1
|
Mechanistic Insight into Royal Protein Inhibiting the Gram-Positive Bacteria. Biomolecules 2021; 11:biom11010064. [PMID: 33418906 PMCID: PMC7825125 DOI: 10.3390/biom11010064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 12/28/2022] Open
Abstract
Royal jelly (RJ), a natural honeybee product, has a wide range of antibacterial activities. N-glycosylated major royal jelly protein 2 (N-MRJP2), purified from RJ, can inhibit the growth of Paenibacillus larvae (P. larvae, Gram-positive), a contagious etiological agent of the American foulbrood disease of honeybees. However, the inhibitory mechanism is largely unknown. Antibacterial assay and membrane proteome were conducted to investigate the inhibition capacity of RJ from different instar larvae and P. larvae treated by N-MRJP2, respectively. The similar antibacterial efficiency of RJ from different larval instar indicates that RJ is vital for the adaptive immune defense of small larvae. The killing of P. larvae by N-MRJP2 is achieved by disturbing the cell wall biosynthesis, increasing the permeability of cell membrane, hindering aerobic respiration, restraining cell division and inducing cell death. This demonstrates that RJ is critical for the passive immunity of immature larvae and N-MRJP2 can be used as natural antibiotic substance to resist P. larvae, even for other gram-positive bacteria. This constitutes solid evidence that RJ and N-MRJP2 have potentials as novel antibacterial agents.
Collapse
|
2
|
Morrison MD, Fajardo-Cavazos P, Nicholson WL. Comparison of Bacillus subtilis transcriptome profiles from two separate missions to the International Space Station. NPJ Microgravity 2019; 5:1. [PMID: 30623021 PMCID: PMC6323116 DOI: 10.1038/s41526-018-0061-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022] Open
Abstract
The human spaceflight environment is notable for the unique factor of microgravity, which exerts numerous physiologic effects on macroscopic organisms, but how this environment may affect single-celled microbes is less clear. In an effort to understand how the microbial transcriptome responds to the unique environment of spaceflight, the model Gram-positive bacterium Bacillus subtilis was flown on two separate missions to the International Space Station in experiments dubbed BRIC-21 and BRIC-23. Cells were grown to late-exponential/early stationary phase, frozen, then returned to Earth for RNA-seq analysis in parallel with matched ground control samples. A total of 91 genes were significantly differentially expressed in both experiments; 55 exhibiting higher transcript levels in flight samples and 36 showing higher transcript levels in ground control samples. Genes upregulated in flight samples notably included those involved in biofilm formation, biotin and arginine biosynthesis, siderophores, manganese transport, toxin production and resistance, and sporulation inhibition. Genes preferentially upregulated in ground control samples notably included those responding to oxygen limitation, e.g., fermentation, anaerobic respiration, subtilosin biosynthesis, and anaerobic regulatory genes. The results indicated differences in oxygen availability between flight and ground control samples, likely due to differences in cell sedimentation and the toroidal shape assumed by the liquid cultures in microgravity.
Collapse
Affiliation(s)
- Michael D. Morrison
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL USA
| | | | - Wayne L. Nicholson
- Department of Microbiology and Cell Science, University of Florida, Merritt Island, FL USA
| |
Collapse
|
3
|
Hassanov T, Karunker I, Steinberg N, Erez A, Kolodkin-Gal I. Novel antibiofilm chemotherapies target nitrogen from glutamate and glutamine. Sci Rep 2018; 8:7097. [PMID: 29740028 PMCID: PMC5940852 DOI: 10.1038/s41598-018-25401-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/19/2018] [Indexed: 01/06/2023] Open
Abstract
Bacteria in nature often reside in differentiated communities termed biofilms, which are an active interphase between uni-cellular and multicellular life states for bacteria. Here we demonstrate that the development of B. subtilis biofilms is dependent on the use of glutamine or glutamate as a nitrogen source. We show a differential metabolic requirement within the biofilm; while glutamine is necessary for the dividing cells at the edges, the inner cell mass utilizes lactic acid. Our results indicate that biofilm cells preserve a short-term memory of glutamate metabolism. Finally, we establish that drugs that target glutamine and glutamate utilization restrict biofilm development. Overall, our work reveals a spatial regulation of nitrogen and carbon metabolism within the biofilm, which contributes to the fitness of bacterial complex communities. This acquired metabolic division of labor within biofilm can serve as a target for novel anti-biofilm chemotherapies
Collapse
Affiliation(s)
- Tal Hassanov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Iris Karunker
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nitai Steinberg
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Abstract
Bacteria in nature reside in organized communities, termed biofilms, which are composed of multiple individual cells adhering to each other. Similarly, tumors are a multicellular mass with distinct cellular phenotypes. Both tumors and biofilms are considered to be an active interphase between unicellular and multicellular life states. Because both of these units depend on glutamine for growth and survival, we review here glutamine flux within them as a readout for intra- and inter-commensal metabolism. We suggest that the difference between glutamine fluxes in these cellular communities lies mainly in their global multicellular metabolic organization. Both the differences and similarities described here should be taken into account when considering glutamine-targeting therapeutic approaches.
Collapse
Affiliation(s)
- Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
5
|
Potential synergistic effects of a mixture of mineral trioxide aggregate (MTA) cement and Bacillus subtilis in dental caries treatment. Odontology 2017; 106:46-55. [PMID: 28342006 DOI: 10.1007/s10266-017-0305-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/13/2017] [Indexed: 11/26/2022]
Abstract
Bacillus subtilis is nonpathogenic in humans and produces a number of useful substances and, therefore, this bacterium is used in probiotic therapy. There have been trials of B. subtilis for patients with periodontitis, but not for patients with caries. Similarly, mineral trioxide aggregate (MTA) cement has been widely used for endodontic treatment, but there are few reports of its use for caries. Therefore, examinations were performed regarding the benefits of addition of B. subtilis to MTA cement for treatment of dental caries. Indirect pulp capping with a mixture of MTA cement and B. subtilis spore powder is effective for avoiding pulpectomy or tooth extraction in such cases (personal communication). This study was planned to examine the scientific basis of this clinical finding, with examination of possible synergistic effects of MTA cement and B. subtilis. From these experiments, the following five results were obtained: (1) B. subtilis did not proliferate in liquid-culture media at pH ≥10. (2) B. subtilis proliferated when mixed with MTA cement. (3) There was no significant difference in proliferation of B. subtilis under aerobic and microaerobic conditions. (4) B. subtilis exhibited antibacterial effects on Staphylococcus aureus and Lactobacillus casei. (5) MTA cement exhibited antibacterial effects on S. aureus and Streptococcus mutans, but not on B. subtilis. These results support the hypothesis that a combination of B subtilis and MTA cement is likely to be clinically useful for treatment of dental caries.
Collapse
|
6
|
Agrawal C, Sen S, Yadav S, Rai S, Rai LC. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli. PLoS One 2015; 10:e0137744. [PMID: 26372161 PMCID: PMC4570671 DOI: 10.1371/journal.pone.0137744] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/21/2015] [Indexed: 12/12/2022] Open
Abstract
Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as— (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis.
Collapse
Affiliation(s)
- Chhavi Agrawal
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Sonia Sen
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Shivam Yadav
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Shweta Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
| | - Lal Chand Rai
- Molecular Biology Section, Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi-221005, India
- * E-mail:
| |
Collapse
|
7
|
Reddy PJ, Ray S, Sathe GJ, Prasad TSK, Rapole S, Panda D, Srivastava S. Proteomics analyses of Bacillus subtilis after treatment with plumbagin, a plant-derived naphthoquinone. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:12-23. [PMID: 25562197 DOI: 10.1089/omi.2014.0099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infectious diseases and increasing antibiotic resistance among diverse classes of microbes are global health concerns and a prime focus of omics systems science applications in novel drug discovery. Plumbagin is a plant-derived naphthoquinone, a natural product that exhibits antibacterial activity against gram-positive bacteria. In the present study, we investigated the antimicrobial effects of plumbagin against Bacillus subtilis using two complementary proteomics techniques: two-dimensional electrophoresis (2-DE) and isobaric tag for relative and absolute quantification (iTRAQ). Comparative quantitative proteomics analysis of plumbagin treated and untreated control samples identified differential expression of 230 proteins (1% FDR, 1.5 fold-change and ≥2 peptides) in B. subtilis after plumbagin treatment. Pathway analysis involving the differentially expressed proteins suggested that plumbagin effectively increases heme and protein biosynthesis, whereas fatty acid synthesis was significantly reduced. Gene expression and metabolic activity assays further corroborated the proteomics findings. We anticipate that plumbagin blocks the cell division by altering the membrane permeability required for energy generation. This is the first report, to the best of our knowledge, offering new insights, at proteome level, for the putative mode(s) of action of plumbagin and attendant cellular targets in B. subtilis. The findings also suggest new ways forward for the modern omics-guided drug target discovery, building on traditional plant medicine.
Collapse
Affiliation(s)
- Panga Jaipal Reddy
- 1 Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay , Powai, Mumbai, India
| | | | | | | | | | | | | |
Collapse
|
8
|
Baumann P, Hahn T, Hubbuch J. High-throughput micro-scale cultivations and chromatography modeling: Powerful tools for integrated process development. Biotechnol Bioeng 2015; 112:2123-33. [PMID: 25988478 DOI: 10.1002/bit.25630] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/28/2015] [Indexed: 11/08/2022]
Abstract
Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance.
Collapse
Affiliation(s)
- Pascal Baumann
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tobias Hahn
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Jürgen Hubbuch
- Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Science, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
9
|
A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics. J Proteomics 2015; 114:247-62. [DOI: 10.1016/j.jprot.2014.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/28/2014] [Accepted: 10/20/2014] [Indexed: 12/25/2022]
|
10
|
Mania D, Heylen K, van Spanning RJM, Frostegård Å. The nitrate-ammonifying andnosZ-carrying bacteriumBacillus viretiis a potent source and sink for nitric and nitrous oxide under high nitrate conditions. Environ Microbiol 2014; 16:3196-210. [DOI: 10.1111/1462-2920.12478] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/13/2014] [Accepted: 03/24/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Daniel Mania
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Science; Ås Norway
| | - Kim Heylen
- Laboratory of Microbiology; Department of Biochemistry and Microbiology; University of Ghent; Gent Belgium
| | - Rob J. M. van Spanning
- Department of Molecular Cell Biology; Faculty of Earth and Life Science; VU University; Amsterdam The Netherlands
| | - Åsa Frostegård
- Department of Chemistry, Biotechnology and Food Science; Norwegian University of Life Science; Ås Norway
| |
Collapse
|
11
|
Mayfield JA, Hammer ND, Kurker RC, Chen TK, Ojha S, Skaar EP, DuBois JL. The chlorite dismutase (HemQ) from Staphylococcus aureus has a redox-sensitive heme and is associated with the small colony variant phenotype. J Biol Chem 2013; 288:23488-504. [PMID: 23737523 PMCID: PMC5395028 DOI: 10.1074/jbc.m112.442335] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 05/23/2013] [Indexed: 01/17/2023] Open
Abstract
The chlorite dismutases (C-family proteins) are a widespread family of heme-binding proteins for which chemical and biological roles remain unclear. An association of the gene with heme biosynthesis in Gram-positive bacteria was previously demonstrated by experiments involving introduction of genes from two Gram-positive species into heme biosynthesis mutant strains of Escherichia coli, leading to the gene being renamed hemQ. To assess the gene product's biological role more directly, a Staphylococcus aureus strain with an inactivated hemQ gene was generated and shown to be a slow growing small colony variant under aerobic but not anaerobic conditions. The small colony variant phenotype is rescued by the addition of exogenous heme despite an otherwise wild type heme biosynthetic pathway. The ΔhemQ mutant accumulates coproporphyrin specifically under aerobic conditions. Although its sequence is highly similar to functional chlorite dismutases, the HemQ protein has no steady state reactivity with chlorite, very modest reactivity with H2O2 or peracetic acid, and no observable transient intermediates. HemQ's equilibrium affinity for heme is in the low micromolar range. Holo-HemQ reconstituted with heme exhibits heme lysis after <50 turnovers with peroxide and <10 turnovers with chlorite. The heme-free apoprotein aggregates or unfolds over time. IsdG-like proteins and antibiotic biosynthesis monooxygenases are close sequence and structural relatives of HemQ that use heme or porphyrin-like organic molecules as substrates. The genetic and biochemical data suggest a similar substrate role for heme or porphyrin, with possible sensor-regulator functions for the protein. HemQ heme could serve as the means by which S. aureus reversibly adopts an SCV phenotype in response to redox stress.
Collapse
Affiliation(s)
- Jeffrey A. Mayfield
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Neal D. Hammer
- the Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Richard C. Kurker
- From the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Thomas K. Chen
- the Division of Biological Sciences, SRI International, Harrisonburg, Virginia 22802, and
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718
| | - Sunil Ojha
- the Division of Biological Sciences, SRI International, Harrisonburg, Virginia 22802, and
| | - Eric P. Skaar
- the Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jennifer L. DuBois
- the Division of Biological Sciences, SRI International, Harrisonburg, Virginia 22802, and
- the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59718
| |
Collapse
|
12
|
Abstract
The Gram-positive soil bacterium Bacillus subtilis encounters changing environmental conditions in its habitat. The access to oxygen determines the mode of energy generation. A complex regulatory network is employed to switch from oxygen respiration to nitrate respiration and various fermentative processes. During adaptation, oxygen depletion is sensed by the [4Fe-4S](2+) cluster containing Fnr and the two-component regulatory system ResDE consisting of the membrane-bound histidine kinase ResE and the cytoplasmic ResD regulator. Nitric oxide is the signal recognized by NsrR. Acetate formation and decreasing pH are measured via AlsR. Finally, Rex is responding to changes in the cellular NAD(+)/NADH ration. The fine-tuned interplay of these regulators at approximately 400 target gene promoters ensures efficient adaptation of the B. subtilis physiology.
Collapse
Affiliation(s)
- Elisabeth Härtig
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
| | | |
Collapse
|
13
|
Screening for Bacillus subtilis group isolates that degrade cyanogens at pH4.5–5.0. Int J Food Microbiol 2013; 161:31-5. [DOI: 10.1016/j.ijfoodmicro.2012.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 10/02/2012] [Accepted: 11/23/2012] [Indexed: 11/24/2022]
|
14
|
Schweder T. Bioprocess monitoring by marker gene analysis. Biotechnol J 2011; 6:926-33. [PMID: 21786424 DOI: 10.1002/biot.201100248] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 11/11/2022]
Abstract
The optimization and the scale up of industrial fermentation processes require an efficient and possibly comprehensive analysis of the physiology of the production system throughout the process development. Furthermore, to ensure a good quality control of established bioprocesses, on-line analysis techniques for the determination of marker gene expression are of interest to monitor the productivity and the safety of bioprocesses. A prerequisite for such analyses is the knowledge of genes, the expression of which is critical either for the productivity or for the performance of the bioprocess. This work reviews marker genes that are specific indicators for stress- and nutrient-limitation conditions or for the physiological status of the bacterial production hosts Bacillus subtilis, Bacillus licheniformis and Escherichia coli. The suitability of existing gene expression analysis techniques for bioprocess monitoring is discussed. Analytical approaches that enable a robust and sensitive determination of selected marker mRNAs or proteins are presented.
Collapse
Affiliation(s)
- Thomas Schweder
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany.
| |
Collapse
|
15
|
Goblirsch B, Kurker RC, Streit BR, Wilmot CM, DuBois JL. Chlorite dismutases, DyPs, and EfeB: 3 microbial heme enzyme families comprise the CDE structural superfamily. J Mol Biol 2011; 408:379-98. [PMID: 21354424 PMCID: PMC3075325 DOI: 10.1016/j.jmb.2011.02.047] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/15/2011] [Accepted: 02/16/2011] [Indexed: 11/28/2022]
Abstract
Heme proteins are extremely diverse, widespread, and versatile biocatalysts, sensors, and molecular transporters. The chlorite dismutase family of hemoproteins received its name due to the ability of the first-isolated members to detoxify anthropogenic ClO(2)(-), a function believed to have evolved only in the last few decades. Family members have since been found in 15 bacterial and archaeal genera, suggesting ancient roots. A structure- and sequence-based examination of the family is presented, in which key sequence and structural motifs are identified, and possible functions for family proteins are proposed. Newly identified structural homologies moreover demonstrate clear connections to two other large, ancient, and functionally mysterious protein families. We propose calling them collectively the CDE superfamily of heme proteins.
Collapse
Affiliation(s)
- Brandon Goblirsch
- Department of Biochemistry, Molecular Biology and Biophysics, 6-155 Jackson Hall, 321 Church St. SE, University of Minnesota, Minnesota 55455, USA
| | - Richard C. Kurker
- Department of Chemistry and Biochemistry, 251 Nieuwland Hall, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Bennett R. Streit
- Department of Chemistry and Biochemistry, 251 Nieuwland Hall, University of Notre Dame, Notre Dame, Indiana 46556 USA
| | - Carrie M. Wilmot
- Department of Biochemistry, Molecular Biology and Biophysics, 6-155 Jackson Hall, 321 Church St. SE, University of Minnesota, Minnesota 55455, USA
| | - Jennifer L. DuBois
- Department of Chemistry and Biochemistry, 251 Nieuwland Hall, University of Notre Dame, Notre Dame, Indiana 46556 USA
| |
Collapse
|
16
|
Red light activates the sigmaB-mediated general stress response of Bacillus subtilis via the energy branch of the upstream signaling cascade. J Bacteriol 2009; 192:755-62. [PMID: 19948797 DOI: 10.1128/jb.00826-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The sigma(B)-dependent general stress response in the common soil bacterium Bacillus subtilis can be elicited by a range of stress factors, such as starvation or an ethanol, salt, or heat shock, via a complex upstream signaling cascade. Additionally, sigma(B) can be activated by blue light via the phototropin homologue YtvA, a component of the environmental branch of the signaling cascade. Here we use a reporter-gene fusion to show that sigma(B) can also be activated by red light via the energy branch of its upstream signaling cascade. Deletion mutagenesis and homologous overproduction experiments indicate that the RsbP protein (composed of an N-terminal Per-ARNT-Sim [PAS] domain and a C-terminal PP2C-type phosphatase domain) is involved in the red light response. This second light input pathway functions complementarily to YtvA; it shows broader spectral sensitivity but requires higher light intensities. These results are confirmed by transcriptome analyses, which show that both light effects result in upregulation of the sigma(B) regulon, with minimal activation of other responses.
Collapse
|
17
|
Encheva V, Shah HN, Gharbia SE. Proteomic analysis of the adaptive response of Salmonella enterica serovar Typhimurium to growth under anaerobic conditions. MICROBIOLOGY-SGM 2009; 155:2429-2441. [PMID: 19389776 DOI: 10.1099/mic.0.026138-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to survive in the host and initiate infection, Salmonella enterica needs to undergo a transition between aerobic and anaerobic growth by modulating its central metabolic pathways. In this study, a comparative analysis of the proteome of S. enterica serovar Typhimurium grown in the presence or absence of oxygen was performed. The most prominent changes in expression were measured in a semiquantitative manner using difference in-gel electrophoresis (DIGE) to reveal the main protein factors involved in the adaptive response to anaerobiosis. A total of 38 proteins were found to be induced anaerobically, while 42 were repressed. The proteins of interest were in-gel digested with trypsin and identified by MALDI TOF mass spectrometry using peptide mass fingerprinting. In the absence of oxygen, many fermentative enzymes catalysing reactions in the mixed-acid or arginine fermentations were overexpressed. In addition, the enzyme fumarate reductase, which is known to provide an alternative electron acceptor for the respiratory chains in the absence of oxygen, was shown to be induced. Increases in expression of several glycolytic and pentose phosphate pathway enzymes, as well as two malic enzymes, were detected, suggesting important roles for these in anaerobic metabolism. Substantial decreases in expression were observed for a large number of periplasmic transport proteins. The majority of these are involved in the uptake of amino acids and peptides, but permeases transporting iron, thiosulphate, glucose/galactose, glycerol 3-phosphate and dicarboxylic acids were also repressed. Decreases in expression were also observed for a superoxide dismutase, ATP synthase, inositol monophosphatase, and several chaperone and hypothetical proteins. The changes were monitored in two different isolates, and despite their very similar expression patterns, some variability in the adaptive response to anaerobiosis was also observed.
Collapse
Affiliation(s)
- Vesela Encheva
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, London, UK
| | - Haroun N Shah
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, London, UK
| | - Saheer E Gharbia
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, London, UK
| |
Collapse
|
18
|
Nitric oxide stress induces different responses but mediates comparable protein thiol protection in Bacillus subtilis and Staphylococcus aureus. J Bacteriol 2008; 190:4997-5008. [PMID: 18487332 DOI: 10.1128/jb.01846-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The nonpathogenic Bacillus subtilis and the pathogen Staphylococcus aureus are gram-positive model organisms that have to cope with the radical nitric oxide (NO) generated by nitrite reductases of denitrifying bacteria and by the inducible NO synthases of immune cells of the host, respectively. The response of both microorganisms to NO was analyzed by using a two-dimensional gel approach. Metabolic labeling of the proteins revealed major changes in the synthesis pattern of cytosolic proteins after the addition of the NO donor MAHMA NONOate. Whereas B. subtilis induced several oxidative stress-responsive regulons controlled by Fur, PerR, OhrR, and Spx, as well as the general stress response controlled by the alternative sigma factor SigB, the more resistant S. aureus showed an increased synthesis rate of proteins involved in anaerobic metabolism. These data were confirmed by nuclear magnetic resonance analyses indicating that NO causes a drastically higher increase in the formation of lactate and butanediol in S. aureus than in B. subtilis. Monitoring the intracellular protein thiol state, we observed no increase in reversible or irreversible protein thiol modifications after NO stress in either organism. Obviously, NO itself does not cause general protein thiol oxidations. In contrast, exposure of cells to NO prior to peroxide stress diminished the irreversible thiol oxidation caused by hydrogen peroxide.
Collapse
|
19
|
Hua NP, Kanekiyo A, Fujikura K, Yasuda H, Naganuma T. Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp. nov., moderately halophilic bacteria isolated from a deep-sea methane cold seep. Int J Syst Evol Microbiol 2007; 57:1243-1249. [PMID: 17551037 DOI: 10.1099/ijs.0.64817-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-positive, rod-shaped, moderately halophilic bacteria were isolated from a deep-sea carbonate rock at a methane cold seep in Kuroshima Knoll, Japan. These bacteria, strains IS-Hb4T and IS-Hb7T, were spore-forming and non-motile. They were able to grow at temperatures as low as 9 °C and hydrostatic pressures up to 30 MPa. Based on high sequence similarity of their 16S rRNA genes to those of type strains of the genus Halobacillus, from 96.4 % (strain IS-Hb7T to Halobacillus halophilus NCIMB 9251T) to 99.4 % (strain IS-Hb4T to Halobacillus dabanensis D-8T), the strains were shown to belong to this genus. DNA–DNA relatedness values of 49.5 % and 1.0–33.0 %, respectively, were determined between strains IS-Hb4T and IS-Hb7T and between these strains and other Halobacillus type strains. Both strains showed the major menaquinone MK7 and l-orn–d-Asp cell-wall peptidoglycan type. Straight-chain C16 : 0, unsaturated C16 : 1
ω7c alcohol and C18 : 1
ω7c and cyclopropane C19 : 0 cyc fatty acids were predominant in both strains. The DNA G+C contents of IS-Hb4T and IS-Hb7T were respectively 43.3 and 42.1 mol%. Physiological and biochemical analyses combined with DNA–DNA hybridization results allowed us to place strains IS-Hb4T (=JCM 14154T=DSM 18394T) and IS-Hb7T (=JCM 14155T=DSM 18393T) in the genus Halobacillus as the respective type strains of the novel species Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp. nov.
Collapse
MESH Headings
- Bacillaceae/classification
- Bacillaceae/cytology
- Bacillaceae/isolation & purification
- Bacillaceae/physiology
- Bacterial Typing Techniques
- Base Composition
- Cold Temperature
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Genes, rRNA
- Hydrostatic Pressure
- Japan
- Locomotion
- Microscopy, Phase-Contrast
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Phylogeny
- Quinones/analysis
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Seawater/microbiology
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Spores, Bacterial
Collapse
Affiliation(s)
- Ngoc-Phuc Hua
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Atsuko Kanekiyo
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Katsunori Fujikura
- Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| | - Hisato Yasuda
- Center for Advanced Marine Core Research, Kochi University, Monobe, Nankoku 783-8502, Japan
| | - Takeshi Naganuma
- Graduate School of Biosphere Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
20
|
Fuchs S, Pané-Farré J, Kohler C, Hecker M, Engelmann S. Anaerobic gene expression in Staphylococcus aureus. J Bacteriol 2007; 189:4275-89. [PMID: 17384184 PMCID: PMC1913399 DOI: 10.1128/jb.00081-07] [Citation(s) in RCA: 242] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An investigation of gene expression in Staphylococcus aureus after a switch from aerobic to anaerobic growth was initiated by using the proteomic and transcriptomic approaches. In the absence of external electron acceptors like oxygen or nitrate, an induction of glycolytic enzymes was observed. At the same time the amount of tricarboxylic acid cycle enzymes was very low. NAD is regenerated by mixed acid and butanediol fermentation, as indicated by an elevated synthesis level of fermentation enzymes like lactate dehydrogenases (Ldh1 and Ldh2), alcohol dehydrogenases (AdhE and Adh), alpha-acetolactate decarboxylase (BudA1), acetolactate synthase (BudB), and acetoin reductase (SACOL0111) as well as an accumulation of fermentation products as lactate and acetate. Moreover, the transcription of genes possibly involved in secretion of lactate (SACOL2363) and formate (SACOL0301) was found to be induced. The formation of acetyl-coenzyme A or acetyl-phosphate might be catalyzed by pyruvate formate lyase, whose synthesis was found to be strongly induced as well. Although nitrate was not present, the expression of genes related to nitrate respiration (NarH, NarI, and NarJ) and nitrate reduction (NirD) was found to be upregulated. Of particular interest, oxygen concentration might affect the virulence properties of S. aureus by regulating the expression of some virulence-associated genes such as pls, hly, splC and splD, epiG, and isaB. To date, the mechanism of anaerobic gene expression in S. aureus has not been fully characterized. In addition to srrA the mRNA levels of several other regulatory genes with yet unknown functions (e.g., SACOL0201, SACOL2360, and SACOL2658) were found to be upregulated during anaerobic growth, indicating a role in the regulation of anaerobic gene expression.
Collapse
Affiliation(s)
- Stephan Fuchs
- Institut für Mikrobiologie, Ernst Moritz Arndt Universität, F. L. Jahn Str. 15, D-17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
21
|
Cenci G, Trotta F, Caldini G. Tolerance to challenges miming gastrointestinal transit by spores and vegetative cells of Bacillus clausii. J Appl Microbiol 2006; 101:1208-15. [PMID: 17105550 DOI: 10.1111/j.1365-2672.2006.03042.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS To study Bacillus clausii from a pharmaceutical product (Enterogermina O/C, N/R, SIN, T) and reference strains (B. clausii and Bacillus subtilis) for eco-physiological aspects regarding the gut environment. METHODS AND RESULTS Spores and vegetative cells were challenged in vitro miming the injury of gastrointestinal transit: pH variations, exposure to conjugated and free bile salts, microaerophilic and anaerobic growth. No relevant differences were found studying the growth at pH 8 and 10, whereas at pH 7 the yields obtained for O/C and SIN were higher than those obtained for N/R and T strains. The spores were able to germinate and grow in the presence of conjugated bile salts (up to 1%, w/v) or free bile salts (0.2%) and also exhibited tolerance for the combined acid-bile challenge. As evidenced by lag-time, growth rate and cell yield the tolerance of Enterogermina isolates for conjugated salts was comparable with that of B. clausii type strain (DSM 8716(T)), and resulted higher than that observed for B. subtilis (ATCC 6051(T)). All the considered B. clausii strains demonstrated microaerophilic growth, but only some grew anaerobically in a nitrate medium. CONCLUSIONS The ability of B. clausii spores to germinate after an acid challenge and grow as vegetative cells both in the presence of bile and under limited oxygen availability is consistent with the beneficial health effects evidenced for spore-forming probiotics in recent clinical studies. SIGNIFICANCE AND IMPACT OF THE STUDY The experimental evidence from this study emphasizes some functional properties of B. clausii strains regarding their use as probiotics.
Collapse
Affiliation(s)
- G Cenci
- Dipartimento Biologia Cellulare e Ambientale, Università di Perugia, Italy.
| | | | | |
Collapse
|
22
|
Thomaides HB, Davison EJ, Burston L, Johnson H, Brown DR, Hunt AC, Errington J, Czaplewski L. Essential bacterial functions encoded by gene pairs. J Bacteriol 2006; 189:591-602. [PMID: 17114254 PMCID: PMC1797375 DOI: 10.1128/jb.01381-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To address the need for new antibacterials, a number of bacterial genomes have been systematically disrupted to identify essential genes. Such programs have focused on the disruption of single genes and may have missed functions encoded by gene pairs or multiple genes. In this work, we hypothesized that we could predict the identity of pairs of proteins within one organism that have the same function. We identified 135 putative protein pairs in Bacillus subtilis and attempted to disrupt the genes forming these, singly and then in pairs. The single gene disruptions revealed new genes that could not be disrupted individually and other genes required for growth in minimal medium or for sporulation. The pairwise disruptions revealed seven pairs of proteins that are likely to have the same function, as the presence of one protein can compensate for the absence of the other. Six of these pairs are essential for bacterial viability and in four cases show a pattern of species conservation appropriate for potential antibacterial development. This work highlights the importance of combinatorial studies in understanding gene duplication and identifying functional redundancy.
Collapse
Affiliation(s)
- Helena B Thomaides
- Prolysis Ltd., Begbroke Science Park, Sandy Lane, Yarnton OX5 1PF, Oxfordshire, UK.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gyan S, Shiohira Y, Sato I, Takeuchi M, Sato T. Regulatory loop between redox sensing of the NADH/NAD(+) ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis. J Bacteriol 2006; 188:7062-71. [PMID: 17015645 PMCID: PMC1636230 DOI: 10.1128/jb.00601-06] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NADH dehydrogenase is a key component of the respiratory chain. It catalyzes the oxidation of NADH by transferring electrons to ubiquinone and establishes a proton motive force across the cell membrane. The yjlD (renamed ndh) gene of Bacillus subtilis is predicted to encode an enzyme similar to the NADH dehydrogenase II of Escherichia coli, encoded by the ndh gene. We have shown that the yjlC-ndh operon is negatively regulated by YdiH (renamed Rex), a homolog of Rex in Streptomyces coelicolor, and a redox-sensing transcriptional regulator that responds to the NADH/NAD(+) ratio. The ndh gene regulates expression of the yjlC-ndh operon, as indicated by the fact that mutation in ndh causes a higher NADH/NAD(+) ratio. An in vitro study showed that Rex binds to the downstream region of the yjlC-ndh promoter and that NAD(+) enhances the binding of Rex to the putative Rex-binding sites in the yjlC-ndh operon as well as in the cydABCD operon. These results indicated that Rex and Ndh together form a regulatory loop which functions to prevent a large fluctuation in the NADH/NAD(+) ratio in B. subtilis.
Collapse
Affiliation(s)
- Smita Gyan
- International Environmental and Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | | | | | | | | |
Collapse
|
24
|
Härtig E, Hartmann A, Schätzle M, Albertini AM, Jahn D. The Bacillus subtilis nrdEF genes, encoding a class Ib ribonucleotide reductase, are essential for aerobic and anaerobic growth. Appl Environ Microbiol 2006; 72:5260-5. [PMID: 16885274 PMCID: PMC1538738 DOI: 10.1128/aem.00599-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribonucleotide reductases (RNRs) are essential for the biosynthesis of the deoxyribonucleoside triphosphates of DNA. Recently, it was proposed that externally supplied deoxyribonucleosides or DNA is required for the growth of Bacillus subtilis under strict anaerobic conditions (M. J. Folmsbee, M. J. McInerney, and D. P. Nagle, Appl. Environ. Microbiol. 70:5252-5257, 2004). Cultivation of B. subtilis on minimal medium in the presence of oxygen indicators in combination with oxygen electrode measurements and viable cell counting demonstrated that growth occurred under strict anaerobic conditions in the absence of externally supplied deoxyribonucleosides. The nrdEF genes encode the only obvious RNR in B. subtilis. A temperature-sensitive nrdE mutant failed to grow under aerobic and anaerobic conditions, indicating that this oxygen-dependent class I RNR has an essential role under both growth conditions. Aerobic growth and anaerobic growth of the nrdE mutant were rescued by addition of deoxynucleotides. The nrd locus consists of an nrdI-nrdE-nrdF-ymaB operon. The 5' end of the corresponding mRNA revealed transcriptional start sites 45 and 48 bp upstream of the translational start of nrdI. Anaerobic transcription of the operon was found to be dependent on the presence of intact genes for the ResDE two-component redox regulatory system. Two potential ResD binding sites were identified approximately 62 bp (site A) and 50 bp (site B) upstream of the transcriptional start sites by a bioinformatic approach. Only mutation of site B eliminated nrd expression. Aerobic transcription was ResDE independent but required additional promoter elements localized between 88 and 275 bp upstream of the transcriptional start.
Collapse
Affiliation(s)
- Elisabeth Härtig
- Institute of Microbiology, Technical University of Braunschweig, D-38106 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
25
|
Reents H, Gruner I, Harmening U, Böttger LH, Layer G, Heathcote P, Trautwein AX, Jahn D, Härtig E. Bacillus subtilis Fnr senses oxygen via a [4Fe-4S] cluster coordinated by three cysteine residues without change in the oligomeric state. Mol Microbiol 2006; 60:1432-45. [PMID: 16796679 DOI: 10.1111/j.1365-2958.2006.05198.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The oxygen regulator Fnr is part of the regulatory cascade in Bacillus subtilis for the adaptation to anaerobic growth conditions. In vivo complementation experiments revealed the essential role of only three cysteine residues (C227, C230, C235) at the C-terminus of B. subtilis Fnr for the transcriptional activation of the nitrate reductase operon (narGHJI) and nitrite extrusion protein gene (narK) promoters. UV/VIS, electron paramagnetic spin resonance (EPR) and Mössbauer spectroscopy experiments in combination with iron and sulphide content determinations using anaerobically purified recombinant B. subtilis Fnr identified the role of these three cysteine residues in the formation of one [4Fe-4S]2+ cluster per Fnr molecule. The obtained Mössbauer parameters are supportive for a [4Fe-4S]2+ cluster with three cysteine ligated iron sites and one non-cysteine ligated iron site. Gel filtration experiments revealed a stable dimeric structure for B. subtilis Fnr which is independent of the presence of the [4Fe-4S]2+ cluster. Gel mobility shift and in vitro transcription assays demonstrated the essential role of an intact [4Fe-4S]2+ cluster for promoter binding and transcriptional activation. An amino acid exchange introduced in the proposed alphaD-helix of B. subtilis Fnr (G149S) abolished its in vivo and in vitro activities indicating its importance for intramolecular signal transduction. The clear differences in the localization and coordination of the [4Fe-4S] cluster and in the organization of the oligomeric state between Escherichia coli and B. subtilis Fnr indicate differences in their mode of action.
Collapse
Affiliation(s)
- Heike Reents
- Institute of Microbiology, Technical University of Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Labbé G, Bezaire J, de Groot S, How C, Rasmusson T, Yaeck J, Jervis E, Dmitrienko GI, Guillemette JG. High level production of the Magnaporthe grisea fructose 1,6-bisphosphate aldolase enzyme in Escherichia coli using a small volume bench-top fermentor. Protein Expr Purif 2006; 51:110-9. [PMID: 16901716 DOI: 10.1016/j.pep.2006.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
The Class II fructose 1,6-bisphosphate aldolase from the Rice Blast causative agent Magnaporthe grisea was subcloned in the Escherichia coli vector pT7-7. The enzyme was overexpressed using fed-batch fermentation in a small bench-top reactor. A total of 275 g of cells and 1.3 g of highly purified enzyme with a specific activity of 70 U/mg were obtained from a 1.5L culture. The purified enzyme is a homodimer of 39.6 kDa subunits with a zinc ion at the active site. Kinetic characterization indicates that the enzyme has a K(m) of 51 microM, a k(cat) of 46 s(-1), and a pH optimum of 7.8 for fructose 1,6-bisphosphate cleavage. The fermentation system procedure reported exemplifies the potential of using a lab-scale bioreactor for the large scale production of recombinant enzymes.
Collapse
Affiliation(s)
- Geneviève Labbé
- Department of Chemistry, University of Waterloo, 200 University Ave. W, Waterloo, Ont., Canada N2L 3G1
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Larsson JT, Rogstam A, von Wachenfeldt C. Coordinated patterns of cytochrome bd and lactate dehydrogenase expression in Bacillus subtilis. MICROBIOLOGY-SGM 2005; 151:3323-3335. [PMID: 16207915 DOI: 10.1099/mic.0.28124-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A variety of pathways for electron and carbon flow in the soil bacterium Bacillus subtilis are differentially expressed depending on whether oxygen is present in the cell environment. This study characterizes the regulation of the respiratory oxidase cytochrome bd and the NADH-linked fermentative lactate dehydrogenase (LDH). Transcription of the cydABCD operon, encoding cytochrome bd, is highly regulated and only becomes activated at low oxygen availability. This induction is not dependent on the gene encoding the redox regulator Fnr or the genes encoding the ResDE two-component regulatory system. The DNA-binding protein YdiH was found to be a principal regulator that controls cydABCD expression. Transcription from the cyd promoter is stimulated 15-fold by a region located upstream of the core promoter. The upstream region may constitute a binding site for an unidentified transcription activator that is likely to influence the level of transcription but not its timing, which is negatively controlled by YdiH. This report provides evidence that YdiH also functions as a repressor of the ldh gene encoding LDH and of a gene, ywcJ, which encodes a putative formate-nitrite transporter. Based on the similarity between YdiH and the Rex protein of Streptomyces coelicolor, it is proposed that YdiH serves as a redox sensor, the activity of which is regulated by cellular differences in the free levels of NAD+ and NADH. It is suggested that ydiH be renamed as rex.
Collapse
Affiliation(s)
- Jonas T Larsson
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| | - Annika Rogstam
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| | - Claes von Wachenfeldt
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223 62 Lund, Sweden
| |
Collapse
|
28
|
Härtig E, Geng H, Hartmann A, Hubacek A, Münch R, Ye RW, Jahn D, Nakano MM. Bacillus subtilis ResD induces expression of the potential regulatory genes yclJK upon oxygen limitation. J Bacteriol 2004; 186:6477-84. [PMID: 15375128 PMCID: PMC516614 DOI: 10.1128/jb.186.19.6477-6484.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the yclJK operon, which encodes a potential two-component regulatory system, is activated in response to oxygen limitation in Bacillus subtilis. Northern blot analysis and assays of yclJ-lacZ reporter gene fusion activity revealed that the anaerobic induction is dependent on another two-component signal transduction system encoded by resDE. ResDE was previously shown to be required for the induction of anaerobic energy metabolism. Electrophoretic mobility shift assays and DNase I footprinting experiments showed that the response regulator ResD binds specifically to the yclJK regulatory region upstream of the transcriptional start site. In vitro transcription experiments demonstrated that ResD is sufficient to activate yclJ transcription. The phosphorylation of ResD by its sensor kinase, ResE, highly stimulates its activity as a transcriptional activator. Multiple nucleotide substitutions in the ResD binding regions of the yclJ promoter abolished ResD binding in vitro and prevented the anaerobic induction of yclJK in vivo. A weight matrix for the ResD binding site was defined by a bioinformatic approach. The results obtained suggest the existence of a new branch of the complex regulatory system employed for the adaptation of B. subtilis to anaerobic growth conditions.
Collapse
Affiliation(s)
- Elisabeth Härtig
- Institute of Microbiology, University of Braunschweig, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ehrensberger AH, Wilson DK. Structural and catalytic diversity in the two family 11 aldo-keto reductases. J Mol Biol 2004; 337:661-73. [PMID: 15019785 DOI: 10.1016/j.jmb.2004.01.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 01/30/2004] [Accepted: 01/30/2004] [Indexed: 10/26/2022]
Abstract
Aldo-keto reductases (AKRs) are a large superfamily of NAD(P)H-dependent enzymes that function in a wide range of biological processes. The structures of two enzymes from the previously uncharacterized family 11 (AKR11A and AKR11B), the products of the iolS and yhdN genes of Bacillus subtilis have been determined. AKR11B appears to be a relatively conventional member of the superfamily with respect to structural and biochemical properties. It is an efficient enzyme, specific for NADPH and possesses a catalytic triad typical for AKRs. AKR11A exhibits catalytic divergence from the other members of the superfamily and, surprisingly, AKR11B, the most closely related aldo-keto reductase in sequence. Although both have conserved catalytic residues consisting of an acidic tyrosine, a lysine and an aspartate, a water molecule interrupts this triad in cofactor-bound AKR11A by inserting between the lysine and tyrosine side-chains. This results in a unique architecture for an AKR active site with scant catalytic power. In addition, the absence of a bulky tryptophan side-chain in AKR11A allows an unconventional conformation of the bound NADP+ cosubstrate, raising the possibility that it donates the 4-pro-S hydride rather than the 4-pro-R hydride seen in most other AKRs. Based upon the architecture of the active site and the resulting reaction velocities, it therefore appears that functioning as an efficient oxido-reductase is probably not the primary role of AKR11A. A comparison of the apo and holo forms of AKR11A demonstrates that the cosubstrate does not play the dramatic role in active site assembly seen in other superfamily members.
Collapse
Affiliation(s)
- Andreas H Ehrensberger
- Section of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
30
|
Hiller K, Schobert M, Hundertmark C, Jahn D, Münch R. JVirGel: Calculation of virtual two-dimensional protein gels. Nucleic Acids Res 2003; 31:3862-5. [PMID: 12824438 PMCID: PMC168943 DOI: 10.1093/nar/gkg536] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We developed JVirGel, a collection of tools for the simulation and analysis of proteomics data. The software creates and visualizes virtual two-dimensional (2D) protein gels based on the migration behaviour of proteins in dependence of their theoretical molecular weights in combination with their calculated isoelectric points. The utilization of all proteins of an organism of interest deduced from genes of the corresponding genome project in combination with the elimination of obvious membrane proteins permits the creation of an optimized calculated proteome map. The electrophoretic separation behaviour of single proteins is accessible interactively in a Java(TM) applet (small application in a web browser) by selecting a pI/MW range and an electrophoretic timescale of interest. The calculated pattern of protein spots helps to identify unknown proteins and to localize known proteins during experimental proteomics approaches. Differences between the experimentally observed and the calculated migration behaviour of certain proteins provide first indications for potential protein modification events. When possible, the protein spots are directly linked via a mouse click to the public databases SWISS-PROT and PRODORIC. Additionally, we provide tools for the serial calculation and visualization of specific protein properties like pH dependent charge curves and hydrophobicity profiles. These values are helpful for the rational establishment of protein purification procedures. The proteomics tools are available on the World Wide Web at http://prodoric.tu-bs.de/proteomics.php.
Collapse
Affiliation(s)
- Karsten Hiller
- Institut für Mikrobiologie, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
31
|
Champomier-Vergès MC, Marceau A, Méra T, Zagorec M. The pepR gene of Lactobacillus sakei is positively regulated by anaerobiosis at the transcriptional level. Appl Environ Microbiol 2002; 68:3873-7. [PMID: 12147484 PMCID: PMC124041 DOI: 10.1128/aem.68.8.3873-3877.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2001] [Accepted: 04/19/2002] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus sakei is a lactic acid bacterium belonging to the natural flora of meat products. It constitutes the main flora of vacuum-packed meat and is largely used in western Europe as a starter for the manufacturing of fermented sausages. This species is able to grow both under aerobiosis and anaerobiosis. In many technological processes involving it, oxygen is scarce. The aim of this study was to identify the major proteins affected by growth under anaerobiosis. Using two-dimensional electrophoresis, we showed that one spot was 10-fold overexpressed when cells were grown under anaerobiosis. By N-terminal sequencing it was identified as a peptidase (PepR), and the pepR gene was cloned. Northern analysis revealed that pepR was expressed as a single 1.27-kb transcript induced under anaerobiosis. A mutant was constructed by single crossover in the pepR gene, and its growth and survival were not affected by anaerobiosis.
Collapse
|
32
|
Rosenkrands I, Slayden RA, Crawford J, Aagaard C, Barry CE, Andersen P. Hypoxic response of Mycobacterium tuberculosis studied by metabolic labeling and proteome analysis of cellular and extracellular proteins. J Bacteriol 2002; 184:3485-91. [PMID: 12057942 PMCID: PMC135148 DOI: 10.1128/jb.184.13.3485-3491.2002] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The events involved in the establishment of a latent infection with Mycobacterium tuberculosis are not fully understood, but hypoxic conditions are generally believed to be the environment encountered by the pathogen in the central part of the granuloma. The present study was undertaken to provide insight into M. tuberculosis protein expression in in vitro latency models where oxygen is depleted. The response of M. tuberculosis to low-oxygen conditions was investigated in both cellular and extracellular proteins by metabolic labeling, two-dimensional electrophoresis, and protein signature peptide analysis by liquid chromatography-mass spectrometry. By peptide mass fingerprinting and immunodetection, five proteins more abundant under low-oxygen conditions were identified from several lysates of M. tuberculosis: Rv0569, Rv2031c (HspX), Rv2623, Rv2626c, and Rv3841 (BfrB). In M. tuberculosis culture filtrates, two additional proteins, Rv0363c (Fba) and Rv2780 (Ald), were found in increased amounts under oxygen limitation. These results extend our understanding of the hypoxic response in M. tuberculosis and potentially provide important insights into the physiology of the latent bacilli.
Collapse
Affiliation(s)
- Ida Rosenkrands
- Department of TB Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
33
|
Oosthuizen MC, Steyn B, Theron J, Cosette P, Lindsay D, Von Holy A, Brözel VS. Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl Environ Microbiol 2002; 68:2770-80. [PMID: 12039732 PMCID: PMC123966 DOI: 10.1128/aem.68.6.2770-2780.2002] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bacillus cereus, a dairy-associated toxigenic bacterium, readily forms biofilms on various surfaces and was used to gain a better understanding of biofilm development by gram-positive aerobic rods. B. cereus DL5 was shown to readily adapt to an attached mode of growth, with dense biofilm structures developing within 18 h after inoculation when glass wool was used as a surface. Two-dimensional gel electrophoresis (2DE) revealed distinct and reproducible phenotypic differences between 2- and 18-h-old biofilm and planktonic cells (grown both in the presence and in the absence of glass wool). Whereas the 2-h-old biofilm proteome indicated expression of 15 unique proteins, the 18-h-old biofilm proteome contained 7 uniquely expressed proteins. Differences between the microcolony (2-h) proteome and the more developed biofilm (18-h) proteome were largely due to up- and down-regulation of the expression of a multitude of proteins. Selected protein spots excised from 2DE gels were subjected to N-terminal sequencing and identified with high confidence. Among the proteins were catabolic ornithine carbamoyltransferase and L-lactate dehydrogenase. Interestingly, increased levels of YhbH, a member of the sigma 54 modulation protein family which is strongly induced in response to environmental stresses and energy depletion via both sigma(B) and sigma(H), could be observed within 2 h in both attached cells and planktonic cultures growing in the presence of glass wool, indicating that this protein plays an important role in regulation of the biofilm phenotype. Distinct band differences were also found between the extracellular proteins of 18-h-old cultures grown in the presence and in the absence of glass wool.
Collapse
Affiliation(s)
- Marinda C Oosthuizen
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, 2050, South Africa.
| | | | | | | | | | | | | |
Collapse
|
34
|
Yamamoto H, Serizawa M, Thompson J, Sekiguchi J. Regulation of the glv operon in Bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre. J Bacteriol 2001; 183:5110-21. [PMID: 11489864 PMCID: PMC95387 DOI: 10.1128/jb.183.17.5110-5121.2001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maltose metabolism and the regulation of the glv operon of Bacillus subtilis, comprising three genes, glvA (6-phospho-alpha-glucosidase), yfiA (now designated glvR), and glvC (EIICB transport protein), were investigated. Maltose dissimilation was dependent primarily upon the glv operon, and insertional inactivation of either glvA, glvR, or glvC markedly inhibited growth on the disaccharide. A second system (MalL) contributed to a minor extent to maltose metabolism. Northern blotting revealed two transcripts corresponding to a monocistronic mRNA of glvA and a polycistronic mRNA of glvA-glvR-glvC. Primer extension analysis showed that both transcripts started at the same base (G) located 26 bp upstream of the 5' end of glvA. When glvR was placed under control of the spac promoter, expression of the glv operon was dependent upon the presence of isopropyl-beta-D-thiogalactopyranoside (IPTG). In regulatory studies, the promoter sequence of the glv operon was fused to lacZ and inserted into the amyE locus, and the resultant strain (AMGLV) was then transformed with a citrate-controlled glvR plasmid, pHYCM2VR. When cultured in Difco sporulation medium containing citrate, this transformant [AMGLV(pHYCM2VR)] expressed LacZ activity, but synthesis of LacZ was repressed by glucose. In an isogenic strain, [AMGLVCR(pHYCM2VR)], except for a mutation in the sequence of a catabolite-responsive element (cre), LacZ activity was expressed in the presence of citrate and glucose. Insertion of a citrate-controlled glvR plasmid at the amyE locus of ccpA(+) and ccpA mutant organisms yielded strains AMCMVR and AMCMVRCC, respectively. In the presence of both glucose and citrate, AMCMVR failed to express the glv operon, whereas under the same conditions high-level expression of both mRNA transcripts was found in strain AMCMVRCC. Collectively, our findings suggest that GlvR (the product of the glvR gene) is a positive regulator of the glv operon and that glucose exerts its effect via catabolite repression requiring both CcpA and cre.
Collapse
Affiliation(s)
- H Yamamoto
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | | | | | | |
Collapse
|
35
|
Throup JP, Zappacosta F, Lunsford RD, Annan RS, Carr SA, Lonsdale JT, Bryant AP, McDevitt D, Rosenberg M, Burnham MK. The srhSR gene pair from Staphylococcus aureus: genomic and proteomic approaches to the identification and characterization of gene function. Biochemistry 2001; 40:10392-401. [PMID: 11513618 DOI: 10.1021/bi0102959] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Systematic analysis of the entire two-component signal transduction system (TCSTS) gene complement of Staphylococcus aureus revealed the presence of a putative TCSTS (designated SrhSR) which shares considerable homology with the ResDE His-Asp phospho-relay pair of Bacillus subtilis. Disruption of the srhSR gene pair resulted in a dramatic reduction in growth of the srhSR mutant, when cultured under anaerobic conditions, and a 3-log attenuation in growth when analyzed in the murine pyelonephritis model. To further understand the role of SrhSR, differential display two-dimensional gel electrophoresis was used to analyze the cell-free extracts derived from the srhSR mutant and the corresponding wild type. Proteins shown to be differentially regulated were identified by mass spectrometry in combination with protein database searching. An srhSR deletion led to changes in the expression of proteins involved in energy metabolism and other metabolic processes including arginine catabolism, xanthine catabolism, and cell morphology. The impaired growth of the mutant under anaerobic conditions and the dramatic changes in proteins involved in energy metabolism shed light on the mechanisms used by S. aureus to grow anaerobically and indicate that the staphylococcal SrhSR system plays an important role in the regulation of energy transduction in response to changes in oxygen availability. The combination of proteomics, bio-informatics, and microbial genetics employed here represents a powerful set of techniques which can be applied to the study of bacterial gene function.
Collapse
Affiliation(s)
- J P Throup
- Anti-infectives Research, GlaxoSmithKline Pharmaceuticals Research and Development, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schnorpfeil M, Janausch IG, Biel S, Kröger A, Unden G. Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase. ACTA ACUST UNITED AC 2001; 268:3069-74. [PMID: 11358526 DOI: 10.1046/j.1432-1327.2001.02202.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The membrane fraction of Bacillus subtilis catalyzes the reduction of fumarate to succinate by NADH. The activity is inhibited by low concentrations of 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO), an inhibitor of succinate: quinone reductase. In sdh or aro mutant strains, which lack succinate dehydrogenase or menaquinone, respectively, the activity of fumarate reduction by NADH was missing. In resting cells fumarate reduction required glycerol or glucose as the electron donor, which presumably supply NADH for fumarate reduction. Thus in the bacteria, fumarate reduction by NADH is catalyzed by an electron transport chain consisting of NADH dehydrogenase (NADH:menaquinone reductase), menaquinone, and succinate dehydrogenase operating in the reverse direction (menaquinol:fumarate reductase). Poor anaerobic growth of B. subtilis was observed when fumarate was present. The fumarate reduction catalyzed by the bacteria in the presence of glycerol or glucose was not inhibited by the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or by membrane disruption, in contrast to succinate oxidation by O2. Fumarate reduction caused the uptake by the bacteria of the tetraphenyphosphonium cation (TPP+) which was released after fumarate had been consumed. TPP+ uptake was prevented by the presence of CCCP or HOQNO, but not by N,N'-dicyclohexylcarbodiimide, an inhibitor of ATP synthase. From the TPP+ uptake the electrochemical potential generated by fumarate reduction was calculated (Deltapsi = -132 mV) which was comparable to that generated by glucose oxidation with O2 (Deltapsi = -120 mV). The Deltapsi generated by fumarate reduction is suggested to stem from menaquinol:fumarate reductase functioning in a redox half-loop.
Collapse
Affiliation(s)
- M Schnorpfeil
- Institut für Mikrobiologie und Weinforschung, Johannes Gutenberg-Universität Mainz, Germany
| | | | | | | | | |
Collapse
|
37
|
Ye RW, Tao W, Bedzyk L, Young T, Chen M, Li L. Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J Bacteriol 2000; 182:4458-65. [PMID: 10913079 PMCID: PMC94617 DOI: 10.1128/jb.182.16.4458-4465.2000] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis can grow under anaerobic conditions, either with nitrate or nitrite as the electron acceptor or by fermentation. A DNA microarray containing 4,020 genes from this organism was constructed to explore anaerobic gene expression patterns on a genomic scale. When mRNA levels of aerobic and anaerobic cultures during exponential growth were compared, several hundred genes were observed to be induced or repressed under anaerobic conditions. These genes are involved in a variety of cell functions, including carbon metabolism, electron transport, iron uptake, antibiotic production, and stress response. Among the highly induced genes are not only those responsible for nitrate respiration and fermentation but also those of unknown function. Certain groups of genes were specifically regulated during anaerobic growth on nitrite, while others were primarily affected during fermentative growth, indicating a complex regulatory circuitry of anaerobic metabolism.
Collapse
Affiliation(s)
- R W Ye
- Experimental Station E328/148B, DuPont Central Research and Development, Wilmington, Delaware 19880, USA.
| | | | | | | | | | | |
Collapse
|