1
|
Ohnishi KI, Watanabe S, Kadoya A, Suzuki S. Cellulolytic enzymes in Microbulbifer sp. Strain GL-2, a marine fish intestinal bacterium, with emphasis on endo-1,4-β-glucanases Cel5A and Cel8. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38538333 DOI: 10.2323/jgam.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Cellulose is an abundant biomass on the planet. Various cellulases from environmental microbes have been explored for industrial use of cellulose. Marine fish intestine is of interest as one source of new enzymes. Here, we report the discovery of genes encoding two β-glucosidases (Bgl3A and Bgl3B) and four endo-1,4-β-glucanases (Cel5A, Cel8, Cel5B, and Cel9) as part of the genome sequence of a cellulolytic marine bacterium, Microbulbifer sp. Strain GL-2. Five of these six enzymes (excepting Cel5B) are presumed to localize to the periplasm or outer membrane. Transcriptional analysis demonstrated that all six genes were highly expressed in stationary phase. The transcription was induced by cello-oligosaccharides rather than by glucose, suggesting that the cellulases are produced primarily for nutrient acquisition following initial growth, facilitating the secondary growth phase. We cloned the genes encoding two of the endo-1,4-β-glucanases, Cel5A and Cel8, and purified the corresponding recombinant enzymes following expression in Escherichia coli. The activity of Cel5A was observed across a wide range of temperatures (10-40 ˚C) and pHs (6-8). This pattern differed from those of Cel8 and the commercial cellulase Enthiron, both of which exhibit decreased activities below 30 ˚C and at alkaline pHs. These characteristics suggest that Cel5A might find use in industrial applications. Overall, our results reinforce the hypothesis that marine bacteria remain a possible source of novel cellulolytic activities.
Collapse
Affiliation(s)
| | - Seiya Watanabe
- Center for Marine Environmental Studies, Ehime University
- Graduate School of Agriculture, Ehime University
| | - Aya Kadoya
- Center for Marine Environmental Studies, Ehime University
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University
| |
Collapse
|
2
|
Kawano K, Awano T, Yoshinaga A, Sugiyama J, Sawayama S, Nakagawa S. Paralimibaculum aggregatum gen. nov. sp. nov. and Biformimicrobium ophioploci gen. nov. sp. nov., two novel heterotrophs from brittle star Ophioplocus japonicus. Int J Syst Evol Microbiol 2024; 74:006530. [PMID: 39325648 PMCID: PMC11426391 DOI: 10.1099/ijsem.0.006530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Two novel Gram-stain-negative, strictly aerobic, halophilic and non-motile bacterial strains, designated NKW23T and NKW57T, were isolated from a brittle star Ophioplocus japonicus collected from a tidal pool in Wakayama, Japan. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that NKW23T represented a member of the family Paracoccaceae, with Limibaculum halophilum CAU 1123T as its closest relative (94.4% sequence identity). NKW57T was identified as representing a member of the family Microbulbiferaceae, with up to 94.9% sequence identity with its closest relatives. Both strains displayed average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values below the species delimitation threshold against their closest relatives. Additionally, amino acid identity (AAI) values of both strains fell below the genus-defining threshold. Phylogenetic trees based on genome sequences indicated that NKW23T formed a novel lineage, branching deeply prior to the divergence of the genera Limibaculum and Thermohalobaculum, with an evolutionary distance (ED) of 0.31-0.32, indicative of genus-level differentiation. NKW57T similarly formed a distinct lineage separate from the species of the genus Microbulbifer. The major respiratory quinones of NKW23T and NKW57T were ubiquinone-10 (Q-10) and Q-8, respectively. The genomic DNA G+C contents of NKW23T and NKW57T were 71.4 and 58.8%, respectively. On the basis of the physiological and phylogenetic characteristics, it was proposed that these strains should be classified as novel species representing two novel genera: Paralimibaculum aggregatum gen. nov., sp. nov., with strain NKW23T (=JCM 36220T=KCTC 8062T) as the type strain, and Biformimicrobium ophioploci gen. nov., sp. nov., with strain NKW57T (=JCM 36221T=KCTC 8063T) as the type strain.
Collapse
Affiliation(s)
- Keisuke Kawano
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tatsuya Awano
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Arata Yoshinaga
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junji Sugiyama
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka 237-0061, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki 444-8787, Japan
| |
Collapse
|
3
|
Ishaq N, Zhang M, Gao L, Ilan M, Li Z. Microbulbifer spongiae sp. nov., isolated from marine sponge Diacarnus erythraeanus. Int J Syst Evol Microbiol 2024; 74. [PMID: 39325661 DOI: 10.1099/ijsem.0.006521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
A novel bacterium, designated as MI-GT, was isolated from marine sponge Diacarnus erythraeanus. Cells of strain MI-GT are Gram-stain-negative, aerobic, and rod or coccoid-ovoid in shape. MI-GT is able to grow at 10-40 °C (optimum, 28 °C), with 1.0-8.0% (w/v) NaCl (optimum, 4.0%), and at pH 5.5-9.0 (optimum, pH 8.0). The 16S rRNA gene sequence of strain MI-GT shows 98.35, 97.32 and 97.25% similarity to those of Microbulbifer variabilis Ni-2088T, Microbulbifer maritimus TF-17T and Microbulbifer echini AM134T, respectively. Phylogenetic analysis also exhibits that strain MI-GT falls within a clade comprising members of the genus Microbulbifer (class Gammaproteobacteria). The genome size of strain MI-GT is 4478124 bp with a G+C content of 54.51 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain MI-GT and other type strains are 71.61-76.44% (ANIb), 83.27-84.36% (ANIm) and 13.4-18.7% (dDDH), respectively. These values are significantly lower than the recommended threshold values for bacterial species delineation. Percentage of conserved proteins and average amino acid identity values among the genomes of strain MI-GT and other closely related species are 52.04-59.13% and 67.47-77.21%, respectively. The major cellular fatty acids of MI-GT are composed of summed feature 8 (C18 : 1 ω7c or C18 : 1 ω6c), iso-C11 : 0 3-OH, iso-C15 : 0, C16 : 0, and summed feature 9 (C17 : 1 iso ω9c or C16 : 0 10-methyl). The polar lipids of MI-GT mainly consist of phosphatidylethanolamine, phosphatidylglycerol, aminolipid, and two glycolipids. The major respiratory quinone is Q-8. Based on differential phenotypic and phylogenetic data, strain MI-GT is considered to represent a novel species of genus Microbulbifer, for which the name Microbulbifer spongiae sp. nov. is proposed. The type strain is MI-GT (=MCCC 1K07826T=KCTC 8081T).
Collapse
Affiliation(s)
- Nabila Ishaq
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Mimi Zhang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Luyao Gao
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Micha Ilan
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
- Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
4
|
Zhong W, Agarwal V. Polymer degrading marine Microbulbifer bacteria: an un(der)utilized source of chemical and biocatalytic novelty. Beilstein J Org Chem 2024; 20:1635-1651. [PMID: 39076296 PMCID: PMC11285056 DOI: 10.3762/bjoc.20.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Microbulbifer is a genus of halophilic bacteria that are commonly detected in the commensal marine microbiomes. These bacteria have been recognized for their ability to degrade polysaccharides and other polymeric materials. Increasingly, Microbulbifer genomes indicate these bacteria to be an untapped reservoir for novel natural product discovery and biosynthetic novelty. In this review, we summarize the distribution of Microbulbifer bacteria, activities of the various polymer degrading enzymes that these bacteria produce, and an up-to-date summary of the natural products that have been isolated from Microbulbifer strains. We argue that these bacteria have been hiding in plain sight, and contemporary efforts into their genome and metabolome mining are going to lead to a proliferation of Microbulbifer-derived natural products in the future. We also describe, where possible, the ecological interactions of these bacteria in marine microbiomes.
Collapse
Affiliation(s)
- Weimao Zhong
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Huang Y, Jiang Y, Zhao A, Liu Y, Chen X, Wang F, Liu H, Huang W, Ihsan YN, Jiang M, Jiang Y. Microbulbifer litoralis sp. nov., Isolated from Seashore of Weizhou Island. Curr Microbiol 2024; 81:105. [PMID: 38393402 DOI: 10.1007/s00284-023-03594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024]
Abstract
A bacterium designated GXH0434T was isolated from sea shore samples collected from Weizhou Island, Beihai, Guangxi, China. The organism is motile, strictly aerobic, and possesses a rod-coccus cell cycle in association with the growth phase. It can grow at 15-45 °C (optimum 37 °C), at pH 6.0-11.0 (optimum 6.0), and at 0-20% (w/v) NaCl (optimum 5.0-8.0%). The strain is positive for peroxidase and oxidase activity, negative for Voges-Proskauer test, can hydrolyze Tween 20, Tween 60, Tween 80, casein, and is able to produce siderophore and has the function of nitrogen fixation. Molecular phylogenetic analysis based on 16S rRNA gene sequences indicated that GXH0434T was most closely related to Microbulbifer halophilus KCTC 12848T with the similarity of 97.2%, followed by Microbulbifer chitinilyticus JCM 16148T (97.1%) and Microbulbifer taiwanensis LMG 26125T (96.5%). The digital DNA-DNA hybridization and the average nucleotide identity values between GXH0434T and Microbulbifer halophilus KCTC 12848T were 28.90% and 83.38%, respectively, which were below thresholds of species delineation. The genomic DNA G+C content of the strain was 61.9%. The major fatty acids were iso-C15:0, C16:0, iso-C11:0 3-OH, iso-C11:0 and Summed features 8 (C18:0 ω7c and/or C18:0 ω6c). The major polar lipids detected in GXH0434T were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC). The major respiratory quinone was ubiquinone Q-8. Based on the above polyphasic classification indicated strain GXH0434T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer litoralis sp. nov. is proposed. The type strain is GXH0434T (= MCCC 1K07158T = KCTC 92169T).
Collapse
Affiliation(s)
- Ying Huang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Yu Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Aolin Zhao
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Xuemei Chen
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Fang Wang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Hongcun Liu
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Wenshan Huang
- Guangxi Lvyounong Biological Technology Co., Ltd, Nanning, 530000, People's Republic of China
| | - Yudi N Ihsan
- Department of Marine Science, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Mingguo Jiang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China.
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
6
|
Microbulbifer okhotskensis sp. nov., isolated from a deep bottom sediment of the Okhotsk Sea. Arch Microbiol 2022; 204:548. [PMID: 35945400 DOI: 10.1007/s00203-022-03161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/02/2022]
Abstract
A Gram-negative, aerobic, non-motile bacterium КMM 9862T was isolated from a deep bottom sediment sample obtained from the Okhotsk Sea, Russia. Based on the 16S rRNA gene and whole genome sequences analyses the novel strain КMM 9862T fell into the genus Microbulbifer (class Gammaproteobacteria) sharing the highest 16S rRNA gene sequence similarities of 97.4% to Microbulbifer echini AM134T and Microbulbifer epialgicus F-104T, 97.3% to Microbulbifer pacificus SPO729T, 97.1% to Microbulbifer variabilis ATCC 700307T, and similarity values of < 97.1% to other recognized Microbulbifer species. The average nucleotide identity and digital DNA-DNA hybridization values between strain КMM 9862T and M. variabilis ATCC 700307T and M. thermotolerans DSM 19189T were 80.34 and 77.72%, and 20.2 and 19.0%, respectively. Strain КMM 9862T contained Q-8 as the predominant ubiquinone and C16:0, C16:1 ω7c, C12:0, and C10:0 3-OH as the major fatty acids. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, an unidentified aminophospholipid, an unidentified aminolipid, two unidentified phospholipids, phosphatidic acid, and an unidentified lipid. The DNA G+C content of 49.8% was calculated from the genome sequence. On the basis of the phylogenetic evidence and distinctive phenotypic characteristics, the marine bacterium KMM 9862T is proposed to be classified as a novel species Microbulbifer okhotskensis sp. nov. The type strain of the species is strain KMM 9862T (= KACC 22804T).
Collapse
|
7
|
Wang J, Jin L, Wang J, Chan Z, Zeng R, Wu J, Qu W. The first complete genome sequence of Microbulbifer celer KCTC12973T, a type strain with multiple polysaccharide degradation genes. Mar Genomics 2022; 62:100931. [DOI: 10.1016/j.margen.2022.100931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
|
8
|
Park SL, Cho JY, Kim SH, Lee HJ, Kim SH, Suh MJ, Ham S, Bhatia SK, Gurav R, Park SH, Park K, Kim YG, Yang YH. Novel Polyhydroxybutyrate-Degrading Activity of the Microbulbifer Genus as Confirmed by Microbulbifer sp. SOL03 from the Marine Environment. J Microbiol Biotechnol 2022; 32:27-36. [PMID: 34750287 PMCID: PMC9628828 DOI: 10.4014/jmb.2109.09005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Ever since bioplastics were globally introduced to a wide range of industries, the disposal of used products made with bioplastics has become an issue inseparable from their application. Unlike petroleum-based plastics, bioplastics can be completely decomposed into water and carbon dioxide by microorganisms in a relatively short time, which is an advantage. However, there is little information on the specific degraders and accelerating factors for biodegradation. To elucidate a new strain for biodegrading poly-3-hydroxybutyrate (PHB), we screened out one PHB-degrading bacterium, Microbulbifer sp. SOL03, which is the first reported strain from the Microbulbifer genus to show PHB degradation activity, although Microbulbifer species are known to be complex carbohydrate degraders found in high-salt environments. In this study, we evaluated its biodegradability using solid- and liquid-based methods in addition to examining the changes in physical properties throughout the biodegradation process. Furthermore, we established the optimal conditions for biodegradation with respect to temperature, salt concentration, and additional carbon and nitrogen sources; accordingly, a temperature of 37°C with the addition of 3% NaCl without additional carbon sources, was determined to be optimal. In summary, we found that Microbulbifer sp. SOL03 showed a PHB degradation yield of almost 97% after 10 days. To the best of our knowledge, this is the first study to investigate the potent bioplastic degradation activity of Microbulbifer sp., and we believe that it can contribute to the development of bioplastics from application to disposal.
Collapse
Affiliation(s)
- Sol Lee Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jang Yeon Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong-Ju Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Ju Suh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sion Ham
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong City 30016, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong City 30016, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Isolation of Microbulbifer sp. SOL66 with High Polyhydroxyalkanoate-Degrading Activity from the Marine Environment. Polymers (Basel) 2021; 13:polym13234257. [PMID: 34883760 PMCID: PMC8659741 DOI: 10.3390/polym13234257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
Having the advantage of eco-friendly decomposition, bioplastics could be used to replace petroleum-based plastics. In particular, poly(3-hydroxybutyrate) (PHB) is one of the most commercialized bioplastics, however, necessitating the introduction of PHB-degrading bacteria for its effective disposal. In this study, Microbulbifer sp. SOL66 (94.18% 16S rRNA with similarity to Microbulbifer hydrolyticus) demonstrated the highest degradation activity among five newly screened Microbulbifer genus strains. Microbulbifer sp. SOL66 showed a rapid degradation yield, reaching 98% in 4 days, as monitored by laboratory scale, gas chromatography-mass spectrometry, scanning electron microscopy, gel permeation chromatography, and Fourier transform infrared spectroscopy. The PHB film was completely degraded within 7 days at 37 °C in the presence of 3% NaCl. When 1% xylose and 0.4% ammonium sulfate were added, the degradation activity increased by 17% and 24%, respectively. In addition, this strain showed biodegradability on pellets of poly(3-hydroxybutyrate-co-4-hydroxybutyrate), as confirmed by weight loss and physical property changes. We confirmed that Microbulbifer sp. SOL66 has a great ability to degrade PHB, and has rarely been reported to date.
Collapse
|
10
|
Diyana T, Furusawa G. An assimilatory sulfite reductase, CysI, negatively regulates the dormancy of Microbulbifer aggregans CCB-MM1 T. J Basic Microbiol 2021; 61:1124-1132. [PMID: 34796964 DOI: 10.1002/jobm.202100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Sulfur is one of the common and essential elements of all life. Sulfate, which is a major source of sulfur, plays an important role in synthesizing sulfur-containing amino acids, such as cysteine and methionine, organic compounds essential to all living organisms. Some investigations reported that the assimilatory sulfate reduction pathway (ASRP) involved in cysteine synthesis is crucial to entering bacterial dormancy in pathogens. Our previous investigation reported that the halophilic marine bacterium, Microbulbifer aggregans CCB-MM1T , possesses an ASRP and the dissimilatory sulfate reduction pathway (DSRP). The bacterium might use DSRP to generate energy required for entering its dormant. However, the role of the ASRP in the dormancy of M. aggregans CCB-MM1T was so far unknown. In this study, we found that genes involved in ASRP were downregulated in the dormancy. The disruption of the gene encoding an assimilatory sulfite reductase, cysI, suppressed a completely dormant state under low nutrient conditions. In addition, the cysI mutant showed cell aggregation at the middle-exponential phase under high nutrient conditions, indicating that the mutation might be stimulated to enter the dormancy. The wild-type phenotype of the bacterium was recovered by the addition of cysteine. These results suggested that cysteine concentration may play an important role in inducing the dormancy of M. aggregans.
Collapse
Affiliation(s)
- Tarmizi Diyana
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
11
|
Wang D, Wang J, Shui B, Zhu L, Wang J, Jin L, Qu W. Complete genome sequence of Microbulbifer sp. YPW1 from mangrove sediments in Yanpu harbor, China. Arch Microbiol 2021; 203:6143-6151. [PMID: 34585272 DOI: 10.1007/s00203-021-02578-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 11/29/2022]
Abstract
In this work, a strain named YPW1 was isolated from the sediments of an artificial mangrove in Yanpu harbor, China. A complete genome of YPW1 was sequenced and assembled. The 16S rRNA gene assigned strain YPW1 into genus Microbulbifer, and the maximum values of average nucleotide identity and digital DNA-DNA hybridization of ZHDP1 genome were 90.36 and 68.1, respectively, indicating that YPW1 was a potential new species in genus Microbulbifer. A total of 10 representative genomes from genus Microbulbifer were selected to compare with YPW1. The results showed that the genome of strain YPW1 possessed more carbohydrate-active enzyme genes to transform various recalcitrant polysaccharides into bioavailable monosaccharides than those of the selected genomes. Furthermore, among the selected genomes, YPW1 was the only strain with nitrate, nitrite, and nitric oxide reductases which could appoint nitrous oxide, a powerful greenhouse gas, as the end-product of its denitrification process. Therefore, strain YPW1 was a potential novel member of genus Microbulbifer with special ecological roles in the cycles of carbon and nitrogen in mangrove ecosystems.
Collapse
Affiliation(s)
- Dingquan Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Bonian Shui
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Longqiang Zhu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Jiangqi Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Linxi Jin
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, China.
| |
Collapse
|
12
|
Cheng Y, Zhu S, Guo C, Xie F, Jung D, Li S, Zhang W, He S. Microbulbifer hainanensis sp. nov., a moderately halopilic bacterium isolated from mangrove sediment. Antonie van Leeuwenhoek 2021; 114:1033-1042. [PMID: 33844121 DOI: 10.1007/s10482-021-01574-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
A new bacterium was successfully isolated from a mangrove sediment sample in Haikou City, Hainan Province, China. The organism is a Gram-negative, rod-shaped, non-motile and strictly aerobic bacterium, named NBU-8HK146T. Strain NBU-8HK146T was able to grow at temperatures of 10-40 °C, at salinities of 0-11% (w/v) and at pH 5.5-9.5. Veoges-Proskauer, methyl red reaction and hydrolysis of Tween 20 were negative. Catalase and oxidase activities, H2S production, hydrolysis of starch, casein, Tweens 40, 60 and 80 were positive. The major cellular fatty acids were C16:0, iso-C15:0 and summed feature 9. The major respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and two unidentified glycolipids. According to 16S rRNA gene sequence similarities, strain NBU-8HK146T shared 98.0%, 97.9%, 97.7%, 97.6% and 97.3% similarities to the species with validated name Microbulbifer taiwanensis CC-LN1-12T, Microbulbifer rhizosphaerae Cs16bT, Microbulbifer marinus Y215T, Microbulbifer donghaiensis CN85T and Microbulbifer aggregans CCB-MM1T, respectively. Phylogenetic analyses indicated that strain NBU-8HK146T formed a distinct lineage with strains Microbulbifer taiwanensis CC-LN1-12T and Microbulbifer marinus Y215T. Both digital DNA-DNA hybridization values (19.5-22.7%) and average nucleotide identity values (73.2-78.9%) between strain NBU-8HK146T and related species of genus Microbulbifer were below the species delineation cutoffs. The DNA G+C content was 58.9 mol%. Many proteins involving in the adaption of osmotic stress in the salt environment of mangrove were predicted in genome of strain NBU-8HK146T. From phenotypic, genotypic, phylogenetic and chemotaxonomic characteristics, strain NBU-8HK146T can be regarded as a new Microbulbifer species for which the name Microbulbifer hainanensis. The type strain is NBU-8HK146T (= KCTC 82226T = MCCC 1K04737T).
Collapse
Affiliation(s)
- Yuping Cheng
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China
| | - Suting Zhu
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China
| | - Chaobo Guo
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China
| | - Feilu Xie
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China
| | - Dawoon Jung
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Weiyan Zhang
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China.
| | - Shan He
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China.
| |
Collapse
|
13
|
Furusawa G, Diyana T, Lau NS. Metabolic strategies of dormancy of a marine bacterium Microbulbifer aggregans CCB-MM1: Its alternative electron transfer chain and sulfate-reducing pathway. Genomics 2021; 114:443-455. [PMID: 33689784 DOI: 10.1016/j.ygeno.2021.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/26/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Bacterial dormancy plays a crucial role in maintaining the functioning and diversity of microbial communities in natural environments. However, the metabolic regulations of the dormancy of bacteria in natural habitats, especially marine habitats, have remained largely unknown. A marine bacterium, Microbulbifer aggregans CCB-MM1 exhibits rod-to-coccus cell shape change during the dormant state. Therefore, to clarify the metabolic regulation of the dormancy, differential gene expression analysis based on RNA-Seq was performed between rod- (vegetative), intermediate, and coccus-shaped cells (dormancy). The RNA-Seq data revealed that one of two distinct electron transfer chains was upregulated in the dormancy. Dissimilatory sulfite reductase and soluble hydrogenase were also highly upregulated in the dormancy. In addition, induction of the dormancy of MM1 in the absence of MgSO4 was slower than that in the presence of MgSO4. These results indicate that the sulfate-reducing pathway plays an important role in entering the dormancy of MM1.
Collapse
Affiliation(s)
- Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| | - Tarmizi Diyana
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| |
Collapse
|
14
|
Sugimoto Y, Ohnishi KI, Suzuki S. Complete Genome Sequence of Cellulase-Producing Microbulbifer sp. Strain GL-2, Isolated from Marine Fish Intestine. Microbiol Resour Announc 2020; 9:e00746-20. [PMID: 32763942 PMCID: PMC7409859 DOI: 10.1128/mra.00746-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 11/20/2022] Open
Abstract
Microbulbifer sp. strain GL-2 was isolated from the intestine of a teleost, Girella melanichthys. Here, we report the complete genome sequence of this strain, which produces cellulase(s). Twelve cellulase candidate genes were found on the chromosome.
Collapse
Affiliation(s)
- Yuta Sugimoto
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Ken-Ichiro Ohnishi
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| |
Collapse
|
15
|
Huang H, Mo K, Hu Y, Liu M, Zhu J, Zou X, Bao S. Microbulbifer harenosus sp. nov., an alginate-degrading bacterium isolated from coastal sand. Int J Syst Evol Microbiol 2020; 70:1639-1643. [PMID: 32125262 DOI: 10.1099/ijsem.0.003945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped bacterium with peritrichous flagella, designated strain HB161719T, was isolated from coastal sand collected from Tanmen Port in Hainan, PR China. The isolate was found to grow with 2-11 % (w/v) NaCl, at 15-45 °C and pH 6.0-10.0, with an optima of 2-3 % NaCl, 37 °C and pH 7.0, respectively. Chemotaxonomic analysis showed that Q-8 was detected as the sole respiratory quinone and that iso-C15 : 0 and summed features 3, 8 and 9 were the major cellular fatty acids. The G+C content of the genomic DNA was 58.2 mol%. Analysis of the 16S rRNA gene sequence of the strain showed an affiliation with the genus Microbulbifer, sharing 98.7, 98.4, 97.8 and 97.8 % sequence similarities to the closest relatives of Microbulbifer okinawensis ABABA23T, Microbulbifer pacificus SPO729T, Microbulbifer taiwanensis CC-LN1-12T and Microbulbifer gwangyangensis GY2T, respectively. Low DNA-DNA hybridization values showed that it formed a distinct genomic species. The combined phenotypic and molecular features supported that strain HB161719T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer harenosus sp. nov. is proposed. The type strain is HB161719T (=CGMCC 1.13584T=JCM 32688T).
Collapse
Affiliation(s)
- Huiqin Huang
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou 571101, PR China
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou 571101, PR China
| | - Kunlian Mo
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou 571101, PR China
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou 571101, PR China
| | - Yonghua Hu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou 571101, PR China
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou 571101, PR China
| | - Min Liu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou 571101, PR China
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou 571101, PR China
| | - Jun Zhu
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou 571101, PR China
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou 571101, PR China
| | - Xiaoxiao Zou
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou 571101, PR China
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou 571101, PR China
| | - Shixiang Bao
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Haikou 571101, PR China
- Institute of Tropical Biosciences and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou 571101, PR China
| |
Collapse
|
16
|
Karim MRU, Harunari E, Oku N, Akasaka K, Igarashi Y. Bulbimidazoles A-C, Antimicrobial and Cytotoxic Alkanoyl Imidazoles from a Marine Gammaproteobacterium Microbulbifer Species. JOURNAL OF NATURAL PRODUCTS 2020; 83:1295-1299. [PMID: 32191468 DOI: 10.1021/acs.jnatprod.0c00082] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Three new alkanoyl imidazoles, designated bulbimidazoles A-C (1-3), were found from the culture extract of the gammaproteobacterium Microbulbifer sp. DC3-6 isolated from a stony coral of the genus Tubastraea. The absolute configuration of the anteiso-methyl substitution in 1 was established to be a mixture of (R)- and (S)-configurations in a ratio of 9:91 by applying the Ohrui-Akasaka method. Compounds 1-3 displayed unique broad-spectrum antimicrobial activity against Gram-positive and -negative bacteria and fungi with MICs ranging from 0.78 to 12.5 μg/mL. They also exhibited cytotoxicity toward P388 murine leukemia cells with IC50 in the micromolar range.
Collapse
Affiliation(s)
- Md Rokon Ul Karim
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Enjuro Harunari
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| | - Kazuaki Akasaka
- Shokei Gakuin University, 4-10-1 Yurigaoka, Natori, Miyagi 981-1295, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
17
|
Gramella fulva sp. nov., isolated from a dry surface of tidal flat. J Microbiol 2018; 57:23-29. [DOI: 10.1007/s12275-019-8370-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/01/2022]
|
18
|
Poduval PB, Noronha JM, Bansal SK, Ghadi SC. Characterization of a new virulent phage ϕMC1 specific to Microbulbifer strain CMC-5. Virus Res 2018; 257:7-13. [DOI: 10.1016/j.virusres.2018.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/11/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
|
19
|
Moh TH, Furusawa G, Amirul AAA. Microbulbifer aggregans sp. nov., isolated from estuarine sediment from a mangrove forest. Int J Syst Evol Microbiol 2017; 67:4089-4094. [DOI: 10.1099/ijsem.0.002258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tsu Horng Moh
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Abdullah Al-Ashraf Amirul
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
20
|
Moh TH, Lau NS, Furusawa G, Amirul AAA. Complete genome sequence of Microbulbifer sp. CCB-MM1, a halophile isolated from Matang Mangrove Forest, Malaysia. Stand Genomic Sci 2017; 12:36. [PMID: 28694917 PMCID: PMC5501506 DOI: 10.1186/s40793-017-0248-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Microbulbifer sp. CCB-MM1 is a halophile isolated from estuarine sediment of Matang Mangrove Forest, Malaysia. Based on 16S rRNA gene sequence analysis, strain CCB-MM1 is a potentially new species of genus Microbulbifer. Here we describe its features and present its complete genome sequence with annotation. The genome sequence is 3.86 Mb in size with GC content of 58.85%, harbouring 3313 protein coding genes and 92 RNA genes. A total of 71 genes associated with carbohydrate active enzymes were found using dbCAN. Ectoine biosynthetic genes, ectABC operon and ask_ect were detected using antiSMASH 3.0. Cell shape determination genes, mreBCD operon, rodA and rodZ were annotated, congruent with the rod-coccus cell cycle of the strain CCB-MM1. In addition, putative mreBCD operon regulatory gene, bolA was detected, which might be associated with the regulation of rod-coccus cell cycle observed from the strain.
Collapse
Affiliation(s)
- Tsu Horng Moh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Penang, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Penang, Malaysia
| | - Al-Ashraf Abdullah Amirul
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Penang, Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
21
|
Harding T, Roger AJ, Simpson AGB. Adaptations to High Salt in a Halophilic Protist: Differential Expression and Gene Acquisitions through Duplications and Gene Transfers. Front Microbiol 2017; 8:944. [PMID: 28611746 PMCID: PMC5447177 DOI: 10.3389/fmicb.2017.00944] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
The capacity of halophiles to thrive in extreme hypersaline habitats derives partly from the tight regulation of ion homeostasis, the salt-dependent adjustment of plasma membrane fluidity, and the increased capability to manage oxidative stress. Halophilic bacteria, and archaea have been intensively studied, and substantial research has been conducted on halophilic fungi, and the green alga Dunaliella. By contrast, there have been very few investigations of halophiles that are phagotrophic protists, i.e., protozoa. To gather fundamental knowledge about salt adaptation in these organisms, we studied the transcriptome-level response of Halocafeteria seosinensis (Stramenopiles) grown under contrasting salinities. We provided further evolutionary context to our analysis by identifying genes that underwent recent duplications. Genes that were highly responsive to salinity variations were involved in stress response (e.g., chaperones), ion homeostasis (e.g., Na+/H+ transporter), metabolism and transport of lipids (e.g., sterol biosynthetic genes), carbohydrate metabolism (e.g., glycosidases), and signal transduction pathways (e.g., transcription factors). A significantly high proportion (43%) of duplicated genes were also differentially expressed, accentuating the importance of gene expansion in adaptation by H. seosinensis to high salt environments. Furthermore, we found two genes that were lateral acquisitions from bacteria, and were also highly up-regulated and highly expressed at high salt, suggesting that this evolutionary mechanism could also have facilitated adaptation to high salt. We propose that a transition toward high-salt adaptation in the ancestors of H. seosinensis required the acquisition of new genes via duplication, and some lateral gene transfers (LGTs), as well as the alteration of transcriptional programs, leading to increased stress resistance, proper establishment of ion gradients, and modification of cell structure properties like membrane fluidity.
Collapse
Affiliation(s)
- Tommy Harding
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie UniversityHalifax, NS, Canada
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie UniversityHalifax, NS, Canada
| | - Alastair G. B. Simpson
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie UniversityHalifax, NS, Canada
| |
Collapse
|
22
|
Lee JY, Kim PS, Hyun DW, Kim HS, Shin NR, Jung MJ, Yun JH, Kim MS, Whon TW, Bae JW. Microbulbifer echini sp. nov., isolated from the gastrointestinal tract of a purple sea urchin, Heliocidaris crassispina. Int J Syst Evol Microbiol 2017; 67:998-1004. [PMID: 27959777 DOI: 10.1099/ijsem.0.001731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel bacterium, designated as strain AM134T, was isolated from the gut of a purple sea urchin (Heliocidaris crassispina) gathered from the coastal waters of Dokdo, Korea. Strain AM134T was Gram-stain-negative, both catalase- and oxidase-positive, strictly aerobic and showed a rod-coccus cell cycle. Optimum growth occurred at 30 °C, in the presence of 2 % (w/v) NaCl and at pH 7. The 16S rRNA gene sequence analysis showed that strain AM134T belonged to the genus Microbulbifer in the family Alteromonadaceae and had high 16S rRNA gene sequence similarity (>97 %) with Microbulbifer epialgicus F-104T (98.9 % similarity) and Microbulbifer variabilis Ni-2088T (98.6 % similarity). The polar lipid profile of strain AM134T was composed of phosphatidylethanolamine, phosphatidylserine, three unidentified aminophospholipids, two unidentified phospholipids, an unidentified amino lipid and six unidentified lipids. The major respiratory quinone was identified as ubiquinone-8 (Q-8). The major cellular fatty acids were summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) and C16 : 0. The DNA-DNA hybridization analysis showed that the strain shared less than 28 % genomic relatedness with Microbulbifer epialgicus DSM 18651T (27±3 %) and Microbulbifer variabilis ATCC 700307T (15±1 %). The G+C content of the genomic DNA was 56.1 mol%. The results of the phylogenetic, phenotypic and genotypic analyses suggest that strain AM134T represents a novel species in the genus Microbulbifer, for which the name Microbulbifer echini is proposed. The type strain is AM134T (=KACC 18258T=JCM 30400T).
Collapse
Affiliation(s)
- June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Wook Hyun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Sik Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Ri Shin
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi-Ja Jung
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Hyun Yun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Woong Whon
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
23
|
Park S, Yoon SY, Ha MJ, Yoon JH. Microbulbifer aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:1436-1441. [DOI: 10.1099/ijsem.0.001831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Sun Young Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Min-Ji Ha
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| |
Collapse
|
24
|
Zhao Y, Park HD, Park JH, Zhang F, Chen C, Li X, Zhao D, Zhao F. Effect of different salinity adaptation on the performance and microbial community in a sequencing batch reactor. BIORESOURCE TECHNOLOGY 2016; 216:808-16. [PMID: 27318158 DOI: 10.1016/j.biortech.2016.06.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 05/12/2023]
Abstract
The performance and microbial community profiles in a sequencing batch reactor (SBR) treating saline wastewater were studied over 300days from 0wt% to 3.0wt% salinity. The experimental results indicated that the activated sludge had high sensitivity to salinity variations in terms of pollutants removal and sedimentation. At 2.0wt% salinity, the system retained a good performance, and 95% removal rate of chemical oxygen demand (COD), biochemical oxygen demand (BOD), NH4(+)-N and total phosphorus (TP) could be achieved. Operation before addition salinity revealed the optimal performance and the most microbial diversity indicated by 16S rRNA gene clone library. Sequence analyses illustrated that Candidate_division_TM7 (TM7) was predominant at 2.0 wt% salinity; however, Actinobacteria was more abundant at 3.0wt% salinity.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Jeong-Hoon Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul, South Korea
| | - Fushuang Zhang
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chen Chen
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xiangkun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Zhao
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fangbo Zhao
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
25
|
Camacho M, del Carmen Montero-Calasanz M, Redondo-Gómez S, Rodríguez-Llorente I, Schumann P, Klenk HP. Microbulbifer rhizosphaerae sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. Int J Syst Evol Microbiol 2016; 66:1844-1850. [DOI: 10.1099/ijsem.0.000955] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Maria Camacho
- IFAPA-Instituto de Investigación y Formación Agraria y Pesquera, Centro Las Torres-Tomejil, Ctra. Sevilla-Cazalla de la Sierra, Km 12.2, 41200 Alcalá del Río, Sevilla, Spain
| | - Maria del Carmen Montero-Calasanz
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Susana Redondo-Gómez
- Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes s/n, ., Sevilla, Spain
| | | | - Peter Schumann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
26
|
Nishijima M, Adachi K, Sano H, Yamasato K. Marinibactrum halimedae gen. nov., sp. nov., a gammaproteobacterium isolated from a marine macroalga. Int J Syst Evol Microbiol 2015; 65:3866-3871. [PMID: 28875922 DOI: 10.1099/ijsem.0.000502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phylogenetic and taxonomic characterization was performed for a bacterium, designated strain Q-192T, isolated from the surface of the green macroalga Halimeda sp., collected from the subtropical Ishigaki Island, Japan. The isolate was a polysaccharide-producing, Gram-stain-negative, aerobic, rod-shaped, motile bacterium with a polar flagellum. The isolate was slightly halophilic, required Na+, Mg2+ and Ca2+ ions for growth, but did not require growth factors. The only isoprenoid quinone was ubiquinone-8.The major cellular fatty acids were C18 : 1ω7c, C16 : 0 and C14 : 0. The main hydroxy fatty acid was C10 : 0 3-OH. The DNA G+C content was 45.9 mol%. Phylogenetic analysis of 16S rRNA gene sequences placed the isolate in the class Gammaproteobacteria. The phylogenetically closest relatives with validly published names were Pseudomaricurvus alkylphenolicus KU41GT, Teredinibacter turnerae T7902T, Pseudoteredinibacter isoporae SW-11T and Simiduia agarivorans SA1T with sequence similarities of 94.5, 94.1, 93.7 and 93.6 %, respectively. The isolate was distinguished from members of these genera by a combination of DNA G+C content, chemotaxonomic characteristics (respiratory quinone system, fatty acid profile and polar lipid composition) and other phenotypic features. Based on phylogenetic, genotypic, chemotaxonomic and phenotypic characteristics, strain Q-192T is considered to represent a novel species of a new genus, for which the name Marinibactrum halimedae gen. nov., sp. nov. is proposed. The type strain of Marinibactrum halimedae is Q-192T ( = NBRC 110095T = NCIMB 14932T).
Collapse
Affiliation(s)
- Miyuki Nishijima
- TechnoSuruga Laboratory Co., Ltd, 330, Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan
- Marine Biotechnology Institute (closed June 2008)
| | - Kyoko Adachi
- Marine Biotechnology Institute (closed June 2008)
| | - Hiroshi Sano
- Marine Biotechnology Institute (closed June 2008)
| | | |
Collapse
|
27
|
Verma A, Mual P, Mayilraj S, Krishnamurthi S. Tamilnaduibacter salinus gen. nov., sp. nov., a halotolerant gammaproteobacterium within the family Alteromonadaceae, isolated from a salt pan in Tamilnadu, India. Int J Syst Evol Microbiol 2015; 65:3248-3255. [PMID: 26296662 DOI: 10.1099/ijsem.0.000401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel Gram-stain-negative, slow-growing, halotolerant strains with rod-shaped cells, designated as strains Mi-7T and Mi-8, which formed pin-point colonies on halophilic media were isolated during a study into the microbial diversity of a salt pan in the state of Tamilnadu, India. Both the strains had an obligate requirement for 1 % (w/v) NaCl for growth and were halotolerant, growing at NaCl concentrations of up to 20 % (w/v) in media. The strains, however, showed an inability to utilize the majority of substrates tested as sole carbon sources for growth and in fermentation reactions. Molecular phylogenetic analyses, based on 16S rRNA gene sequence revealed their closest phylogenetic neighbours to be members of the genus Marinobacter, with whom they showed the highest sequence similarity of 93.6 % and even less with the type strain of the type species, Marinobacter hydrocarbonoclasticus DSM 8798T (91.1 %). Similarities with other genera within the family Alteromonadaceae were below 91.0 %. However, the two strains were very closely related to each other with 99.9 % sequence similarity, and DNA–DNA hybridization analyses confirmed their placement in the same species. The DNA G+C content of both strains was 65 mol%. Using the polyphasic taxonomic data obtained from this study, strains Mi-7T and Mi-8 represent two strains of the same species of a novel genus for which the name Tamilnaduibacter salinus gen. nov., sp. nov., is proposed; the type strain of the novel species is Mi-7T ( = MTCC 12009T = DSM 28688T).
Collapse
Affiliation(s)
- Ashish Verma
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Poonam Mual
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh-160036, India
| |
Collapse
|
28
|
Hu J, Yang QQ, Ren Y, Zhang WW, Zheng G, Sun C, Pan J, Zhu XF, Zhang XQ, Wu M. Maribacter thermophilus sp. nov., isolated from an algal bloom in an intertidal zone, and emended description of the genus Maribacter. Int J Syst Evol Microbiol 2014; 65:36-41. [PMID: 25269849 DOI: 10.1099/ijs.0.064774-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel facultatively anaerobic, Gram-stain-negative bacterium, designated strain HT7-2(T), was isolated from Ulva prolifera collected from the intertidal zone of Qingdao sea area, China, during its bloom. Cells were rod-shaped (1.9-3.5×0.4-0.6 µm), non-sporulating and motile by gliding. Strain HT7-2(T) was able to grow at 4-50 °C (optimum 40-42 °C), pH 5.5-8.5 (optimum pH 7.0), 0-8 % (w/v) NaCl (optimum 2-3 %) and 0.5-10 % (w/v) sea salts (optimum 2.5 %). The genomic DNA G+C content was 38.8 mol%. The phylogenetic analysis based on 16S rRNA gene sequences revealed that strain HT7-2(T) belonged to the genus Maribacter with sequence similarity values of 94.5-96.6 %, and was most closely related to Maribacter aestuarii GY20(T) (96.6%). Chemotaxonomic analysis showed that the main isoprenoid quinone was MK-6 and the major fatty acids were iso-C15:0 and unknown equivalent chain-length 13.565. The polar lipids of strain HT7-2(T) consisted of one phosphatidylethanolamine, four unidentified lipids and one unidentified aminolipid. On the basis of the phenotypic, phylogenetic and chemotaxonomic characteristics, strain HT7-2(T) ( =CGMCC 1.12207(T) =JCM 18466(T)) is concluded to represent a novel species of the genus Maribacter, for which the name Maribacter thermophilus sp. nov. is proposed. An emended description of the genus Maribacter is also proposed.
Collapse
Affiliation(s)
- Jing Hu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Qi-Qi Yang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yi Ren
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Wen-Wu Zhang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Gang Zheng
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316021, PR China
| | - Cong Sun
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jie Pan
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Xu-Fen Zhu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Xin-Qi Zhang
- School of Forestry and Biotechnology, Zhejiang Agriculture & Forestry University, Linan 311300, PR China
| | - Min Wu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| |
Collapse
|
29
|
Nakai R, Nishijima M, Tazato N, Handa Y, Karray F, Sayadi S, Isoda H, Naganuma T. Oligoflexus tunisiensis gen. nov., sp. nov., a Gram-negative, aerobic, filamentous bacterium of a novel proteobacterial lineage, and description of Oligoflexaceae fam. nov., Oligoflexales ord. nov. and Oligoflexia classis nov. Int J Syst Evol Microbiol 2014; 64:3353-3359. [PMID: 25013226 PMCID: PMC4179278 DOI: 10.1099/ijs.0.060798-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A phylogenetically novel proteobacterium, strain Shr3T, was isolated from sand gravels collected from the eastern margin of the Sahara Desert. The isolation strategy targeted bacteria filterable through 0.2-µm-pore-size filters. Strain Shr3T was determined to be a Gram-negative, aerobic, non-motile, filamentous bacterium. Oxidase and catalase reactions were positive. Strain Shr3T showed growth on R2A medium, but poor or no growth on nutrient agar, trypticase soy agar and standard method agar. The major isoprenoid quinone was menaquinone-7. The dominant cellular fatty acids detected were C16 : 1ω5c and C16 : 0, and the primary hydroxy acid present was C12 : 0 3-OH. The DNA G+C content was 54.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Shr3T was affiliated with an uncultivated lineage of the phylum Proteobacteria; the nearest known type strain, with 83 % sequence similarity, was Desulfomicrobium orale DSM 12838T in the class Deltaproteobacteria. The isolate and closely related environmental clones formed a novel class-level clade in the phylum Proteobacteria with high bootstrap support (96–99 %). Based on these results, the novel class Oligoflexia classis nov. in the phylum Proteobacteria and the novel genus and species Oligoflexus tunisiensis gen. nov., sp. nov. are proposed for strain Shr3T, the first cultivated representative of the Oligoflexia. The type strain of Oligoflexus tunisiensis is Shr3T ( = JCM 16864T = NCIMB 14846T). We also propose the subordinate taxa Oligoflexales ord. nov. and Oligoflexaceae fam. nov. in the class Oligoflexia.
Collapse
Affiliation(s)
- Ryosuke Nakai
- Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-8471, Japan.,Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8528, Japan
| | - Miyuki Nishijima
- Technical Department, TechnoSuruga Laboratory Co., Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan
| | - Nozomi Tazato
- Technical Department, TechnoSuruga Laboratory Co., Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan
| | - Yutaka Handa
- Technical Department, TechnoSuruga Laboratory Co., Ltd., 330 Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan
| | - Fatma Karray
- Centre of Biotechnology at Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Sami Sayadi
- Centre of Biotechnology at Sfax, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Hiroko Isoda
- Alliance for Research on North Africa (ARENA), University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takeshi Naganuma
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8528, Japan
| |
Collapse
|
30
|
Graça AP, Bondoso J, Gaspar H, Xavier JR, Monteiro MC, de la Cruz M, Oves-Costales D, Vicente F, Lage OM. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS One 2013; 8:e78992. [PMID: 24236081 PMCID: PMC3827338 DOI: 10.1371/journal.pone.0078992] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/25/2013] [Indexed: 12/17/2022] Open
Abstract
Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA), Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus), fish pathogen (Aliivibrio fischeri) and environmentally relevant bacteria (Vibrio harveyi). The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%), Vibrio (22.7%) and Bacillus (7.6%). Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I) and nonribosomal peptide synthetases (NRPSs) genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds.
Collapse
Affiliation(s)
- Ana Patrícia Graça
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
| | - Joana Bondoso
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
| | - Helena Gaspar
- Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa Campo Grande, Lisboa, Portugal
| | - Joana R. Xavier
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores – Departamento de Biologia da Universidade dos Açores, Ponta Delgada, Portugal
- CEAB, Centre d'Estudis Avançats de Blanes, (CSIC), Blanes (Girona), Spain
| | - Maria Cândida Monteiro
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Mercedes de la Cruz
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Daniel Oves-Costales
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de la Salud, Armilla, Granada, Spain
| | - Olga Maria Lage
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIMAR/CIIMAR), Porto, Portugal
- * E-mail:
| |
Collapse
|
31
|
Lo N, Jin HM, Jeon CO. Maribacter
aestuarii sp. nov., isolated from tidal flat sediment, and an emended description of the genus
Maribacter. Int J Syst Evol Microbiol 2013; 63:3409-3414. [DOI: 10.1099/ijs.0.050054-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, strictly aerobic bacterial strain, motile by gliding, designated GY20T, was isolated from a tidal flat at Gwangyang Bay, South Korea. Cells were moderately halophilic, catalase- and oxidase-positive rods. Growth of strain GY20T was observed at 10–30 °C (optimum, 25 °C), at pH 6.5–11.0 (optimum, pH 7.0–8.0) and in the presence of 1–5 % (w/v) NaCl (optimum, 2–3 %). MK-6 was detected as the sole isoprenoid quinone, and iso-C15 : 0, iso-C15 : 1 G, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), summed feature 9 (iso-C17 : 1ω9c and/or 10-methyl C16 : 0), iso-C17 : 0 3-OH and iso-C15 : 0 3-OH as major fatty acids. Strain GY20T contained phosphatidylethanolamine, one unidentified glycolipid and one unidentified lipid as major polar lipids. The G+C content of the genomic DNA was 39.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain GY20T formed a tight phyletic lineage with members of the genus
Maribacter
. Strain GY20T was most closely related to
Maribacter dokdonensis
DSW-8T, with sequence similarity of 96.2 %. On the basis of phenotypic, chemotaxonomic and molecular properties, strain GY20T was shown to represent a novel species within the genus
Maribacter
, for which the name
Maribacter
aestuarii sp. nov. is proposed. The type strain is GY20T ( = KACC 16440T = JCM 18631T). An emended description of the genus
Maribacter
is also proposed.
Collapse
Affiliation(s)
- Naysim Lo
- Department of Life Science & Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hyun Mi Jin
- Department of Life Science & Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science & Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
32
|
Jeong SH, Jin HM, Jeon CO. Gramella
aestuarii sp. nov., isolated from a tidal flat, and emended description of
Gramella echinicola. Int J Syst Evol Microbiol 2013; 63:2872-2878. [DOI: 10.1099/ijs.0.048694-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, yellow-pigmented, strictly aerobic bacterial strain motile by gliding, designated BS12T, was isolated from a tidal flat at Boseong, Korea. Cells were moderately halotolerant, catalase- and oxidase-positive rods. Growth was observed at 5–40 °C (optimum, 25 °C), at pH 5.5–9.0 (optimum, pH 7.0–7.5) and in the presence of 1–11 % (w/v) NaCl (optimum, 2–4 %). The major cellular fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, iso-C17 : 1ω9c and anteiso-C15 : 0. The polar lipid pattern comprised phosphatidylethanolamine, four unidentified aminolipids and three unidentified lipids. The G+C content of the genomic DNA was 42.3 mol% and the only respiratory quinone was menaquinone 6. Phylogenetic inference based on 16S rRNA gene sequences showed that strain BS12T formed a tight phyletic lineage with members of the genus
Gramella
. Strain BS12T was most closely related to ‘
Gramella
jeungdoensis’ HMD3159 with sequence similarity of 97.5 %, but the DNA–DNA relatedness value between the two strains was only 22.1±2.2 %. On the basis of phenotypic and molecular features, strain BS12T was shown to represent a novel species of the genus
Gramella
, for which the name
Gramella
aestuarii sp. nov. is proposed. The type strain is BS12T ( = KACC 16188T = JCM 17790T). An emended description of
Gramella echinicola
is also proposed.
Collapse
Affiliation(s)
- Sang Hyeon Jeong
- Department of Life Science & Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hyun Mi Jin
- Department of Life Science & Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science & Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
33
|
Vashist P, Nogi Y, Ghadi SC, Verma P, Shouche YS. Microbulbifer mangrovi sp. nov., a polysaccharide-degrading bacterium isolated from an Indian mangrove. Int J Syst Evol Microbiol 2013; 63:2532-2537. [DOI: 10.1099/ijs.0.042978-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A rod-shaped, Gram-negative, non-motile, aerobic and non-endospore forming bacterium, designated strain DD-13T, was isolated from the mangrove ecosystem of Goa, India. Strain DD-13T degraded polysaccharides such as agar, alginate, chitin, cellulose, laminarin, pectin, pullulan, starch, carrageenan, xylan and β-glucan. The optimum pH and temperature for growth was 7 and 36 °C, respectively. The strain grew optimally in the presence of 3 % NaCl (w/v). The DNA G+C content was 61.4 mol%. The predominant fatty acid of strain DD-13T was iso-C15 : 0. Ubiquinone-8 was detected as the major respiratory lipoquinone. Phylogenetic studies based on 16S rRNA gene sequence analysis demonstrated that strain DD-13T formed a coherent cluster with species of the genus
Microbulbifer
. Strain DD-13T exhibited 16S rRNA gene sequence similarity levels of 98.9–97.1 % with
Microbulbifer hydrolyticus
IRE-31T,
Microbulbifer salipaludis
JCM 11542T,
Microbulbifer agarilyticus
JAMB A3T,
Microbulbifer celer
KCTC 12973T and
Microbulbifer elongatus
DSM 6810T. However, the level of DNA–DNA relatedness between strain DD-13T and the five type strains of these species of the genus
Microbulbifer
were in the range of 26–33 %. Additionally, strain DD-13T demonstrates several phenotypic differences from these type strains of species of the genus
Microbulbifer
. Thus strain DD-13T represents a novel species of the genus
Microbulbifer
, for which the name Microbulbifer mangrovi sp. nov. is proposed with the type strain DD-13T ( = KCTC 23483T = JCM 17729T).
Collapse
Affiliation(s)
- Poonam Vashist
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, India
| | - Yuichi Nogi
- Extremobiosphere Research program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka 237-0061, Japan
| | - Sanjeev C. Ghadi
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, India
| | - Pankaj Verma
- Molecular Biology Unit, National Centre for Cell Science, Pune University, Pune, India
| | - Yogesh S. Shouche
- Molecular Biology Unit, National Centre for Cell Science, Pune University, Pune, India
| |
Collapse
|
34
|
Jeong SH, Yang SH, Jin HM, Kim JM, Kwon KK, Jeon CO. Microbulbifer gwangyangensis sp. nov. and Microbulbifer pacificus sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 2013; 63:1335-1341. [DOI: 10.1099/ijs.0.042606-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel Gram-stain-negative, chemoheterotrophic and strictly aerobic bacteria, strains GY2T and SPO729T, were isolated from a tidal flat at Gwangyang Bay in Korea and a marine sponge sample from the Pacific Ocean, respectively. The two strains were halotolerant, catalase- and oxidase-positive, and non-motile rods. Optimum temperature and pH for growth of both strains were observed to be 35 °C and pH 7.0–7.5, but optimum salinity for strain SPO729T [2–3 % (w/v)] was slightly higher than that for strain GY2T (1–2 %). The major cellular fatty acids of both strains were C16 : 0, iso-C15 : 0, iso-C17 : 0, iso-C17 : 1ω9c, C18 : 1ω7c, iso-C11 : 0 and iso-C11 : 0 3-OH. The genomic DNA G+C contents of strains GY2T and SPO729T were 55.1 and 57.9 mol%, respectively, and ubiquinone 8 (Q-8) was detected as the sole respiratory quinone from the two strains. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains GY2T and SPO729T formed tight phyletic lineages with members of the genus
Microbulbifer
. Strain GY2T was closely related to
Microbulbifer okinawensis
ABABA23T (98.2 %), strain SPO729T (98.0 %) and
Microbulbifer donghaiensis
CN85T (97.0 %); strain SPO729T was closely related to
M. okinawensis
ABABA23T (98.3 %) and
M. donghaiensis
CN85T (98.2 %). The DNA–DNA relatedness values of strain GY2T with
M. okinawensis
ABABA23T, strain SPO729T and
M. donghaiensis
CN85T were 40.0±2.1 %, 13.1±3.9 % and 16.2±5.8 %, respectively, whereas those of strain SPO729T with
M. okinawensis
ABABA23T and
M. donghaiensis
CN85T were 48.0±4.0 % and 34.6±9.3 %, respectively. On the basis of phenotypic and molecular features, it is concluded that the two strains GY2T and SPO729T represent two novel species of the genus
Microbulbifer
, for which the names Microbulbifer gwangyangensis sp. nov. and Microbulbifer pacificus are proposed; the type strains are GY2T ( = KACC 16189T = JCM 17800T) and SPO729T ( = KCCM 42667T = JCM 14507T), respectively.
Collapse
Affiliation(s)
- Sang Hyeon Jeong
- School of Biological Sciences, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Sung-Hyun Yang
- Korea Ocean Research & Development Institute, Ansan-si, Kyunggi-do 426-170, Republic of Korea
| | - Hyun Mi Jin
- School of Biological Sciences, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Jeong Myeong Kim
- School of Biological Sciences, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Kae Kyoung Kwon
- Korea Ocean Research & Development Institute, Ansan-si, Kyunggi-do 426-170, Republic of Korea
| | - Che Ok Jeon
- School of Biological Sciences, Research Center for Biomolecules and Biosystems, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
35
|
Sakatoku A, Wakabayashi M, Tanaka Y, Tanaka D, Nakamura S. Isolation of a novel Saccharophagus species (Myt-1) capable of degrading a variety of seaweeds and polysaccharides. Microbiologyopen 2012; 1:2-12. [PMID: 22950007 PMCID: PMC3426404 DOI: 10.1002/mbo3.10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 11/06/2022] Open
Abstract
A bacterial strain, Myt-1, was isolated in Toyama Bay in Toyama Prefecture, Japan. Myt-1 was capable of reducing the thalli of various seaweed species to single cell detritus particles. A 16S rDNA homology search revealed that the closest relative of Myt-1 was Saccharophagus degradans 2-40 (CP000282; 100% similarity), which was first isolated in Chesapeake Bay in Virginia, USA. The Myt-1 strain was capable of degrading more than 10 polysaccharides, almost all of which were also degraded by S. degradans 2-40. Analyses of alginase gene DNA sequence homology, DNA-DNA homology, and zymogram analysis of obtained polysaccharidases suggested that Myt-1 was a new species of Saccharophagus. Thus, Myt-1 is only the second species in this genus, which has contained only one strain and species since 1988, and was tentatively designated Saccharophagus sp. Myt-1. Myt-1 has considerable potential for reducing the volume of seaweed wastes, and for producing functional materials from seaweed substrate.
Collapse
Affiliation(s)
- A Sakatoku
- Graduate School of Science and Engineering, University of Toyama Toyama 930-8555, Japan
| | | | | | | | | |
Collapse
|
36
|
Nishijima M, Adachi K, Katsuta A, Shizuri Y, Yamasato K. Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007. Int J Syst Evol Microbiol 2012; 63:709-714. [PMID: 22544802 DOI: 10.1099/ijs.0.042077-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two non-motile, rod-shaped gammaproteobacteria were isolated from marine sponges collected from the coast of Japan at Numazu. The isolates were oxidase- and catalase-positive facultative anaerobes that fermented carbohydrates. They required sodium ions for growth and were slightly halophilic, growing in the presence of 1.0-5.0 % (w/v) NaCl (optimum of 2.0 % NaCl). Under aerobic conditions, the major isoprenoid quinones were ubiquinone-9 and menaquinone-9 and the minor quinones were ubiquinone-8 and menaquinone-8. The major cellular fatty acids were C(18 : 1)ω7c, C(16 : 1)ω7c and C(16 : 0) and the hydroxy acids were C(10 : 0) 3-OH and C(12 : 0) 3-OH. The DNA G+C content was 48.3-48.7 mol%. Phylogenetic analysis of 16S rRNA gene sequences placed the isolates within the radiation of the genus Endozoicomonas in a broad clade of uncultured clones recovered from various marine invertebrates. The isolates exhibited 96.5-96.9 % 16S rRNA gene sequence similarity with Endozoicomonas elysicola MKT110(T) and Endozoicomonas montiporae CL-33(T), with which the isolates formed a monophyletic cluster with 100 % bootstrap support. The phenotypic features (carbohydrate fermentation, quinone system and some major cellular fatty acids) differed from those of members of the genus Endozoicomonas, which are aerobic, produce little or no menaquinone under aerobic conditions and possess different amounts of C(14 : 0) and C(18 : 1)ω7c. Although some phenotypic differences were identified, the isolates should be assigned to the genus Endozoicomonas on the basis of congruity of phylogeny and should be classified as representatives of a novel species, for which the name Endozoicomonas numazuensis sp. nov. is proposed. The type strain is HC50(T) ( = NBRC 108893(T) = DSM 25634(T)). An emended description of the genus Endozoicomonas is presented.
Collapse
Affiliation(s)
- Miyuki Nishijima
- TechnoSuruga Laboratory Co. Ltd, Nagasaki, Shimizu-ku, Shizuoka 424-0065, Japan.,Marine Biotechnology Institute, Heita, Kamaishi 026-0001, Japan
| | - Kyoko Adachi
- Marine Biotechnology Institute, Heita, Kamaishi 026-0001, Japan
| | - Atsuko Katsuta
- Marine Biotechnology Institute, Heita, Kamaishi 026-0001, Japan
| | | | - Kazuhide Yamasato
- Department of Fermentation Science, Faculty of Applied Bio-Science, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.,Marine Biotechnology Institute, Heita, Kamaishi 026-0001, Japan
| |
Collapse
|
37
|
Zhang DS, Huo YY, Xu XW, Wu YH, Wang CS, Xu XF, Wu M. Microbulbifer marinus sp. nov. and Microbulbifer yueqingensis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2012; 62:505-510. [DOI: 10.1099/ijs.0.027714-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-negative, aerobic strains, Y215T and Y226T, were isolated from sediment from Yueqing Bay, Zhejiang Province, China. The two novel strains were both positive for oxidase activity, nitrate reduction, and aesculin and casein decomposition, but negative for gelatin and tyrosine decomposition. Catalase activity, and starch and Tween 80 decomposition differed between the two strains. Cells of both novel strains were rod-shaped in young cultures and ovoid in older cultures. Optimum NaCl concentration and pH range for growth of both strains were 2.0–3.0 % (w/v) and 7.0–8.0, respectively, whereas the optimum growth temperature for strain Y215T (25–30 °C) was lower than that for strain Y226T (30–37 °C). The genomic DNA G+C contents of strains Y215T and Y226T were 54.0 and 56.7 mol%, respectively. The major fatty acids in both isolates were iso-C15 : 0 and iso-C17 : 1ω9c, which was also the case in the reference strains apart from Microbulbifer salipaludis, which possessed C18 : 1ω7c as the predominant fatty acid. The predominant isoprenoid quinone was Q-8 and the major polar lipids of both strains were phosphatidylethanolamine, phosphatidylglycerol and an unknown glycolipid. Both strains had highest 16S rRNA gene sequence similarity to members of the genus Microbulbifer. Strain Y215T was closely related to the type strains of Microbulbifer maritimus (97.6 %) and Microbulbifer donghaiensis (97.5 %), whereas strain Y226T was closely related to the type strain of M. salipaludis (97.6 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strains Y215T and Y226T fell into two separate clusters. The DNA–DNA relatedness values of strain Y215T with M. maritimus TF-17T and M. donghaiensis CN85T were 34.1 and 32.8 %, respectively, whereas that between strain Y226T and M. salipaludis SM-1T was 38.0 %; these values are significantly lower than the threshold value for the delineation of bacterial species. On the basis of their distinct taxonomic characteristics, the two isolates represent two novel species of the genus Microbulbifer, for which the names Microbulbifer marinus sp. nov. and Microbulbifer yueqingensis sp. nov. are proposed; the type strains are Y215T ( = CGMCC 1.10657T = JCM 17211T) and Y226T ( = CGMCC 1.10658T = JCM 17212T), respectively.
Collapse
Affiliation(s)
- Dong-Sheng Zhang
- Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
- Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, PR China
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ying-Yi Huo
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xue-Wei Xu
- Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
- Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, PR China
| | - Yue-Hong Wu
- Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
- Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, PR China
| | - Chun-Sheng Wang
- Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
- Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration, Hangzhou 310012, PR China
| | - Xue-Feng Xu
- Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Min Wu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
38
|
Wakabayashi M, Sakatoku A, Noda F, Noda M, Tanaka D, Nakamura S. Isolation and characterization of Microbulbifer species 6532A degrading seaweed thalli to single cell detritus particles. Biodegradation 2012; 23:93-105. [PMID: 21681519 DOI: 10.1007/s10532-011-9489-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 06/04/2011] [Indexed: 10/18/2022]
Abstract
To reduce the volume of seaweed wastes and extract polysaccharides, seaweed-degrading bacteria were isolated from drifting macroalgae harvested along the coast of Toyama Bay, Japan. Sixty-four bacterial isolates were capable of degrading "Wakame" (Undaria pinnatifida) thallus fragments into single cell detritus (SCD) particles. Amongst these, strain 6532A was the most active degrader of thallus fragments, and was capable of degrading thallus fragments to SCD particles within a day. Although the sequence similarity of the 16S rRNA gene of strain 6532A was 100% similar to that of Microbulbifer elongatus JAMB-A7, several distinct differences were observed between strains, including motility, morphology, and utilization of D: -arabinose and gelatin. Consequently, strain 6532A was classified as a new Microbulbifer strain, and was designated Microbulbifer sp. 6532A. Strain 6532A was capable of degrading both alginate and cellulose in the culture medium, zymogram analysis of which revealed the presence of multiple alginate lyases and cellulases. To the best of our knowledge, this is the first study to directly demonstrate the existence of these enzymes in Microbulbifer species. Shotgun cloning and sequencing of the alginate lyase gene in 6532A revealed a 1,074-bp open reading frame, which was designated algMsp. The reading frame encoded a PL family seven enzyme composed of 358 amino acids (38,181 Da). With a similarity of 74.2%, the deduced amino acid sequence was most similar to a Saccharophagus enzyme (alg 7C). These findings suggest that algMsp in strain 6532A is a novel alginate lyase gene.
Collapse
|
39
|
Kämpfer P, Arun AB, Young CC, Rekha PD, Martin K, Busse HJ, Chen WM. Microbulbifer taiwanensis sp. nov., isolated from coastal soil. Int J Syst Evol Microbiol 2011; 62:2485-2489. [PMID: 22155758 DOI: 10.1099/ijs.0.034512-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, non-spore-forming rod (CC-LN1-12(T)) was isolated from coastal soil samples of Lutao Island (Green Island), Taiwan, and its taxonomic position was studied. 16S rRNA gene sequence analysis showed that isolate CC-LN1-12(T) was grouped into the Microbulbifer cluster, with the highest similarities to Microbulbifer okinawensis ABABA23(T) (97.9 %), Microbulbifer maritimus TF-17(T) (97.7 %) and Microbulbifer donghaiensis CN85(T) (97.7 %), similarities to all other species of the genus Microbulbifer were lower than 96.8 %. The polyamine pattern contained the major compounds spermidine and cadaverine. The fatty acid profile, comprising the major fatty acids iso-C(15 : 0), iso-C(17 : 1)ω9c, C(18 : 1)ω7c and iso-C(11 : 0) 3-OH as the major hydroxylated fatty acid, supported the affiliation of strain CC-LN1-12(T) to the genus Microbulbifer. DNA-DNA hybridizations between strain CC-LN1-12(T) and Microbulbifer okinawensis ABABA23(T), M. donghaiensis CN85(T) and M. maritimus JCM 12187(T) resulted in relatedness values of 21.5 % (14.3 %, reciprocal analysis), 35.9 % (48.5 %, reciprocal analysis) and 48.1 % (52.1 %, reciprocal analysis), respectively. From these data, as well as from physiological and biochemical tests, strain CC-LN1-12(T) could be clearly differentiated from the most closely related species of the genus Microbulbifer. It is concluded that strain CC-LN1-12(T) represents a novel species, for which the name Microbulbifer taiwanensis sp. nov. is proposed. The type strain is CC-LN1-12(T) ( = LMG 26125(T) = CCM 7856(T)).
Collapse
Affiliation(s)
- P Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | - A B Arun
- Yenepoya Research Centre, Yenepoya University, University Road, Deralakatee, Mangalore, Karnataka, India
| | - Chiu-Chung Young
- College of Agriculture and Natural Resources, Department of Soil & Environmental Sciences, National Chung Hsing University, Taichung, Taiwan, ROC
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya University, University Road, Deralakatee, Mangalore, Karnataka, India
| | - K Martin
- Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e. V., Hans-Knöll-Institut, D-07745 Jena, Germany
| | - H-J Busse
- Institut für Bakteriologie, Mykologie und Hygiene, Veterinärmedizinische Universität, A-1210 Wien, Austria
| | - Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
40
|
Baba A, Miyazaki M, Nagahama T, Nogi Y. Microbulbifer chitinilyticus sp. nov. and Microbulbifer okinawensis sp. nov., chitin-degrading bacteria isolated from mangrove forests. Int J Syst Evol Microbiol 2010; 61:2215-2220. [PMID: 20935083 DOI: 10.1099/ijs.0.024158-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three chitin-degrading strains representing two novel species were isolated from mangrove forests in Okinawa, Japan. The isolates, ABABA23(T), ABABA211 and ABABA212(T), were Gram-negative, non-spore-forming, strictly aerobic chemo-organotrophs. The novel strains produced Q-8 as the major isoprenoid quinone component. The predominant fatty acids were iso-C₁₅:₀ and C₁₆:₀. On the basis of 16S rRNA gene sequence analysis, the isolates were closely affiliated with members of the genus Microbulbifer. The DNA G+C contents of strains ABABA23(T) and ABABA212(T) were 57.8 and 60.2 mol%, respectively. DNA-DNA relatedness values between these two strains and Microbulbifer reference strains were significantly lower than 70 %, the generally accepted threshold level below which strains are considered to belong to separate species. Based on differences in taxonomic characteristics, the three isolates represent two novel species of the genus Microbulbifer, for which the names Microbulbifer chitinilyticus sp. nov. (type strain, ABABA212(T) = JCM 16148(T) = NCIMB 14577(T)) and Microbulbifer okinawensis sp. nov. (type strain, ABABA23(T) = JCM 16147(T) = NCIMB 14576(T); reference strain, ABABA211) are proposed.
Collapse
Affiliation(s)
- Atsushi Baba
- International Graduate School of Arts and Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.,Extremobiosphere Research Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Masayuki Miyazaki
- Extremobiosphere Research Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Takahiko Nagahama
- Extremobiosphere Research Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Yuichi Nogi
- International Graduate School of Arts and Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.,Extremobiosphere Research Program, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| |
Collapse
|
41
|
Jonnadula R, Verma P, Shouche YS, Ghadi SC. Characterization of Microbulbifer strain CMC-5, a new biochemical variant of Microbulbifer elongatus type strain DSM6810T isolated from decomposing seaweeds. Curr Microbiol 2009; 59:600-7. [PMID: 19701665 DOI: 10.1007/s00284-009-9480-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
A Gram-negative, rod-shaped, non-spore forming, non-motile and moderate halophilic bacteria designated as strain CMC-5 was isolated from decomposing seaweeds by enrichment culture. The growth of strain CMC-5 was assessed in synthetic seawater-based medium containing polysaccharide. The bacterium degraded and utilized agar, alginate, carrageenan, xylan, carboxymethyl cellulose and chitin. The strain was characterized using a polyphasic approach for taxonomic identification. Cellular fatty acid analysis showed the presence of iso-C(15:0) as major fatty acid and significant amounts of iso-C(17:1x9c) and C(18:1x7c). Phylogenetic analysis based on 16S rDNA sequence indicated that strain CMC-5 is phylogenetically related to Microbulbifer genus and 99% similar to type strain Microbulbifer elongatus DSM6810T. However in contrast to Microbulbifer elongatus DSM6810T, strain CMC-5 is non-motile, utilizes glucose, galactose, inositol and xylan, does not utilize fructose and succinate nor does it produce H2S. Further growth of bacterial strain CMC-5 was observed when inoculated in seawater-based medium containing sterile pieces of Gracilaria corticata thalli. The bacterial growth was associated with release of reducing sugar in the broth suggesting its role in carbon recycling of polysaccharides from seaweeds in marine ecosystem.
Collapse
|