1
|
Hu P, Sharaby Y, Gu J, Radian A, Lang‐Yona N. Environmental processes and health implications potentially mediated by dust-borne bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13222. [PMID: 38151778 PMCID: PMC10866058 DOI: 10.1111/1758-2229.13222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Understanding microbial migration and survival mechanisms in dust events (DEs) can elucidate genetic and metabolic exchange between environments and help predict the atmospheric pathways of ecological and health-related microbial stressors. Dust-borne microbial communities have been previously characterized, but the impact and interactions between potentially active bacteria within transported communities remain limited. Here, we analysed samples collected during DEs in Israel, using amplicon sequencing of the 16S rRNA genes and transcripts. Different air trajectories and wind speeds were associated not only with the genomic microbial community composition variations but also with specific 16S rRNA bacterial transcripts. Potentially active dust-borne bacteria exhibited positive interactions, including carbon and nitrogen cycling, biotransformation of heavy metals, degradation of organic compounds, biofilm formation, and the presence of pathogenic taxa. This study provides insights into the potential interactive relationships and survival strategies of microorganisms within the extreme dust environment.
Collapse
Affiliation(s)
- Pengfei Hu
- Civil and Environmental EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
- Environmental Science and Engineering Research GroupGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
| | - Yehonatan Sharaby
- Civil and Environmental EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
- Present address:
Department of Biology and EnvironmentUniversity of HaifaOranimTivonIsrael
| | - Ji‐Dong Gu
- Environmental Science and Engineering Research GroupGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy ConversionGuangdong Technion—Israel Institute of TechnologyShantouGuangdongChina
| | - Adi Radian
- Civil and Environmental EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
| | - Naama Lang‐Yona
- Civil and Environmental EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
2
|
Yue L, Jiao L, Tao M, Xu L, Cao X, Chen F, Wang C, Cheng B, Wang Z. Dynamics of organic acid exudation and rhizobacteria in maize rhizosphere respond to N-CDs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166500. [PMID: 37619720 DOI: 10.1016/j.scitotenv.2023.166500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
To sustainably feed the growing global population, it is essential to increase crop yields on limited land while reducing the use of fertilizers and agrochemicals. The rhizosphere regulation shows significant potential to address this challenge. Here, foliar applied doping of nitrogen in carbon dots (N-CDs) entered maize leaves, and were transported to the stems and roots. The internalized N-CDs significantly increased the biomass (26.4-93.8%) and photosynthesis (17.0-20.3 %) of maize seedling during the three-week application of N-CDs, providing the substrate for tricarboxylic acid cycle (TCA) in shoots and roots. Correspondingly, more organic acids involved in TCA cycle, such as citric acid (14.0-fold), succinic acid (4.4-fold) and malic acid (3.4-fold), were synthesized and then secreted into rhizosphere after exposed to N-CDs for one day. As the exposure time increased, greater secretion of above organic acids by the roots was induced. However, no significant change was observed in the relative abundance of rhizobacteria after foliar application with N-CDs for one day. After one week, the relative abundances of Azotobacter, Bacillus, Lysobacter, Mucilaginibacter, and Sphingomonas increased by 0.8-3.8 folds. The relative abundance of more beneficial rhizobacteria (Sphingomonas, Lysobacter, Rhizobium, Azotobacter, Pseudomonas, Mucilaginibacter and Bacillus) enriched by 0.3-6.0 folds after two weeks, and Sphingomonas, Flavisolibacter and Bacillus improved by 0.6-3.2 folds after three weeks. These dynamic changes suggested that N-CDs initiate the synthesis and secretion of organic acids and then recruited beneficial rhizobacteria. The hierarchical partitioning analysis further indicated that N-CDs-induced secretion of organic acids from the roots was the main drivers of rhizobacteria community dynamics. The differential microbes altered by N-CDs were mainly involved in nitrogen (N) and phosphorus (P) cycles, which are beneficial for N and P uptake, and maize growth. These results provide insights into understanding the rhizosphere regulation of nanomaterials to improve plant productivity and nutrient-use efficiency.
Collapse
Affiliation(s)
- Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Liya Jiao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Lanqing Xu
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Bingxu Cheng
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China.
| |
Collapse
|
3
|
Song X, Zheng R, Liu Y, Liu Z, Yu J, Li J, Zhang P, Gao Q, Li H, Li C, Liu X. Combined application of microbial inoculant and kelp-soaking wastewater promotes wheat seedlings growth and improves structural diversity of rhizosphere microbial community. Sci Rep 2023; 13:20697. [PMID: 38001242 PMCID: PMC10673839 DOI: 10.1038/s41598-023-48195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023] Open
Abstract
Industrial processing of kelp generates large amounts of kelp-soaking wastewater (KSW), which contains a large amount of nutrient-containing substances. The plant growth-promoting effect might be further improved by combined application of growth-promoting bacteria and the nutrient-containing KSW. Here, a greenhouse experiment was conducted to determine the effect of the mixture of KSW and Bacillus methylotrophicus M4-1 (MS) vs. KSW alone (SE) on wheat seedlings, soil properties and the microbial community structure in wheat rhizosphere soil. The available potassium, available nitrogen, organic matter content and urease activity of MS soil as well as the available potassium of the SE soil were significantly different (p < 0.05) from those of the CK with water only added, increased by 39.51%, 36.25%, 41.61%, 80.56% and 32.99%, respectively. The dry and fresh weight of wheat seedlings from MS plants increased by 166.17% and 50.62%, respectively, while plant height increased by 16.99%, compared with CK. Moreover, the abundance and diversity of fungi in the wheat rhizosphere soil were significantly increased (p < 0.05), the relative abundance of Ascomycetes and Fusarium spp. decreased, while the relative abundance of Bacillus and Mortierella increased. Collectively, the combination of KSW and the plant growth-promoting strain M4-1 can promote wheat seedlings growth and improve the microecology of rhizosphere microorganisms, thereby solving the problems of resource waste and environmental pollution, ultimately turning waste into economic gain.
Collapse
Affiliation(s)
- Xin Song
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
- Key Laboratory of National Forestry and Grassland Administration on Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, China
| | - Rui Zheng
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Yue Liu
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Zhaoyang Liu
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Jian Yu
- Shandong Nongda Fertilizer Technology Co. Ltd, Taian, Shandong, China
| | - Jintai Li
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Pengcheng Zhang
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Qixiong Gao
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Huying Li
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Chaohui Li
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Xunli Liu
- College of Forestry, Shandong Agriculture University, No. 61, Daizong Street, Taian, 271018, Shandong, China.
- Key Laboratory of National Forestry and Grassland Administration on Silviculture of the Lower Yellow River, Shandong Agricultural University, Taian, China.
| |
Collapse
|
4
|
Badmi R, Gogoi A, Doyle Prestwich B. Secondary Metabolites and Their Role in Strawberry Defense. PLANTS (BASEL, SWITZERLAND) 2023; 12:3240. [PMID: 37765404 PMCID: PMC10537498 DOI: 10.3390/plants12183240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Strawberry is a high-value commercial crop and a model for the economically important Rosaceae family. Strawberry is vulnerable to attack by many pathogens that can affect different parts of the plant, including the shoot, root, flowers, and berries. To restrict pathogen growth, strawberry produce a repertoire of secondary metabolites that have an important role in defense against diseases. Terpenes, allergen-like pathogenesis-related proteins, and flavonoids are three of the most important metabolites involved in strawberry defense. Genes involved in the biosynthesis of secondary metabolites are induced upon pathogen attack in strawberry, suggesting their transcriptional activation leads to a higher accumulation of the final compounds. The production of secondary metabolites is also influenced by the beneficial microbes associated with the plant and its environmental factors. Given the importance of the secondary metabolite pathways in strawberry defense, we provide a comprehensive overview of their literature and their role in the defense responses of strawberry. We focus on terpenoids, allergens, and flavonoids, and discuss their involvement in the strawberry microbiome in the context of defense responses. We discuss how the biosynthetic genes of these metabolites could be potential targets for gene editing through CRISPR-Cas9 techniques for strawberry crop improvement.
Collapse
Affiliation(s)
- Raghuram Badmi
- School of Biological Earth and Environmental Sciences, University College Cork, T23 TK30 Cork, Ireland;
| | - Anupam Gogoi
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research (NIBIO), 1433 Ås, Norway
| | - Barbara Doyle Prestwich
- School of Biological Earth and Environmental Sciences, University College Cork, T23 TK30 Cork, Ireland;
| |
Collapse
|
5
|
Lian T, Cheng L, Liu Q, Yu T, Cai Z, Nian H, Hartmann M. Potential relevance between soybean nitrogen uptake and rhizosphere prokaryotic communities under waterlogging stress. ISME COMMUNICATIONS 2023; 3:71. [PMID: 37433864 PMCID: PMC10336055 DOI: 10.1038/s43705-023-00282-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Waterlogging in soil can limit the availability of nitrogen to plants by promoting denitrification and reducing nitrogen fixation and nitrification. The root-associated microorganisms that determine nitrogen availability at the root-soil interface can be influenced by plant genotype and soil type, which potentially alters the nitrogen uptake capacity of plants in waterlogged soils. In a greenhouse experiment, two soybean genotypes with contrasting capacities to resist waterlogging stress were grown in Udic Argosol and Haplic Alisol soils with and without waterlogging, respectively. Using isotope labeling, high-throughput amplicon sequencing and qPCR, we show that waterlogging negatively affects soybean yield and nitrogen absorption from fertilizer, atmosphere, and soil. These effects were soil-dependent and more pronounced in the waterlogging-sensitive than tolerant genotype. The tolerant genotype harbored more ammonia oxidizers and less nitrous oxide reducers. Anaerobic, nitrogen-fixing, denitrifying and iron-reducing bacteria such as Geobacter/Geomonas, Sphingomonas, Candidatus Koribacter, and Desulfosporosinus were proportionally enriched in association with the tolerant genotype under waterlogging. These changes in the rhizosphere microbiome might ultimately help the plant to improve nitrogen uptake under waterlogged, anoxic conditions. This research contributes to a better understanding of the adaptability of soybean genotypes under waterlogging stress and might help to formulate fertilization strategies that improve nitrogen use efficiency of soybean. Schematic representation of the effects of waterlogging on nitrogen uptake and rhizosphere microbiota in dependence of soil type and soybean genotype.
Collapse
Affiliation(s)
- Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| | - Lang Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qi Liu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Taobing Yu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, Guangdong, China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Martin Hartmann
- Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Li X, Li D, Jiang Y, Xu J, Ren X, Zhang Y, Wang H, Lu Q, Yan J, Ahmed T, Li B, Guo K. The effects of microbial fertilizer based Aspergillus brunneoviolaceus HZ23 on pakchoi growth, soil properties, rhizosphere bacterial community structure, and metabolites in newly reclaimed land. Front Microbiol 2023; 14:1091380. [PMID: 36814570 PMCID: PMC9939755 DOI: 10.3389/fmicb.2023.1091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Pakchoi is an important leafy vegetable in China. Due to industrialization and urbanization, pakchoi has been cultivated in newly reclaimed mountainous lands in Zhejiang Province, China in recent years. However, immature soil is not suitable for plant growth and needs to be modified by the application of different organic fertilizer or microbial fertilizer based plant-growth-promoting microbe. In 2021, a high efficient plant-growth-promoting fungi (PGPF; Aspergillus brunneoviolaceus HZ23) was obtained from newly reclaimed land of Zhejiang Province, China. In order to valuate microbial fertilizer based A. brunneoviolaceus HZ23 (MF-HZ23) on pakchoi growth in immature soil, we investigated the effect of MF-HZ23 on soil properties, rhizosphere bacterial community structure, and metabolites of pakchoi rhizosphere soil samples. Methods The field experiment (four treatments, MF-HZ23, MF-ZH23 + CCF, CCF and the control) was completely randomly designed and carried out on newly reclaimed land in Yangqingmiao Village of Fuyang district, Hangzhou City, Zhejiang Province, China. In order to evaluate the influence of microbial fertilizer based A. brunneoviolaceus HZ23 on pakchoi in the newly reclaimed land, the number of pakchoi leaves, total fresh and dry weight of the seedlings was counted. In addition, the soil properties, including the pH, OMC, total N, AHN, available P, the genome sequencing, and metabolomics assay were also detected. Results The results revealed a significant difference between MF-HZ23 and the control in soil properties, bacterial community structure, and metabolites. Indeed, compared with the control, MF-HZ23 caused 30.66, 71.43, 47.31, 135.84, and 2099.90% increase in the soil pH, organic matter contents (OMC), total nitrogen (N), alkaline hydrolysis nitrogen (AHN), and available phosphorus (P), respectively. Meanwhile, MF-HZ23 caused 50.78, 317.47, and 34.40% increase in the relative abundance of Proteobacteria, Bacteroidota, and Verrucomicrobiota and 75.55, 23.27, 69.25, 45.88, 53.42, and 72.44% reduction in the relative abundance of Acidobacteriota, Actinobacteriota, Chloroflexi, Planctomycetota, Patescibacteria, and WPS-2, respectively, compared with the control based on 16S amplicon sequencing of soil bacteria. Furthermore, redundancy discriminant analysis (RDA) of bacterial communities and soil properties indicated that the main variables of bacterial communities included available P, AHN, pH, OMC, and total N. In addition, non-targeted metabolomics techniques (UHPLC-MS analysis) revealed that MF-HZ23 resulted in a great change in the kinds of metabolites in the rhizosphere soil. Indeed, in MF-HZ23 and the control group, there were six differentially expressed metabolites (DEMs) belong to organoheterocyclic compounds, organic acids and derivatives, organic nitrogen compounds, and these six DEMs were significantly positively correlated with 23 genus of bacteria, which showed complicated interactions between bacteria and DEMs in pakchoi rhizosphere soil. Conclutions Overall, the results of this study revealed significant modification in physical, chemical, and biological properties of pakchoi soil. Microbial fertilizer based PGPF A. brunneoviolaceus HZ23 (MF-HZ23) can be used as a good amendment for newly reclaimed land.
Collapse
Affiliation(s)
- Xuqing Li
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Dingyi Li
- Department of Biological Environment, Material and Environmental CollegeShanxi Jinzhong Institute of Technology, Jinzhong, China
| | - Yugen Jiang
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, China
| | - Jun Xu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, China
| | - Xiaoxu Ren
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Ya Zhang
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Hong Wang
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qiujun Lu
- Hangzhou Agricultural and Rural Affairs Guarantee Center, Hangzhou, China,*Correspondence: Qiujun Lu, ✉
| | - Jianli Yan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China,Jianli Yan, ✉
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Guo
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China,Kai Guo, ✉
| |
Collapse
|
7
|
Ko SR, Le VV, Kang M, Oh HM, Ahn CY. Mucilaginibacter straminoryzae sp. nov., isolated from rice straw used for growing periphyton. Int J Syst Evol Microbiol 2023; 73. [PMID: 36790416 DOI: 10.1099/ijsem.0.005714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
A rod-shaped, non-motile, Gram-negative bacterium, strain RS28T, was isolated from rice straw used as material for periphyton growth. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain RS28T was affiliated with the genus Mucilaginibacter and had the highest sequence similarity to Mucilaginibacter ginkgonis HMF7856T (96.47 %) and Mucilaginibacter polytrichastri DSM 26907T (96.12 %). Strain RS28T was found to grow at pH 5.5-8.0, 17-40 °C and in the presence of 0-1.5 % (w/v) NaCl. Strain RS28T contained summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids (> 10.0 %). The major polar lipids were phosphatidylethanolamine, two unidentified phospholipids, two unidentified aminophospholipids, three unidentified aminolipids and one unidentified lipid. The respiratory quinone was menaquinone 7. The genomic DNA G+C content was 44.7 mol%. Strain RS28T possessed six putative secondary metabolite gene clusters involved in the synthesis of resorcinol, NRPS-like, terpene, lassopeptide, T3PKS and arylpolyene. On the basis of the phenotypic, chemotaxonomic, and phylogenetic characteristics, strain RS28T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter straminoryzae sp. nov. is proposed. The type strain is RS28T (=KCTC 92039T=LMG 32424T).
Collapse
Affiliation(s)
- So-Ra Ko
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ve Van Le
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Mingyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hee-Mock Oh
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chi-Yong Ahn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
8
|
Soil microbiome disruption reveals specific and general plant-bacterial relationships in three agroecosystem soils. PLoS One 2022; 17:e0277529. [PMID: 36383522 PMCID: PMC9668122 DOI: 10.1371/journal.pone.0277529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/28/2022] [Indexed: 11/17/2022] Open
Abstract
Soil microbiome disruption methods are regularly used to reduce populations of microbial pathogens, often resulting in increased crop growth. However, little is known about the effect of soil microbiome disruption on non-pathogenic members of the soil microbiome. Here, we applied soil microbiome disruption in the form of moist-heat sterilization (autoclaving) to reduce populations of naturally occurring soil microbiota. The disruption was applied to analyze bacterial community rearrangement mediated by four crops (corn, beet, lettuce, and tomato) grown in three historically distinct agroecosystem soils (conventional, organic, and diseased). Applying the soil disruption enhanced plant influence on rhizosphere bacterial colonization, and significantly different bacterial communities were detected between the tested crops. Furthermore, bacterial genera showed significant abundance increases in ways both unique-to and shared-by each tested crop. As an example, corn uniquely promoted abundances of Pseudomonas and Sporocytophaga, regardless of the disrupted soil in which it was grown. Whereas the promotion of Bosea, Dyadobacter and Luteoliobacter was shared by all four crops when grown in disrupted soils. In summary, soil disruption followed by crop introduction amplified the plant colonization of potential beneficial bacterial genera in the rhizosphere.
Collapse
|
9
|
You XY, Liu JH, Tian H, Ding Y, Bu QY, Zhang KX, Ren GY, Duan X. Mucilaginibacter Phenanthrenivorans sp. nov., a Novel Phenanthrene Degradation Bacterium Isolated from Wetland Soil. Curr Microbiol 2022; 79:382. [DOI: 10.1007/s00284-022-03085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022]
|
10
|
Mucilaginibacter rivuli sp. nov., isolated from a water rivulet. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Strain HMF5004T was isolated from a rivulet located in Yongin, Republic of Korea. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HMF5004T belonged to the genus
Mucilaginibacter
. Strain HMF5004T was closely related to
Mucilaginibacter paludis
(97.7%) and
Mucilaginibacter gracilis
(97.2%). The values of average nucleotide identity and digital DNA–DNA hybridization between strain HMF5004T and
M. paludis
were 72.8 and 19.2 %, respectively. Cells of strain HMF5004T were Gram-stain-negative, rod-shaped, non-motile, catalase-positive and oxidase-positive. The DNA G+C content of strain HMF5004T was 42.4 mol%. Strain HMF5004T had menaquinone-7 as a major quinone. The major cellular fatty acids included iso-C15 : 0, summed feature 3 (C16 : 1
ω7c and/or C16 : 1
ω6c) and anteiso-C15 : 0. The polar lipids of strain HMF5004T contained phosphatidylethanolamine, five unidentified aminolipids, one unidentified aminophospholipid and four unidentified polar lipids. On the basis of the evidence presented in this polyphasic taxonomic study, strain HMF5004T is considered to represent a novel species for which the name Mucilaginibacter rivuli sp. nov. is proposed. The type strain is HMF5004T (=KCTC 82633T=NBRC 115091T).
Collapse
|
11
|
Guajardo-Leiva S, Alarcón J, Gutzwiller F, Gallardo-Cerda J, Acuña-Rodríguez IS, Molina-Montenegro M, Crandall KA, Pérez-Losada M, Castro-Nallar E. Source and acquisition of rhizosphere microbes in Antarctic vascular plants. Front Microbiol 2022; 13:916210. [PMID: 36160194 PMCID: PMC9493328 DOI: 10.3389/fmicb.2022.916210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022] Open
Abstract
Rhizosphere microbial communities exert critical roles in plant health, nutrient cycling, and soil fertility. Despite the essential functions conferred by microbes, the source and acquisition of the rhizosphere are not entirely clear. Therefore, we investigated microbial community diversity and potential source using the only two native Antarctic plants, Deschampsia antarctica (Da) and Colobanthus quitensis (Cq), as models. We interrogated rhizosphere and bulk soil microbiomes at six locations in the Byers Peninsula, Livingston Island, Antarctica, both individual plant species and their association (Da.Cq). Our results show that host plant species influenced the richness and diversity of bacterial communities in the rhizosphere. Here, the Da rhizosphere showed the lowest richness and diversity of bacteria compared to Cq and Da.Cq rhizospheres. In contrast, for rhizosphere fungal communities, plant species only influenced diversity, whereas the rhizosphere of Da exhibited higher fungal diversity than the Cq rhizosphere. Also, we found that environmental geographic pressures (i.e., sampling site, latitude, and altitude) and, to a lesser extent, biotic factors (i.e., plant species) determined the species turnover between microbial communities. Moreover, our analysis shows that the sources of the bacterial communities in the rhizosphere were local soils that contributed to homogenizing the community composition of the different plant species growing in the same sampling site. In contrast, the sources of rhizosphere fungi were local (for Da and Da.Cq) and distant soils (for Cq). Here, the host plant species have a specific effect in acquiring fungal communities to the rhizosphere. However, the contribution of unknown sources to the fungal rhizosphere (especially in Da and Da.Cq) indicates the existence of relevant stochastic processes in acquiring these microbes. Our study shows that rhizosphere microbial communities differ in their composition and diversity. These differences are explained mainly by the microbial composition of the soils that harbor them, acting together with plant species-specific effects. Both plant species acquire bacteria from local soils to form part of their rhizosphere. Seemingly, the acquisition process is more complex for fungi. We identified a significant contribution from unknown fungal sources due to stochastic processes and known sources from soils across the Byers Peninsula.
Collapse
Affiliation(s)
- Sergio Guajardo-Leiva
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
| | - Jaime Alarcón
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Florence Gutzwiller
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Gallardo-Cerda
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | | | - Marco Molina-Montenegro
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
- Laboratorio de Ecología Integrativa, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
- Centro de Estudios Avanzados en Zonas Áridas, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- Centro de Investigación en Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Keith A. Crandall
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC, United States
| | - Marcos Pérez-Losada
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, George Washington University, Washington, DC, United States
- Division of Emergency Medicine, Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Children’s National Hospital, Washington, DC, United States
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Eduardo Castro-Nallar
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
- Centro de Ecología Integrativa, Universidad de Talca, Talca, Chile
- *Correspondence: Eduardo Castro-Nallar,
| |
Collapse
|
12
|
Fan D, Smith DL. Mucilaginibacter sp. K Improves Growth and Induces Salt Tolerance in Nonhost Plants via Multilevel Mechanisms. FRONTIERS IN PLANT SCIENCE 2022; 13:938697. [PMID: 35832221 PMCID: PMC9271937 DOI: 10.3389/fpls.2022.938697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Soil salinity negatively modulates plant growth and development, contributing to severe decreases in the growth and production of crops. Mucilaginibacter sp. K is a root endophytic bacterium that was previously reported by our laboratory to stimulate growth and confer salt tolerance in Arabidopsis (Arabidopsis thaliana). The main purpose of the present study is to elucidate the physiological and molecular machinery responsible for the prospective salt tolerance as imparted by Mucilaginibacter sp. K. We first report that auxin, gibberellin, and MPK6 signalings were required for strain K-induced growth promotion and salt tolerance in Arabidopsis. Then, this strain was assessed as a remediation strategy to improve maize performance under salinity stress. Under normal growth conditions, the seed vigor index, nitrogen content, and plant growth were significantly improved in maize. After NaCl exposure, strain K significantly promoted the growth of maize seedlings, ameliorated decline in chlorophyll content and reduced accretion of MDA and ROS compared with the control. The possible mechanisms involved in salt resistance in maize could be the improved activities of SOD and POD (antioxidative system) and SPS (sucrose biosynthesis), upregulated content of total soluble sugar and ABA, and reduced Na+ accumulation. These physiological changes were then confirmed by induced gene expression for ion transportation, photosynthesis, ABA biosynthesis, and carbon metabolism. In summary, these results suggest that strain K promotes plant growth through increases in photosynthesis and auxin- and MPK6-dependent pathways; it also bestows salt resistance on plants through protection against oxidative toxicity, Na+ imbalance, and osmotic stress, along with the activation of auxin-, gibberellin-, and MPK6-dependent signaling pathways. This is the first detailed report of maize growth promotion by a Mucilaginibacter sp. strain from wild plant. This strain could be used as a favorable biofertilizer and a salinity stress alleviator for maize, with further ascertainment as to its reliability of performance under field conditions and in the presence of salt stress.
Collapse
Affiliation(s)
- Di Fan
- School of Biology, Food and Environment, Hefei University, Hefei, China
- Department of Plant Science, McGill University, Montreal, QC, Canada
| | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Broccanello C, Ravi S, Deb S, Bolton M, Secor G, Richards C, Maretto L, Lucia MCD, Bertoldo G, Orsini E, Ronquillo-López MG, Concheri G, Campagna G, Squartini A, Stevanato P. Bacterial endophytes as indicators of susceptibility to Cercospora Leaf Spot (CLS) disease in Beta vulgaris L. Sci Rep 2022; 12:10719. [PMID: 35739218 PMCID: PMC9226160 DOI: 10.1038/s41598-022-14769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
The fungus Cercospora beticola causes Cercospora Leaf Spot (CLS) of sugar beet (Beta vulgaris L.). Despite the global importance of this disease, durable resistance to CLS has still not been obtained. Therefore, the breeding of tolerant hybrids is a major goal for the sugar beet sector. Although recent studies have suggested that the leaf microbiome composition can offer useful predictors to assist plant breeders, this is an untapped resource in sugar beet breeding efforts. Using Ion GeneStudio S5 technology to sequence amplicons from seven 16S rRNA hypervariable regions, the most recurring endophytes discriminating CLS-symptomatic and symptomless sea beets (Beta vulgaris L.ssp. maritima) were identified. This allowed the design of taxon-specific primer pairs to quantify the abundance of the most representative endophytic species in large naturally occurring populations of sea beet and subsequently in sugar beet breeding genotypes under either CLS symptomless or infection stages using qPCR. Among the screened bacterial genera, Methylobacterium and Mucilaginibacter were found to be significantly (p < 0.05) more abundant in symptomatic sea beets with respect to symptomless. In cultivated sugar beet material under CLS infection, the comparison between resistant and susceptible genotypes confirmed that the susceptible genotypes hosted higher contents of the above-mentioned bacterial genera. These results suggest that the abundance of these species can be correlated with increased sensitivity to CLS disease. This evidence can further prompt novel protocols to assist plant breeding of sugar beet in the pursuit of improved pathogen resistance.
Collapse
Affiliation(s)
- Chiara Broccanello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale Dell'Università, Legnaro, PD, Italy
| | - Samathmika Ravi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale Dell'Università, Legnaro, PD, Italy
| | - Saptarathi Deb
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale Dell'Università, Legnaro, PD, Italy
| | - Melvin Bolton
- Northern Crop Science Laboratory, U.S. Dept. Agriculture, Fargo, ND, USA
| | - Gary Secor
- Plant Pathology Department, North Dakota State University, Fargo, ND, USA
| | | | - Laura Maretto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale Dell'Università, Legnaro, PD, Italy
| | - Maria Cristina Della Lucia
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale Dell'Università, Legnaro, PD, Italy
| | - Giovanni Bertoldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale Dell'Università, Legnaro, PD, Italy
| | - Elena Orsini
- Strube Research GmbH & Co. KG, Söllingen, Germany
| | | | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale Dell'Università, Legnaro, PD, Italy
| | | | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale Dell'Università, Legnaro, PD, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale Dell'Università, Legnaro, PD, Italy.
| |
Collapse
|
14
|
Kim J, Lee B, Chhetri G, Kim I, So Y, Jang W, Seo T. Identification of Mucilaginibacter conchicola sp. nov., Mucilaginibacter achroorhodeus sp. nov. and Mucilaginibacter pallidiroseus sp. nov. and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005431] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three chitinolytic, Gram-negative, light pink, capsule-forming, rod-shaped bacterial strains with gliding motion (MYSH2T, MJ1aT and dk17T) were isolated from seashells, soil and foxtail, respectively. Phylogenetic analysis of the 16S rRNA gene sequences and concatenated alignment of 92 core genes indicated that strains MYSH2T, MJ1aT and dk17T were novel species of the genus
Mucilaginibacter
and exhibited a high 16S rRNA sequence similarity (i.e. more than 97.2 %) among each other. These novel strains contained summed feature 3 (C16:1 ω7c and/or C16:1 ω6), iso-C15:0 and MK-7 as the predominant fatty acids and menaquinone. According to the CAZys coding gene of KAAS, MYSH2T and MJ1aT were interpreted as strains containing both GH18 and 19 family coding genes, except for dk17T, which shows only GH19 family genes. These strains likely degrade chitin to chitobiose or directly to N-acetyl-d-glucosamine, which may enhance their chitinolytic capacity, thus making these stains potentially useful for industrial chitin degradation. Based on distinct morphological, physiological, chemotaxonomic and phylogenetic differences from their closest phylogenetic neighbours, we propose that strains MYSH2T, MJ1aT and dk17T represent three novel species in the genus
Mucilaginibacter
, for which the names Mucilaginibacter conchicola sp. nov. (=KACC 19716T=JCM 32787T), Mucilaginibacter achroorhodeus sp. nov. (=KACC 19906T=NBRC 113667T) and Mucilaginibacter pallidiroseus sp. nov. (=KACC 19907T=NBRC 113666T) are proposed. An emended description of the genus
Mucilaginibacter
is proposed.
Collapse
Affiliation(s)
- Jiyoun Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Byungjo Lee
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Yoonseop So
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Wonhee Jang
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, South Korea
| |
Collapse
|
15
|
Biomineralization of Carbonates Induced by Mucilaginibacter gossypii HFF1: Significant Role of Biochemical Parameters. MINERALS 2022. [DOI: 10.3390/min12050614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although the precipitation of carbonate minerals induced by various bacteria is widely studied, the changes in the biochemical parameters, and their significant role in the biomineralization processes, still need further exploration. In this study, Mucilaginibacter gossypii HFF1 was isolated, identified, and used to induce carbonate minerals at various Mg/Ca ratios. The biochemical parameters were determined in order to explore the biomineralization mechanisms, including cell concentration, pH, ammonia, carbonic anhydrase activity, and alkaline phosphatase activity. The characteristics of extracellular minerals and intracellular inclusions were both analyzed. In addition, the amino acid composition of the extracellular polymeric substance was also tested. Results show that the biochemical parameters provide an alkaline environment for precipitation, due to the combined effect of ammonia, carbonic anhydrase, and alkaline phosphatase. Biotic minerals are characterized by preferred orientation, specific shape, and better crystalline and better thermal stability, indicating their biogenesis. Most of the amino acids in the extracellular polymeric substance are negatived charged, and facilitate the binding of magnesium and calcium ions. The particles with weak crystalline structure in the EPS prove that it acts as a nucleation site. Intracellular analyses prove the presence of the intracellular amorphous inclusions. Our results suggest that the changes in the biochemical parameters caused by bacteria are beneficial to biomineralization, and play a necessary role in its process. This offers new insight into understanding the biomineralization mechanism of the bacteria HFF1.
Collapse
|
16
|
Yuan QS, Wang L, Wang H, Wang X, Jiang W, Ou X, Xiao C, Gao Y, Xu J, Yang Y, Cui X, Guo L, Huang L, Zhou T. Pathogen-Mediated Assembly of Plant-Beneficial Bacteria to Alleviate Fusarium Wilt in Pseudostellaria heterophylla. Front Microbiol 2022; 13:842372. [PMID: 35432244 PMCID: PMC9005978 DOI: 10.3389/fmicb.2022.842372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium wilt (FW) is a primary replant disease that affects Pseudostellaria heterophylla (Taizishen) and is caused by Fusarium oxysporum, which occurs widely in China under the continuous monocropping regime. However, the ternary interactions among the soil microbiota, P. heterophylla, and F. oxysporum remain unknown. We investigated the potential interaction relationship by which the pathogen-mediated P. heterophylla regulates the soil and the tuberous root microbiota via high-throughput sequencing. Plant-pathogen interaction assays were conducted to measure the arrival of F. oxysporum and Pseudomonas poae at the tuberous root via qPCR and subsequent seedling disease incidence. A growth assay was used to determine the effect of the tuberous root crude exudate inoculated with the pathogen on P. poae. We observed that pathogen-mediated P. heterophylla altered the diversity and the composition of the microbial communities in its rhizosphere soil and tuberous root. Beneficial microbe P. poae and pathogen F. oxysporum were significantly enriched in rhizosphere soil and within the tuberous root in the FW group with high severity. Correlation analysis showed that, accompanied with FW incidence, P. poae co-occurred with F. oxysporum. The aqueous extract of P. heterophylla tuberous root infected by F. oxysporum substantially promoted the growth of P. poae isolates (H1-3-A7, H2-3-B7, H4-3-C1, and N3-3-C4). These results indicated that the extracts from the tuberous root of P. heterophylla inoculated with F. oxysporum might attract P. poae and promote its growth. Furthermore, the colonization assay found that the gene copies of sucD in the P. poae and F. oxysporum treatment (up to 6.57 × 1010) group was significantly higher than those in the P. poae treatment group (3.29 × 1010), and a pathogen-induced attraction assay found that the relative copies of sucD of P. poae in the F. oxysporum treatment were significantly higher than in the H2O treatment. These results showed that F. oxysporum promoted the colonization of P. poae on the tuberous root via F. oxysporum mediation. In addition, the colonization assay found that the disease severity index in the P. poae and F. oxysporum treatment group was significantly lower than that in the F. oxysporum treatment group, and a pathogen-induced attraction assay found that the disease severity index in the F. oxysporum treatment group was significantly higher than that in the H2O treatment group. Together, these results suggest that pathogen-mediated P. heterophylla promoted and assembled plant-beneficial microbes against plant disease. Therefore, deciphering the beneficial associations between pathogen-mediated P. heterophylla and microbes can provide novel insights into the implementation and design of disease management strategies.
Collapse
Affiliation(s)
- Qing-Song Yuan
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lu Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoai Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Weike Jiang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaohong Ou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yanping Gao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiao Xu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Zhou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
17
|
Mucilaginibacter sp. Strain Metal(loid) and Antibiotic Resistance Isolated from Estuarine Soil Contaminated Mine Tailing from the Fundão Dam. Genes (Basel) 2022; 13:genes13020174. [PMID: 35205220 PMCID: PMC8871858 DOI: 10.3390/genes13020174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 12/30/2022] Open
Abstract
In 2015 a mine dam with Mn-Fe-rich tailings collapsed releasing million tons of sediments over an estuary, in the Southwest of Brazil. The tailings have a high concentration of metals that contaminated soil until the present day. The high contaminant concentrations possibly caused a selection for microorganisms able to strive in such harsh conditions. Here, we isolated metal(loid) and anti-biotic resistance bacteria from the contaminated estuarine soil. After 16S rDNA sequencing to identify the strains, we selected the Mucilaginibacter sp. strain for a whole-genome sequence due to the bioprospective potential of the genus and the high resistance profile. We obtained a complete genome and a genome-guided characterization. Our finding suggests that the 21p strain is possibly a new species of the genus. The species presented genes for resistance for metals (i.e., As, Zn, Co, Cd, and Mn) beyond resistance and cross-resistance for antibiotics (i.e., quinolone, aminoglycoside, β-lactamase, sulphonamide, tetracycline). The Mucilaginibacter sp. 21p description as new species should be further explored, as their extracellular polymeric substances and the potential of this strain as bioremediation and as a growth promoter in high met-al(loid) contaminated soil.
Collapse
|
18
|
Khalid M, Du B, Tan H, Liu X, Su L, Ali M, Liu C, Sun N, Hui N. Phosphorus elevation erodes ectomycorrhizal community diversity and induces divergence of saprophytic community composition between vegetation types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148502. [PMID: 34166904 DOI: 10.1016/j.scitotenv.2021.148502] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) is a critical macronutrient that is essential for many life-sustaining processes. Despite decades of work on plant performance under P deficiency and the importance of microbes in ecosystem processes, little is known about how bacterial and fungal flora respond to P gradients and determine the vegetation health. In current study, we examined soil edaphic conditions and microbial communities in 39 untouched natural forests representing phosphorous deficient (Pp) and phosphorus rich (Pr) soils (due to naturally occurring phosphate rocks) in Yunnan Province, China. We also considered the effect of plant functional types by including the dominant tree species. Bacterial and fungal diversity was greater across the Pp sites compared with Pr sites. The relative abundance of Actinobacteria and Gemmatimonadetes was higher across Pp sites, while Chlamydiae and Verrucomicrobia showed the opposite pattern, with greater relative abundance across the Pr sites. Bacterial taxa that were observed in low P soils were more likely having oligotrophic life history strategies. Interestingly, ectomycorrhizal (ECM) fungal diversity was promoted in the Pp sites, indicating that the decreasing soil P concentration and the increasing host P demand foster stimulated the ECM species for hyphal soil exploration. Moreover, the high P level caused saprophytic fungi (SAP) to diverge, causing its enrichment only under Q. variabilis compared to low P soil, where there is no difference in relative abundance of SAP between the two tree species. This likely resulted in an enhanced decomposition process by SAP and elevation of soil properties (Carbon and Nitrogen) under Q. variabilis across the Pr sites. Taken together, our findings highlight the highly diverse microbiome in low P soils. The higher soil P caused shifts of fungal functional guilds, which likely influence tree growth and health (ECM), along with divergence of ecosystem services between tree functional types.
Collapse
Affiliation(s)
- Muhammad Khalid
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baoming Du
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haoxin Tan
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinxin Liu
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lantian Su
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mehran Ali
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Hui
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
19
|
Fan D, Smith DL. Characterization of Selected Plant Growth-Promoting Rhizobacteria and Their Non-Host Growth Promotion Effects. Microbiol Spectr 2021; 9:e0027921. [PMID: 34190589 PMCID: PMC8552778 DOI: 10.1128/spectrum.00279-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are a functionally diverse group of microbes having immense potential as biostimulants and biopesticides. We isolated four PGPR (designated n, L, K, and Y) that confer growth-promoting effects on Arabidopsis thaliana. The present study describes the detailed polyphasic characterization of these PGPR. Classical methods of bacterial identification and biochemical test kits (API20E, API20NE, API ZYM, and API 50CH) revealed their metabolic versatility. All rhizobacterial isolates were positive for 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD) and indole acetic acid production and phosphorous solubilization. PCR analysis confirmed the presence of the nifH gene in strains n, L, and Y, showing their N2-fixation potential. In vitro dual culture methods and bacterial infestation in planta demonstrated that strains n and L exerted antagonistic effects on Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea 191 and provided protection to Arabidopsis plants against both phytopathogens. Short- or long-term bacterial treatment revealed significant changes in transcript levels of genes annotated to stress response and hormone metabolism in A. thaliana. In particular, the expression of stress-responsive genes in A. thaliana showed an upregulation under salinity stress. MAP kinase 6 (MPK6) was involved in the growth promotion induced by the four bacterial strains. Furthermore, these strains caused a significant increase in root dry weight of maize seedlings under gnotobiotic conditions. We conclude that the four rhizobacteria are good candidates as biofertilizers for enhancing growth of maize, among which strains n and L showed marked plant growth-promoting attributes and the potential to be exploited as functional biostimulants and biopesticides for sustainable agriculture. IMPORTANCE There are pressing needs to reduce the use of agrochemicals, and PGPR are receiving increasing interest in plant growth promotion and disease protection. This study follows up our previous report that the four newly isolated rhizobacteria promote the growth of Arabidopsis thaliana. We test the hypothesis that they have multiple PGP traits and that they can be used as biofertilizers and biopesticides. In vitro assays indicated that these four strains have various PGP properties related to nutrient availability, stress resistance, and/or pest organism antagonism. They significantly influenced the transcript levels of genes involved in stress response and hormone metabolism in A. thaliana. MPK6 is indispensable to the growth stimulation effects. Strains n and L protected A. thaliana seedlings against phytopathogens. Three strains significantly increased maize growth in vitro. In summary, introducing these four strains onto plant roots provides a benefit to the plants. This is the first study regarding the potential mechanism(s) applied by Mucilaginibacter sp. as biostimulants.
Collapse
Affiliation(s)
- Di Fan
- Department of Biological and Environmental Engineering, School of Biology, Food and Environment, Hefei University, Hefei, China
- Department of Plant Science, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Donald L. Smith
- Department of Plant Science, McGill University, Macdonald Campus, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
20
|
De Tender C, Vandecasteele B, Verstraeten B, Ommeslag S, Kyndt T, Debode J. Biochar-Enhanced Resistance to Botrytis cinerea in Strawberry Fruits (But Not Leaves) Is Associated With Changes in the Rhizosphere Microbiome. FRONTIERS IN PLANT SCIENCE 2021; 12:700479. [PMID: 34497619 PMCID: PMC8419269 DOI: 10.3389/fpls.2021.700479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Biochar has been reported to play a positive role in disease suppression against airborne pathogens in plants. The mechanisms behind this positive trait are not well-understood. In this study, we hypothesized that the attraction of plant growth-promoting rhizobacteria (PGPR) or fungi (PGPF) underlies the mechanism of biochar in plant protection. The attraction of PGPR and PGPF may either activate the innate immune system of plants or help the plants with nutrient uptake. We studied the effect of biochar in peat substrate (PS) on the susceptibility of strawberry, both on leaves and fruits, against the airborne fungal pathogen Botrytis cinerea. Biochar had a positive impact on the resistance of strawberry fruits but not the plant leaves. On leaves, the infection was more severe compared with plants without biochar in the PS. The different effects on fruits and plant leaves may indicate a trade-off between plant parts. Future studies should focus on monitoring gene expression and metabolites of strawberry fruits to investigate this potential trade-off effect. A change in the microbial community in the rhizosphere was also observed, with increased fungal diversity and higher abundances of amplicon sequence variants classified into Granulicella, Mucilaginibacter, and Byssochlamys surrounding the plant root, where the latter two were reported as biocontrol agents. The change in the microbial community was not correlated with a change in nutrient uptake by the plant in either the leaves or the fruits. A decrease in the defense gene expression in the leaves was observed. In conclusion, the decreased infection of B. cinerea in strawberry fruits mediated by the addition of biochar in the PS is most likely regulated by the changes in the microbial community.
Collapse
Affiliation(s)
- Caroline De Tender
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Bart Vandecasteele
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Bruno Verstraeten
- Epigenetics and Defence Research Group, Department Biotechnology, Ghent University, Ghent, Belgium
| | - Sarah Ommeslag
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Tina Kyndt
- Epigenetics and Defence Research Group, Department Biotechnology, Ghent University, Ghent, Belgium
| | - Jane Debode
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| |
Collapse
|
21
|
Liu X, Zhang X, Li R, Wang G, Jin Y, Xu W, Wang H, Qu J. Organic amendment improves rhizosphere environment and shapes soil bacterial community in black and red soil under lead stress. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125805. [PMID: 34492779 DOI: 10.1016/j.jhazmat.2021.125805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution is a worldwide problem affecting the quality of agricultural production and human health. In this study, spent mushroom substrate (SMS) and its compost (CSMS) were used to remedy black soil and red soil with simulated Pb contamination, aiming to discover their role in the improving rhizosphere environment and structuring rhizosphere bacterial community under lead stress. We designed an ultra-small-scale plot experiment to separate the rhizosphere from non-rhizosphere soil when planting water spinach (Ipomoea aquatica Forsk). The results showed that under 600 mg/kg of lead pollution, CSMS and SMS had no significant effect on the rhizosphere bacterial diversity in the black soil, but CSMS significantly increased the rhizosphere bacterial diversity in the red soil. The amendments significantly increased the percentage of Proteobacteria and Bacteroidetes in rhizosphere soil, and the relative abundance of some beneficial genera, such as Pseudoxanthomonas, Rhizomicrobium, Lysobacter etc., which subsequently restructured the bacterial community. The compositions of bacterial community of the red soil remediated by both amendments evolved to those of the black soil.
Collapse
Affiliation(s)
- Xuesheng Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xu Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Rui Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guoliang Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Jin
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Wenyue Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Hongmei Wang
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Juanjuan Qu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
22
|
Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Cerecetto V, Smalla K, Nesme J, Garaycochea S, Fresia P, Sørensen SJ, Babin D, Leoni C. Reduced tillage, cover crops and organic amendments affect soil microbiota and improve soil health in Uruguayan vegetable farming systems. FEMS Microbiol Ecol 2021; 97:6129805. [PMID: 33547893 DOI: 10.1093/femsec/fiab023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Conventional tillage and mineral fertilization (CTMF) jeopardize soil health in conventional vegetable production systems. Using a field experiment established in Uruguay in 2012, we aimed to compare the soil restoration potential of organic fertilization (compost and poultry manure) combined with conventional tillage and cover crop incorporated into the soil (CTOF) or with reduced tillage and the use of cover crop as mulch (RTOF). In 2017, table beet was cultivated under CTMF, CTOF and RTOF, and yields, soil aggregate composition and nutrients, as well as soil and table beet rhizosphere microbiota (here: bacteria and archaea) were evaluated. Microbiota was studied by high-throughput sequencing of 16S rRNA gene fragments amplified from total community DNA. RTOF exhibited higher soil aggregation, soil organic C, nutrient availability and microbial alpha-diversity than CTMF, and became more similar to an adjacent natural undisturbed site. The soil microbiota was strongly shaped by the fertilization source which was conveyed to the rhizosphere and resulted in differentially abundant taxa. However, 229 amplicon sequencing variants were found to form the core table beet rhizosphere microbiota shared among managements. In conclusion, our study shows that after only 5 years of implementation, RTOF improves soil health under intensive vegetable farming systems.
Collapse
Affiliation(s)
- Victoria Cerecetto
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany.,Instituto Nacional de Investigación Agropecuaria (INIA), Programa de Producción y Sustentabilidad Ambiental, Estación Experimental INIA Las Brujas, Ruta 48 Km 10, 90200 Rincón del Colorado, Canelones, Uruguay
| | - Kornelia Smalla
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Joseph Nesme
- University of Copenhagen, Department of Biology, Section of Microbiology, Nørregade 10, 1165 Copenhagen, Denmark
| | - Silvia Garaycochea
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa de Producción y Sustentabilidad Ambiental, Estación Experimental INIA Las Brujas, Ruta 48 Km 10, 90200 Rincón del Colorado, Canelones, Uruguay
| | - Pablo Fresia
- Unidad Mixta Institut Pasteur de Montevideo + Instituto Nacional de Investigación Agropecuaria INIA (UMPI), Mataojo 2020, 11400 Montevideo, Uruguay
| | - Søren Johannes Sørensen
- University of Copenhagen, Department of Biology, Section of Microbiology, Nørregade 10, 1165 Copenhagen, Denmark
| | - Doreen Babin
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Carolina Leoni
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa de Producción y Sustentabilidad Ambiental, Estación Experimental INIA Las Brujas, Ruta 48 Km 10, 90200 Rincón del Colorado, Canelones, Uruguay
| |
Collapse
|
24
|
Kang H, Kim H, Bae S, Joh K. Mucilaginibacter aquatilis sp. nov., Mucilaginibacter arboris sp. nov., and Mucilaginibacter ginkgonis sp. nov., novel bacteria isolated from freshwater and tree bark. Int J Syst Evol Microbiol 2021; 71. [PMID: 33724177 DOI: 10.1099/ijsem.0.004755] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three Gram-stain-negative, strictly aerobic, non-motile and rod-shaped bacterial strains, designated as HME9299T, HMF7410T and HMF7856T, were isolated from freshwater and tree bark collected in Yong-in, Republic of Korea. Strains HME9299T, HMF7410T and HMF7856T exhibited the highest 16S rRNA gene sequence similarities of 97.2, 94.4 and 96.4 % to Mucilaginibacter daejeonensis Jip 10T, Mucilaginibacter terrae CCM 8645T and Mucilaginibacter phyllosphaerae PP-F2F-G21T, respectively. Among themselves, the values were 94.1-95.7 %. Phylogenetic analysis of the 16S rRNA gene sequences of the three isolates revealed that they belonged to the genus Mucilaginibacter within the family Sphingobacteriaceae. The predominant fatty acids of three strains were summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C15 : 0. Strain HME9299T contained a relatively large amount of C16 : 1 ω5c. The predominant respiratory quinone was menaquinone-7. The genome sizes of strains HME9299T, HMF7410T and HMF7856T were 4.33, 4.16 and 3.68 Mbp, respectively, and their DNA G+C contents were 41.6, 38.4 and 43.9 mol%, respectively. Based on the results of the phenotypic, genotypic, chemotaxonomic and phylogenetic investigation, three novel species, Mucilaginibacter aquatilis sp. nov, Mucilaginibacter arboris sp. nov. and Mucilaginibacter ginkgonis sp. nov., are proposed. The type strains are HME9299T (=KCTC 42122T=DSM 29146T), HMF7410T (=KCTC 62464T=NBRC 113227T) and HMF7856T (=KCTC 72782T=NBRC 114275T), respectively.
Collapse
Affiliation(s)
- Heeyoung Kang
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
| | - Haneul Kim
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
| | - Seokhyeon Bae
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
| | - Kiseong Joh
- Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies, Gyeonggi 17035, Republic of Korea
| |
Collapse
|
25
|
Chen L, Hao Z, Li K, Sha Y, Wang E, Sui X, Mi G, Tian C, Chen W. Effectsof growth-promoting rhizobacteria on maize growth and rhizosphere microbial community under conservation tillage in Northeast China. Microb Biotechnol 2020; 14:535-550. [PMID: 33166080 PMCID: PMC7936301 DOI: 10.1111/1751-7915.13693] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/04/2022] Open
Abstract
Conservation tillage in conjunction with straw mulching is a sustainable agricultural approach. However, straw mulching reduces the soil temperature, inhibits early maize growth and reduces grain yield in cold regions. To address this problem, we investigated the effects of inoculation of plant growth‐promoting rhizobacteria (PGPR) on maize growth and rhizosphere microbial communities under conservation tillage in Northeast China. The PGPR strains Sinorhizobium sp. A15, Bacillus sp. A28, Sphingomonas sp. A55 and Enterobacter sp. P24 were isolated from the maize rhizosphere in the same area and inoculated separately. Inoculation of these strains significantly enhanced maize growth, and the strains A15, A28 and A55 significantly increased grain yield by as much as 22%–29%. Real‐time quantitative PCR and high‐throughput sequencing showed that separate inoculation with the four strains increased the abundance and species richness of bacteria in the maize rhizosphere. Notably, the relative abundance of Acidobacteria_Subgroup_6, Chloroflexi_KD4‐96, and Verrucomicrobiae at the class level and Mucilaginibacter at the genus level were positively correlated with maize biomass and yield. Inoculation with PGPR shows potential for improvement of maize production under conservation tillage in cold regions by regulating the rhizosphere bacterial community structure and by direct stimulation of plant growth.
Collapse
Affiliation(s)
- La Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhanhong Hao
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Keke Li
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ye Sha
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Entao Wang
- Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico D.F., 11340, Mexico
| | - Xinhua Sui
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guohua Mi
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Changfu Tian
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenxin Chen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Wang M, Eyre AW, Thon MR, Oh Y, Dean RA. Dynamic Changes in the Microbiome of Rice During Shoot and Root Growth Derived From Seeds. Front Microbiol 2020; 11:559728. [PMID: 33013792 PMCID: PMC7506108 DOI: 10.3389/fmicb.2020.559728] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Microbes form close associations with host plants including rice as both surface (epiphytes) and internal (endophytes) inhabitants. Yet despite rice being one of the most important cereal crops agriculturally and economically, knowledge of its microbiome, particularly core inhabitants and any functional properties bestowed is limited. In this study, the microbiome in rice seedlings derived directly from seeds was identified, characterized and compared to the microbiome of the seed. Rice seeds were sourced from two different locations in Arkansas, USA of two different rice genotypes (Katy, M202) from two different harvest years (2013, 2014). Seeds were planted in sterile media and bacterial as well as fungal communities were identified through 16S and ITS sequencing, respectively, for four seedling compartments (root surface, root endosphere, shoot surface, shoot endosphere). Overall, 966 bacterial and 280 fungal ASVs were found in seedlings. Greater abundance and diversity were detected for the microbiome associated with roots compared to shoots and with more epiphytes than endophytes. The seedling compartments were the driving factor for microbial community composition rather than other factors such as rice genotype, location and harvest year. Comparison with datasets from seeds revealed that 91 (out of 296) bacterial and 11 (out of 341) fungal ASVs were shared with seedlings with the majority being retained within root tissues. Core bacterial and fungal microbiome shared across seedling samples were identified. Core bacteria genera identified in this study such as Rhizobium, Pantoea, Sphingomonas, and Paenibacillus have been reported as plant growth promoting bacteria while core fungi such as Pleosporales, Alternaria and Occultifur have potential as biocontrol agents.
Collapse
Affiliation(s)
- Mengying Wang
- Fungal Genomics Laboratory, Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Alexander W Eyre
- Fungal Genomics Laboratory, Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Michael R Thon
- Spanish-Portuguese Institute for Agricultural Research (CIALE), University of Salamanca, Villamayor, Spain
| | - Yeonyee Oh
- Fungal Genomics Laboratory, Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Ralph A Dean
- Fungal Genomics Laboratory, Department of Entomology and Plant Pathology, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
27
|
Kim M, Shin SK, Yi H. Mucilaginibacter celer sp. nov. and Aquirhabdus parva gen. nov., sp. nov., isolated from freshwater. Int J Syst Evol Microbiol 2020; 70:5479-5487. [PMID: 32886597 DOI: 10.1099/ijsem.0.004437] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel bacteria, designated HYN0043T and HYN0046T, were isolated from a freshwater lake in Korea. 16S rRNA gene sequence phylogeny indicated that strain HYN0043T belongs to the genus Mucilaginibacter of the family Sphingobacteriaceae because it showed highest sequence similarity to Mucilaginibacter oryzae (98.2 %). The average nucleotide identity between strain HYN0043T and M. oryzae was 83.5 %, which is clearly below the suggested threshold for species demarcation. Strain HYN0046T was found to belong to the family Moraxellaceae and shared highest sequence similarity with Agitococcus lubricus (93.8 %). The average amino acid identity values between strain HYN0046T and representative type strains of closely related genera (Alkanindiges, Agitococcus and Acinetobacter) were 53.1-60.7 %, implying the novelty of the isolate at the genus level. Phenotypic characteristics (physiological, biochemical and chemotaxonomic) also supported the taxonomic novelty of the two isolates. Thus, we suggest the following names to accommodate strains HYN0043T and HYN0046T: Mucilaginibacter celer sp. nov. (type strain HYN0043T=KACC 19184T=NBRC 112738T) in the family Spingobacteriaceae and phylum Bacteroidetes and Aquirhabdus parva gen. nov., sp. nov. (type strain HYN0046T=KACC 19178T=NBRC 112739T) in the family Moraxellaceae and phylum Proteobacteria.
Collapse
Affiliation(s)
- MinJi Kim
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Su-Kyoung Shin
- Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| | - Hana Yi
- School of Biosystems and Biomedical Sciences, Korea University, Seoul, Republic of Korea.,Department of Public Health Sciences, Graduate School, Korea University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Decesaro A, Machado TS, Cappellaro ÂC, Rempel A, Margarites AC, Reinehr CO, Eberlin MN, Zampieri D, Thomé A, Colla LM. Biosurfactants Production Using Permeate from Whey Ultrafiltration and Bioproduct Recovery by Membrane Separation Process. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Andressa Decesaro
- Academic Postgraduate in Civil and Environmental Engineering, Faculty of Engineering and ArchitectureUniversity of Passo Fundo BR 285, km 171, Passo Fundo, RS Brazil
| | - Thaís Strieder Machado
- Academic Postgraduate in Civil and Environmental Engineering, Faculty of Engineering and ArchitectureUniversity of Passo Fundo BR 285, km 171, Passo Fundo, RS Brazil
| | - Ângela Carolina Cappellaro
- Academic Environmental Engineering Course, Faculty of Engineering and ArchitectureUniversity of Passo Fundo BR 285, km 171, Passo Fundo, RS Brazil
| | - Alan Rempel
- Academic Postgraduate in Civil and Environmental Engineering, Faculty of Engineering and ArchitectureUniversity of Passo Fundo BR 285, km 171, Passo Fundo, RS Brazil
| | - Ana Cláudia Margarites
- Academic Chemical Engineering Course, Faculty of Engineering and ArchitectureUniversity of Passo Fundo BR 285, km 171. Passo Fundo, RS Brazil
| | - Christian Oliveira Reinehr
- Academic Postgraduate in Food and Science Technology, Faculty of Agronomy and Veterinary MedicineUniversity of Passo Fundo BR 285, km 171. Passo Fundo, RS Brazil
| | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry LaboratoryUniversity of Campinas, UNICAMP Campinas, SP Brazil
- Mackenzie Presbyterian University School of Engineering São Paulo – SP Brazil
| | - Davila Zampieri
- ThoMSon Mass Spectrometry LaboratoryUniversity of Campinas, UNICAMP Campinas, SP Brazil
- Mackenzie Presbyterian University School of Engineering São Paulo – SP Brazil
- Biotechnology and Mass Spectrometry Research Group, Department of Organic and Inorganic ChemistryFederal University of Ceará Fortaleza, CE Brazil
| | - Antônio Thomé
- Academic Postgraduate in Civil and Environmental Engineering, Faculty of Engineering and ArchitectureUniversity of Passo Fundo BR 285, km 171, Passo Fundo, RS Brazil
| | - Luciane Maria Colla
- Academic Postgraduate in Civil and Environmental Engineering, Faculty of Engineering and ArchitectureUniversity of Passo Fundo BR 285, km 171, Passo Fundo, RS Brazil
| |
Collapse
|
29
|
Wang ZY, Wang RX, Zhou JS, Cheng JF, Li YH. An assessment of the genomics, comparative genomics and cellulose degradation potential of Mucilaginibacter polytrichastri strain RG4-7. BIORESOURCE TECHNOLOGY 2020; 297:122389. [PMID: 31757614 DOI: 10.1016/j.biortech.2019.122389] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
In this study, whole genome sequencing and comparative genomic analyses were performed for Mucilaginibacter polytrichastri RG4-7 and its carboxymethyl cellulose degradation potential was assessed. The results showed that the genome of strain RG4-7 was 5.84 Mb and contained 5019 predicted genes, in which a high proportion of strain-specific genes were related to carbohydrate metabolism. The carboxymethyl cellulose (CMC) degradation and cellulase activity tests revealed the strong cellulose degradation ability, CMCase and β-glucosidase activity in strain RG4-7. Real-time RT-PCR testing of most cellulose degradation related glycoside hydrolase (GH) families showed that GH9 (OKS85969), GH1 (OKS85832), GH3 (OKS89331 and OKS85615) were significantly up-regulated when strain RG4-7 was inoculated with CMC-Na, which suggested that GH9, GH1 and GH3 might determine its cellulose degradation ability. Certainly, further research need to be done to elucidate cellulose degradation mechanisms in strain RG4-7 in order to develop its industrial application value in lignocellulosic biomass degradation and waste management.
Collapse
Affiliation(s)
- Zi Yue Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Rui Xue Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jun Shi Zhou
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jian Fei Cheng
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yan Hong Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
30
|
Chen Q, Meyer WA, Zhang Q, White JF. 16S rRNA metagenomic analysis of the bacterial community associated with turf grass seeds from low moisture and high moisture climates. PeerJ 2020; 8:e8417. [PMID: 31942261 PMCID: PMC6956778 DOI: 10.7717/peerj.8417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Turfgrass investigators have observed that plantings of grass seeds produced in moist climates produce seedling stands that show greater stand evenness with reduced disease compared to those grown from seeds produced in dry climates. Grass seeds carry microbes on their surfaces that become endophytic in seedlings and promote seedling growth. We hypothesize that incomplete development of the microbiome associated with the surface of seeds produced in dry climates reduces the performance of seeds. Little is known about the influence of moisture on the structure of this microbial community. We conducted metagenomic analysis of the bacterial communities associated with seeds of three turf species (Festuca rubra, Lolium arundinacea, and Lolium perenne) from low moisture (LM) and high moisture (HM) climates. The bacterial communities were characterized by Illumina high-throughput sequencing of 16S rRNA V3–V4 regions. We performed seed germination tests and analyzed the correlations between the abundance of different bacterial groups and seed germination at different taxonomy ranks. Climate appeared to structure the bacterial communities associated with seeds. LM seeds vectored mainly Proteobacteria (89%). HM seeds vectored a denser and more diverse bacterial community that included Proteobacteria (50%) and Bacteroides (39%). At the genus level, Pedobacter (20%), Sphingomonas (13%), Massilia (12%), Pantoea (12%) and Pseudomonas (11%) were the major genera in the bacterial communities regardless of climate conditions. Massilia, Pantoea and Pseudomonas dominated LM seeds, while Pedobacter and Sphingomonas dominated HM seeds. The species of turf seeds did not appear to influence bacterial community composition. The seeds of the three turf species showed a core microbiome consisting of 27 genera from phyla Actinobacteria, Bacteroidetes, Patescibacteria and Proteobacteria. Differences in seed-vectored microbes, in terms of diversity and density between high and LM climates, may result from effects of moisture level on the colonization of microbes and the development of microbe community on seed surface tissues (adherent paleas and lemmas). The greater diversity and density of seed vectored microbes in HM climates may benefit seedlings by helping them tolerate stress and fight disease organisms, but this dense microbial community may also compete with seedlings for nutrients, slowing or modulating seed germination and seedling growth.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - William A Meyer
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Qiuwei Zhang
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - James F White
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
31
|
Mucilaginibacter corticis sp. nov., isolated from bark of Pinus koraiensis. Antonie van Leeuwenhoek 2019; 113:491-498. [PMID: 31741188 DOI: 10.1007/s10482-019-01358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/06/2019] [Indexed: 10/25/2022]
Abstract
A gram-stain negative, aerobic, non-motile and rod-shaped novel bacterial strain, designated MAH-19T, was isolated from bark of Pinus koraiensis. The colonies were observed to be light pink coloured, smooth, circular and 0.3-0.7 mm in diameter when grown on R2A agar for 2 days. Strain MAH-19T was found to be able to grow at 10-35 °C (optimum 28-30 °C), at pH 6.0-8.0 (optimum 7.0) and at 0-0.5% NaCl (optimum 0%). Cell growth occurs on nutrient agar and R2A agar. The strain was found to be positive for both catalase and oxidase tests. Cells are able to hydrolyse aesculin and Tween 20, but not casein, gelatin, starch, L-tyrosine, DNA, L-arginine, urea or Tween 80. According to the 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Mucilaginibacter and to be closely related to Mucilaginibacter panaciglaebae BXN5-31T (97.4% similarity), Mucilaginibacter antarcticus S14-88T (97.2%) and Mucilaginibacter ximonensis XM-003T (97.1%). In DNA-DNA hybridization tests, the DNA relatedness between strain MAH-19T and its close phylogenetic neighbours was below 45.0%. The novel strain MAH-19T has a draft genome size of 5,335,442 bp (14 contigs), annotated with 4963 protein-coding genes, 44 tRNA and 6 rRNA genes. The genomic DNA G+C content was determined to be 42.7 mol%. The predominant isoprenoid quinone of strain MAH-19T was identified as MK-7. The major fatty acids were identified as C15:0 iso and summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c). The DNA-DNA hybridization results and results of the genotypic analysis, in combination with chemotaxonomic and physiological data, demonstrated that strain MAH-19T represents a novel species within the genus Mucilaginibacter, for which the name Mucilaginibacter corticis sp. nov. is proposed, with MAH-19T (= KACC 19745T = CGMCC1.13657T) as the type strain.
Collapse
|
32
|
García-López M, Meier-Kolthoff JP, Tindall BJ, Gronow S, Woyke T, Kyrpides NC, Hahnke RL, Göker M. Analysis of 1,000 Type-Strain Genomes Improves Taxonomic Classification of Bacteroidetes. Front Microbiol 2019; 10:2083. [PMID: 31608019 PMCID: PMC6767994 DOI: 10.3389/fmicb.2019.02083] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/23/2019] [Indexed: 11/25/2022] Open
Abstract
Although considerable progress has been made in recent years regarding the classification of bacteria assigned to the phylum Bacteroidetes, there remains a need to further clarify taxonomic relationships within a diverse assemblage that includes organisms of clinical, piscicultural, and ecological importance. Bacteroidetes classification has proved to be difficult, not least when taxonomic decisions rested heavily on interpretation of poorly resolved 16S rRNA gene trees and a limited number of phenotypic features. Here, draft genome sequences of a greatly enlarged collection of genomes of more than 1,000 Bacteroidetes and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa proposed long ago such as Bacteroides, Cytophaga, and Flavobacterium but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which can be considered valuable taxonomic markers. We detected many incongruities when comparing the results of the present study with existing classifications, which appear to be caused by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. The few significant incongruities found between 16S rRNA gene and whole genome trees underline the pitfalls inherent in phylogenies based upon single gene sequences and the impediment in using ordinary bootstrapping in phylogenomic studies, particularly when combined with too narrow gene selections. While a significant degree of phylogenetic conservation was detected in all phenotypic characters investigated, the overall fit to the tree varied considerably, which is one of the probable causes of misclassifications in the past, much like the use of plesiomorphic character states as diagnostic features.
Collapse
Affiliation(s)
- Marina García-López
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jan P. Meier-Kolthoff
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States
| | - Richard L. Hahnke
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Göker
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
33
|
Choi L, Zhao X, Song Y, Wu M, Wang G, Li M. Mucilaginibacter hurinus sp. nov., isolated from briquette warehouse soil. Arch Microbiol 2019; 202:127-134. [PMID: 31515591 DOI: 10.1007/s00203-019-01720-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 06/11/2019] [Accepted: 08/27/2019] [Indexed: 11/28/2022]
Abstract
A novel bacterial strain, designated ZR32T, was isolated from briquette warehouse soil in Ulsan (Korea). The strain was aerobic, showing pink-colored colonies on R2A agar. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain ZR32T was closely related to Mucilaginibacter soli R9-65T (97.0%), Mucilaginibacter gynuensis YC7003T (96.9%), and Mucilaginibacter lutimaris BR-3T (96.8%). The values of DNA-DNA relatedness related two highest strains M. soli R9-65T and M. gynuensis YC7003T were 31.2 ± 6.9% and 19.7 ± 0.3%, respectively. Its genome size was 3.9 Mb, comprising 3402 predicted genes. The DNA G+C content of strain ZR32T was 43.0 mol%. The major cellular fatty acids (> 5% of total) were summed feature 3 (C16:1ω6c and/or C16:1ω7c), C16:0, C16:1ω5c, iso-C15:0, iso-C17:0 3-OH, and C17:1ω9c. The major respiratory quinine was menaquinone-7 (MK-7). The major polar lipids were phosphatidylethanolamine, two unidentified phospholipids, one unidentified sphingolipid, and one unidentified polar lipid. Strain ZR32T showed distinctive characteristics such as the temperature and pH for growth ranges, being positive for β-glucosidase, salicin production, negative for N-acetyl-glucosamine assimilation, being resistant to carbenicillin and piperacillin to related species. On the basis of phenotypic, chemotaxonomic, and phylogenetic data, strain ZR32T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter hurinus sp. nov. is proposed. The type strain is ZR32T (= KCTC 62193 = CCTCC AB 2017285).
Collapse
Affiliation(s)
- Lina Choi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xinran Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yali Song
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Minghan Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Mingshun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| |
Collapse
|
34
|
Eichmeier A, Kiss T, Necas T, Penazova E, Tekielska D, Bohunicka M, Valentova L, Cmejla R, Morais D, Baldrian P. High-Throughput Sequencing Analysis of the Bacterial Community in Stone Fruit Phloem Tissues Infected by "Candidatus Phytoplasma prunorum". MICROBIAL ECOLOGY 2019; 77:664-675. [PMID: 30194483 DOI: 10.1007/s00248-018-1250-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
"Candidatus Phytoplasma prunorum" (CPp) is a highly destructive phytopathogenic agent in many stone fruit-growing regions in Europe and the surrounding countries. In this work, we focused on documenting entire bacterial community in the phloem tissues of 60 stone fruit trees. Nested PCR and two real-time PCR assays were used to select CPp-positive (group A) and CPp-negative samples (group B). Afterwards, high-throughput amplicon sequencing was performed to assess bacterial community compositions in phloem tissues. The bacterial composition in phloem tissue consisted of 118 distinct genera, represented mainly by Pseudomonas, Acinetobacter, Methylobacterium, Sphingomonas, and Rhizobium. Statistics showed that CPp influenced the bacterial composition of infected plants (group A) and that the bacterial community depended on the geographical origin of the sample. This is the first work focusing on an analysis of the influence of CPp on the bacteria coexisting in the phloem tissues of stone fruit trees.
Collapse
Affiliation(s)
- Ales Eichmeier
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valtická 334, 691 44, Lednice, Czech Republic.
| | - Tomas Kiss
- Department of Fruit Growing, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic
| | - Tomas Necas
- Department of Fruit Growing, Mendel University in Brno, Valtická 337, 691 44, Lednice, Czech Republic
| | - Eliska Penazova
- Mendeleum - Institute of Genetics, Mendel University in Brno, Valtická 334, 691 44, Lednice, Czech Republic
| | - Dorota Tekielska
- Department of Plant Protection, University of Agriculture in Krakow, 29 Listopada 54, 31-425, Krakow, Poland
| | - Marketa Bohunicka
- Department of Biology, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03, Hradec Králové, Czech Republic
| | - Lucie Valentova
- Research and Breeding Institute of Pomology Holovousy Ltd, Holovousy 129, 508 01, Hořice, Czech Republic
| | - Radek Cmejla
- Research and Breeding Institute of Pomology Holovousy Ltd, Holovousy 129, 508 01, Hořice, Czech Republic
| | - Daniel Morais
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220, Praha 4, Czech Republic
| |
Collapse
|
35
|
Li YP, Carraro N, Yang N, Liu B, Xia X, Feng R, Saquib Q, Al-Wathnani HA, van der Meer JR, Rensing C. Genomic Islands Confer Heavy Metal Resistance in Mucilaginibacter kameinonensis and Mucilaginibacter rubeus Isolated from a Gold/Copper Mine. Genes (Basel) 2018; 9:genes9120573. [PMID: 30477188 PMCID: PMC6316836 DOI: 10.3390/genes9120573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/29/2023] Open
Abstract
Heavy metals (HMs) are compounds that can be hazardous and impair growth of living organisms. Bacteria have evolved the capability not only to cope with heavy metals but also to detoxify polluted environments. Three heavy metal-resistant strains of Mucilaginibacer rubeus and one of Mucilaginibacter kameinonensis were isolated from the gold/copper Zijin mining site, Longyan, Fujian, China. These strains were shown to exhibit high resistance to heavy metals with minimal inhibitory concentration reaching up to 3.5 mM Cu(II), 21 mM Zn(II), 1.2 mM Cd(II), and 10.0 mM As(III). Genomes of the four strains were sequenced by Illumina. Sequence analyses revealed the presence of a high abundance of heavy metal resistance (HMR) determinants. One of the strain, M. rubeus P2, carried genes encoding 6 putative PIB-1-ATPase, 5 putative PIB-3-ATPase, 4 putative Zn(II)/Cd(II) PIB-4 type ATPase, and 16 putative resistance-nodulation-division (RND)-type metal transporter systems. Moreover, the four genomes contained a high abundance of genes coding for putative metal binding chaperones. Analysis of the close vicinity of these HMR determinants uncovered the presence of clusters of genes potentially associated with mobile genetic elements. These loci included genes coding for tyrosine recombinases (integrases) and subunits of mating pore (type 4 secretion system), respectively allowing integration/excision and conjugative transfer of numerous genomic islands. Further in silico analyses revealed that their genetic organization and gene products resemble the Bacteroides integrative and conjugative element CTnDOT. These results highlight the pivotal role of genomic islands in the acquisition and dissemination of adaptive traits, allowing for rapid adaption of bacteria and colonization of hostile environments.
Collapse
Affiliation(s)
- Yuan Ping Li
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne 1015, Switzerland.
| | - Nan Yang
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bixiu Liu
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xian Xia
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Renwei Feng
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Hend A Al-Wathnani
- Department of Botany & Microbiology, College of Sciences, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | | | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academic of Sciences, 361021 Xiamen, China.
| |
Collapse
|
36
|
Mucilaginibacter xinganensis sp. nov., a phenanthrene-degrading bacterium isolated from wetland soil. Antonie van Leeuwenhoek 2018; 112:641-649. [DOI: 10.1007/s10482-018-1194-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/20/2018] [Indexed: 10/28/2022]
|
37
|
Huq MA, Akter S, Lee SY. Mucilaginibacter formosus sp. nov., a bacterium isolated from road-side soil. Antonie van Leeuwenhoek 2018; 112:513-521. [PMID: 30306464 DOI: 10.1007/s10482-018-1183-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
Abstract
A Gram-stain negative, aerobic, non-motile and rod-shaped novel bacterial strain, designated as MAH-5T, was isolated from a road-side soil sample and was characterised by using a polyphasic taxonomic approach. The colonies were observed to be yellowish orange in colour, smooth, circular and 0.3-0.7 mm in diameter when grown on nutrient agar for 2 days. Strain MAH-5T was found to be able to grow at 15-35 °C and at pH 4.0-8.0. The strain was observed to be positive for both the catalase and oxidase tests. Cells were found to be able to hydrolyse aesculin, gelatin and starch. By 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus Mucilaginibacter and to be closely related to Mucilaginibacter panaciglaebae BXN5-31T (98.35%), Mucilaginibacter soyangensis HME6664T (97.82%), Mucilaginibacter antarcticus S14-88T (97.49%) and Mucilaginibacter ximonensis XM-003T (97.06%). In DNA-DNA hybridization tests, the DNA relatedness values between strain MAH-5T and its close phylogenetic neighbors were below 45.0%. The genomic DNA G + C content of strain MAH-5T was determined to be 41.5 mol% and the predominant isoprenoid quinine was identified as MK-7. The major fatty acids were identified as C15:0 iso and summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c). The genetic characteristics, in combination with chemotaxonomic and physiological data, demonstrated that the isolated strain MAH-5T represents a novel species within the genus Mucilaginibacter, for which the name Mucilaginibacter formosus sp. nov. is proposed, with MAH-5T as the type strain (= KACC 19291T = CGMCC1.16489T).
Collapse
Affiliation(s)
- Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong-Si, Gyeonggi-do, 17546, Republic of Korea.
| | - Shahina Akter
- Department of Horticultural Life Science, Hankyong National University, Anseong-Si, Gyeonggi-do, 17579, Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong-Si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
38
|
Sedláček I, Pantůček R, Králová S, Mašlaňová I, Holochová P, Staňková E, Sobotka R, Barták M, Busse HJ, Švec P. Mucilaginibacter terrae sp. nov., isolated from Antarctic soil. Int J Syst Evol Microbiol 2017; 67:4002-4007. [DOI: 10.1099/ijsem.0.002240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ivo Sedláček
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Roman Pantůček
- Section of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Stanislava Králová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ivana Mašlaňová
- Section of Genetics and Molecular Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Pavla Holochová
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Staňková
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology, Academy of Sciences, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Miloš Barták
- Section of Plant Physiology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Hans-Jürgen Busse
- Institut für Mikrobiologie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Pavel Švec
- Czech Collection of Microorganisms, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
39
|
Wei JC, Sun LN, Yuan ZX, Hou XT, Yang ED, Cao YY. Mucilaginibacter rubeus sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 2017; 67:3099-3104. [DOI: 10.1099/ijsem.0.002101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jie-Chao Wei
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Le-Ni Sun
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhuo-Xin Yuan
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Xue-Ting Hou
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - En-Dong Yang
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| | - Yuan-Yuan Cao
- School of Life Science, Anhui Agricultural University, Hefei 230036, PR China
| |
Collapse
|
40
|
Mucilaginibacter craterilacus sp. nov., isolated from sediment soil of a crater lake. Int J Syst Evol Microbiol 2017; 67:2891-2896. [DOI: 10.1099/ijsem.0.002043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
41
|
Morawe M, Hoeke H, Wissenbach DK, Lentendu G, Wubet T, Kröber E, Kolb S. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil. Front Microbiol 2017; 8:1361. [PMID: 28790984 PMCID: PMC5523551 DOI: 10.3389/fmicb.2017.01361] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/05/2017] [Indexed: 02/03/2023] Open
Abstract
Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented) and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented) to (i) identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany), (ii) assess their substrate range in the soil environment, and (iii) evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose), and a lignin-derived aromatic compound (vanillic acid). An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria) that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to exclude or prove methylotrophy of these fungi.
Collapse
Affiliation(s)
- Mareen Morawe
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| | - Henrike Hoeke
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental ResearchLeipzig, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of LeipzigLeipzig, Germany
| | - Dirk K Wissenbach
- Institute of Forensic Medicine, University Hospital JenaJena, Germany
| | - Guillaume Lentendu
- Department of Ecology, University of KaiserslauternKaiserslautern, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz Centre for Environmental ResearchLeipzig, Germany
| | - Eileen Kröber
- Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| | - Steffen Kolb
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany.,Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| |
Collapse
|
42
|
Deng Y, Shen L, Xu B, Liu Y, Gu Z, Liu H, Zhou Y. Mucilaginibacterpsychrotolerans sp. nov., isolated from peatlands. Int J Syst Evol Microbiol 2017; 67:767-771. [PMID: 27902239 DOI: 10.1099/ijsem.0.001560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped, non-flagellated, pink, cold-tolerant bacterial strain, NH7-4T, was isolated from the Riganqiao peatlands on the Tibetan Plateau. The 16S rRNA gene sequence of the novel isolate shared a pairwise similarity ranging from 96.84 to 93.02 % with type strains of species of the genus Mucilaginibacter. Growth of strain NH7-4T occurred between 0 and 30 °C and at pH 5.0-9.0, with an optimum growth temperature at 20 °C and an optimum pH for growth of approximately 7.0. The major isoprenoid quinone was MK-7. The major cellular fatty acids were summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, iso-C17 : 0 3-OH, C16 : 0, iso-C15 : 0 3-OH and C16 : 1ω5c. The major polar lipid of strain NH7-4T was phosphatidylethanolamine. Strain NH7-4T did not assimilate any substrates in API 20NE strips without low concentrations of yeast extract being present and had a lower optimal growth temperature, which distinguished it from other type strains of species of the genus Mucilaginibacter. The DNA G+C content of strain NH7-4T was 48.6 mol%. Based on phylogenetic, phenotypic and chemotaxonomic data, strain NH7-4T (=JCM 30607T=CGMCC1.14937T) represents a novel species of the genus Mucilaginibacter for which the name Mucilaginibacter psychrotolerans sp. nov. is proposed.
Collapse
Affiliation(s)
- Yongcui Deng
- College of Geographic Sciences, Nanjing Normal University, Nanjing, PR China
| | - Liang Shen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Colledge of Resources and Environment, Beijing, PR China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, PR China
| | - Baiqin Xu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, PR China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, PR China
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, PR China
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, PR China
- University of Chinese Academy of Sciences, Colledge of Resources and Environment, Beijing, PR China
| | - Zhengquan Gu
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Beijing, PR China
| | - Hongcan Liu
- China General Microbiological Culture Collection Center, Institute of Microbiology Chinese Academy of Sciences, Beijing, PR China
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
43
|
Mahoney AK, Yin C, Hulbert SH. Community Structure, Species Variation, and Potential Functions of Rhizosphere-Associated Bacteria of Different Winter Wheat ( Triticum aestivum) Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:132. [PMID: 28243246 PMCID: PMC5303725 DOI: 10.3389/fpls.2017.00132] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/23/2017] [Indexed: 05/23/2023]
Abstract
Minimal tillage management of extensive crops like wheat can provide significant environmental services but can also lead to adverse interactions between soil borne microbes and the host. Little is known about the ability of the wheat cultivar to alter the microbial community from a long-term recruitment standpoint, and whether this recruitment is consistent across field sites. To address this, nine winter wheat cultivars were grown for two consecutive seasons on the same plots on two different farm sites and assessed for their ability to alter the rhizosphere bacterial communities in a minimal tillage system. Using deep amplicon sequencing of the V1-V3 region of the 16S rDNA, a total of 26,604 operational taxonomic units (OTUs) were found across these two sites. A core bacteriome consisting of 962 OTUs were found to exist in 95% of the wheat rhizosphere samples. Differences in the relative abundances for these wheat cultivars were observed. Of these differences, 24 of the OTUs were found to be significantly different by wheat cultivar and these differences occurred at both locations. Several of the cultivar-associated OTUs were found to correspond with strains that may provide beneficial services to the host plant. Network correlations demonstrated significant co-occurrences for different taxa and their respective OTUs, and in some cases, these interactions were determined by the wheat cultivar. Microbial abundances did not play a role in the number of correlations, and the majority of the co-occurrences were shown to be positively associated. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was used to determine potential functions associated with OTUs by association with rhizosphere members which have sequenced metagenomics data. Potentially beneficial pathways for nitrogen, sulfur, phosphorus, and malate metabolism, as well as antimicrobial compounds, were inferred from this analysis. Differences in these pathways and their associated functions were found to differ by wheat cultivar. In conclusion, our study suggests wheat cultivars are involved in shaping the rhizosphere by differentially altering the bacterial OTUs consistently across different sites, and these altered bacterial communities may provide beneficial services to the host.
Collapse
Affiliation(s)
- Aaron K. Mahoney
- Department of Plant Pathology, Washington State University, PullmanWA, USA
- Molecular Plant Sciences, Washington State University, PullmanWA, USA
| | - Chuntao Yin
- Department of Plant Pathology, Washington State University, PullmanWA, USA
| | - Scot H. Hulbert
- Department of Plant Pathology, Washington State University, PullmanWA, USA
| |
Collapse
|
44
|
Lee JH, Kim MS, Kang JW, Baik KS, Seong CN. Mucilaginibacter
puniceus sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016; 66:4549-4554. [DOI: 10.1099/ijsem.0.001389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ji Hee Lee
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Mi Sun Kim
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Joo Won Kang
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| | | | - Chi Nam Seong
- Department of Biology, College of Life Science and Natural Resources, Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
45
|
Tang J, Huang J, Qiao Z, Wang R, Wang G. Mucilaginibacter pedocola sp. nov., isolated from a heavy-metal-contaminated paddy field. Int J Syst Evol Microbiol 2016; 66:4033-4038. [DOI: 10.1099/ijsem.0.001306] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jingwei Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jing Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zixu Qiao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Rui Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
- Tobacco Company of Enshi, Hubei Province, Enshi, 445000 Hubei, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
46
|
Proposal of Mucilaginibacter phyllosphaerae sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 2016; 66:4138-4147. [DOI: 10.1099/ijsem.0.001326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Complete genome sequence of the xylan-degrading Mucilaginibacter sp. strain PAMC26640 isolated from an Arctic lichen. J Biotechnol 2016; 227:23-24. [PMID: 27080447 DOI: 10.1016/j.jbiotec.2016.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 11/21/2022]
Abstract
Mucilaginibacter sp. PAMC26640 is a xylan-degrading bacterium isolated from the Arctic lichen Stereocaulon sp. Here, we present the first complete genome sequence of Mucilaginibacter sp. strain PAMC26640, which contains several genes involved in xylan utilization. This genome information provides new insights into the genetic basis of its physiology and further analysis of key metabolic genes related to the xylan degradation pathway.
Collapse
|
48
|
Biocontrol activity of Paenibacillus polymyxa AC-1 against Pseudomonas syringae and its interaction with Arabidopsis thaliana. Microbiol Res 2016; 185:13-21. [DOI: 10.1016/j.micres.2016.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/14/2015] [Accepted: 01/20/2016] [Indexed: 11/17/2022]
|
49
|
Jing YT, Wang P, Zhang H, Dong WL, Jing YJ, Xiao YL, Cao H. Mucilaginibacter yixingensis sp. nov., isolated from vegetable soil. Int J Syst Evol Microbiol 2016; 66:1779-1784. [DOI: 10.1099/ijsem.0.000941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yi-Ting Jing
- College of Life Sciences/Key Laboratory of Microbiology Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PRChina
- Longdong University, Qingyang 745000, PRChina
| | - Ping Wang
- College of Life Sciences/Key Laboratory of Microbiology Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PRChina
| | - Hao Zhang
- College of Life Sciences/Key Laboratory of Microbiology Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PRChina
| | - Wei-Liang Dong
- College of Life Sciences/Key Laboratory of Microbiology Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PRChina
| | - Yin-Juan Jing
- College of Life Sciences/Key Laboratory of Microbiology Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PRChina
| | - Yong-Liang Xiao
- College of Life Sciences/Key Laboratory of Microbiology Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PRChina
| | - Hui Cao
- College of Life Sciences/Key Laboratory of Microbiology Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PRChina
| |
Collapse
|
50
|
Nie Y, Li L, Wang M, Tahvanainen T, Hashidoko Y. Nitrous oxide emission potentials of Burkholderia species isolated from the leaves of a boreal peat moss Sphagnum fuscum*. Biosci Biotechnol Biochem 2015; 79:2086-95. [DOI: 10.1080/09168451.2015.1061420] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Using a culture-based nitrous oxide (N2O) emission assay, three active N2O emitters were isolated from Sphagnum fuscum leaves and all identified as members of Burkholderia. These isolates showed N2O emission in the medium supplemented with but not with , and Burkholderia sp. SF-E2 showed the most efficient N2O emission (0.20 μg·vial−1·day−1) at 1.0 mM KNO3. In Burkholderia sp. SF-E2, the optimum pH for N2O production was 5.0, close to that of the phyllosphere of Sphagnum mosses, while the optimum temperature was uniquely over 30 °C. The stimulating effect of additional 1.5 mM sucrose on N2O emission was ignorable, but Burkholderia sp. SF-E2 upon exposure to 100 mg·L−1 E-caffeic acid showed uniquely 67-fold higher N2O emission. All of the three N2O emitters were negative in both acetylene inhibition assay and PCR assay for nosZ-detection, suggesting that N2O reductase or the gene itself is missing in the N2O-emitting Burkholderia.
Collapse
Affiliation(s)
- Yanxia Nie
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Li Li
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mengcen Wang
- Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Teemu Tahvanainen
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | | |
Collapse
|