1
|
Kunisch F, Campobasso C, Wagemans J, Yildirim S, Chan BK, Schaudinn C, Lavigne R, Turner PE, Raschke MJ, Trampuz A, Gonzalez Moreno M. Targeting Pseudomonas aeruginosa biofilm with an evolutionary trained bacteriophage cocktail exploiting phage resistance trade-offs. Nat Commun 2024; 15:8572. [PMID: 39362854 PMCID: PMC11450229 DOI: 10.1038/s41467-024-52595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/12/2024] [Indexed: 10/05/2024] Open
Abstract
Spread of multidrug-resistant Pseudomonas aeruginosa strains threatens to render currently available antibiotics obsolete, with limited prospects for the development of new antibiotics. Lytic bacteriophages, the viruses of bacteria, represent a path to combat this threat. In vitro-directed evolution is traditionally applied to expand the bacteriophage host range or increase bacterial suppression in planktonic cultures. However, while up to 80% of human microbial infections are biofilm-associated, research towards targeted improvement of bacteriophages' ability to combat biofilms remains scarce. This study aims at an in vitro biofilm evolution assay to improve multiple bacteriophage parameters in parallel and the optimisation of bacteriophage cocktail design by exploiting a bacterial bacteriophage resistance trade-off. The evolved bacteriophages show an expanded host spectrum, improved antimicrobial efficacy and enhanced antibiofilm performance, as assessed by isothermal microcalorimetry and quantitative polymerase chain reaction, respectively. Our two-phage cocktail reveals further improved antimicrobial efficacy without incurring dual-bacteriophage-resistance in treated bacteria. We anticipate this assay will allow a better understanding of phenotypic-genomic relationships in bacteriophages and enable the training of bacteriophages against other desired pathogens. This, in turn, will strengthen bacteriophage therapy as a treatment adjunct to improve clinical outcomes of multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Fabian Kunisch
- Faculty of Medicine, Universität Münster, Münster, Germany
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Claudia Campobasso
- Department of Biosystems, KU Leuven, Leuven, Belgium
- Department of Biology, Università di Pisa, Pisa, Italy
| | | | - Selma Yildirim
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Benjamin K Chan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
| | - Christoph Schaudinn
- Advanced Light and Electron Microscopy (Zentrum für Biologische Gefahren und Spezielle Pathogene 4), Robert Koch Institute, Berlin, Germany
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Paul E Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Phage Biology and Therapy, Yale University, New Haven, CT, USA
- Program in Microbiology, Yale School of Medicine, New Haven, CT, USA
| | - Michael J Raschke
- Faculty of Medicine, Universität Münster, Münster, Germany
- Department of Trauma, Hand and Reconstructive Surgery, Universitätsklinikum Münster, Münster, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.
| | - Mercedes Gonzalez Moreno
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| |
Collapse
|
2
|
Rabiey M, Grace ER, Pawlos P, Bihi M, Ahmed H, Hampson GE, Al Riyami A, Alharbi L, Sanchez‐Lucas R, Korotania N, Ciusa ML, Mosley O, Hulin MT, Baxter L, Dhaouadi S, Vinchira‐Villarraga D, Jackson RW. Coevolutionary analysis of Pseudomonas syringae-phage interactions to help with rational design of phage treatments. Microb Biotechnol 2024; 17:e14489. [PMID: 38864499 PMCID: PMC11167607 DOI: 10.1111/1751-7915.14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/09/2024] [Indexed: 06/13/2024] Open
Abstract
Treating plant bacterial diseases is notoriously difficult because of the lack of available antimicrobials. Pseudomonas syringae pathovar syringae (Pss) is a major pathogen of cherry (Prunus avium) causing bacterial canker of the stem, leaf and fruit, impacting productivity and leading to a loss of trees. In an attempt to find a treatment for this disease, naturally occurring bacteriophage (phage) that specifically target Pss is being investigated as a biocontrol strategy. However, before using them as a biocontrol treatment, it is important to both understand their efficacy in reducing the bacterial population and determine if the bacterial pathogens can evolve resistance to evade phage infection. To investigate this, killing curve assays of five MR phages targeting Pss showed that phage resistance rapidly emerges in vitro, even when using a cocktail of the five phages together. To gain insight to the changes occurring, Pss colonies were collected three times during a 66-h killing curve assay and separately, Pss and phage were also coevolved over 10 generations, enabling the measurement of genomic and fitness changes in bacterial populations. Pss evolved resistance to phages through modifications in lipopolysaccharide (LPS) synthesis pathways. Bacterial fitness (growth) and virulence were affected in only a few mutants. Deletion of LPS-associated genes suggested that LPS was the main target receptor for all five MR phages. Later generations of coevolved phages from the coevolution experiment were more potent at reducing the bacterial density and when used with wild-type phages could reduce the emergence of phage-resistant mutants. This study shows that understanding the genetic mechanisms of bacterial pathogen resistance to phages is important for helping to design a more effective approach to kill the bacteria while minimizing the opportunity for phage resistance to manifest.
Collapse
Affiliation(s)
- Mojgan Rabiey
- School of Life Sciences, Gibbet Hill CampusUniversity of WarwickCoventryUK
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Emily R. Grace
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Paulina Pawlos
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Muscab Bihi
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Haleem Ahmed
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Georgina E. Hampson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Amna Al Riyami
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Leena Alharbi
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Rosa Sanchez‐Lucas
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Naina Korotania
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Maria Laura Ciusa
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Olivia Mosley
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Michelle T. Hulin
- Department of Plant Soil & Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Laura Baxter
- Bioinformatics Research Technology PlatformUniversity of WarwickCoventryUK
| | - Sabrine Dhaouadi
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Diana Vinchira‐Villarraga
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| |
Collapse
|
3
|
Ayoola MB, Shack LA, Phanstiel O, Nanduri B. Impact of Difluoromethylornithine and AMXT 1501 on Gene Expression and Capsule Regulation in Streptococcus pneumoniae. Biomolecules 2024; 14:178. [PMID: 38397415 PMCID: PMC10887117 DOI: 10.3390/biom14020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Streptococcus pneumoniae (Spn), a Gram-positive bacterium, poses a significant threat to human health, causing mild respiratory infections to severe invasive conditions. Despite the availability of vaccines, challenges persist due to serotype replacement and antibiotic resistance, emphasizing the need for alternative therapeutic strategies. This study explores the intriguing role of polyamines, ubiquitous, small organic cations, in modulating virulence factors, especially the capsule, a crucial determinant of Spn's pathogenicity. Using chemical inhibitors, difluoromethylornithine (DFMO) and AMXT 1501, this research unveils distinct regulatory effects on the gene expression of the Spn D39 serotype in response to altered polyamine homeostasis. DFMO inhibits polyamine biosynthesis, disrupting pathways associated with glucose import and the interconversion of sugars. In contrast, AMXT 1501, targeting polyamine transport, enhances the expression of polyamine and glucose biosynthesis genes, presenting a novel avenue for regulating the capsule independent of glucose availability. Despite ample glucose availability, AMXT 1501 treatment downregulates the glycolytic pathway, fatty acid synthesis, and ATP synthase, crucial for energy production, while upregulating two-component systems responsible for stress management. This suggests a potential shutdown of energy production and capsule biosynthesis, redirecting resources towards stress management. Following DFMO and AMXT 1501 treatments, countermeasures, such as upregulation of stress response genes and ribosomal protein, were observed but appear to be insufficient to overcome the deleterious effects on capsule production. This study highlights the complexity of polyamine-mediated regulation in S. pneumoniae, particularly capsule biosynthesis. Our findings offer valuable insights into potential therapeutic targets for modulating capsules in a polyamine-dependent manner, a promising avenue for intervention against S. pneumoniae infections.
Collapse
Affiliation(s)
- Moses B. Ayoola
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (M.B.A.); (L.A.S.)
| | - Leslie A. Shack
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (M.B.A.); (L.A.S.)
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Orlando, FL 32826, USA;
| | - Bindu Nanduri
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA; (M.B.A.); (L.A.S.)
| |
Collapse
|
4
|
Kaur M, Buyck JM, Goormaghtigh F, Decout JL, Mozaheb N, Mingeot-Leclercq MP. Deficient Pseudomonas aeruginosa in MlaA/VacJ outer membrane lipoprotein shows decrease in rhamnolipids secretion, motility, and biofilm formation, and increase in fluoroquinolones susceptibility and innate immune response. Res Microbiol 2023; 174:104132. [PMID: 37660742 DOI: 10.1016/j.resmic.2023.104132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Pseudomonas aeruginosa, a Gram-negative bacterium that causes severe hospital acquired infections poses threat by its ability for adaptation to various growth modes and environmental conditions and by its intrinsic resistance to antibiotics. The latter is mainly due to the outer membrane (OM) asymmetry which is maintained by the Mla pathway resulting in the retrograde transport of glycerophospholipids from the OM to the inner membrane. It comprises six Mla proteins, including MlaA, an OM lipoprotein involved in the removal of glycerophospholipids mislocalized at the outer leaflet of OM. To investigate the role of P. aeruginosa OM asymmetry especially MlaA, this study investigated the effect of mlaA deletion on (i) the susceptibility to antibiotics, (ii) the secretion of virulence factors, the motility, biofilm formation, and (iii) the inflammatory response. mlaA deletion in P. aeruginosa ATCC27853 results in phenotypic changes including, an increase in fluoroquinolones susceptibility and in PQS (Pseudomonas Quinolone Signal) and TNF-α release and a decrease in rhamnolipids secretion, motility and biofilm formation. Investigating how the mlaA knockout impacts on antibiotic susceptibility, bacterial virulence and innate immune response will help to elucidate the biological significance of the Mla system and contribute to the understanding of MlaA in P. aeruginosa OM asymmetry.
Collapse
Affiliation(s)
- M Kaur
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium.
| | - J M Buyck
- University of Poitiers, INSERM U1070, Poitiers, France.
| | - F Goormaghtigh
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium.
| | - J-L Decout
- Université Grenoble Alpes, CNRS, Département de Pharmacochimie Moléculaire, Rue de la Chimie, F-38041 Grenoble, France.
| | - N Mozaheb
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium.
| | - M-P Mingeot-Leclercq
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, Avenue E. Mounier 73, UCL B1.73.05, 1200 Brussels, Belgium.
| |
Collapse
|
5
|
Chen J, Yu X, Lu X, Wang W, Pan J, Yin Q, Wei B, Zhang H, Wang H. Biosynthesis and Gene Regulation of Rhamnolipid Congeners. Curr Microbiol 2023; 80:302. [PMID: 37493824 DOI: 10.1007/s00284-023-03405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/05/2023] [Indexed: 07/27/2023]
Abstract
Rhamnolipid congeners have been widely used in agriculture and biomedicine as potent surfactants. They have recently attracted attention due to their diverse and versatile biological functions, which include an important bacterial virulence factor that makes them attractive targets for research into biosynthetic pathways and gene regulation. The intricate gene expression and regulation network controlling their biosynthesis remain to be completely understood. This article summarizes current knowledge about the biosynthesis pathways and regulatory mechanisms of rhamnolipid congeners, that meet the pharmacological needs of human health and agriculture.
Collapse
Affiliation(s)
- Jianwei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.
| | - Xiaoya Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xingyue Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Wei Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Jiangwei Pan
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Qunjian Yin
- Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Huawei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education & Key Laboratory, Pharmaceutical Engineering of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
6
|
Trouillon J, Han K, Attrée I, Lory S. The core and accessory Hfq interactomes across Pseudomonas aeruginosa lineages. Nat Commun 2022; 13:1258. [PMID: 35273147 PMCID: PMC8913705 DOI: 10.1038/s41467-022-28849-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/14/2022] [Indexed: 01/16/2023] Open
Abstract
The major RNA-binding protein Hfq interacts with mRNAs, either alone or together with regulatory small noncoding RNAs (sRNAs), affecting mRNA translation and degradation in bacteria. However, studies tend to focus on single reference strains and assume that the findings may apply to the entire species, despite the important intra-species genetic diversity known to exist. Here, we use RIP-seq to identify Hfq-interacting RNAs in three strains representing the major phylogenetic lineages of Pseudomonas aeruginosa. We find that most interactions are in fact not conserved among the different strains. We identify growth phase-specific and strain-specific Hfq targets, including previously undescribed sRNAs. Strain-specific interactions are due to different accessory gene sets, RNA abundances, or potential context- or sequence- dependent regulatory mechanisms. The accessory Hfq interactome includes most mRNAs encoding Type III Secretion System (T3SS) components and secreted toxins in two strains, as well as a cluster of CRISPR guide RNAs in one strain. Conserved Hfq targets include the global virulence regulator Vfr and metabolic pathways involved in the transition from fast to slow growth. Furthermore, we use rGRIL-seq to show that RhlS, a quorum sensing sRNA, activates Vfr translation, thus revealing a link between quorum sensing and virulence regulation. Overall, our work highlights the important intra-species diversity in post-transcriptional regulatory networks in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Julian Trouillon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Kook Han
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ina Attrée
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Identification of putative producers of rhamnolipids/glycolipids and their transporters using genome mining. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Salillas S, Galano-Frutos JJ, Mahía A, Maity R, Conde-Giménez M, Anoz-Carbonell E, Berlamont H, Velazquez-Campoy A, Touati E, Mamat U, Schaible UE, Gálvez JA, Díaz-de-Villegas MD, Haesebrouck F, Aínsa JA, Sancho J. Selective Targeting of Human and Animal Pathogens of the Helicobacter Genus by Flavodoxin Inhibitors: Efficacy, Synergy, Resistance and Mechanistic Studies. Int J Mol Sci 2021; 22:ijms221810137. [PMID: 34576300 PMCID: PMC8467567 DOI: 10.3390/ijms221810137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial resistant (AMR) bacteria constitute a global health concern. Helicobacter pylori is a Gram-negative bacterium that infects about half of the human population and is a major cause of peptic ulcer disease and gastric cancer. Increasing resistance to triple and quadruple H. pylori eradication therapies poses great challenges and urges the development of novel, ideally narrow spectrum, antimicrobials targeting H. pylori. Here, we describe the antimicrobial spectrum of a family of nitrobenzoxadiazol-based antimicrobials initially discovered as inhibitors of flavodoxin: an essential H. pylori protein. Two groups of inhibitors are described. One group is formed by narrow-spectrum compounds, highly specific for H. pylori, but ineffective against enterohepatic Helicobacter species and other Gram-negative or Gram-positive bacteria. The second group includes extended-spectrum antimicrobials additionally targeting Gram-positive bacteria, the Gram-negative Campylobacter jejuni, and most Helicobacter species, but not affecting other Gram-negative pathogens. To identify the binding site of the inhibitors in the flavodoxin structure, several H. pylori-flavodoxin variants have been engineered and tested using isothermal titration calorimetry. An initial study of the inhibitors capacity to generate resistances and of their synergism with antimicrobials commonly used in H. pylori eradication therapies is described. The narrow-spectrum inhibitors, which are expected to affect the microbiota less dramatically than current antimicrobial drugs, offer an opportunity to develop new and specific H. pylori eradication combinations to deal with AMR in H. pylori. On the other hand, the extended-spectrum inhibitors constitute a new family of promising antimicrobials, with a potential use against AMR Gram-positive bacterial pathogens.
Collapse
Affiliation(s)
- Sandra Salillas
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Juan José Galano-Frutos
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Alejandro Mahía
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Ritwik Maity
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - María Conde-Giménez
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| | - Ernesto Anoz-Carbonell
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - Helena Berlamont
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium; (H.B.); (F.H.)
| | - Adrian Velazquez-Campoy
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- ARAID Foundation, Government of Aragon, 50018 Zaragoza, Spain
- CIBER de Enfermedades Hepáticas y Digestivas CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, CNRS UMR2001, Department of Microbiology, Institut Pasteur, 25-28 Rue du Dr. Roux, 75724 Paris, France;
| | - Uwe Mamat
- Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (U.M.); (U.E.S.)
| | - Ulrich E. Schaible
- Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, 23845 Borstel, Germany; (U.M.); (U.E.S.)
| | - José A. Gálvez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC—Departamento de Química Orgánica, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain; (J.A.G.); (M.D.D.-d.-V.)
| | - María D. Díaz-de-Villegas
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC—Departamento de Química Orgánica, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain; (J.A.G.); (M.D.D.-d.-V.)
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium; (H.B.); (F.H.)
| | - José A. Aínsa
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
- CIBER de Enfermedades Respiratorias—CIBERES, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Units: BIFI-IQFR (CSIC) and GBsC-CSIC, University of Zaragoza, 50018 Zaragoza, Spain; (S.S.); (J.J.G.-F.); (A.M.); (R.M.); (M.C.-G.); (E.A.-C.); (A.V.-C.); (J.A.A.)
- Departamento de Bioquímica y Biología Molecular y Celular, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Aragon Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Correspondence:
| |
Collapse
|
9
|
Zhao F, Wang Q, Zhang Y, Lei L. Anaerobic biosynthesis of rhamnolipids by Pseudomonas aeruginosa: performance, mechanism and its application potential for enhanced oil recovery. Microb Cell Fact 2021; 20:103. [PMID: 34016105 PMCID: PMC8139158 DOI: 10.1186/s12934-021-01593-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/08/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa, the rhamnolipids-producer, is one of dominant bacteria in oil reservoirs. Although P. aeruginosa strains are facultative bacteria, the anaerobic biosynthesis mechanism of rhamnolipids is unclear. Considering the oxygen scarcity within oil reservoirs, revealing the anaerobic biosynthesis mechanism of rhamnolipids are significant for improving the in-situ production of rhamnolipids in oil reservoirs to enhance oil recovery. RESULTS Pseudomonas aeruginosa SG anaerobically produced rhamnolipids using glycerol rather than glucose as carbon sources. Two possible hypotheses on anaerobic biosynthesis of rhamnolipids were proposed, the new anaerobic biosynthetic pathway (hypothesis 1) and the highly anaerobic expression of key genes (hypothesis 2). Knockout strain SGΔrmlB failed to anaerobically produce rhamnolipids using glycerol. Comparative transcriptomics analysis results revealed that glucose inhibited the anaerobic expression of genes rmlBDAC, fabABG, rhlABRI, rhlC and lasI. Using glycerol as carbon source, the anaerobic expression of key genes in P. aeruginosa SG was significantly up-regulated. The anaerobic biosynthetic pathway of rhamnolipids in P. aeruginosa SG were confirmed, involving the gluconeogenesis from glycerol, the biosynthesis of dTDP-L-rhamnose and β-hydroxy fatty acids, and the rhamnosyl transfer process. The engineered strain P. aeruginosa PrhlAB constructed in previous work enhanced 9.67% of oil recovery higher than the wild-type strain P. aeruginosa SG enhancing 8.33% of oil recovery. CONCLUSION The highly anaerobic expression of key genes enables P. aeruginosa SG to anaerobically biosynthesize rhamnolipids. The genes, rmlBDAC, fabABG, rhlABRI, rhlC and lasI, are key genes for anaerobic biosynthesis of rhamnolipid by P. aeruginosa. Improving the anaerobic production of rhamnolipids better enhanced oil recovery in core flooding test. This study fills the gaps in the anaerobic biosynthesis mechanism of rhamnolipids. Results are significant for the metabolic engineering of P. aeruginosa to enhance anaerobic production of rhamnolipids.
Collapse
Affiliation(s)
- Feng Zhao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong Province, China.
| | - Qingzhi Wang
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong Province, China
| | - Ying Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, Liaoning Province, China
| | - Liying Lei
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, Liaoning Province, China
| |
Collapse
|
10
|
Qu D, Zhao X, Sun Y, Wu FL, Tao SC. Mycobacterium tuberculosis Thymidylyltransferase RmlA Is Negatively Regulated by Ser/Thr Protein Kinase PknB. Front Microbiol 2021; 12:643951. [PMID: 33868202 PMCID: PMC8044546 DOI: 10.3389/fmicb.2021.643951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/28/2021] [Indexed: 11/13/2022] Open
Abstract
Ser/Thr phosphorylation by serine/threonine protein kinases (STPKs) plays significant roles in molecular regulation, which allows Mycobacteria to adapt their cell wall structure in response to the environment changes. Identifying direct targets of STPKs and determining their activities are therefore critical to revealing their function in Mycobacteria, for example, in cell wall formation and virulence. Herein, we reported that RmlA, a crucial L-rhamnose biosynthesis enzyme, is a substrate of STPK PknB in Mycobacterium tuberculosis (M. tuberculosis). Mass spectrometry analysis revealed that RmlA is phosphorylated at Thr-12, Thr-54, Thr-197, and Thr-12 is located close to the catalytic triad of RmlA. Biochemical and phenotypic analysis of two RmlA mutants, T12A/T12D, showed that their activities were reduced, and cell wall formation was negatively affected. Moreover, virulence of RmlA T12D mutant was attenuated in a macrophage model. Overall, these results provide the first evidence for the role of PknB-dependent RmlA phosphorylation in regulating cell wall formation in Mycobacteria, with significant implications for pathogenicity.
Collapse
Affiliation(s)
- Dehui Qu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohui Zhao
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Yao Sun
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Fan-Lin Wu
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, School of Agriculture, Ludong University, Yantai, China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Ranjan M, Khokhani D, Nayaka S, Srivastava S, Keyser ZP, Ranjan A. Genomic diversity and organization of complex polysaccharide biosynthesis clusters in the genus Dickeya. PLoS One 2021; 16:e0245727. [PMID: 33571209 PMCID: PMC7877592 DOI: 10.1371/journal.pone.0245727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
The pectinolytic genus Dickeya (formerly Erwinia chrysanthemi) comprises numerous pathogenic species which cause diseases in various crops and ornamental plants across the globe. Their pathogenicity is governed by complex multi-factorial processes of adaptive virulence gene regulation. Extracellular polysaccharides and lipopolysaccharides present on bacterial envelope surface play a significant role in the virulence of phytopathogenic bacteria. However, very little is known about the genomic location, diversity, and organization of the polysaccharide and lipopolysaccharide biosynthetic gene clusters in Dickeya. In the present study, we report the diversity and structural organization of the group 4 capsule (G4C)/O-antigen capsule, putative O-antigen lipopolysaccharide, enterobacterial common antigen, and core lipopolysaccharide biosynthesis clusters from 54 Dickeya strains. The presence of these clusters suggests that Dickeya has both capsule and lipopolysaccharide carrying O-antigen to their external surface. These gene clusters are key regulatory components in the composition and structure of the outer surface of Dickeya. The O-antigen capsule/group 4 capsule (G4C) coding region shows a variation in gene content and organization. Based on nucleotide sequence homology in these Dickeya strains, two distinct groups, G4C group I and G4C group II, exist. However, comparatively less variation is observed in the putative O-antigen lipopolysaccharide cluster in Dickeya spp. except for in Dickeya zeae. Also, enterobacterial common antigen and core lipopolysaccharide biosynthesis clusters are present mostly as conserved genomic regions. The variation in the O-antigen capsule and putative O-antigen lipopolysaccharide coding region in relation to their phylogeny suggests a role of multiple horizontal gene transfer (HGT) events. These multiple HGT processes might have been manifested into the current heterogeneity of O-antigen capsules and O-antigen lipopolysaccharides in Dickeya strains during its evolution.
Collapse
Affiliation(s)
- Manish Ranjan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, Uttar Pradesh, India
| | - Devanshi Khokhani
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Plant Pathology, University of Minnesota—Twin Cities, St. Paul, Minnesota, United States of America
| | - Sanjeeva Nayaka
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, Uttar Pradesh, India
| | - Suchi Srivastava
- CSIR-National Botanical Research Institute (CSIR-NBRI), Lucknow, Uttar Pradesh, India
| | - Zachary P. Keyser
- Department of Agronomy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ashish Ranjan
- Department of Plant Pathology, University of Minnesota—Twin Cities, St. Paul, Minnesota, United States of America
- Department of Plant Sciences (SLS), University of Hyderabad, Hyderabad, India
| |
Collapse
|
12
|
Wittgens A, Rosenau F. Heterologous Rhamnolipid Biosynthesis: Advantages, Challenges, and the Opportunity to Produce Tailor-Made Rhamnolipids. Front Bioeng Biotechnol 2020; 8:594010. [PMID: 33195161 PMCID: PMC7642724 DOI: 10.3389/fbioe.2020.594010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
The first heterologous expression of genes responsible for the production of rhamnolipids was already implemented in the mid-1990s during the functional identification of the rhlAB operon. This was the starting shot for multiple approaches to establish the rhamnolipid biosynthesis in different host organisms. Since most of the native rhamnolipid producing organisms are human or plant pathogens, the intention for these ventures was the establishment of non-pathogenic organisms as heterologous host for the production of rhamnolipids. The pathogenicity of producing organisms is one of the bottlenecks for applications of rhamnolipids in many industrial products especially foods and cosmetics. The further advantage of heterologous rhamnolipid production is the circumvention of the complex regulatory network, which regulates the rhamnolipid biosynthesis in wild type production strains. Furthermore, a suitable host with an optimal genetic background to provide sufficient amounts of educts allows the production of tailor-made rhamnolipids each with its specific physico-chemical properties depending on the contained numbers of rhamnose sugar residues and the numbers, chain length and saturation degree of 3-hydroxyfatty acids. The heterologous expression of rhl genes can also enable the utilization of unusual carbon sources for the production of rhamnolipids depending on the host organism.
Collapse
Affiliation(s)
- Andreas Wittgens
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Ulm Center for Peptide Pharmaceuticals (U-PEP), Ulm University, Ulm, Germany
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany.,Ulm Center for Peptide Pharmaceuticals (U-PEP), Ulm University, Ulm, Germany.,Department Synthesis of Macromolecules, Max-Planck-Institute for Polymer Research Mainz, Mainz, Germany
| |
Collapse
|
13
|
Identification of the Pseudomonas aeruginosa O17 and O15 O-Specific Antigen Biosynthesis Loci Reveals an ABC Transporter-Dependent Synthesis Pathway and Mechanisms of Genetic Diversity. J Bacteriol 2020; 202:JB.00347-20. [PMID: 32690555 DOI: 10.1128/jb.00347-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Many bacterial cell surface glycans, such as the O antigen component of lipopolysaccharide (LPS), are produced via the so-called Wzx/Wzy- or ABC transporter-dependent pathways. O antigens are highly diverse polysaccharides that protect bacteria from their environment and engage in important host-pathogen interactions. The specific structure and composition of O antigens are the basis of classifying bacteria into O serotypes. In the opportunistic pathogen Pseudomonas aeruginosa, there are currently 20 known O-specific antigen (OSA) structures. The clusters of genes responsible for 18 of these O antigens have been identified, all of which follow the Wzx/Wzy-dependent pathway and are located at a common locus. In this study, we located the two unidentified O antigen biosynthesis clusters responsible for the synthesis of the O15 and the O17 OSA structures by analyzing published whole-genome sequence data. Intriguingly, these clusters were found outside the conserved OSA biosynthesis locus and were likely acquired through multiple horizontal gene transfer events. Based on data from knockout and overexpression studies, we determined that the synthesis of these O antigens follows an ABC transporter-dependent rather than a Wzx/Wzy-dependent pathway. In addition, we collected evidence to show that the O15 and O17 polysaccharide chain lengths are regulated by molecular rulers with distinct and variable domain architectures. The findings in this report are critical for a comprehensive understanding of O antigen biosynthesis in P. aeruginosa and provide a framework for future studies.IMPORTANCE P. aeruginosa is a problematic opportunistic pathogen that causes diseases in those with compromised host defenses, such as those suffering from cystic fibrosis. This bacterium produces a number of virulence factors, including a serotype-specific O antigen. Here, we identified and characterized the gene clusters that produce the O15 and O17 O antigens and show that they utilize a pathway for synthesis that is distinct from that of the 18 other known serotypes. We also provide evidence that these clusters have acquired mutations in specific biosynthesis genes and have undergone extensive horizontal gene transfer within the P. aeruginosa population. These findings expand on our understanding of O antigen biosynthesis in Gram-negative bacteria and the mechanisms that drive O antigen diversity.
Collapse
|
14
|
Bator I, Karmainski T, Tiso T, Blank LM. Killing Two Birds With One Stone - Strain Engineering Facilitates the Development of a Unique Rhamnolipid Production Process. Front Bioeng Biotechnol 2020; 8:899. [PMID: 32850747 PMCID: PMC7427536 DOI: 10.3389/fbioe.2020.00899] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
High-titer biosurfactant production in aerated fermenters using hydrophilic substrates is often hampered by excessive foaming. Ethanol has been shown to efficiently destabilize foam of rhamnolipids, a popular group of biosurfactants. To exploit this feature, we used ethanol as carbon source and defoamer, without introducing novel challenges for rhamnolipid purification. In detail, we engineered the non-pathogenic Pseudomonas putida KT2440 for heterologous rhamnolipid production from ethanol. To obtain a strain with high growth rate on ethanol as sole carbon source at elevated ethanol concentrations, adaptive laboratory evolution (ALE) was performed. Genome re-sequencing allowed to allocate the phenotypic changes to emerged mutations. Several genes were affected and differentially expressed including alcohol and aldehyde dehydrogenases, potentially contributing to the increased growth rate on ethanol of 0.51 h-1 after ALE. Further, mutations in genes were found, which possibly led to increased ethanol tolerance. The engineered rhamnolipid producer was used in a fed-batch fermentation with automated ethanol addition over 23 h, which resulted in a 3-(3-hydroxyalkanoyloxy)alkanoates and mono-rhamnolipids concentration of about 5 g L-1. The ethanol concomitantly served as carbon source and defoamer with the advantage of increased rhamnolipid and biomass production. In summary, we present a unique combination of strain and process engineering that facilitated the development of a stable fed-batch fermentation for rhamnolipid production, circumventing mechanical or chemical foam disruption.
Collapse
Affiliation(s)
- Isabel Bator
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Tobias Karmainski
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Till Tiso
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| | - Lars M Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany.,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
15
|
Wright RCT, Friman VP, Smith MCM, Brockhurst MA. Resistance Evolution against Phage Combinations Depends on the Timing and Order of Exposure. mBio 2019; 10:e01652-19. [PMID: 31551330 PMCID: PMC6759759 DOI: 10.1128/mbio.01652-19] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/29/2019] [Indexed: 01/07/2023] Open
Abstract
Phage therapy is a promising alternative to chemotherapeutic antibiotics for the treatment of bacterial infections. However, despite recent clinical uses of combinations of phages to treat multidrug-resistant infections, a mechanistic understanding of how bacteria evolve resistance against multiple phages is lacking, limiting our ability to deploy phage combinations optimally. Here, we show, using Pseudomonas aeruginosa and pairs of phages targeting shared or distinct surface receptors, that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance. Whereas sequential exposure allowed bacteria to acquire multiple resistance mutations effective against both phages, this evolutionary trajectory was prevented by simultaneous exposure, resulting in quantitatively weaker resistance. The order of phage exposure determined the fitness costs of sequential resistance, such that certain sequential orders imposed much higher fitness costs than the same phage pair in the reverse order. Together, these data suggest that phage combinations can be optimized to limit the strength of evolved resistances while maximizing their associated fitness costs to promote the long-term efficacy of phage therapy.IMPORTANCE Globally rising rates of antibiotic resistance have renewed interest in phage therapy where combinations of phages have been successfully used to treat multidrug-resistant infections. To optimize phage therapy, we first need to understand how bacteria evolve resistance against combinations of multiple phages. Here, we use simple laboratory experiments and genome sequencing to show that the timing and order of phage exposure determine the strength, cost, and mutational basis of resistance evolution in the opportunistic pathogen Pseudomonas aeruginosa These findings suggest that phage combinations can be optimized to limit the emergence and persistence of resistance, thereby promoting the long-term usefulness of phage therapy.
Collapse
Affiliation(s)
- Rosanna C T Wright
- Department of Biology, University of York, York, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | | | | | - Michael A Brockhurst
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Dulcey CE, López de Los Santos Y, Létourneau M, Déziel E, Doucet N. Semi-rational evolution of the 3-(3-hydroxyalkanoyloxy)alkanoate (HAA) synthase RhlA to improve rhamnolipid production in Pseudomonas aeruginosa and Burkholderia glumae. FEBS J 2019; 286:4036-4059. [PMID: 31177633 DOI: 10.1111/febs.14954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/12/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022]
Abstract
The 3-(3-hydroxyalkanoyloxy)alkanoate (HAA) synthase RhlA is an essential enzyme involved in the biosynthesis of HAAs in Pseudomonas and Burkholderia species. RhlA modulates the aliphatic chain length in rhamnolipids, conferring distinct physicochemical properties to these biosurfactants exhibiting promising industrial and pharmaceutical value. A detailed molecular understanding of substrate specificity and catalytic performance in RhlA could offer protein engineering tools to develop designer variants involved in the synthesis of novel rhamnolipid mixtures for tailored eco-friendly products. However, current directed evolution progress remains limited due to the absence of high-throughput screening methodologies and lack of an experimentally resolved RhlA structure. In the present work, we used comparative modeling and chimeric-based approaches to perform a comprehensive semi-rational mutagenesis of RhlA from Pseudomonas aeruginosa. Our extensive RhlA mutational variants and chimeric hybrids between the Pseudomonas and Burkholderia homologs illustrate selective modulation of rhamnolipid alkyl chain length in both Pseudomonas aeruginosa and Burkholderia glumae. Our results also demonstrate the implication of a putative cap-domain motif that covers the catalytic site of the enzyme and provides substrate specificity to RhlA. This semi-rational mutant-based survey reveals promising 'hot-spots' for the modulation of RL congener patterns and potential control of enzyme activity, in addition to uncovering residue positions that modulate substrate selectivity between the Pseudomonas and Burkholderia functional homologs. DATABASE: Model data are available in the PMDB database under the accession number PM0081867.
Collapse
Affiliation(s)
- Carlos Eduardo Dulcey
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Yossef López de Los Santos
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Université du Québec, Laval, Canada.,PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Canada
| |
Collapse
|
17
|
Chen X, Li G, Liao X, Fang J, Li B, Yu S, Sun M, Wu J, Zhang L, Hu Y, Jiao J, Liu T, Xu L, Chen X, Liu M, Li H, Hu F, Sun K. A switch in the poly(dC)/RmlB complex regulates bacterial persister formation. Nat Commun 2019; 10:27. [PMID: 30604752 PMCID: PMC6318315 DOI: 10.1038/s41467-018-07861-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/27/2018] [Indexed: 01/16/2023] Open
Abstract
Bacterial persisters are phenotypic variants that tolerate exposure to lethal antibiotics. These dormant cells are responsible for chronic and recurrent infections. Multiple mechanisms have been linked to persister formation. Here, we report that a complex, consisting of an extracellular poly(dC) and its membrane-associated binding protein RmlB, appears to be associated with persistence of the opportunistic pathogen Pseudomonas aeruginosa. Environmental stimuli triggers a switch in the complex physiological state (from poly(dC)/RmlB to P-poly(dC)/RmlB or RmlB). In response to the switch, bacteria decrease proton motive force and intracellular ATP levels, forming dormant cells. This alteration in complex status is linked to a (p)ppGpp-controlled signaling pathway that includes inorganic polyphosphate, Lon protease, exonuclease VII (XseA/XseB), and the type III secretion system. The persistence might be also an adaptive response to the lethal action of the dTDP-l-rhamnose pathway shutdown, which occurs due to switching of poly(dC)/RmlB. The mechanisms underlying bacterial persisters formation remain poorly understood. Here, Chen et al. identify a complex formed by extracellular poly(dC) and the binding protein RmlB that controls Pseudomonas aeruginosa persister formation in response to environmental stimuli.
Collapse
Affiliation(s)
- Xu Chen
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gen Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuewei Liao
- Center for Analysis and Testing, Nanjing Normal University, Nanjing, China
| | - Jie Fang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Bo Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shanshan Yu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Wu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Lihao Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiaguo Jiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ting Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyun Chen
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Manqiang Liu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.,Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, China.,Jiangsu Key Laboratory for Solid Organic Waste Utilization, Nanjing, China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kouhong Sun
- Zoonbio Biotechnology Co., Ltd, Nanjing, China
| |
Collapse
|
18
|
On the road towards tailor-made rhamnolipids: current state and perspectives. Appl Microbiol Biotechnol 2018; 102:8175-8185. [DOI: 10.1007/s00253-018-9240-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022]
|
19
|
Tan YN, Li Q. Microbial production of rhamnolipids using sugars as carbon sources. Microb Cell Fact 2018; 17:89. [PMID: 29884194 PMCID: PMC5994124 DOI: 10.1186/s12934-018-0938-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/31/2018] [Indexed: 12/27/2022] Open
Abstract
Rhamnolipids are a class of biosurfactants with effective surface-active properties. The high cost of microbial production of rhamnolipids largely affects their commercial applications. To reduce the production post, research has been carried out in screening more powerful strains, engineering microbes with higher biosurfactant yields and exploring cheaper substrates to reduce the production cost. Extensive refining is required for biosurfactant production using oils and oil-containing wastes, necessitating the use of complex and expensive biosurfactant recovery methods such as extraction with solvents or acid precipitation. As raw materials normally can account for 10-30% of the overall production cost, sugars have been proven to be an alternative carbon source for microbial production of rhamnolipids due to its lower costs and straightforward processing techniques. Studies have thus been focused on using tropical agroindustrial crop residues as renewable substrates. Herein, we reviewed studies that are using sugar-containing substrates as carbon sources for producing rhamnolipids. We speculate that sugars derived from agricultural wastes rich in cellulose and sugar-containing wastes are potential carbon sources in fermentation while challenges still remain in large scales.
Collapse
Affiliation(s)
- Yun Nian Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Singapore, Jurong Island 627833 Singapore
| | - Qingxin Li
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Singapore, Jurong Island 627833 Singapore
| |
Collapse
|
20
|
Artier J, da Silva Zandonadi F, de Souza Carvalho FM, Pauletti BA, Leme AFP, Carnielli CM, Selistre‐de‐Araujo HS, Bertolini MC, Ferro JA, Belasque Júnior J, de Oliveira JCF, Novo‐Mansur MTM. Comparative proteomic analysis of Xanthomonas citri ssp. citri periplasmic proteins reveals changes in cellular envelope metabolism during in vitro pathogenicity induction. MOLECULAR PLANT PATHOLOGY 2018; 19:143-157. [PMID: 27798950 PMCID: PMC6638008 DOI: 10.1111/mpp.12507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Citrus canker is a plant disease caused by Gram-negative bacteria from the genus Xanthomonas. The most virulent species is Xanthomonas citri ssp. citri (XAC), which attacks a wide range of citrus hosts. Differential proteomic analysis of the periplasm-enriched fraction was performed for XAC cells grown in pathogenicity-inducing (XAM-M) and pathogenicity-non-inducing (nutrient broth) media using two-dimensional electrophoresis combined with liquid chromatography-tandem mass spectrometry. Amongst the 40 proteins identified, transglycosylase was detected in a highly abundant spot in XAC cells grown under inducing condition. Additional up-regulated proteins related to cellular envelope metabolism included glucose-1-phosphate thymidylyltransferase, dTDP-4-dehydrorhamnose-3,5-epimerase and peptidyl-prolyl cis-trans-isomerase. Phosphoglucomutase and superoxide dismutase proteins, known to be involved in pathogenicity in other Xanthomonas species or organisms, were also detected. Western blot and quantitative real-time polymerase chain reaction analyses for transglycosylase and superoxide dismutase confirmed that these proteins were up-regulated under inducing condition, consistent with the proteomic results. Multiple spots for the 60-kDa chaperonin and glyceraldehyde-3-phosphate dehydrogenase were identified, suggesting the presence of post-translational modifications. We propose that substantial alterations in cellular envelope metabolism occur during the XAC infectious process, which are related to several aspects, from defence against reactive oxygen species to exopolysaccharide synthesis. Our results provide new candidates for virulence-related proteins, whose abundance correlates with the induction of pathogenicity and virulence genes, such as hrpD6, hrpG, hrpB7, hpa1 and hrpX. The results present new potential targets against XAC to be investigated in further functional studies.
Collapse
Affiliation(s)
- Juliana Artier
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e EvoluçãoUniversidade Federal de São Carlos, UFSCarSão CarlosSP13565‐905Brazil
| | - Flávia da Silva Zandonadi
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e EvoluçãoUniversidade Federal de São Carlos, UFSCarSão CarlosSP13565‐905Brazil
| | - Flávia Maria de Souza Carvalho
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESPUniversidade Estadual PaulistaJaboticabalSP14884‐900Brazil
| | - Bianca Alves Pauletti
- LNBio, CNPEMLaboratório de Espectrometria de Massas, Laboratório Nacional de BiociênciasCampinasSP13083‐970Brazil
| | - Adriana Franco Paes Leme
- LNBio, CNPEMLaboratório de Espectrometria de Massas, Laboratório Nacional de BiociênciasCampinasSP13083‐970Brazil
| | - Carolina Moretto Carnielli
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e EvoluçãoUniversidade Federal de São Carlos, UFSCarSão CarlosSP13565‐905Brazil
| | | | - Maria Célia Bertolini
- Departamento de Bioquímica e Tecnologia Química, Instituto de Química, UNESPUniversidade Estadual PaulistaAraraquaraSP14800‐060Brazil
| | - Jesus Aparecido Ferro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESPUniversidade Estadual PaulistaJaboticabalSP14884‐900Brazil
| | - José Belasque Júnior
- Departamento de Fitopatologia e Nematologia, Escola Superior de Agricultura ‘Luiz de Queiroz’Universidade de São PauloPiracicabaSP13418‐900Brazil
| | - Julio Cezar Franco de Oliveira
- Laboratório de Interações Microbianas, Departamento de Ciências BiológicasUniversidade Federal de São Paulo, UNIFESPDiademaSP09913‐030Brazil
| | - Maria Teresa Marques Novo‐Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada, Departamento de Genética e EvoluçãoUniversidade Federal de São Carlos, UFSCarSão CarlosSP13565‐905Brazil
| |
Collapse
|
21
|
Wittgens A, Santiago-Schuebel B, Henkel M, Tiso T, Blank LM, Hausmann R, Hofmann D, Wilhelm S, Jaeger KE, Rosenau F. Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida—a step forward to tailor-made rhamnolipids. Appl Microbiol Biotechnol 2017; 102:1229-1239. [DOI: 10.1007/s00253-017-8702-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/03/2017] [Accepted: 12/07/2017] [Indexed: 01/21/2023]
|
22
|
A Broad-Host-Range Tailocin from Burkholderia cenocepacia. Appl Environ Microbiol 2017; 83:AEM.03414-16. [PMID: 28258146 PMCID: PMC5411513 DOI: 10.1128/aem.03414-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
The Burkholderia cepacia complex (Bcc) consists of 20 closely related Gram-negative bacterial species that are significant pathogens for persons with cystic fibrosis (CF). Some Bcc strains are highly transmissible and resistant to multiple antibiotics, making infection difficult to treat. A tailocin (phage tail-like bacteriocin), designated BceTMilo, with a broad host range against members of the Bcc, was identified in B. cenocepacia strain BC0425. Sixty-eight percent of Bcc representing 10 species and 90% of non-Bcc Burkholderia strains tested were sensitive to BceTMilo. BceTMilo also showed killing activity against Pseudomonas aeruginosa PAO1 and derivatives. Liquid chromatography-mass spectrometry analysis of the major BceTMilo proteins was used to identify a 23-kb tailocin locus in a draft BC0425 genome. The BceTMilo locus was syntenic and highly similar to a 24.6-kb region on chromosome 1 of B. cenocepacia J2315 (BCAL0081 to BCAL0107). A close relationship and synteny were observed between BceTMilo and Burkholderia phage KL3 and, by extension, with paradigm temperate myophage P2. Deletion mutants in the gene cluster encoding enzymes for biosynthesis of lipopolysaccharide (LPS) in the indicator strain B. cenocepacia K56-2 conferred resistance to BceTMilo. Analysis of the defined mutants in LPS biosynthetic genes indicated that an α-d-glucose residue in the core oligosaccharide is the receptor for BceTMilo.IMPORTANCE BceTMilo, presented in this study, is a broad-host-range tailocin active against Burkholderia spp. As such, BceTMilo and related or modified tailocins have potential as bactericidal therapeutic agents against plant- and human-pathogenic Burkholderia.
Collapse
|
23
|
Varjani SJ, Upasani VN. Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. BIORESOURCE TECHNOLOGY 2017; 232:389-397. [PMID: 28238638 DOI: 10.1016/j.biortech.2017.02.047] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/08/2017] [Accepted: 02/12/2017] [Indexed: 05/15/2023]
Abstract
Surfactants are one of the most versatile group of chemicals used in various industrial processes. Their market is competitive, and manufacturers will have to expand surfactant production in ecofriendly and cost effective manner. Increasing interest in biosurfactants led to an intense research for environment friendly and cost-efficient production of biosurfactant. Structural diversity and functional properties of biosurfactants make them an attractive group of compounds for potential use in wide variety of industrial, environmental and biotechnological applications. Screening methods make task easier to obtain potential biosurfactant producing microorganisms. Variety of purification and analytical methods are available for biosurfactant structural characterization. This review aims to compile information on types and properties of biosurfactant, microbial screening methods as well as biosynthesis, extraction, purification and structural characterization of biosurfactant using rhamnolipid as a model biosurfactant. It also describes factors affecting rhamnolipid production. It gives an overview of oil recovery using biosurfactant from Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Sunita J Varjani
- Department of Microbiology, M.G. Science Institute, Ahmedabad 380009, Gujarat, India.
| | - Vivek N Upasani
- Department of Microbiology, M.G. Science Institute, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
24
|
|
25
|
Farasin J, Koechler S, Varet H, Deschamps J, Dillies MA, Proux C, Erhardt M, Huber A, Jagla B, Briandet R, Coppée JY, Arsène-Ploetze F. Comparison of biofilm formation and motility processes in arsenic-resistant Thiomonas spp. strains revealed divergent response to arsenite. Microb Biotechnol 2017; 10:789-803. [PMID: 28169492 PMCID: PMC5481541 DOI: 10.1111/1751-7915.12556] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 11/29/2022] Open
Abstract
Bacteria of the genus Thiomonas are found ubiquitously in arsenic contaminated waters such as acid mine drainage (AMD), where they contribute to the precipitation and the natural bioremediation of arsenic. In these environments, these bacteria have developed a large range of resistance strategies among which the capacity to form particular biofilm structures. The biofilm formation is one of the most ubiquitous adaptive response observed in prokaryotes to various stresses, such as those induced in the presence of toxic compounds. This study focused on the process of biofilm formation in three Thiomonas strains (CB1, CB2 and CB3) isolated from the same AMD. The results obtained here show that these bacteria are all capable of forming biofilms, but the architecture and the kinetics of formation of these biofilms differ depending on whether arsenite is present in the environment and from one strain to another. Indeed, two strains favoured biofilm formation, whereas one favoured motility in the presence of arsenite. To identify the underlying mechanisms, the patterns of expression of some genes possibly involved in the process of biofilm formation were investigated in Thiomonas sp. CB2 in the presence and absence of arsenite, using a transcriptomic approach (RNA‐seq). The findings obtained here shed interesting light on how the formation of biofilms, and the motility processes contribute to the adaptation of Thiomonas strains to extreme environments.
Collapse
Affiliation(s)
- Julien Farasin
- Laboratoire Génétique moléculaire, Génomique et Microbiologie, UMR7156, CNRS and Université de Strasbourg, Institut de Botanique, Strasbourg, France
| | - Sandrine Koechler
- Laboratoire Génétique moléculaire, Génomique et Microbiologie, UMR7156, CNRS and Université de Strasbourg, Institut de Botanique, Strasbourg, France
| | - Hugo Varet
- Institut Pasteur, Plate-forme Transcriptome et Epigenome, BioMics, Centre d'innovation et recherche technologique, Paris, France.,Institut Pasteur, Hub Bioinformatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756, IP CNRS), Paris, France
| | - Julien Deschamps
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Agnès Dillies
- Institut Pasteur, Plate-forme Transcriptome et Epigenome, BioMics, Centre d'innovation et recherche technologique, Paris, France.,Institut Pasteur, Hub Bioinformatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756, IP CNRS), Paris, France
| | - Caroline Proux
- Institut Pasteur, Plate-forme Transcriptome et Epigenome, BioMics, Centre d'innovation et recherche technologique, Paris, France
| | - Mathieu Erhardt
- Université de Strasbourg, CNRS, IBMP UPR 2357, F-67000 Strasbourg, France
| | - Aline Huber
- Laboratoire Génétique moléculaire, Génomique et Microbiologie, UMR7156, CNRS and Université de Strasbourg, Institut de Botanique, Strasbourg, France
| | - Bernd Jagla
- Institut Pasteur, Plate-forme Transcriptome et Epigenome, BioMics, Centre d'innovation et recherche technologique, Paris, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Yves Coppée
- Institut Pasteur, Plate-forme Transcriptome et Epigenome, BioMics, Centre d'innovation et recherche technologique, Paris, France
| | - Florence Arsène-Ploetze
- Laboratoire Génétique moléculaire, Génomique et Microbiologie, UMR7156, CNRS and Université de Strasbourg, Institut de Botanique, Strasbourg, France
| |
Collapse
|
26
|
Wittgens A, Kovacic F, Müller MM, Gerlitzki M, Santiago-Schübel B, Hofmann D, Tiso T, Blank LM, Henkel M, Hausmann R, Syldatk C, Wilhelm S, Rosenau F. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl Microbiol Biotechnol 2016; 101:2865-2878. [PMID: 27988798 PMCID: PMC5352749 DOI: 10.1007/s00253-016-8041-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/25/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
The human pathogenic bacterium Pseudomonas aeruginosa produces rhamnolipids, glycolipids with functions for bacterial motility, biofilm formation, and uptake of hydrophobic substrates. Rhamnolipids represent a chemically heterogeneous group of secondary metabolites composed of one or two rhamnose molecules linked to one or mostly two 3-hydroxyfatty acids of various chain lengths. The biosynthetic pathway involves rhamnosyltransferase I encoded by the rhlAB operon, which synthesizes 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) followed by their coupling to one rhamnose moiety. The resulting mono-rhamnolipids are converted to di-rhamnolipids in a third reaction catalyzed by the rhamnosyltransferase II RhlC. However, the mechanism behind the biosynthesis of rhamnolipids containing only a single fatty acid is still unknown. To understand the role of proteins involved in rhamnolipid biosynthesis the heterologous expression of rhl-genes in non-pathogenic Pseudomonas putida KT2440 strains was used in this study to circumvent the complex quorum sensing regulation in P. aeruginosa. Our results reveal that RhlA and RhlB are independently involved in rhamnolipid biosynthesis and not in the form of a RhlAB heterodimer complex as it has been previously postulated. Furthermore, we demonstrate that mono-rhamnolipids provided extracellularly as well as HAAs as their precursors are generally taken up into the cell and are subsequently converted to di-rhamnolipids by P. putida and the native host P. aeruginosa. Finally, our results throw light on the biosynthesis of rhamnolipids containing one fatty acid, which occurs by hydrolyzation of typical rhamnolipids containing two fatty acids, valuable for the production of designer rhamnolipids with desired physicochemical properties.
Collapse
Affiliation(s)
- Andreas Wittgens
- Ulm Center for Peptide Pharmaceuticals (U-PEP), Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany. .,Institute for Molecular Enzyme Technology (IMET), Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
| | - Filip Kovacic
- Institute for Molecular Enzyme Technology (IMET), Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Markus Michael Müller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biopharmaceutical and Analytical Development, Birkendorfer Straße 65, 88400, Biberach an der Riß, Germany
| | - Melanie Gerlitzki
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131, Karlsruhe, Germany
| | - Beatrix Santiago-Schübel
- Central Institute for Engineering, Electronics and Analytics, Section Analytics (ZEA-3), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Diana Hofmann
- Institute for Bio- and Geosciences, IBG-3: Agrosphere, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Till Tiso
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Lars Mathias Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Christoph Syldatk
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, 76131, Karlsruhe, Germany
| | - Susanne Wilhelm
- Institute for Molecular Enzyme Technology (IMET), Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.,iQu Collegiate-Didactics, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Frank Rosenau
- Ulm Center for Peptide Pharmaceuticals (U-PEP), Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.,Institute for Molecular Enzyme Technology (IMET), Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| |
Collapse
|
27
|
Wigneswaran V, Nielsen KF, Sternberg C, Jensen PR, Folkesson A, Jelsbak L. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Microb Cell Fact 2016; 15:181. [PMID: 27776509 PMCID: PMC5075983 DOI: 10.1186/s12934-016-0581-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although a transition toward sustainable production of chemicals is needed, the physiochemical properties of certain biochemicals such as biosurfactants make them challenging to produce in conventional bioreactor systems. Alternative production platforms such as surface-attached biofilm populations could potentially overcome these challenges. Rhamnolipids are a group of biosurfactants highly relevant for industrial applications. However, they are mainly produced by the opportunistic pathogen Pseudomonas aeruginosa using hydrophobic substrates such as plant oils. As the biosynthesis is tightly regulated in P. aeruginosa a heterologous production of rhamnolipids in a safe organism can relive the production from many of these limitations and alternative substrates could be used. RESULTS In the present study, heterologous production of biosurfactants was investigated using rhamnolipids as the model compound in biofilm encased Pseudomonas putida KT2440. The rhlAB operon from P. aeruginosa was introduced into P. putida to produce mono-rhamnolipids. A synthetic promoter library was used in order to bypass the normal regulation of rhamnolipid synthesis and to provide varying expression levels of the rhlAB operon resulting in different levels of rhamnolipid production. Biosynthesis of rhamnolipids in P. putida decreased bacterial growth rate but stimulated biofilm formation by enhancing cell motility. Continuous rhamnolipid production in a biofilm was achieved using flow cell technology. Quantitative and structural investigations of the produced rhamnolipids were made by ultra performance liquid chromatography combined with high resolution mass spectrometry (HRMS) and tandem HRMS. The predominant rhamnolipid congener produced by the heterologous P. putida biofilm was mono-rhamnolipid with two C10 fatty acids. CONCLUSION This study shows a successful application of synthetic promoter library in P. putida KT2440 and a heterologous biosynthesis of rhamnolipids in biofilm encased cells without hampering biofilm capabilities. These findings expands the possibilities of cultivation setups and paves the way for employing biofilm flow systems as production platforms for biochemicals, which as a consequence of physiochemical properties are troublesome to produce in conventional fermenter setups, or for production of compounds which are inhibitory or toxic to the production organisms.
Collapse
Affiliation(s)
- Vinoth Wigneswaran
- Department of Systems Biology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Kristian Fog Nielsen
- Department of Systems Biology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Claus Sternberg
- Department of Systems Biology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Anders Folkesson
- National Veterinary Institute, Technical University of Denmark, 1870, Frederiksberg C, Denmark
| | - Lars Jelsbak
- Department of Systems Biology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
28
|
McDaniel C, Su S, Panmanee W, Lau GW, Browne T, Cox K, Paul AT, Ko SHB, Mortensen JE, Lam JS, Muruve DA, Hassett DJ. A Putative ABC Transporter Permease Is Necessary for Resistance to Acidified Nitrite and EDTA in Pseudomonas aeruginosa under Aerobic and Anaerobic Planktonic and Biofilm Conditions. Front Microbiol 2016; 7:291. [PMID: 27064218 PMCID: PMC4817314 DOI: 10.3389/fmicb.2016.00291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/23/2016] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is an important airway pathogen of cystic fibrosis and chronic obstructive disease patients. Multiply drug resistant PA is becoming increasing prevalent and new strategies are needed to combat such insidious organisms. We have previously shown that a mucoid, mucA22 mutant PA is exquisitely sensitive to acidified nitrite (A-NO2−, pH 6.5) at concentrations that are well tolerated in humans. Here, we used a transposon mutagenesis approach to identify PA mutants that are hypersensitive to A-NO2−. Among greater than 10,000 mutants screened, we focused on PA4455, in which the transposon was found to disrupt the production of a putative cytoplasmic membrane-spanning ABC transporter permease. The PA4455 mutant was not only highly sensitive to A-NO2−, but also the membrane perturbing agent, EDTA and the antibiotics doxycycline, tigecycline, colistin, and chloramphenicol, respectively. Treatment of bacteria with A-NO2− plus EDTA, however, had the most dramatic and synergistic effect, with virtually all bacteria killed by 10 mM A-NO2−, and EDTA (1 mM, aerobic, anaerobic). Most importantly, the PA4455 mutant was also sensitive to A-NO2− in biofilms. A-NO2− sensitivity and an anaerobic growth defect was also noted in two mutants (rmlC and wbpM) that are defective in B-band LPS synthesis, potentially indicating a membrane defect in the PA4455 mutant. Finally, this study describes a gene, PA4455, that when mutated, allows for dramatic sensitivity to the potential therapeutic agent, A-NO2− as well as EDTA. Furthermore, the synergy between the two compounds could offer future benefits against antibiotic resistant PA strains.
Collapse
Affiliation(s)
- Cameron McDaniel
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Shengchang Su
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Warunya Panmanee
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Gee W Lau
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign Urbana, IL, USA
| | - Tristan Browne
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Kevin Cox
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Andrew T Paul
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Seung-Hyun B Ko
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine Cincinnati, OH, USA
| | - Joel E Mortensen
- Diagnostic and Infectious Diseases Testing Laboratory, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph Guelph, ON, Canada
| | - Daniel A Muruve
- Department of Medicine, University of Calgary Calgary, AB, Canada
| | - Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of MedicineCincinnati, OH, USA; Department of Research Services, Cincinnati Veteran's Association Medical CenterCincinnati, OH, USA
| |
Collapse
|
29
|
Mistou MY, Sutcliffe IC, van Sorge NM. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol Rev 2016; 40:464-79. [PMID: 26975195 PMCID: PMC4931226 DOI: 10.1093/femsre/fuw006] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. This review summarizes new insights into the genetics and function of rhamnose-containing cell wall polysaccharides expressed by lactic acid bacteria, which includes medically important pathogens, and discusses perspectives on possible future therapeutic and biotechnological applications.
Collapse
Affiliation(s)
- Michel-Yves Mistou
- Laboratory for Food Safety, Université Paris-Est, ANSES, F-94701 Maisons-Alfort, France
| | - Iain C Sutcliffe
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nina M van Sorge
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
30
|
Liang J, Li X, Zha T, Chen Y, Hao H, Liu C, Duan R, Xiao Y, Su M, Wang X, Jing H. DTDP-rhamnosyl transferase RfbF, is a newfound receptor-related regulatory protein for phage phiYe-F10 specific for Yersinia enterocolitica serotype O:3. Sci Rep 2016; 6:22905. [PMID: 26965493 PMCID: PMC4786787 DOI: 10.1038/srep22905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/24/2016] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages and their hosts are continuously engaged in evolutionary competition. Here we isolated a lytic phage phiYe-F10 specific for Yersinia enterocolitica serotype O:3. We firstly described the phage receptor was regulated by DTDP-rhamnosyl transferase RfbF, encoded within the rfb cluster that was responsible for the biosynthesis of the O antigens. The deletion of DTDP-rhamnosyl transferase RfbF of wild type O:3 strain caused failure in phiYe-F10 adsorption; however, the mutation strain retained agglutination with O:3 antiserum; and complementation of its mutant converted its sensitivity to phiYe-F10. Therefore, DTDP-rhamnosyl transferase RfbF was responsible for the phage infection but did not affect recognition of Y. enterocolitica O:3 antiserum. Further, the deletions in the putative O-antigen biosynthesis protein precursor and outer membrane protein had no effect on sensitivity to phiYe-F10 infection. However, adsorption of phages onto mutant HNF10-ΔO-antigen took longer time than onto the WT, suggesting that deletion of the putative O-antigen biosynthesis protein precursor reduced the infection efficiency.
Collapse
Affiliation(s)
- Junrong Liang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Xu Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Tao Zha
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China.,Wuhu Municipal Centre for Disease Control and Prevention, No. 178, Jiuhua central Road, Wuhu, Anhui Province, 241000, China
| | - Yuhuang Chen
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Huijing Hao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Chang Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China.,Department of Pathogenic Biology, School of Medical Science, Jiangsu University, Xuefu Road, Zhenjiang, Jiangsu Province, 212013, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Yuchun Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Mingming Su
- Institute of Biophysics, Chinese Academy of Sciences, No. 15, Datun Road, Chaoyang, Beijing, 100101, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, No.155, Changbai Road, Changping, Beijing, 102206, China
| |
Collapse
|
31
|
Biofilm plasmids with a rhamnose operon are widely distributed determinants of the 'swim-or-stick' lifestyle in roseobacters. ISME JOURNAL 2016; 10:2498-513. [PMID: 26953602 PMCID: PMC5030684 DOI: 10.1038/ismej.2016.30] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/12/2016] [Accepted: 01/24/2016] [Indexed: 12/17/2022]
Abstract
Alphaproteobacteria of the metabolically versatile Roseobacter group (Rhodobacteraceae) are abundant in marine ecosystems and represent dominant primary colonizers of submerged surfaces. Motility and attachment are the prerequisite for the characteristic 'swim-or-stick' lifestyle of many representatives such as Phaeobacter inhibens DSM 17395. It has recently been shown that plasmid curing of its 65-kb RepA-I-type replicon with >20 genes for exopolysaccharide biosynthesis including a rhamnose operon results in nearly complete loss of motility and biofilm formation. The current study is based on the assumption that homologous biofilm plasmids are widely distributed. We analyzed 33 roseobacters that represent the phylogenetic diversity of this lineage and documented attachment as well as swimming motility for 60% of the strains. All strong biofilm formers were also motile, which is in agreement with the proposed mechanism of surface attachment. We established transposon mutants for the four genes of the rhamnose operon from P. inhibens and proved its crucial role in biofilm formation. In the Roseobacter group, two-thirds of the predicted biofilm plasmids represent the RepA-I type and their physiological role was experimentally validated via plasmid curing for four additional strains. Horizontal transfer of these replicons was documented by a comparison of the RepA-I phylogeny with the species tree. A gene content analysis of 35 RepA-I plasmids revealed a core set of genes, including the rhamnose operon and a specific ABC transporter for polysaccharide export. Taken together, our data show that RepA-I-type biofilm plasmids are essential for the sessile mode of life in the majority of cultivated roseobacters.
Collapse
|
32
|
Jirku V, Cejkova A, Schreiberova O, Jezdik R, Masak J. Multicomponent biosurfactants — A “Green Toolbox” extension. Biotechnol Adv 2015; 33:1272-6. [DOI: 10.1016/j.biotechadv.2015.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/12/2015] [Accepted: 03/06/2015] [Indexed: 11/27/2022]
|
33
|
Schmutzler K, Kracht ON, Schmid A, Buehler K. Trophic regulation of autoaggregation in Pseudomonas taiwanensis VLB120. Appl Microbiol Biotechnol 2015; 100:347-60. [PMID: 26428239 DOI: 10.1007/s00253-015-7006-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/03/2015] [Accepted: 09/12/2015] [Indexed: 01/01/2023]
Abstract
Five mutants of Pseudomonas taiwanensis VLB120ΔCeGFP showed significant autoaggregation when growing on defined carbohydrates or gluconate, while they grew as suspended cells on complex medium and on organic acids like citrate and succinate. Surprisingly, the respective mutations affected very different genes, although all five strains exhibited the same behaviour of aggregate formation. To elucidate the mechanism of the aggregative behaviour, the microbial adhesion to hydrocarbons (MATH) assay and contact angle measurements were performed that pointed to an increased cell surface hydrophobicity. Moreover, investigations of the outer layer of the cell membrane revealed a reduced amount of O-specific polysaccharides in the lipopolysaccharide of the mutant cells. To determine the regulation of the aggregation, reverse transcription quantitative real-time PCR was performed and, irrespective of the mutation, the transcription of a gene encoding a putative phosphodiesterase, which is degrading the global second messenger cyclic diguanylate, was decreased or even deactivated in all mutants. In summary, it appears that the trophic autoaggregation was regulated via cyclic diguanylate and a link between the cellular cyclic diguanylate concentration and the lipopolysaccharide composition of P. taiwanensis VLB120ΔCeGFP is suggested.
Collapse
Affiliation(s)
- Karolin Schmutzler
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Octavia Natascha Kracht
- Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Andreas Schmid
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Katja Buehler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany.
| |
Collapse
|
34
|
Dobler L, Vilela LF, Almeida RV, Neves BC. Rhamnolipids in perspective: gene regulatory pathways, metabolic engineering, production and technological forecasting. N Biotechnol 2015; 33:123-35. [PMID: 26409933 DOI: 10.1016/j.nbt.2015.09.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/28/2015] [Accepted: 09/17/2015] [Indexed: 10/23/2022]
Abstract
Rhamnolipids have emerged as a very promising class of biosurfactants in the last decades, exhibiting properties of great interest in several industrial applications, and have represented a suitable alternative to chemically-synthesized surfactants. This class of biosurfactants has been extensively studied in recent years, aiming at their large-scale production based on renewable resources, which still require high financial costs. Development of non-pathogenic, high-producing strains has been the focus of a number of studies involving heterologous microbial hosts as platforms. However, the intricate gene regulation network controlling rhamnolipid biosynthesis represents a challenge to metabolic engineering and remains to be further understood and explored. This article provides an overview of the biosynthetic pathways and the main gene regulatory factors involved in rhamnolipid production within Pseudomonas aeruginosa, the prototypal producing species. In addition, we provide a perspective view into the main strategies applied to metabolic engineering and biotechnological production.
Collapse
Affiliation(s)
- Leticia Dobler
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo F Vilela
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo V Almeida
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca C Neves
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
35
|
Frank O, Göker M, Pradella S, Petersen J. Ocean's Twelve: flagellar and biofilm chromids in the multipartite genome ofMarinovum algicola DG898 exemplify functional compartmentalization. Environ Microbiol 2015; 17:4019-34. [DOI: 10.1111/1462-2920.12947] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Oliver Frank
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; Inhoffenstraße 7 B Braunschweig D-38124 Germany
| | - Markus Göker
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; Inhoffenstraße 7 B Braunschweig D-38124 Germany
| | - Silke Pradella
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; Inhoffenstraße 7 B Braunschweig D-38124 Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; Inhoffenstraße 7 B Braunschweig D-38124 Germany
| |
Collapse
|
36
|
Abstract
Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs during translation. In Escherichia coli and Salmonella enterica, the posttranslational β-lysylation of Lys34 by the PoxA protein is critical for EF-P activity. PoxA is absent from many bacterial species such as Pseudomonas aeruginosa, prompting a search for alternative EF-P posttranslation modification pathways. Structural analyses of P. aeruginosa EF-P revealed the attachment of a single cyclic rhamnose moiety to an Arg residue at a position equivalent to that at which β-Lys is attached to E. coli EF-P. Analysis of the genomes of organisms that both lack poxA and encode an Arg32-containing EF-P revealed a highly conserved glycosyltransferase (EarP) encoded at a position adjacent to efp. EF-P proteins isolated from P. aeruginosa ΔearP, or from a ΔrmlC::acc1 strain deficient in dTDP-l-rhamnose biosynthesis, were unmodified. In vitro assays confirmed the ability of EarP to use dTDP-l-rhamnose as a substrate for the posttranslational glycosylation of EF-P. The role of rhamnosylated EF-P in translational control was investigated in P. aeruginosa using a Pro4-green fluorescent protein (Pro4GFP) in vivo reporter assay, and the fluorescence was significantly reduced in Δefp, ΔearP, and ΔrmlC::acc1 strains. ΔrmlC::acc1, ΔearP, and Δefp strains also displayed significant increases in their sensitivities to a range of antibiotics, including ertapenem, polymyxin B, cefotaxim, and piperacillin. Taken together, our findings indicate that posttranslational rhamnosylation of EF-P plays a key role in P. aeruginosa gene expression and survival. Infections with pathogenic Salmonella, E. coli, and Pseudomonas isolates can all lead to infectious disease with potentially fatal sequelae. EF-P proteins contribute to the pathogenicity of the causative agents of these and other diseases by controlling the translation of proteins critical for modulating antibiotic resistance, motility, and other traits that play key roles in establishing virulence. In Salmonella spp. and E. coli, the attachment of β-Lys is required for EF-P activity, but the proteins required for this posttranslational modification pathway are absent from many organisms. Instead, bacteria such as P. aeruginosa activate EF-P by posttranslational modification with rhamnose, revealing a new role for protein glycosylation that may also prove useful as a target for the development of novel antibiotics.
Collapse
|
37
|
Biosynthesis of the Common Polysaccharide Antigen of Pseudomonas aeruginosa PAO1: Characterization and Role of GDP-D-Rhamnose:GlcNAc/GalNAc-Diphosphate-Lipid α1,3-D-Rhamnosyltransferase WbpZ. J Bacteriol 2015; 197:2012-9. [PMID: 25845842 DOI: 10.1128/jb.02590-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/30/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The opportunistic pathogen Pseudomonas aeruginosa produces two major cell surface lipopolysaccharides, characterized by distinct O antigens, called common polysaccharide antigen (CPA) and O-specific antigen (OSA). CPA contains a polymer of D-rhamnose (D-Rha) in α1-2 and α1-3 linkages. Three putative glycosyltransferase genes, wbpX, wbpY, and wbpZ, are part of the CPA biosynthesis cluster. To characterize the enzymatic function of the wbpZ gene product, we chemically synthesized the donor substrate GDP-D-Rha and enzymatically synthesized GDP-D-[(3)H]Rha. Using nuclear magnetic resonance (NMR) spectroscopy, we showed that WbpZ transferred one D-Rha residue from GDP-D-Rha in α1-3 linkage to both GlcNAc- and GalNAc-diphosphate-lipid acceptor substrates. WbpZ is also capable of transferring D-mannose (D-Man) to these acceptors. Therefore, WbpZ has a relaxed specificity with respect to both acceptor and donor substrates. The diphosphate group of the acceptor, however, is required for activity. WbpZ does not require divalent metal ion for activity and exhibits an unusually high pH optimum of 9. WbpZ from PAO1 is therefore a GDP-D-Rha:GlcNAc/GalNAc-diphosphate-lipid α1,3-D-rhamnosyltransferase that has significant activity of GDP-D-Man:GlcNAc/GalNAc-diphosphate-lipid α1,3-D-mannosyltransferase. We used site-directed mutagenesis to replace the Asp residues of the two DXD motifs with Ala. Neither of the mutant constructs of wbpZ (D172A or D254A) could be used to rescue CPA biosynthesis in the ΔwbpZ knockout mutant in a complementation assay. This suggested that D172 and D254 are essential for WbpZ function. This work is the first detailed characterization study of a D-Rha-transferase and a critical step in the development of CPA synthesis inhibitors. IMPORTANCE This is the first characterization of a D-rhamnosyltransferase and shows that it is essential in Pseudomonas aeruginosa for the synthesis of the common polysaccharide antigen.
Collapse
|
38
|
Ruhal R, Antti H, Rzhepishevska O, Boulanger N, Barbero DR, Wai SN, Uhlin BE, Ramstedt M. A multivariate approach to correlate bacterial surface properties to biofilm formation by lipopolysaccharide mutants of Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2015; 127:182-91. [PMID: 25679490 DOI: 10.1016/j.colsurfb.2015.01.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/19/2014] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
Abstract
Bacterial biofilms are involved in various medical infections and for this reason it is of great importance to better understand the process of biofilm formation in order to eradicate or mitigate it. It is a very complex process and a large range of variables have been suggested to influence biofilm formation. However, their internal importance is still not well understood. In the present study, a range of surface properties of Pseudomonas aeruginosa lipopolysaccharide mutants were studied in relation to biofilm formation measured in different kinds of multi-well plates and growth conditions in order to better understand the complexity of biofilm formation. Multivariate analysis was used to simultaneously evaluate the role of a range of physiochemical parameters under different conditions. Our results suggest the presence of serum inhibited biofilm formation due to changes in twitching motility. From the multivariate analysis it was observed that the most important parameters, positively correlated to biofilm formation on two types of plates, were high hydrophobicity, near neutral zeta potential and motility. Negative correlation was observed with cell aggregation, as well as formation of outer membrane vesicles and exopolysaccharides. This work shows that the complexity of biofilm formation can be better understood using a multivariate approach that can interpret and rank the importance of different factors being present simultaneously under several different environmental conditions, enabling a better understanding of this complex process.
Collapse
Affiliation(s)
- Rohit Ruhal
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Henrik Antti
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Olena Rzhepishevska
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | | | | | - Sun Nyunt Wai
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Madeleine Ramstedt
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
39
|
Taylor VL, Huszczynski SM, Lam JS. Membrane Translocation and Assembly of Sugar Polymer Precursors. Curr Top Microbiol Immunol 2015; 404:95-128. [PMID: 26853690 DOI: 10.1007/82_2015_5014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial polysaccharides play an essential role in cell viability, virulence, and evasion of host defenses. Although the polysaccharides themselves are highly diverse, the pathways by which bacteria synthesize these essential polymers are conserved in both Gram-negative and Gram-positive organisms. By utilizing a lipid linker, a series of glycosyltransferases and integral membrane proteins act in concert to synthesize capsular polysaccharide, teichoic acid, and teichuronic acid. The pathways used to produce these molecules are the Wzx/Wzy-dependent, the ABC-transporter-dependent, and the synthase-dependent pathways. This chapter will cover the initiation, synthesis of the various polysaccharides on the cytoplasmic face of the membrane using nucleotide sugar precursors, and export of the nascent chain from the cytoplasm to the extracellular milieu. As microbial glycobiology is an emerging field in Gram-positive bacteria research, parallels will be drawn to the more widely studied polysaccharide biosynthesis systems in Gram-negative species in order to provide greater understanding of these biologically significant molecules.
Collapse
Affiliation(s)
- Véronique L Taylor
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Steven M Huszczynski
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Joseph S Lam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
40
|
Frank O, Michael V, Päuker O, Boedeker C, Jogler C, Rohde M, Petersen J. Plasmid curing and the loss of grip--the 65-kb replicon of Phaeobacter inhibens DSM 17395 is required for biofilm formation, motility and the colonization of marine algae. Syst Appl Microbiol 2014; 38:120-7. [PMID: 25595869 DOI: 10.1016/j.syapm.2014.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/25/2014] [Accepted: 12/10/2014] [Indexed: 11/26/2022]
Abstract
Surface colonization is characteristic for a broad range of marine roseobacters and many strains have been isolated from biofilms, microbial mats and dinoflagellates. Phaeobacter inhibens DSM 17395, one of the best-studied representatives of the Roseobacter group, is an effective colonizer of marine surfaces, but the genetic basis of this trait is unknown. Based on the composition of its 65-kb RepA-I type plasmid that contains more than 20 genes for polysaccharide metabolism, including a rhamnose operon, which is required for O-antigen formation in Escherichia coli, it was hypothesized that this replicon was essential for surface attachment. Accordingly, a holistic approach was taken and the functional role of this extrachromosomal element in P. inhibens was investigated. Plasmid curing was performed with the homologous RepA-I replication system of Dinoroseobacter shibae DSM 16493(T). The Δ65-kb mutant completely lost its stickiness and could neither attach to artificial (glass, polystyrene) nor to natural surfaces (algae) and, consequently, its ability to form biofilms was impaired. Surprisingly, the mutant also lost the capacity for flagellar swimming motility required for surface colonization and the dispersal of biofilms. The data clearly showed that the 65-kb replicon of P. inhibens DSM 17395 was a genuine biofilm plasmid-mediating surface attachment. Homologous replicons are widely distributed among Rhodobacterales thus indicating the general importance of extrachromosomal elements for biofilm formation.
Collapse
Affiliation(s)
- Oliver Frank
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, D-38124 Braunschweig, Germany
| | - Victoria Michael
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, D-38124 Braunschweig, Germany
| | - Orsola Päuker
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, D-38124 Braunschweig, Germany
| | - Christian Boedeker
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, D-38124 Braunschweig, Germany
| | - Christian Jogler
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, D-38124 Braunschweig, Germany
| | - Manfred Rohde
- Helmholtz-Centre for Infection Research, Braunschweig, Germany
| | - Jörn Petersen
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, D-38124 Braunschweig, Germany.
| |
Collapse
|
41
|
Variation in the OC locus of Acinetobacter baumannii genomes predicts extensive structural diversity in the lipooligosaccharide. PLoS One 2014; 9:e107833. [PMID: 25247305 PMCID: PMC4172580 DOI: 10.1371/journal.pone.0107833] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 08/06/2014] [Indexed: 11/27/2022] Open
Abstract
Lipooligosaccharide (LOS) is a complex surface structure that is linked to many pathogenic properties of Acinetobacter baumannii. In A. baumannii, the genes responsible for the synthesis of the outer core (OC) component of the LOS are located between ilvE and aspS. The content of the OC locus is usually variable within a species, and examination of 6 complete and 227 draft A. baumannii genome sequences available in GenBank non-redundant and Whole Genome Shotgun databases revealed nine distinct new types, OCL4-OCL12, in addition to the three known ones. The twelve gene clusters fell into two distinct groups, designated Group A and Group B, based on similarities in the genes present. OCL6 (Group B) was unique in that it included genes for the synthesis of L-Rhamnosep. Genetic exchange of the different configurations between strains has occurred as some OC forms were found in several different sequence types (STs). OCL1 (Group A) was the most widely distributed being present in 18 STs, and OCL6 was found in 16 STs. Variation within clones was also observed, with more than one OC locus type found in the two globally disseminated clones, GC1 and GC2, that include the majority of multiply antibiotic resistant isolates. OCL1 was the most abundant gene cluster in both GC1 and GC2 genomes but GC1 isolates also carried OCL2, OCL3 or OCL5, and OCL3 was also present in GC2. As replacement of the OC locus in the major global clones indicates the presence of sub-lineages, a PCR typing scheme was developed to rapidly distinguish Group A and Group B types, and to distinguish the specific forms found in GC1 and GC2 isolates.
Collapse
|
42
|
Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa. J Bacteriol 2014; 196:3351-9. [PMID: 25022851 DOI: 10.1128/jb.01889-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
LexA and two structurally related regulators, PrtR and PA0906, coordinate the Pseudomonas aeruginosa SOS response. RecA-mediated autocleavage of LexA induces the expression of a protective set of genes that increase DNA damage repair and tolerance. In contrast, RecA-mediated autocleavage of PrtR induces antimicrobial pyocin production and a program that lyses cells to release the newly synthesized pyocin. Recently, PrtR-regulated genes were shown to sensitize P. aeruginosa to quinolones, antibiotics that elicit a strong SOS response. Here, we investigated the mechanisms by which PrtR-regulated genes determine antimicrobial resistance and genotoxic stress survival. We found that induction of PrtR-regulated genes lowers resistance to clinically important antibiotics and impairs the survival of bacteria exposed to one of several genotoxic agents. Two distinct mechanisms mediated these effects. Cell lysis genes that are induced following PrtR autocleavage reduced resistance to bactericidal levels of ciprofloxacin, and production of extracellular R2 pyocin was lethal to cells that initially survived UV light treatment. Although typically resistant to R2 pyocin, P. aeruginosa becomes transiently sensitive to R2 pyocin following UV light treatment, likely because of the strong downregulation of lipopolysaccharide synthesis genes that are required for resistance to R2 pyocin. Our results demonstrate that pyocin production during the P. aeruginosa SOS response carries both expected and unexpected costs.
Collapse
|
43
|
Kinetic modeling of rhamnolipid production by Pseudomonas aeruginosa PAO1 including cell density-dependent regulation. Appl Microbiol Biotechnol 2014; 98:7013-25. [DOI: 10.1007/s00253-014-5750-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 10/25/2022]
|
44
|
Polissi A, Sperandeo P. The lipopolysaccharide export pathway in Escherichia coli: structure, organization and regulated assembly of the Lpt machinery. Mar Drugs 2014; 12:1023-42. [PMID: 24549203 PMCID: PMC3944529 DOI: 10.3390/md12021023] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 01/12/2023] Open
Abstract
The bacterial outer membrane (OM) is a peculiar biological structure with a unique composition that contributes significantly to the fitness of Gram-negative bacteria in hostile environments. OM components are all synthesized in the cytosol and must, then, be transported efficiently across three compartments to the cell surface. Lipopolysaccharide (LPS) is a unique glycolipid that paves the outer leaflet of the OM. Transport of this complex molecule poses several problems to the cells due to its amphipatic nature. In this review, the multiprotein machinery devoted to LPS transport to the OM is discussed together with the challenges associated with this process and the solutions that cells have evolved to address the problem of LPS biogenesis.
Collapse
Affiliation(s)
- Alessandra Polissi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | - Paola Sperandeo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
45
|
Pires DP, Silva S, Almeida C, Henriques M, Anderson EM, Lam JS, Sillankorva S, Azeredo J. Evaluation of the ability of C. albicans to form biofilm in the presence of phage-resistant phenotypes of P. aeruginosa. BIOFOULING 2013; 29:1169-1180. [PMID: 24063626 DOI: 10.1080/08927014.2013.831842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pseudomonas aeruginosa and Candida albicans are disparate microbial species, but both are known to be opportunistic pathogens frequently associated with nosocomial infections. The aim of this study was to provide a better understanding of the interactions between these microorganisms in dual-species biofilms. Several bacteriophage-resistant P. aeruginosa phenotypes have been isolated and were used in dual-species mixed-biofilm studies. Twenty-four and 48 h mixed-biofilms were formed using the isolated phenotypes of phage-resistant P. aeruginosa and these were compared with similar experiments using other P. aeruginosa strains with a defined lipopolysaccharide (LPS) deficiency based on chromosomal knockout of specific LPS biosynthetic genes. Overall, the results showed that the variants of phage-resistant P. aeruginosa and LPS mutants were both less effective in inhibiting the growth of C. albicans in mixed-biofilms compared to the wild-type strains of P. aeruginosa. Conversely, the proliferation of P. aeruginosa was not influenced by the presence of C. albicans. In conclusion, the ability of strains of P. aeruginosa to inhibit the formation of a biofilm of C. albicans appears to be correlated with the LPS chain lengths of phenotypes of P. aeruginosa, suggesting that LPS has a suppressive effect on the growth of C. albicans.
Collapse
Affiliation(s)
- Diana P Pires
- a Centre of Biological Engineering, IBB - Institute of Biotechnology and Bioengineering, University of Minho , Braga , Portugal
| | | | | | | | | | | | | | | |
Collapse
|
46
|
McCallum M, Shaw GS, Creuzenet C. Comparison of predicted epimerases and reductases of the Campylobacter jejuni D-altro- and L-gluco-heptose synthesis pathways. J Biol Chem 2013; 288:19569-80. [PMID: 23689373 DOI: 10.1074/jbc.m113.468066] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uniquely modified heptoses found in surface carbohydrates of bacterial pathogens are potential therapeutic targets against such pathogens. Our recent biochemical characterization of the GDP-6-deoxy-D-manno- and GDP-6-deoxy-D-altro-heptose biosynthesis pathways has provided the foundation for elucidation of the more complex L-gluco-heptose synthesis pathway of Campylobacter jejuni strain NCTC 11168. In this work we use GDP-4-keto,6-deoxy-D-lyxo-heptose as a surrogate substrate to characterize three enzymes predicted to be involved in this pathway: WcaGNCTC (also known as Cj1427), MlghB (Cj1430), and MlghC (Cj1428). We compare them with homologues involved in d-altro-heptose production: WcaG81176 (formerly WcaG), DdahB (Cjj1430), and DdahC (Cjj1427). We show that despite high levels of similarity, the enzymes have pathway-specific catalytic activities and substrate specificities. MlghB forms three products via C3 and C5 epimerization activities, whereas its DdahB homologue only had C3 epimerase activity along its cognate pathway. MlghC is specific for the double C3/C5 epimer generated by MlghB and produces L-gluco-heptose via stereospecific C4 reductase activity. In contrast, its homologue DdahC only uses the C3 epimer to yield d-altro-heptose via C4 reduction. Finally, we show that WcaGNCTC is not necessary for L-gluco-heptose synthesis and does not affect its production by MlghB and MlghC, in contrast to its homologue WcaG81176, that has regulatory activity on d-altro-heptose synthesis. These studies expand our fundamental understanding of heptose modification, provide new glycobiology tools to synthesize novel heptose derivatives with biomedical applications, and provide a foundation for the structure function analysis of these enzymes.
Collapse
Affiliation(s)
- Matthew McCallum
- Department of Microbiology and Immunology, Infectious Diseases Research Group, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
47
|
Rzhepishevska O, Hakobyan S, Ruhal R, Gautrot J, Barbero D, Ramstedt M. The surface charge of anti-bacterial coatings alters motility and biofilm architecture. Biomater Sci 2013; 1:589-602. [DOI: 10.1039/c3bm00197k] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Fernández L, Álvarez-Ortega C, Wiegand I, Olivares J, Kocíncová D, Lam JS, Martínez JL, Hancock REW. Characterization of the polymyxin B resistome of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013; 57:110-9. [PMID: 23070157 PMCID: PMC3535977 DOI: 10.1128/aac.01583-12] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/08/2012] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance in Pseudomonas aeruginosa is increasingly becoming a threat for human health. Indeed, some strains are resistant to almost all currently available antibiotics, leaving very limited choices for antimicrobial therapy. In many such cases, polymyxins are the only available option, although as their utilization increases so does the isolation of resistant strains. In this study, we screened a comprehensive PA14 mutant library to identify genes involved in changes of susceptibility to polymyxin B in P. aeruginosa. Surprisingly, our screening revealed that the polymyxin B resistome of this microorganism is fairly small. Thus, only one resistant mutant and 17 different susceptibility/intrinsic resistance determinants were identified. Among the susceptible mutants, a significant number carried transposon insertions in lipopolysaccharide (LPS)-related genes. LPS analysis revealed that four of these mutants (galU, lptC, wapR, and ssg) had an altered banding profile in SDS-polyacrylamide gels and Western blots, with three of them exhibiting LPS core truncation and lack of O-antigen decoration. Further characterization of these four mutants showed that their increased susceptibility to polymyxin B was partly due to increased basal outer membrane permeability. Additionally, these mutants also lacked the aminoarabinose-substituted lipid A species observed in the wild type upon growth in low magnesium. Overall, our results emphasize the importance of LPS integrity and lipid A modification in resistance to polymyxins in P. aeruginosa, highlighting the relevance of characterizing the genes that affect biosynthesis of cell surface structures in this pathogen to follow the evolution of peptide resistance in the clinic.
Collapse
Affiliation(s)
- Lucía Fernández
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Álvarez-Ortega
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, and CIBERESP, Madrid, Spain
| | - Irith Wiegand
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jorge Olivares
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, and CIBERESP, Madrid, Spain
| | - Dana Kocíncová
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Joseph S. Lam
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - José Luis Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, and CIBERESP, Madrid, Spain
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
49
|
Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R. Rhamnolipids—Next generation surfactants? J Biotechnol 2012; 162:366-80. [DOI: 10.1016/j.jbiotec.2012.05.022] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 05/06/2012] [Accepted: 05/18/2012] [Indexed: 12/26/2022]
|
50
|
Serrato RV, Balsanelli E, Sassaki GL, Carlson RW, Muszynski A, Monteiro RA, Pedrosa FO, Souza EM, Iacomini M. Structural analysis of Herbaspirillum seropedicae lipid-A and of two mutants defective to colonize maize roots. Int J Biol Macromol 2012; 51:384-91. [DOI: 10.1016/j.ijbiomac.2012.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 05/16/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|