgenic plants regenerated, 18 independent lines exhibited FAEB activity. Subsequent in vitro digestibility and Fourier transformed infrared spectroscopy (FTIR) analysis of FAEB-expressing lines showed that they possessed modified cell wall morphology and composition with a reduction in ester linkages and elevated lignin content. Consequently, they were more recalcitrant to digestion by mixed ruminal microorganisms. Interestingly, delignification by alkaline peroxide treatment followed by exposure to a commercial cellulase mixture resulted in higher glucose release from transgenic lines as compared to the control line. CONCLUSION Modifying cell wall crosslinking has the potential to lower recalcitrance of holocellulose, but also exhibited unintended consequences on alfalfa cell wall digestibility due to elevated lignin content. The combination of efficient delignification treatment (alkaline peroxide) and transgenic esterase activity complement each other towards efficient and effective digestion of transgenic lines.
Collapse
Affiliation(s)
- Ajay Badhan
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Long Jin
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| | - Shuyou Han
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V 4T3, Canada
| | - Katarzyna Kowalczys
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Daniel CW Brown
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V 4T3, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Carlos Juarez Ayala
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V 4T3, Canada
| | - Marysia Latoszek-Green
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V 4T3, Canada
| | - Brian Miki
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON N5V 4T3, Canada
| | - Adrian Tsang
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Tim McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Avenue South, Lethbridge, AB T1J 4B1, Canada
| |
Collapse
|
34
|
|
35
|
Biely P, Westereng B, Puchart V, de Maayer P, A. Cowan D. Recent Progress in Understanding the Mode of Action of Acetylxylan Esterases. J Appl Glycosci (1999) 2014. [DOI: 10.5458/jag.jag.jag-2013_018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
36
|
Ravanal MC, Alegría-Arcos M, Gonzalez-Nilo FD, Eyzaguirre J. Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference. Arch Biochem Biophys 2013; 540:117-24. [DOI: 10.1016/j.abb.2013.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/08/2013] [Accepted: 10/21/2013] [Indexed: 11/24/2022]
|
37
|
Yao J, Chen QL, Shen AX, Cao W, Liu YH. A novel feruloyl esterase from a soil metagenomic library with tannase activity. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcatb.2013.05.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
A feruloyl esterase (FAE) characterized by relatively high thermostability from the edible mushroom Russula virescens. Appl Biochem Biotechnol 2013; 172:993-1003. [PMID: 24142352 DOI: 10.1007/s12010-013-0536-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
Abstract
A monomeric feruloyl esterase (FAE) with a molecular mass of 62 kDa was acquired from fresh fruiting bodies of the edible mushroom Russula virescens. The isolation procedure involved ion exchange chromatography on CM-cellulose, Q-Sepharose, and SP-Sepharose and finally fast protein liquid chromatography-gel filtration on Superdex 75. Two amino acid sequences were obtained after tryptic digestion, and they both showed some homology with the esterase of some fungi. Maximal activity was observed at pH 5.0 and at 50 °C. The enzyme displayed relatively high thermostability as evidenced by over 70 % residual activity at 70 °C and about 34 % residual activity at 80 °C. The K m and V max for this enzyme on methyl ferulate were 0.19 mM and 1.65 U/mg proteins, respectively. The purified FAE prefers methyl ferulate over methyl caffeate and is least active on methyl p-coumarate. The FAE activity was not significantly affected by the presence of cations such as Mn(2+), Ca(2+), Cd(2+), Zn(2+), Mg(2+), Cu(2+), and K(+) ions but inhibited by Al(3+), Hg(2+), Fe(2+), and Pb(2+) ions at a tested concentration of 2. 5 mM.
Collapse
|
39
|
Andersson KM, Meerupati T, Levander F, Friman E, Ahrén D, Tunlid A. Proteome of the nematode-trapping cells of the fungus Monacrosporium haptotylum. Appl Environ Microbiol 2013; 79:4993-5004. [PMID: 23770896 PMCID: PMC3754708 DOI: 10.1128/aem.01390-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/07/2013] [Indexed: 01/08/2023] Open
Abstract
Many nematophagous fungi use morphological structures called traps to capture nematodes by adhesion or mechanically. To better understand the cellular functions of adhesive traps, the trap cell proteome of the fungus Monacrosporium haptotylum was characterized. The trap of M. haptotylum consists of a unicellular structure called a knob that develops at the apex of a hypha. Proteins extracted from knobs and mycelia were analyzed using SDS-PAGE and liquid chromatography-tandem mass spectrometry (LC-MS-MS). The peptide sequences were matched against predicted gene models from the recently sequenced M. haptotylum genome. In total, 336 proteins were identified, with 54 expressed at significantly higher levels in the knobs than in the mycelia. The upregulated knob proteins included peptidases, small secreted proteins with unknown functions, and putative cell surface adhesins containing carbohydrate-binding domains, including the WSC domain. Phylogenetic analysis showed that all upregulated WSC domain proteins belonged to a large, expanded cluster of paralogs in M. haptotylum. Several peptidases and homologs of experimentally verified proteins in other pathogenic fungi were also upregulated in the knob proteome. Complementary profiling of gene expression at the transcriptome level showed poor correlation between the upregulation of knob proteins and their corresponding transcripts. We propose that the traps of M. haptotylum contain many of the proteins needed in the early stages of infection and that the trap cells can tightly control the translation and degradation of these proteins to minimize the cost of protein synthesis.
Collapse
Affiliation(s)
| | | | - Fredrik Levander
- Bioinformatics Infrastructure for Life Sciences, Department of Immunotechnology, Lund University, Lund, Sweden
| | - Eva Friman
- Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
| | - Dag Ahrén
- Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
- Bioinformatics Infrastructure for Life Sciences, Department of Biology, Lund University, Lund, Sweden
| | - Anders Tunlid
- Microbial Ecology, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Zamzuri NA, Abd-Aziz S. Biovanillin from agro wastes as an alternative food flavour. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:429-438. [DOI: 10.1002/jsfa.5962] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Nur Ain Zamzuri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia; 43400 Serdang Selangor Malaysia
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia; 43400 Serdang Selangor Malaysia
| |
Collapse
|
41
|
Chen SK, Wang K, Liu Y, Hu X. Crystallization and preliminary X-ray analysis of a novel halotolerant feruloyl esterase identified from a soil metagenomic library. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:767-70. [PMID: 22750860 PMCID: PMC3388917 DOI: 10.1107/s1744309112017812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/21/2012] [Indexed: 11/10/2022]
Abstract
Feruloyl esterase cleaves the ester linkage formed between ferulic acid and polysaccharides in plant cell walls and thus has wide potential industrial applications. A novel feruloyl esterase (EstF27) identified from a soil metagenomic library was crystallized and a complete data set was collected from a single cooled crystal using an in-house X-ray source. The crystal diffracted to 2.9 Å resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 94.35, b = 106.19, c = 188.51 Å, α = β = γ = 90.00°. A Matthews coefficient of 2.55 Å(3) Da(-1), with a corresponding solvent content of 51.84%, suggested the presence of ten protein subunits in the asymmetric unit.
Collapse
Affiliation(s)
- Shang-ke Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, Guangdong 510006, People’s Republic of China
| | - Kui Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, People’s Republic of China
| | - Yuhuan Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, People’s Republic of China
| | - Xiaopeng Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou, Guangdong 510006, People’s Republic of China
| |
Collapse
|
42
|
Biely P. Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 2012; 30:1575-88. [PMID: 22580218 DOI: 10.1016/j.biotechadv.2012.04.010] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 04/19/2012] [Accepted: 04/30/2012] [Indexed: 11/29/2022]
Abstract
Several plant polysaccharides are partially esterified with acetic acid. One of the roles of this modification is protection of plant cell walls against invading microorganisms. Acetylation of glycosyl residues of polysaccharides prevents hydrolysis of their glycosidic linkages by the corresponding glycoside hydrolases. In this way the acetylation also represents an obstacle of enzymatic saccharification of plant hemicelluloses to fermentable sugars which appears to be a hot topic of current research. We can eliminate this obstacle by alkaline extraction or pretreatment leading to saponification of ester linkages. However, this task has been accomplished in a different way in the nature. The acetyl groups became targets of microbial carbohydrate esterases that evolved to overcome the complexity of the plant cell walls and that cooperate with glycoside hydrolases in plant polysaccharide degradation. This article concentrates on enzymes deacetylating plant hemicelluloses excluding pectin. They are currently grouped in at least 8 families, specifically in CE families 1-7 and 16, originally assigned as acetylxylan esterases, the enzymes acting on hardwood acetyl glucuronoxylan and its fragments generated by endo-β-1,4-xylanases. There are esterases deacetylating softwood galactoglucomannan, but they have not been classified yet. The enzymes present in CE families 1-7 differ in structure and substrate and positional specificity. There are families behaving as endo-type and exo-type deacetylates, i.e. esterases deacetylating internal sugar residues of partially acetylated polysaccharides and also esterases deacetylating non-reducing end sugar residues in oligosaccharides. With one exception, the enzymes of all mentioned CE families belong to serine type esterases. CE family 4 harbors enzymes that are metal-dependent aspartic esterases. Three-dimensional structures have been solved for members of the first seven CE families, however, there is still insufficient knowledge about their substrate specificity and real physiological role. Current knowledge on catalytic properties of the selected families of CEs is summarized in this review. Some of the families are emerging also as new biocatalysts for regioselective acylation and deacylation of carbohydrates.
Collapse
Affiliation(s)
- Peter Biely
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
43
|
Expression and biochemical characterization of two novel feruloyl esterases derived from fecal samples of Rusa unicolor and Equus burchelli. Gene 2012; 500:134-9. [DOI: 10.1016/j.gene.2012.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/21/2012] [Accepted: 03/05/2012] [Indexed: 11/19/2022]
|
44
|
The wood rot ascomycete Xylaria polymorpha produces a novel GH78 glycoside hydrolase that exhibits α-L-rhamnosidase and feruloyl esterase activities and releases hydroxycinnamic acids from lignocelluloses. Appl Environ Microbiol 2012; 78:4893-901. [PMID: 22544251 DOI: 10.1128/aem.07588-11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soft rot (type II) fungi belonging to the family Xylariaceae are known to substantially degrade hardwood by means of their poorly understood lignocellulolytic system, which comprises various hydrolases, including feruloyl esterases and laccase. In the present study, several members of the Xylariaceae were found to exhibit high feruloyl esterase activity during growth on lignocellulosic materials such as wheat straw (up to 1,675 mU g(-1)) or beech wood (up to 80 mU g(-1)). Following the ester-cleaving activity toward methyl ferulate, a hydrolase of Xylaria polymorpha was produced in solid-state culture on wheat straw and purified by different steps of anion-exchange and size-exclusion chromatography to apparent homogeneity (specific activity, 2.2 U mg(-1)). The peptide sequence of the purified protein deduced from the gene sequence and verified by de novo peptide sequencing shows high similarity to putative α-L-rhamnosidase sequences belonging to the glycoside hydrolase family 78 (GH78; classified under EC 3.2.1.40). The purified enzyme (98 kDa by SDS-PAGE, 103 kDa by size-exclusion chromatography; pI 3.7) converted diverse glycosides (e.g., α-L-rhamnopyranoside and α-L-arabinofuranoside) but also natural and synthetic esters (e.g., chlorogenic acid, hydroxycinnamic acid glycoside esters, veratric acid esters, or p-nitrophenyl acetate) and released free hydroxycinnamic acids (ferulic and coumaric acid) from arabinoxylan and milled wheat straw. These catalytic properties strongly suggest that X. polymorpha GH78 is a multifunctional enzyme. It is the first fungal enzyme that combines glycosyl hydrolase with esterase activities and may help this soft rot fungus to degrade lignocelluloses.
Collapse
|
45
|
Balcerzak M, Harris LJ, Subramaniam R, Ouellet T. The feruloyl esterase gene family of Fusarium graminearum is differentially regulated by aromatic compounds and hosts. Fungal Biol 2012; 116:478-88. [DOI: 10.1016/j.funbio.2012.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/10/2012] [Accepted: 01/21/2012] [Indexed: 11/25/2022]
|
46
|
Levisson M, Han GW, Deller MC, Xu Q, Biely P, Hendriks S, Ten Eyck LF, Flensburg C, Roversi P, Miller MD, McMullan D, von Delft F, Kreusch A, Deacon AM, van der Oost J, Lesley SA, Elsliger MA, Kengen SWM, Wilson IA. Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima. Proteins 2012; 80:1545-59. [PMID: 22411095 DOI: 10.1002/prot.24041] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/10/2012] [Accepted: 01/18/2012] [Indexed: 11/06/2022]
Abstract
TM0077 from Thermotoga maritima is a member of the carbohydrate esterase family 7 and is active on a variety of acetylated compounds, including cephalosporin C. TM0077 esterase activity is confined to short-chain acyl esters (C2-C3), and is optimal around 100°C and pH 7.5. The positional specificity of TM0077 was investigated using 4-nitrophenyl-β-D-xylopyranoside monoacetates as substrates in a β-xylosidase-coupled assay. TM0077 hydrolyzes acetate at positions 2, 3, and 4 with equal efficiency. No activity was detected on xylan or acetylated xylan, which implies that TM0077 is an acetyl esterase and not an acetyl xylan esterase as currently annotated. Selenomethionine-substituted and native structures of TM0077 were determined at 2.1 and 2.5 Å resolution, respectively, revealing a classic α/β-hydrolase fold. TM0077 assembles into a doughnut-shaped hexamer with small tunnels on either side leading to an inner cavity, which contains the six catalytic centers. Structures of TM0077 with covalently bound phenylmethylsulfonyl fluoride and paraoxon were determined to 2.4 and 2.1 Å, respectively, and confirmed that both inhibitors bind covalently to the catalytic serine (Ser188). Upon binding of inhibitor, the catalytic serine adopts an altered conformation, as observed in other esterase and lipases, and supports a previously proposed catalytic mechanism in which Ser hydroxyl rotation prevents reversal of the reaction and allows access of a water molecule for completion of the reaction.
Collapse
Affiliation(s)
- Mark Levisson
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yang H, Yue Q. The modification of glucose levels and N source in the Hungate's medium to stimulate the production of fibrolytic enzymes of Anaeromyces sp. YQ3 grown on corn stalks. Anim Feed Sci Technol 2012. [DOI: 10.1016/j.anifeedsci.2011.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Farrell TL, Dew TP, Poquet L, Hanson P, Williamson G. Absorption and Metabolism of Chlorogenic Acids in Cultured Gastric Epithelial Monolayers. Drug Metab Dispos 2011; 39:2338-46. [DOI: 10.1124/dmd.111.040147] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
49
|
Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 2011; 28:1883-96. [PMID: 21918777 DOI: 10.1039/c1np00042j] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lignin is a heterogeneous aromatic polymer found as 10-35% of lignocellulose, found in plant cell walls. The bio-conversion of plant lignocellulose to glucose is an important part of second generation biofuel production, but the resistance of lignin to breakdown is a major obstacle in this process, hence there is considerable interest in the microbial breakdown of lignin. White-rot fungi are known to break down lignin with the aid of extracellular peroxidase and laccase enzymes. There are also reports of bacteria that can degrade lignin, and recent work indicates that bacterial lignin breakdown may be more significant than previously thought. The review will discuss the enzymes for lignin breakdown in fungi and bacteria, and the catabolic pathways for breakdown of the β-aryl ether, biphenyl and other components of lignin in bacteria and fungi. The review will also discuss small molecule phenolic breakdown products from lignin that have been identified from lignin-degrading microbes, and includes a bioinformatic analysis of the occurrence of known lignin-degradation pathways in Gram-positive and Gram-negative bacteria.
Collapse
|
50
|
Li J, Cai S, Luo Y, Dong X. Three feruloyl esterases in Cellulosilyticum ruminicola H1 act synergistically to hydrolyze esterified polysaccharides. Appl Environ Microbiol 2011; 77:6141-7. [PMID: 21764976 PMCID: PMC3165382 DOI: 10.1128/aem.00657-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 07/01/2011] [Indexed: 11/20/2022] Open
Abstract
Feruloyl esterases (Faes) constitute a subclass of carboxyl esterases that specifically hydrolyze the ester linkages between ferulate and polysaccharides in plant cell walls. Until now, the described microbial Faes were mainly from fungi. In this study, we report that Cellulosilyticum ruminicola H1, a previously described fibrolytic rumen bacterium, possesses three different active feruloyl esterases, FaeI, FaeII, and FaeIII. Phylogenetic analysis classified the described bacterial Faes into two types, FaeI and FaeII in type I and FaeIII in type II. Substrate specificity assays indicated that FaeI is more active against the ester bonds in natural hemicelluloses and FaeIII preferentially attacks the ferulate esters with a small moiety, such as methyl groups, while FaeII is active on both types of substrates. Among the three feruloyl esterase genes, faeI was the only one induced significantly by xylose and xylan, while pectin appeared to moderately induce the three genes during the late log phase to stationary phase. Western blot analysis determined that FaeI and FaeIII were secreted and cytoplasmic proteins, respectively, whereas FaeII seemed to be cell associated. The addition of FaeI and FaeII but not FaeIII enhanced the activity of a xylanase on maize cob, suggesting a synergy of the former two with xylanase. Hence, we propose that the three feruloyl esterases work in concert to hydrolyze ferulate esters in natural hemicelluloses.
Collapse
Affiliation(s)
- Jiabao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Shichun Cai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yuanming Luo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiuzhu Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|