1
|
Duven M, Friedrichs A, Tomlinson MG, Steffen I, Gerold G. Tetraspanins 10 and 15 support Venezuelan equine encephalitis virus replication in astrocytoma cells. Mol Biol Cell 2025; 36:ar35. [PMID: 39878649 DOI: 10.1091/mbc.e24-12-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Tetraspanins (Tspans) are transmembrane proteins that coordinate life cycle steps of viruses from distinct families. Here, we identify the human Tspan10 and Tspan15, both members of the TspanC8 subfamily, as replication factors for alphavirus Venezuelan equine encephalitis virus (VEEV) in astrocytoma cells. Pharmacological inhibition and small interfering RNA (siRNA)-mediated silencing of TspanC8 interactor a disintegrin and metalloproteinase 10 (ADAM10) reduced VEEV infection. Silencing of Tspan10, Tspan15, and ADAM10 did not affect VEEV entry but diminished viral genome replication. We report that Tspan10 is important for VEEV infection of several cell lines, while silencing of Tspan15 diminishes infection with several alphaviruses, but not flaviviruses, in astrocytoma cells. Conversely, we demonstrate that siRNA-mediated silencing of Tspan14, another member of the TspanC8 family, enhances infection with lentiviral pseudoparticles harbouring the envelope proteins of VEEV, identifying it as a restriction factor for VEEV entry. Silencing of ADAM10/Tspan15 substrate neuronal (N)-cadherin reduced VEEV infectivity, suggesting potential roles of ADAM10 substrates in VEEV infection. In sum, our study identifies three TspanC8s and ADAM10 as important modulators of VEEV infectivity.
Collapse
Affiliation(s)
- Mara Duven
- Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Alina Friedrichs
- Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Michael G Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, B15 2TT United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Imke Steffen
- Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Gisa Gerold
- Institute for Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 90187 Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, 90187 Umeå, Sweden
- Institute of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Chang C, Patel H, Ferrari A, Scalzo T, Petkov D, Xu H, Rossignol E, Palladino G, Wen Y. sa-mRNA influenza vaccine raises a higher and more durable immune response than mRNA vaccine in preclinical models. Vaccine 2025; 51:126883. [PMID: 39956088 DOI: 10.1016/j.vaccine.2025.126883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/22/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
mRNA-based vaccines can be rapidly manufactured and have been demonstrated clinically to raise robust immune responses to COVID-19 and protect against severe COVID-19 disease. The clinical immunogenicity and efficacy of self-amplifying mRNA (sa-mRNA) vaccines have also been demonstrated, along with a longer duration of action than mRNA vaccines. However, a detailed understanding of differences between sa-mRNA and conventional mRNA vaccines with modified bases is lacking. Compared with a N1ψ-modified mRNA platform, when using an sa-mRNA approach, we observed a > 100-fold greater transfection efficiency for multiple antigens by sa-mRNA, all of which also showed high durability for gene-of-interest (GOI) production. The enhanced magnitude and durability of GOI expression by sa-mRNA compared with modified mRNA was also analysed in vivo using a luciferase reporter construct. In this experiment, sa-mRNA produced >100-fold cumulative bioluminescence compared with an mRNA construct. The elevation in GOI production translated into greater in vivo immunogenicity, where a 10-fold lower dose of sa-mRNA generated similar binding and neutralizing titers for the avian pandemic influenza H5N1 strain in both mouse and rat models. The sa-mRNA construct also generated comparable or higher antigen-specific CD8 T cell responses at 10-fold lower doses than mRNA. The lower doses of sa-mRNA generated a reduced elevation of reactogenic biomarkers while still generating similar or higher immunogenicity in rats and mice compared with modified mRNA. The current study suggests the potential of leveraging dose sparing, improved durability, enhanced immunogenicity, and possibly reduced reactogenicity of the sa-mRNA platform for vaccine applications.
Collapse
|
3
|
Casmil IC, Bathula NV, Huang C, Wayne CJ, Cairns ES, Friesen JJ, Soriano SK, Liao S, Ho CH, Kong KYS, Blakney AK. Alphaviral backbone of self-amplifying RNA enhances protein expression and immunogenicity against SARS-CoV-2 antigen. Mol Ther 2025; 33:514-528. [PMID: 39741413 DOI: 10.1016/j.ymthe.2024.12.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Self-amplifying RNA (saRNA) vectors are a next-generation RNA technology that extends the expression of heterologous genes. Clinical trials have shown the dose-sparing capacity of saRNA vectors in a vaccine context compared with conventional messenger RNA. However, saRNA vectors have historically been based on a limited number of alphaviruses, and only the Venezuelan equine encephalitis virus-based saRNA vaccines have been used clinically. Here, we designed genotypically distinct alphaviral saRNA vectors and characterized their performance in mammalian cell lines, human skin explants and mice. Five of the 12 vectors had substantial luciferase expression in mice with variable pharmacokinetics, enabling modulation of both the magnitude and duration of protein expression. Additionally, we demonstrated that the alphaviral genotype of the saRNA significantly impacts the immunogenicity of saRNA vaccines, including the humoral and cellular responses in mice. Given the differences in RNA reactogenicity and expression between mice and humans, we assessed the saRNA vectors in human skin explants obtained from patients and observed high transgene expression. saRNA bioluminescence and immunogenicity in different mice strains were highly correlative, while minimal correlation was observed when compared with human explants and mammalian cell lines. This work demonstrates that efficacious saRNA vaccines and therapies can be produced by adapting genetically diverse alphaviruses into vectors.
Collapse
Affiliation(s)
- Irafasha C Casmil
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T1Z4, BC, Canada
| | - Nuthan V Bathula
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T1Z4, BC, Canada
| | - Cynthia Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T1Z4, BC, Canada
| | - Christopher J Wayne
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T1Z4, BC, Canada
| | - Evan S Cairns
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T1Z4, BC, Canada
| | - Josh J Friesen
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T1Z4, BC, Canada
| | - Shekinah K Soriano
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T1Z4, BC, Canada
| | - Suiyang Liao
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T1Z4, BC, Canada; Life Science Institute, University of British Columbia, Vancouver V6T1Z3, BC, Canada
| | - Chia H Ho
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T1Z4, BC, Canada
| | - Kristen Y S Kong
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, BC, Canada
| | - Anna K Blakney
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T1Z4, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver V6T1Z4, BC, Canada.
| |
Collapse
|
4
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
5
|
Silva EG, de Faria IJS, Ferreira ÁGA, Jiran THL, Estevez-Castro CF, Armache JN, Amadou SCG, Verdier Y, Vinh J, Majzoub K, Meignin C, Haas G, Martin F, Imler JL, Marques JT. Argonaute 2 targets viral transcripts but not genomes of RNA viruses during antiviral RNA interference in Drosophila. PLoS Pathog 2025; 21:e1012184. [PMID: 39899642 PMCID: PMC11809787 DOI: 10.1371/journal.ppat.1012184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 02/10/2025] [Accepted: 12/17/2024] [Indexed: 02/05/2025] Open
Abstract
RNA interference (RNAi) mediated by the small interfering RNA (siRNA) pathway is a major antiviral mechanism in insects. This pathway is triggered when double-stranded RNA (dsRNA) produced during virus replication is recognized by Dicer-2, leading to the formation of virus-derived siRNA duplexes. These siRNAs are loaded onto the programmable nuclease Argonaute-2 (AGO2), with one strand serving as a guide to target and cleave fully complementary sequences of viral RNAs. While siRNAs are generated from viral dsRNA, the specific viral RNA species targeted for silencing during RNA virus replication remains unclear. In this study, we characterized the primary viral RNA targets of the Drosophila siRNA pathway during infections caused by negative and positive RNA viruses, namely Vesicular stomatitis virus (VSV) and Sindbis virus (SINV). Our findings reveal that polyadenylated transcripts of VSV and SINV are the major targets of silencing by the siRNA pathway during infection, likely when they are poised for translation. Consistent with earlier findings, we show that AGO2 is associated with ribosomes in control and virus infected cells. Therefore, we propose that the inhibition of the replication of RNA viruses in Drosophila results from the silencing of incoming viral transcripts, facilitated by the association of AGO2 with ribosomes.
Collapse
Affiliation(s)
- Emanuele G. Silva
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INSERM U1257, CNRS UPR9022, Université de Strasbourg, Strasbourg, France
| | - Isaque J. S. de Faria
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Álvaro G. A. Ferreira
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou-Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago Henrique L. Jiran
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INSERM U1257, CNRS UPR9022, Université de Strasbourg, Strasbourg, France
| | - Carlos F. Estevez-Castro
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana N. Armache
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Siad C. G. Amadou
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Karim Majzoub
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS UMR5535, Montpellier, France
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Strasbourg, France
| | - Gabrielle Haas
- Université de Strasbourg, CNRS UPR9022, Strasbourg, France
| | - Franck Martin
- CNRS UPR9002, Université de Strasbourg, Strasbourg, France
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, Strasbourg, France
| | - João T. Marques
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INSERM U1257, CNRS UPR9022, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Adeyinka OS, Barrera MD, Metibemu DS, Boghdeh N, Anderson CA, Baha H, Crown O, Falode JA, Bleach JL, Bliss AR, Hampton TP, Ojobor JFC, Alem F, Narayanan A, Ogungbe IV. nsP2 Protease Inhibitor Blocks the Replication of New World Alphaviruses and Offer Protection in Mice. ACS Infect Dis 2025; 11:181-196. [PMID: 39737550 DOI: 10.1021/acsinfecdis.4c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
New World alphaviruses, including Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV), are mosquito-transmitted viruses that cause disease in humans. These viruses are endemic to the western hemisphere, and disease in humans may lead to encephalitis and long-term neurological sequelae. There are currently no FDA-approved vaccines or antiviral therapeutics available for the prevention or treatment of diseases caused by these viruses. The alphavirus nonstructural protein 2 (nsP2) functions as a protease, which is critical for the establishment of a productive viral infection by enabling accurate processing of the nsP123 polyprotein. Owing to the essential role played by nsP2 in the alphavirus infectious process, it is also a valuable therapeutic target. In this article, we report the synthesis and evaluation of novel small molecule inhibitors that target the alphavirus nsP2 protease via a covalent mode of action. The two lead compounds demonstrated robust inhibition of viral replication in vitro. These inhibitors interfered with the processing of the nsP123 polyprotein as determined using VEEV TC-83 as a model pathogen and are active against EEEV and WEEV. The compounds were found to be nontoxic in two different mouse strains and demonstrated antiviral activity in a VEEV TC-83 lethal challenge mouse model. Cumulatively, the outcomes of this study provide a compelling rationale for the preclinical development of nsP2 protease inhibitors as direct-acting antiviral therapeutics against alphaviruses.
Collapse
Affiliation(s)
- Olawale S Adeyinka
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Michael D Barrera
- Department of Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
- School of Systems Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Damilohun S Metibemu
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Niloufar Boghdeh
- School of Systems Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
- Biomedical Research Laboratory, Institute for Biohealth Innovation, George Mason University, Manassas, Virginia 20109, United States
| | - Carol A Anderson
- Department of Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
- School of Systems Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Haseebullah Baha
- School of Systems Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Olamide Crown
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - John Adeolu Falode
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Janard L Bleach
- School of Systems Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
- Biomedical Research Laboratory, Institute for Biohealth Innovation, George Mason University, Manassas, Virginia 20109, United States
| | - Amanda R Bliss
- School of Systems Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
- Biomedical Research Laboratory, Institute for Biohealth Innovation, George Mason University, Manassas, Virginia 20109, United States
| | - Tamia P Hampton
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Jane-Frances Chinenye Ojobor
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Farhang Alem
- Biomedical Research Laboratory, Institute for Biohealth Innovation, George Mason University, Manassas, Virginia 20109, United States
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Ifedayo Victor Ogungbe
- Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| |
Collapse
|
7
|
Karki D, LaPointe AT, Isom C, Thomas M, Sokoloski KJ. Mechanistic insights into Sindbis virus infection: noncapped genomic RNAs enhance the translation of capped genomic RNAs to promote viral infectivity. Nucleic Acids Res 2025; 53:gkae1230. [PMID: 39660624 PMCID: PMC11724270 DOI: 10.1093/nar/gkae1230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/15/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
Alphaviruses are globally distributed, vector-borne RNA viruses with high outbreak potential and no clinical interventions, posing a significant global health threat. Previously, the production and packaging of both viral capped and noncapped genomic RNAs (cgRNA and ncgRNA) during infection was reported. Studies have linked ncgRNA production to viral infectivity and pathogenesis, but its precise role remains unclear. To define the benefits of ncgRNAs, pure populations of capped and noncapped Sindbis virus (SINV) gRNAs were synthesized and transfected into host cells. The data showed that mixtures of cgRNAs and ncgRNAs had higher infectivity compared to pure cgRNAs, with mixtures containing low cgRNA proportions exceeding linear infectivity expectations. This enhancement depended on co-delivery of cgRNAs and ncgRNAs to the same cell and required the noncapped RNAs to be viral in origin. Contrary to the initial hypothesis that the ncgRNAs serve as replication templates, the cgRNAs were preferentially replicated. Further analysis revealed that viral gene expression, viral RNA (vRNA) synthesis and particle production were enhanced in the presence of ncgRNAs, which function to promote cgRNA translation early in infection. Our findings highlight the importance of ncgRNAs in alphaviral infection, showing they enhance cgRNA functions and significantly contribute to viral infectivity.
Collapse
Affiliation(s)
- Deepa Karki
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Autumn T LaPointe
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Cierra Isom
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Milton Thomas
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Dansana J, Purohit P, Panda M, Meher BR. Recent advances in phytocompounds as potential Chikungunya virus non-structural protein 2 protease antagonists: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156359. [PMID: 39756312 DOI: 10.1016/j.phymed.2024.156359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND The mosquito-borne pathogenic alphavirus known as Chikungunya virus (CHIKV) is becoming a greater hazard to public health, which causes thousands of cases annually in both rural and urban areas of many different nations throughout the world. Finding and creating new leads for the CHIKV virus is crucial because there are currently no effective medications or vaccinations against it. The non-structural protein 2 (nsP2) protease has emerged as a promising target for therapeutic intervention due to its crucial role in viral replication. PURPOSE This systematic review aims to evaluate recent advances in natural products as inhibitors of the CHIKV nsP2 protease, summarizing current research, identifying promising compounds, and highlighting gaps in the existing knowledge. STUDY DESIGN A comprehensive literature search was conducted between January 2006, and June 2024 using databases including PubMed, Scopus, Science Direct, and Google Scholar. Search terms included CHIKV, nsP2 protease, antivirals, natural products, phytochemicals, and inhibitors. Studies were selected based on predefined inclusion and exclusion criteria, focusing on original research articles examining natural products as inhibitors of CHIKV nsP2 protease. METHODS Relevant studies were screened, and data were extracted regarding the source of natural compounds, methods of extraction, chemical structures, mechanisms of action, potency, and efficacy in inhibiting nsP2 protease or CHIKV replication. RESULTS The review included 40 studies, revealing a variety of natural products and their derivatives with inhibitory effects on CHIKV nsP2 protease. Several compounds demonstrated promising inhibitory activity with EC50 values in the micromolar range. Mechanistic studies revealed diverse modes of action, including inhibition of protease activity or interference with viral replication processes. CONCLUSION Natural products have gained attention for their diverse chemical structures and bioactivities, offering a rich source of compounds with antiviral potential. We summarize the current knowledge on natural products derived from various sources including flavonoids, alkaloids, terpenoids, polyphenols, and some derivative compounds that have demonstrated inhibitory effects against CHIKV through different mechanisms of action. Overall, this systematic review underscores the importance of exploring natural products as promising candidates for the development of effective therapeutics against Chikungunya fever, particularly through targeting the nsP2 protease.
Collapse
Affiliation(s)
- Jarmani Dansana
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| | - Priyanka Purohit
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| | - Madhusmita Panda
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India
| | - Biswa Ranjan Meher
- Computational Biology and Bioinformatics Laboratory, PG Department of Botany, Berhampur University, Berhampur, Odisha, 760007, India.
| |
Collapse
|
9
|
Wadapurkar R, Deo S, Khanzode R, Singh A. Leveraging Next-Generation Sequencing Application from Identity to Purity Profiling of Nucleic Acid-Based Products. Pharmaceutics 2024; 17:30. [PMID: 39861679 PMCID: PMC11769349 DOI: 10.3390/pharmaceutics17010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The nucleic acid-based product (NAP) portfolio is expanding continuously and provides safer curative options for many disease indications. Nucleic acid-based products offer several advantages compared to proteins and virus-based products. They represent an emerging field; thus, their quality control and regulatory landscape is evolving to ensure adequate quality and safety. Next-Generation Sequencing (NGS) is mostly recommended for NAP identity testing, and we are leveraging its application for impurity profiling. Methods: We proposed a workflow for the purity assessment of NAPs through short-read Illumina NGS followed by data analysis of mRNA vaccine and pDNA samples. We determined the sequence identity, DNA and RNA contamination, off-target RNA contamination, and poly-A count with the proposed workflow. Results: Our workflow predicted most of the critical quality controls of mRNA vaccine and plasmid DNA samples, especially focusing on the identity and the nucleotide-based impurities. Additionally, NGS data interpretation also assisted in strategic decisions for NAP manufacturing process optimizations. Conclusions: We recommend the adaptation of incremental NGS data by regulatory agencies to identify nucleotide-based impurities in NAPs. Perhaps NGS adaptation under cGMP compliance needs to be deliberated with the regulatory bodies, especially focusing on the methods qualification and validation part, starting from the sample collection, NGS library preparation, NGS run, and its data analysis pipeline.
Collapse
Affiliation(s)
| | | | | | - Ajay Singh
- Gennova Biopharmaceuticals Ltd., ITBT Park, Hinjawadi Phase 2 Rd, Hinjewadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411057, India; (R.W.); (S.D.); (R.K.)
| |
Collapse
|
10
|
Larkin CI, Dunn MD, Shoemaker JE, Klimstra WB, Faeder JR. A detailed kinetic model of Eastern equine encephalitis virus replication in a susceptible host cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628424. [PMID: 39764060 PMCID: PMC11703215 DOI: 10.1101/2024.12.13.628424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Eastern equine encephalitis virus (EEEV) is an arthropod-borne, positive-sense RNA alphavirus posing a substantial threat to public health. Unlike similar viruses such as SARS-CoV-2, EEEV replicates efficiently in neurons, producing progeny viral particles as soon as 3-4 hours post-infection. EEEV infection, which can cause severe encephalitis with a human mortality rate surpassing 30%, has no licensed, targeted therapies, leaving patients to rely on supportive care. Although the general characteristics of EEEV infection within the host cell are well-studied, it remains unclear how these interactions lead to rapid production of progeny viral particles, limiting development of antiviral therapies. Here, we present a novel rule-based model that describes attachment, entry, uncoating, replication, assembly, and export of both infectious virions and virus-like particles within mammalian cells. Additionally, it quantitatively characterizes host ribosome activity in EEEV replication via a model parameter defining ribosome density on viral RNA. To calibrate the model, we performed experiments to quantify viral RNA, protein, and infectious particle production during acute infection. We used Bayesian inference to calibrate the model, discovering in the process that an additional constraint was required to ensure consistency with previous experimental observations of a high ratio between the amounts of full-length positive-sense viral genome and negative-sense template strand. Overall, the model recapitulates the experimental data and predicts that EEEV rapidly concentrates host ribosomes densely on viral RNA. Dense packing of host ribosomes was determined to be critical to establishing the characteristic positive to negative RNA strand ratio because of its role in governing the kinetics of transcription. Sensitivity analysis identified viral transcription as the critical step for infectious particle production, making it a potential target for future therapeutic development.
Collapse
Affiliation(s)
- Caroline I. Larkin
- Joint Carnegie Mellon University - University of Pittsburgh PhD Program in Computational Biology, Pittsburgh, Pennsylvania, United States of America
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Matthew D. Dunn
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jason E. Shoemaker
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William B. Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James R. Faeder
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
11
|
Zhou Q, Lok SM. Visualizing the virus world inside the cell by cryo-electron tomography. J Virol 2024; 98:e0108523. [PMID: 39494908 DOI: 10.1128/jvi.01085-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Structural studies on purified virus have revealed intricate architectures, but there is little structural information on how viruses interact with host cells in situ. Cryo-focused ion beam (FIB) milling and cryo-electron tomography (cryo-ET) have emerged as revolutionary tools in structural biology to visualize the dynamic conformational of viral particles and their interactions with host factors within infected cells. Here, we review the state-of-the-art cryo-ET technique for in situ viral structure studies and highlight exemplary studies that showcase the remarkable capabilities of cryo-ET in capturing the dynamic virus-host interaction, advancing our understanding of viral infection and pathogenesis.
Collapse
Affiliation(s)
- Qunfei Zhou
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Shee-Mei Lok
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Department of Biological Sciences, Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Pieterse L, McDonald M, Abraham R, Griffin DE. Heterogeneous Ribonucleoprotein K Is a Host Regulatory Factor of Chikungunya Virus Replication in Astrocytes. Viruses 2024; 16:1918. [PMID: 39772225 PMCID: PMC11680317 DOI: 10.3390/v16121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Chikungunya virus (CHIKV) is an emerging, mosquito-borne arthritic alphavirus increasingly associated with severe neurological sequelae and long-term morbidity. However, there is limited understanding of the crucial host components involved in CHIKV replicase assembly complex formation, and thus virus replication and virulence-determining factors, within the central nervous system (CNS). Furthermore, the majority of CHIKV CNS studies focus on neuronal infection, even though astrocytes represent the main cerebral target. Heterogeneous ribonucleoprotein K (hnRNP K), an RNA-binding protein involved in RNA splicing, trafficking, and translation, is a regulatory component of alphavirus replicase assembly complexes, but has yet to be thoroughly studied in the context of CHIKV infection. We identified the hnRNP K CHIKV viral RNA (vRNA) binding site via sequence alignment and performed site-directed mutagenesis to generate a mutant, ΔhnRNPK-BS1, with disrupted hnRNPK-vRNA binding, as verified through RNA coimmunoprecipitation and RT-qPCR. CHIKV ΔhnRNPK-BS1 demonstrated hampered replication in both NSC-34 neuronal and C8-D1A astrocytic cultures. In astrocytes, disruption of the hnRNPK-vRNA interaction curtailed viral RNA transcription and shut down subgenomic RNA translation. Our study demonstrates that hnRNP K serves as a crucial RNA-binding host factor that regulates CHIKV replication through the modulation of subgenomic RNA translation.
Collapse
Affiliation(s)
- Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (L.P.); (D.E.G.)
| | - Maranda McDonald
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Rachy Abraham
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (L.P.); (D.E.G.)
| |
Collapse
|
13
|
Gong Y, Yong D, Liu G, Xu J, Ding J, Jia W. A Novel Self-Amplifying mRNA with Decreased Cytotoxicity and Enhanced Protein Expression by Macrodomain Mutations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402936. [PMID: 39313862 DOI: 10.1002/advs.202402936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/13/2024] [Indexed: 09/25/2024]
Abstract
The efficacy and safety of self-amplifying mRNA (saRNA) have been demonstrated in COVID-19 vaccine applications. Unlike conventional non-replicating mRNA (nrmRNA), saRNA offers a key advantage: its self-replication mechanism fosters efficient expression of the encoded protein, leading to substantial dose savings during administration. Consequently, there is a growing interest in further optimizing the expression efficiency of saRNA. In this study, in vitro adaptive passaging of saRNA is conducted under exogenous interferon pressure, which revealed several mutations in the nonstructural protein (NSP). Notably, two stable mutations, Q48P and I113F, situated in the NSP3 macrodomain (MD), attenuated its mono adenosine diphosphate ribose (MAR) hydrolysis activity and exhibited decreased replication but increased payload expression compared to wild-type saRNA (wt saRNA). Transcriptome sequencing analysis unveils diminished activation of the double-stranded RNA (dsRNA) sensor and, consequently, a significantly reduced innate immune response compared to wt saRNA. Furthermore, the mutant saRNA demonstrated less translation inhibition and cell apoptosis than wt saRNA, culminating in higher protein expression both in vitro and in vivo. These findings underscore the potential of reducing saRNA replication-dependent dsRNA-induced innate immune responses through genetic modification as a valuable strategy for optimizing saRNA, enhancing payload translation efficiency, and mitigating saRNA cytotoxicity.
Collapse
Affiliation(s)
- Yue Gong
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Danni Yong
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Gensheng Liu
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Jiang Xu
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
| | - Jun Ding
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
- Virogin Biotech Canada Ltd, Vancouver, BC, V6V 3A4, Canada
| | - William Jia
- Shanghai Virogin Biotech Co. Ltd, Jiading District, Shanghai, 200000, China
- Virogin Biotech Canada Ltd, Vancouver, BC, V6V 3A4, Canada
| |
Collapse
|
14
|
Lokras AG, Bobak TR, Baghel SS, Sebastiani F, Foged C. Advances in the design and delivery of RNA vaccines for infectious diseases. Adv Drug Deliv Rev 2024; 213:115419. [PMID: 39111358 DOI: 10.1016/j.addr.2024.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Thomas Rønnemoes Bobak
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Saahil Sandeep Baghel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Federica Sebastiani
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
15
|
Sun K, Appadoo F, Liu Y, Müller M, Macfarlane C, Harris M, Tuplin A. A novel interaction between the 5' untranslated region of the Chikungunya virus genome and Musashi RNA binding protein is essential for efficient virus genome replication. Nucleic Acids Res 2024; 52:10654-10667. [PMID: 39087525 PMCID: PMC11417370 DOI: 10.1093/nar/gkae619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging, pathogenic alphavirus that is transmitted to humans by Aedesspp. mosquitoes-causing fever and debilitating joint pain, with frequent long-term health implications and high morbidity. The CHIKV replication cycle is poorly understood and specific antiviral therapeutics are lacking. In the current study, we identify host cell Musashi RNA binding protein-2 (MSI-2) as a proviral factor. MSI-2 depletion and small molecule inhibition assays demonstrated that MSI-2 is required for efficient CHIKV genome replication. Depletion of both MSI-2 and MSI-1 homologues was found to synergistically inhibit CHIKV replication, suggesting redundancy in their proviral function. Electromobility shift assay (EMSA) competition studies demonstrated that MSI-2 interacts specifically with an RNA binding motif within the 5' untranslated region (5'UTR) of CHIKV and reverse genetic analysis showed that mutation of the binding motif inhibited genome replication and blocked rescue of mutant virus. For the first time, this study identifies the proviral role of MSI RNA binding proteins in the replication of the CHIKV genome, providing important new insight into mechanisms controlling replication of this significant human pathogen and the potential of a novel therapeutic target.
Collapse
Affiliation(s)
- Kaiwen Sun
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Francesca Appadoo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Yuqian Liu
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Marietta Müller
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Catriona Macfarlane
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
16
|
Kordys M, Urbanowicz A. 3D Puzzle at the Nanoscale-How do RNA Viruses Self-Assemble their Capsids into Perfectly Ordered Structures. Macromol Biosci 2024; 24:e2400088. [PMID: 38864315 DOI: 10.1002/mabi.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The phenomenon of RNA virus self-organization, first observed in the mid-20th century in tobacco mosaic virus, is the subject of extensive research. Efforts to comprehend this process intensify due to its potential for producing vaccines or antiviral compounds as well as nanocarriers and nanotemplates. However, direct observation of the self-assembly is hindered by its prevalence within infected host cells. One of the approaches involves in vitro and in silico research using model viruses featuring a ssRNA(+) genome enclosed within a capsid made up of a single type protein. While various pathways are proposed based on these studies, their relevance in vivo remains uncertain. On the other hand, the development of advanced microscopic methods provide insights into the events within living cells, where following viral infection, specialized compartments form to facilitate the creation of nascent virions. Intriguingly, a growing body of evidence indicates that the primary function of packaging signals in viral RNA is to effectively initiate the virion self-assembly. This is in contrast to earlier opinions suggesting a role in marking RNA for encapsidation. Another noteworthy observation is that many viruses undergo self-assembly within membraneless liquid organelles, which are specifically induced by viral proteins.
Collapse
Affiliation(s)
- Martyna Kordys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| |
Collapse
|
17
|
Bhattacharya T, Alleman EM, Noyola AC, Emerman M, Malik HS. A conserved opal termination codon optimizes a temperature-dependent tradeoff between protein production and processing in alphaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609082. [PMID: 39229031 PMCID: PMC11370586 DOI: 10.1101/2024.08.21.609082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Alphaviruses are enveloped, single-stranded, positive-sense RNA viruses that often require transmission between arthropod and vertebrate hosts for their sustained propagation. Most alphaviruses encode an opal (UGA) termination codon in nonstructural protein 3 (nsP3) upstream of the viral polymerase, nsP4. The selective constraints underlying the conservation of the opal codon are poorly understood. Using primate and mosquito cells, we explored the role and selective pressure on the nsP3 opal codon through extensive mutational analysis in the prototype alphavirus, Sindbis virus (SINV). We found that the opal codon is highly favored over all other codons in primate cells under native 37°C growth conditions. However, this preference is diminished in mosquito and primate cells grown at a lower temperature. Thus, the primary determinant driving the selection of the opal stop codon is not host genetics but the passaging temperature. We show that the opal codon is preferred over amber and ochre termination codons because it results in the highest translational readthrough and polymerase production. However, substituting the opal codon with sense codons leads to excessive full-length polyprotein (P1234) production, which disrupts optimal nsP polyprotein processing, delays the switch from minus-strand to positive-strand RNA production, and significantly reduces SINV fitness at 37°C; this fitness defect is relieved at lower temperatures. A naturally occurring suppressor mutation unexpectedly compensates for a delayed transition from minus to genomic RNA production by also delaying the subsequent transition between genomic and sub-genomic RNA production. Our study reveals that the opal stop codon is the best solution for alphavirus replication at 37°C, producing enough nsP4 protein to maximize replication without disrupting nsP processing and RNA replication transitions needed for optimal fitness. Our study uncovers the intricate strategy dual-host alphaviruses use at a single codon to optimize fitness.
Collapse
Affiliation(s)
| | - Eva M. Alleman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Alexander C. Noyola
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Michael Emerman
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Harmit S. Malik
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
18
|
Omler A, Mutso M, Vaher M, Freitas JR, Taylor A, David CT, Moseley GW, Liu X, Merits A, Mahalingam S. Exploring Barmah Forest virus pathogenesis: molecular tools to investigate non-structural protein 3 nuclear localization and viral genomic determinants of replication. mBio 2024; 15:e0099324. [PMID: 38953633 PMCID: PMC11323547 DOI: 10.1128/mbio.00993-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 07/04/2024] Open
Abstract
Barmah Forest virus (BFV) is a mosquito-borne virus that causes arthralgia with accompanying rash, fever, and myalgia in humans. The virus is mainly found in Australia and has caused outbreaks associated with significant health concerns. As the sole representative of the Barmah Forest complex within the genus Alphavirus, BFV is not closely related genetically to other alphaviruses. Notably, basic knowledge of BFV molecular virology has not been well studied due to a lack of critical investigative tools such as an infectious clone. Here we describe the construction of an infectious BFV cDNA clone based on Genbank sequence and demonstrate that the clone-derived virus has in vitro and in vivo properties similar to naturally occurring virus, BFV field isolate 2193 (BFV2193-FI). A substitution in nsP4, V1911D, which was identified in the Genbank reference sequence, was found to inhibit virus rescue and replication. T1325P substitution in nsP2 selected during virus passaging was shown to be an adaptive mutation, compensating for the inhibitory effect of nsP4-V1911D. The two mutations were associated with changes in viral non-structural polyprotein processing and type I interferon (IFN) induction. Interestingly, a nuclear localization signal, active in mammalian but not mosquito cells, was identified in nsP3. A point mutation abolishing nsP3 nuclear localization attenuated BFV replication. This effect was more prominent in the presence of type I interferon signaling, suggesting nsP3 nuclear localization might be associated with IFN antagonism. Furthermore, abolishing nsP3 nuclear localization reduced virus replication in mice but did not significantly affect disease.IMPORTANCEBarmah Forest virus (BFV) is Australia's second most prevalent arbovirus, with approximately 1,000 cases reported annually. The clinical symptoms of BFV infection include rash, polyarthritis, arthralgia, and myalgia. As BFV is not closely related to other pathogenic alphaviruses or well-studied model viruses, our understanding of its molecular virology and mechanisms of pathogenesis is limited. There is also a lack of molecular tools essential for corresponding studies. Here we describe the construction of an infectious clone of BFV, variants harboring point mutations, and sequences encoding marker protein. In infected mammalian cells, nsP3 of BFV was located in the nuclei. This finding extends our understanding of the diverse mechanisms used by alphavirus replicase proteins to interact with host cells. Our novel observations highlight the complex synergy through which the viral replication machinery evolves to correct mutation errors within the viral genome.
Collapse
Affiliation(s)
- Ailar Omler
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Margit Mutso
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mihkel Vaher
- The Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Joseph R. Freitas
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Adam Taylor
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Cassandra T. David
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gregory W. Moseley
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Xiang Liu
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Tartu, Estonia
| | - Suresh Mahalingam
- Emerging Viruses, Inflammation and Therapeutics Group, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
- Global Virus Network (GVN) Centre for Excellence in Arboviruses, Griffith University, Gold Coast, Queensland, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
19
|
Metibemu DS, Adeyinka OS, Falode J, Crown O, Ogungbe IV. Inhibitors of the Structural and Nonstructural Proteins of Alphaviruses. ACS Infect Dis 2024; 10:2507-2524. [PMID: 38992989 DOI: 10.1021/acsinfecdis.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The Alphavirus genus includes viruses that cause encephalitis due to neuroinvasion and viruses that cause arthritis due to acute and chronic inflammation. There is no approved therapeutic for alphavirus infections, but significant efforts are ongoing, more so in recent years, to develop vaccines and therapeutics for alphavirus infections. This review article highlights some of the major advances made so far to identify small molecules that can selectively target the structural and the nonstructural proteins in alphaviruses with the expectation that persistent investigation of an increasingly expanding chemical space through a variety of structure-based design and high-throughput screening strategies will yield candidate drugs for clinical studies. While most of the works discussed are still in the early discovery to lead optimization stages, promising avenues remain for drug development against this family of viruses.
Collapse
Affiliation(s)
- Damilohun Samuel Metibemu
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Olawale Samuel Adeyinka
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - John Falode
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Olamide Crown
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Ifedayo Victor Ogungbe
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| |
Collapse
|
20
|
Rodríguez-Aguilar ED, Gutiérrez-Millán E, Rodríguez MH. Accurate Recapitulation of Chikungunya Virus Complete Coding Sequence Phylogeny Using Variable Genome Regions for Genomic Surveillance. Viruses 2024; 16:926. [PMID: 38932218 PMCID: PMC11209212 DOI: 10.3390/v16060926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Chikungunya virus (CHIKV) is transmitted by mosquito bites and causes chikungunya fever (CHIKF). CHIKV has a single-stranded RNA genome and belongs to a single serotype with three genotypes. The Asian lineage has recently emerged in the Western Hemisphere, likely due to travel-associated introduction. Genetic variation accumulates in the CHIKV genome as the virus replicates, creating new lineages. Whole genome sequencing is ideal for studying virus evolution and spread but is expensive and complex. This study investigated whether specific, highly variable regions of the CHIKV genome could recapitulate the phylogeny obtained with a complete coding sequence (CDS). Our results revealed that concatenated highly variable regions accurately reconstructed CHIKV phylogeny, exhibiting statistically indistinguishable branch lengths and tree confidence compared to CDS. In addition, these regions adequately inferred the evolutionary relationships among CHIKV isolates from the American outbreak with similar results to the CDS. This finding suggests that highly variable regions can effectively capture the evolutionary relationships among CHIKV isolates, offering a simpler approach for future studies. This approach could be particularly valuable for large-scale surveillance efforts.
Collapse
Affiliation(s)
| | | | - Mario H. Rodríguez
- Center for Infectious Disease Research, National Institute of Public Health of Mexico, Av. Universidad 655, Cuernavaca 62100, Mexico; (E.D.R.-A.); (E.G.-M.)
| |
Collapse
|
21
|
Chaudhary M, Kumar A, Bala Sharma K, Vrati S, Sehgal D. In silico identification of chikungunya virus replication inhibitor validated using biochemical and cell-based approaches. FEBS J 2024; 291:2656-2673. [PMID: 38303163 DOI: 10.1111/febs.17066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/09/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Discovering an alternative therapy with a long-lasting effect on symptoms caused by chikungunya virus (CHIKV) infection is prompted by the lack of a vaccine and the absence of safe, effective and non-toxic medications. One potential strategy is synthesizing or identifying small compounds that can specifically target the active site of an essential enzyme and prevent virus replication. Previous site-directed mutagenesis studies have demonstrated the crucial role of the macrodomain, which is a part of non-structural protein 3 (nsP3), in virus replication. Exploiting this fact, the macrodomain can be targeted to discover a natural substance that can inhibit its function and thereby impede virus replication. With this aim, the present study focused on potential CHIKV nsP3 macrodomain (nsP3MD) inhibitors through in silico, in vitro and cell-based methods. Through virtual screening of the natural compound library, nine nsP3MD inhibitors were initially identified. Molecular dynamics (MD) simulations were employed to evaluate these nine compounds based on the stability of their ligand-receptor complexes and energy parameters. Target analysis and ADMET (i.e. absorption, distribution, metabolism, excretion and toxicity) prediction of the selected compounds revealed their drug-like characteristics. Subsequent in vitro investigation allowed us to narrow the selection down to one compound, N-[2-(5-methoxy-1H-indol-3-yl) ethyl]-2-oxo-1,2-dihydroquinoline-4-carboxamide, which exhibited potent inhibition of CHIKV growth. This molecule effectively inhibited CHIKV replication in the stable embryonal rhabdomyosarcoma cell line capable of producing CHIKV. Our findings demonstrate that the selected compound possesses substantial anti-CHIKV nsP3MD activity both in vitro and in vivo. This work provides a promising molecule for further preclinical studies to develop a potential drug against the CHIKV.
Collapse
Affiliation(s)
- Meenakshi Chaudhary
- Virology Laboratory, Department of Life Sciences, Shiv Nadar Institute of Eminence, Greater Noida, India
| | - Akash Kumar
- Virology Laboratory, Department of Life Sciences, Shiv Nadar Institute of Eminence, Greater Noida, India
| | - Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Deepak Sehgal
- Virology Laboratory, Department of Life Sciences, Shiv Nadar Institute of Eminence, Greater Noida, India
| |
Collapse
|
22
|
Yan Y, Zhang F, Zou M, Chen H, Xu J, Lu S, Liu H. Identification of RACK1 as a novel regulator of non-structural protein 4 of chikungunya virus. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1425-1436. [PMID: 38813597 PMCID: PMC11532265 DOI: 10.3724/abbs.2024073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 05/31/2024] Open
Abstract
Chikungunya virus (CHIKV) is a neglected arthropod-borne and anthropogenic alphavirus. Over the past two decades, the CHIKV distribution has undergone significant changes worldwide, from the original tropics and subtropics regions to temperate regions, which has attracted global attention. However, the interactions between CHIKV and its host remain insufficiently understood, which dampens the need for the development of an anti-CHIKV strategy. In this study, on the basis of the optimal overexpression of non-structural protein 4 (nsP4), we explore host interactions of CHIKV nsP4 using mass spectrometry-based protein-protein interaction approaches. The results reveal that some cellular proteins that interact with nsP4 are enriched in the ubiquitin-proteasome pathway. Specifically, the scaffold protein receptor for activated C kinase 1 (RACK1) is identified as a novel host interactor and regulator of CHIKV nsP4. The inhibition of the interaction between RACK1 and nsP4 by harringtonolide results in the reduction of nsP4, which is caused by the promotion of degradation but not the inhibition of nsP4 translation. Furthermore, the decrease in nsP4 triggered by the RACK1 inhibitor can be reversed by the proteasome inhibitor MG132, suggesting that RACK1 can protect nsP4 from degradation through the ubiquitin-proteasome pathway. This study reveals a novel mechanism by which the host factor RACK1 regulates CHIKV nsP4, which could be a potential target for developing drugs against CHIKV.
Collapse
Affiliation(s)
- Yao Yan
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650118China
| | - Fengyuan Zhang
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650118China
| | - Meng Zou
- National Human Diseases Animal Model Resource CenterNHC Key Laboratory of Human Disease Comparative MedicineNational Center of Technology Innovation for Animal ModelState Key Laboratory of Respiratory Health and Multimorbidityand Key Laboratory of Pathogen Infection Prevention and ControlMinistry of EducationInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021 China
| | - Hongyu Chen
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650118China
| | - Jingwen Xu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650118China
| | - Shuaiyao Lu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650118China
| | - Hongqi Liu
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunming650118China
- National Human Diseases Animal Model Resource CenterNHC Key Laboratory of Human Disease Comparative MedicineNational Center of Technology Innovation for Animal ModelState Key Laboratory of Respiratory Health and Multimorbidityand Key Laboratory of Pathogen Infection Prevention and ControlMinistry of EducationInstitute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100021 China
| |
Collapse
|
23
|
Mobasher M, Ansari R, Castejon AM, Barar J, Omidi Y. Advanced nanoscale delivery systems for mRNA-based vaccines. Biochim Biophys Acta Gen Subj 2024; 1868:130558. [PMID: 38185238 DOI: 10.1016/j.bbagen.2024.130558] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
The effectiveness of messenger RNA (mRNA) vaccines, especially those designed for COVID-19, relies heavily on sophisticated delivery systems that ensure efficient delivery of mRNA to target cells. A variety of nanoscale vaccine delivery systems (VDSs) have been explored for this purpose, including lipid nanoparticles (LNPs), liposomes, and polymeric nanoparticles made from biocompatible polymers such as poly(lactic-co-glycolic acid), as well as viral vectors and lipid-polymer hybrid complexes. Among these, LNPs are particularly notable for their efficiency in encapsulating and protecting mRNA. These nanoscale VDSs can be engineered to enhance stability and facilitate uptake by cells. The choice of delivery system depends on factors like the specific mRNA vaccine, target cell types, stability requirements, and desired immune response. In this review, we shed light on recent advances in delivery mechanisms for self-amplifying RNA (saRNA) vaccines, emphasizing groundbreaking studies on nanoscale delivery systems aimed at improving the efficacy and safety of mRNA/saRNA vaccines.
Collapse
Affiliation(s)
- Maha Mobasher
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rais Ansari
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Ana M Castejon
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA.
| |
Collapse
|
24
|
Zhai X, Li X, Veit M, Wang N, Wang Y, Merits A, Jiang Z, Qin Y, Zhang X, Qi K, Jiao H, He WT, Chen Y, Mao Y, Su S. LDLR is used as a cell entry receptor by multiple alphaviruses. Nat Commun 2024; 15:622. [PMID: 38245515 PMCID: PMC10799924 DOI: 10.1038/s41467-024-44872-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Alphaviruses are arboviruses transmitted by mosquitoes and are pathogenic to humans and livestock, causing a substantial public health burden. So far, several receptors have been identified for alphavirus entry; however, they cannot explain the broad host range and tissue tropism of certain alphaviruses, such as Getah virus (GETV), indicating the existence of additional receptors. Here we identify the evolutionarily conserved low-density lipoprotein receptor (LDLR) as a new cell entry factor for GETV, Semliki Forest virus (SFV), Ross River virus (RRV) and Bebaru virus (BEBV). Ectopic expression of LDLR facilitates cellular binding and internalization of GETV, which is mediated by the interaction between the E2-E1 spike of GETV and the ligand-binding domain (LBD) of LDLR. Antibodies against LBD block GETV infection in cultured cells. In addition, the GST-LBD fusion protein inhibits GETV infection both in vitro and in vivo. Notably, we identify the key amino acids in LDLR-LBD that played a crucial role in viral entry; specific mutations in the CR4 and CR5 domain of LDLR-LBD reduce viral entry to cells by more than 20-fold. These findings suggest that targeting the LDLR-LBD could be a potential strategy for the development of antivirals against multiple alphaviruses.
Collapse
Affiliation(s)
- Xiaofeng Zhai
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoling Li
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Berlin, Germany
| | - Ningning Wang
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Wang
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Andres Merits
- Institute of Bioengineering, University of Tartu, Nooruse Street 1, 50411, Tartu, Estonia
| | - Zhiwen Jiang
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yan Qin
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoguang Zhang
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kaili Qi
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Houqi Jiao
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wan-Ting He
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ye Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yang Mao
- School of Pharmaceutical Sciences and National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, China.
| | - Shuo Su
- Academy for Advanced Interdisciplinary Studies, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
25
|
Tsukamoto Y, Igarashi M, Kato H. Targeting cap1 RNA methyltransferases as an antiviral strategy. Cell Chem Biol 2024; 31:86-99. [PMID: 38091983 DOI: 10.1016/j.chembiol.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Methylation is one of the critical modifications that regulates numerous biological processes. Guanine capping and methylation at the 7th position (m7G) have been shown to mature mRNA for increased RNA stability and translational efficiency. The m7G capped cap0 RNA remains immature and requires additional methylation at the first nucleotide (N1-2'-O-Me), designated as cap1, to achieve full maturation. This cap1 RNA with N1-2'-O-Me prevents its recognition by innate immune sensors as non-self. Viruses have also evolved various strategies to produce self-like capped RNAs with the N1-2'-O-Me that potentially evades the antiviral response and establishes an efficient replication. In this review, we focus on the importance of the presence of N1-2'-O-Me in viral RNAs and discuss the potential for drug development by targeting host and viral N1-2'-O-methyltransferases.
Collapse
Affiliation(s)
- Yuta Tsukamoto
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
26
|
Chen H, Phuektes P, Yeo LS, Wong YH, Lee RCH, Yi B, Hou X, Liu S, Cai Y, Chu JJH. Attenuation of neurovirulence of chikungunya virus by a single amino acid mutation in viral E2 envelope protein. J Biomed Sci 2024; 31:8. [PMID: 38229040 DOI: 10.1186/s12929-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) has reemerged as a major public health concern, causing chikungunya fever with increasing cases and neurological complications. METHODS In the present study, we investigated a low-passage human isolate of the East/ Central/South African (ECSA) lineage of CHIKV strain LK(EH)CH6708, which exhibited a mix of small and large viral plaques. The small and large plaque variants were isolated and designated as CHIKV-SP and CHIKV-BP, respectively. CHIKV-SP and CHIKV-BP were characterized in vitro and in vivo to compare their virus production and virulence. Additionally, whole viral genome analysis and reverse genetics were employed to identify genomic virulence factors. RESULTS CHIKV-SP demonstrated lower virus production in mammalian cells and attenuated virulence in a murine model. On the other hand, CHIKV-BP induced higher pro-inflammatory cytokine levels, compromised the integrity of the blood-brain barrier, and led to astrocyte infection in mouse brains. Furthermore, the CHIKV-SP variant had limited transmission potential in Aedes albopictus mosquitoes, likely due to restricted dissemination. Whole viral genome analysis revealed multiple genetic mutations in the CHIKV-SP variant, including a Glycine (G) to Arginine (R) mutation at position 55 in the viral E2 glycoprotein. Reverse genetics experiments confirmed that the E2-G55R mutation alone was sufficient to reduce virus production in vitro and virulence in mice. CONCLUSIONS These findings highlight the attenuating effects of the E2-G55R mutation on CHIKV pathogenicity and neurovirulence and emphasize the importance of monitoring this mutation in natural infections.
Collapse
Affiliation(s)
- Huixin Chen
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patchara Phuektes
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Li Sze Yeo
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
| | - Yi Hao Wong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bowen Yi
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xinjun Hou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sen Liu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
27
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BA, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. JCI Insight 2024; 9:e176537. [PMID: 38194268 PMCID: PMC11143926 DOI: 10.1172/jci.insight.176537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we found that, during the first 24 hours of infection, CHIKV RNA accumulated in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response - including recruitment of myeloid cells to the LN - was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
Affiliation(s)
- Cormac J. Lucas
- Department of Immunology & Microbiology and
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ryan M. Sheridan
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Glennys V. Reynoso
- Viral Immunity & Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy & Infectious Disease, NIH, Bethesda, Maryland, USA
| | | | | | - Aspen Martin
- Department of Biochemistry & Molecular Genetics and
| | - Jay R. Hesselberth
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Biochemistry & Molecular Genetics and
| | - Heather D. Hickman
- Viral Immunity & Pathogenesis Unit, Laboratory of Clinical Immunology & Microbiology, National Institutes of Allergy & Infectious Disease, NIH, Bethesda, Maryland, USA
| | - Beth A.J. Tamburini
- Department of Immunology & Microbiology and
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | |
Collapse
|
28
|
Mou C, Meng H, Shi K, Huang Y, Liu M, Chen Z. GETV nsP2 plays a critical role in the interferon antagonism and viral pathogenesis. Cell Commun Signal 2023; 21:361. [PMID: 38110975 PMCID: PMC10729338 DOI: 10.1186/s12964-023-01392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023] Open
Abstract
Getah virus (GETV) was becoming more serious and posing a potential threat to animal safety and public health. Currently, there is limited comprehension regarding the pathogenesis and immune evasion mechanisms employed by GETV. Our study reveals that GETV infection exhibits the capacity for interferon antagonism. Specifically, the nonstructural protein nsP2 of GETV plays a crucial role in evading the host immune response. GETV nsP2 effectively inhibits the induction of IFN-β by blocking the phosphorylation and nuclear translocation of IRF3. Additionally, GETV nsP2 hinders the phosphorylation of STAT1 and its nuclear accumulation, leading to significantly impaired JAK-STAT signaling. Furthermore, the amino acids K648 and R649, situated in the C-terminal region of GETV nsP2, play a crucial role in facilitating nuclear localization. Not only do they affect the interference of nsP2 with the innate immune response, but they also exert an influence on the pathogenicity of GETV in mice. In summary, our study reveals novel mechanisms by which GETV evades the immune system, thereby offering a foundation for comprehending the pathogenic nature of GETV. Video Abstract.
Collapse
Affiliation(s)
- Chunxiao Mou
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China
| | - Hui Meng
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China
| | - Kaichuang Shi
- Guangxi Center for Animal Disease Control and Prevention, Nanning, GX, China
| | - Yanmei Huang
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China
| | - Meiqi Liu
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, No.12 Wen-hui East Road, Yangzhou, JS225009, Jiangsu Province, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
29
|
Côrtes N, Lira A, Prates-Syed W, Dinis Silva J, Vuitika L, Cabral-Miranda W, Durães-Carvalho R, Balan A, Cabral-Marques O, Cabral-Miranda G. Integrated control strategies for dengue, Zika, and Chikungunya virus infections. Front Immunol 2023; 14:1281667. [PMID: 38196945 PMCID: PMC10775689 DOI: 10.3389/fimmu.2023.1281667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Arboviruses are a major threat to public health in tropical regions, encompassing over 534 distinct species, with 134 capable of causing diseases in humans. These viruses are transmitted through arthropod vectors that cause symptoms such as fever, headache, joint pains, and rash, in addition to more serious cases that can lead to death. Among the arboviruses, dengue virus stands out as the most prevalent, annually affecting approximately 16.2 million individuals solely in the Americas. Furthermore, the re-emergence of the Zika virus and the recurrent outbreaks of chikungunya in Africa, Asia, Europe, and the Americas, with one million cases reported annually, underscore the urgency of addressing this public health challenge. In this manuscript we discuss the epidemiology, viral structure, pathogenicity and integrated control strategies to combat arboviruses, and the most used tools, such as vaccines, monoclonal antibodies, treatment, etc., in addition to presenting future perspectives for the control of arboviruses. Currently, specific medications for treating arbovirus infections are lacking, and symptom management remains the primary approach. However, promising advancements have been made in certain treatments, such as Chloroquine, Niclosamide, and Isatin derivatives, which have demonstrated notable antiviral properties against these arboviruses in vitro and in vivo experiments. Additionally, various strategies within vector control approaches have shown significant promise in reducing arbovirus transmission rates. These encompass public education initiatives, targeted insecticide applications, and innovative approaches like manipulating mosquito bacterial symbionts, such as Wolbachia. In conclusion, combatting the global threat of arbovirus diseases needs a comprehensive approach integrating antiviral research, vaccination, and vector control. The continued efforts of research communities, alongside collaborative partnerships with public health authorities, are imperative to effectively address and mitigate the impact of these arboviral infections on public health worldwide.
Collapse
Affiliation(s)
- Nelson Côrtes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Aline Lira
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Wasim Prates-Syed
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
| | - Jaqueline Dinis Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Larissa Vuitika
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Durães-Carvalho
- São Paulo School of Medicine, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Andrea Balan
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- Applied Structural Biology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Gustavo Cabral-Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- The Interunits Graduate Program in Biotechnology of the University of São Paulo, the Butantan Institute and the Technological Research Institute of the State of São Paulo, São Paulo, Brazil
- The Graduate Program in Pathophysiology and Toxicology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
30
|
Lima JCB, Barbosa JARG. Interaction models between peptide substrate and Alphavirus Protease nsP2 of Chikungunya and Mayaro and implications to the mechanism of action. J Biomol Struct Dyn 2023; 41:10851-10858. [PMID: 36562200 DOI: 10.1080/07391102.2022.2158941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The Arbovirus (Arthropod-borne virus) is a group which comprises viruses whose transmission is carried out by arthropod vectors infecting vertebrates. Some arboviruses related to human diseases have been given considerable relevance as Chikungunya and Mayaro of the family Togaviridae, genus Alphavirus. The lack of proper specific treatment has prompted the requirement for deeper structural studies that could unveil leads to new drugs. Among possible targets, viral proteases are recognized as proteins with big potential. These proteins, termed nsP2 in Alphavirus, have the function of cleaving certain regions of the viral polyprotein, being vital to the viral cycle. In this research, we used docking and molecular dynamics to analyze the contact between the protease nsP2 of Alphavirus Chikungunya and Mayaro and substrates formed by peptides with ten amino acid residues. A model of the Mayaro nsP2 was constructed based on homologous proteases. Our study suggests that the glycine specificity motif, a region where a highly conserved glycine residue in position P2 of the protease substrate is positioned, facilitates the nucleophilic attack by assisting in placing the P1 carbonyl group carbon. Stabilization of different substrate regions maybe explained by relevant contacts with the enzyme. Besides that, the phi and psi angles in the outlier region of the Ramachandran plot found for the P2 glycine of the Chikungunya substrate seems to indicate the necessity of this residue that can accommodate angles not allowed to other residues.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jônatas Cunha Barbosa Lima
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, DF, Brazil
| | | |
Collapse
|
31
|
Tapescu I, Taschuk F, Pokharel SM, Zginnyk O, Ferretti M, Bailer PF, Whig K, Madden EA, Heise MT, Schultz DC, Cherry S. The RNA helicase DDX39A binds a conserved structure in chikungunya virus RNA to control infection. Mol Cell 2023; 83:4174-4189.e7. [PMID: 37949067 PMCID: PMC10722560 DOI: 10.1016/j.molcel.2023.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/25/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Alphaviruses are a large group of re-emerging arthropod-borne RNA viruses. The compact viral RNA genomes harbor diverse structures that facilitate replication. These structures can be recognized by antiviral cellular RNA-binding proteins, including DExD-box (DDX) helicases, that bind viral RNAs to control infection. The full spectrum of antiviral DDXs and the structures that are recognized remain unclear. Genetic screening identified DDX39A as antiviral against the alphavirus chikungunya virus (CHIKV) and other medically relevant alphaviruses. Upon infection, the predominantly nuclear DDX39A accumulates in the cytoplasm inhibiting alphavirus replication, independent of the canonical interferon pathway. Biochemically, DDX39A binds to CHIKV genomic RNA, interacting with the 5' conserved sequence element (5'CSE), which is essential for the antiviral activity of DDX39A. Altogether, DDX39A relocalization and binding to a conserved structural element in the alphavirus genomic RNA attenuates infection, revealing a previously unknown layer to the cellular control of infection.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Frances Taschuk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Swechha M Pokharel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oleksandr Zginnyk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter F Bailer
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanupryia Whig
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily A Madden
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Deo S, Desai K, Patare A, Wadapurkar R, Rade S, Mahudkar S, Sathe M, Srivastava S, Prasanna P, Singh A. Evaluation of self-amplifying mRNA platform for protein expression and genetic stability: Implication for mRNA therapies. Biochem Biophys Res Commun 2023; 680:108-118. [PMID: 37738900 DOI: 10.1016/j.bbrc.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
The consecutive launch of mRNA vaccines like mRNA-1273, BNT 162b2, and GEMCOVAC®-19 against COVID-19 has triggered the debate of long-term expression, safety, and genomic integration of the mRNA vaccine platforms. In the present study, we examined the longevity of antigenic protein expression of mRNA-614 and mRNA-S1LC based on self-amplifying mRNA (SAM) in Expi-293F™, HEK-293 T, and ARPE-19 cells. The protein expression was checked by sandwich-ELISA, FACS, luciferase activity assay, and Western blot. The transcribed antigenic mRNA was sequenced and found to be un-mutated. Additionally, no genomic integration of the reverse transcribed mRNA was observed even up to 7 days post-transfection as verified by PCR. Furthermore, we have generated high-quality 3D structures of non-structural proteins (nsPs) in silico and the genes encoding for the nsPs were cloned and expressed using the T7 system. Findings from the current study have strengthened the fact that the alphavirus-based SAM platform has the potential to become a modality in the upcoming years.
Collapse
Affiliation(s)
- Swarda Deo
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Kaushik Desai
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Aishwarya Patare
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Rucha Wadapurkar
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Saniya Rade
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Siddhi Mahudkar
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Madhura Sathe
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Shalini Srivastava
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Pragya Prasanna
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Ajay Singh
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India.
| |
Collapse
|
33
|
Echavarria-Consuegra L, Dinesh Kumar N, van der Laan M, Mauthe M, Van de Pol D, Reggiori F, Smit JM. Mitochondrial protein BNIP3 regulates Chikungunya virus replication in the early stages of infection. PLoS Negl Trop Dis 2023; 17:e0010751. [PMID: 38011286 PMCID: PMC10703415 DOI: 10.1371/journal.pntd.0010751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/07/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023] Open
Abstract
Chikungunya virus (CHIKV) is a human pathogen causing outbreaks of febrile illness for which vaccines and specific treatments remain unavailable. Autophagy-related (ATG) proteins and autophagy receptors are a set of host factors that participate in autophagy, but have also shown to function in other unrelated cellular pathways. Although autophagy is reported to both inhibit and enhance CHIKV replication, the specific role of individual ATG proteins remains largely unknown. Here, a siRNA screen was performed to evaluate the importance of the ATG proteome and autophagy receptors in controlling CHIKV infection. We observed that 7 out of 50 ATG proteins impact the replication of CHIKV. Among those, depletion of the mitochondrial protein and autophagy receptor BCL2 Interacting Protein 3 (BNIP3) increased CHIKV infection. Interestingly, BNIP3 controls CHIKV independently of autophagy and cell death. Detailed analysis of the CHIKV viral cycle revealed that BNIP3 interferes with the early stages of infection. Moreover, the antiviral role of BNIP3 was found conserved across two distinct CHIKV genotypes and the closely related Semliki Forest virus. Altogether, this study describes a novel and previously unknown function of the mitochondrial protein BNIP3 in the control of the early stages of the alphavirus viral cycle.
Collapse
Affiliation(s)
- Liliana Echavarria-Consuegra
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nilima Dinesh Kumar
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marleen van der Laan
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Denise Van de Pol
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Ormundo LF, Barreto CT, Tsuruta LR. Development of Therapeutic Monoclonal Antibodies for Emerging Arbovirus Infections. Viruses 2023; 15:2177. [PMID: 38005854 PMCID: PMC10675117 DOI: 10.3390/v15112177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Antibody-based passive immunotherapy has been used effectively in the treatment and prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne viruses (arboviruses) represent a global public health problem due to their rapid spread, urging measures and the treatment of infected individuals to combat them. Preparedness in advances in developing antivirals and relevant epidemiological studies protect us from damage and losses. Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in combating infectious diseases and various other illnesses. Recent advances in mAb discovery techniques have allowed the development and approval of a wide number of therapeutic mAbs. This review focuses on the technological approaches available to select neutralizing mAbs for emerging arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs. The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue, Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective effect demonstrated in animal model studies.
Collapse
Affiliation(s)
- Leonardo F. Ormundo
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Carolina T. Barreto
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
- The Interunits Graduate Program in Biotechnology, University of São Paulo, São Paulo 05503-900, Brazil
| | - Lilian R. Tsuruta
- Biopharmaceuticals Laboratory, Instituto Butantan, São Paulo 05503-900, Brazil; (L.F.O.); (C.T.B.)
| |
Collapse
|
35
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BAJ, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561615. [PMID: 37873393 PMCID: PMC10592756 DOI: 10.1101/2023.10.12.561615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we find that during the first 24 h of infection, CHIKV RNA accumulates in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response, including recruitment of myeloid cells to the LN, was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, we find that antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
|
36
|
Sandenon Seteyen AL, Guiraud P, Gasque P, Girard-Valenciennes E, Sélambarom J. In Vitro Analyses of the Multifocal Effects of Natural Alkaloids Berberine, Matrine, and Tabersonine against the O'nyong-nyong Arthritogenic Alphavirus Infection and Inflammation. Pharmaceuticals (Basel) 2023; 16:1125. [PMID: 37631040 PMCID: PMC10459185 DOI: 10.3390/ph16081125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
O'nyong-nyong virus (ONNV) is a member of the reemerging arthritogenic alphaviruses that cause chronic debilitating polyarthralgia and/or polyarthritis via their tropism for the musculoskeletal system. Thus, the discovery of dual antiviral and anti-inflammatory drugs is a great challenge in this field. We investigated the effects of the common plant-derived alkaloids berberine (isoquinoline), matrine (quinolizidine), and tabersonine (indole) at a non-toxic concentration (10 μM) on a human fibroblast cell line (HS633T) infected by ONNV (MOI 1). Using qRT-PCR analyses, we measured the RNA levels of the gene coding for the viral proteins and for the host cell immune factors. These alkaloids demonstrated multifocal effects by the inhibition of viral replication, as well as the regulation of the type-I interferon antiviral signaling pathway and the inflammatory mediators and pathways. Berberine and tabersonine proved to be the more valuable compounds. The results supported the proposal that these common alkaloids may be useful scaffolds for drug discovery against arthritogenic alphavirus infection.
Collapse
Affiliation(s)
- Anne-Laure Sandenon Seteyen
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France; (A.-L.S.S.); (P.G.)
| | - Pascale Guiraud
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France; (A.-L.S.S.); (P.G.)
| | - Philippe Gasque
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France; (A.-L.S.S.); (P.G.)
- Centre Hospitalier Universitaire de La Réunion, Laboratoire d’Immunologie Clinique et Expérimentale de la Zone Océan Indien (LICE-OI), Pôle de Biologie, 97400 Saint-Denis, France
| | - Emmanuelle Girard-Valenciennes
- Laboratoire de Chimie et de Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, 97400 Saint-Denis, France
| | - Jimmy Sélambarom
- Unité de Recherche Etudes Pharmaco-Immunologiques (UR-EPI), Université de La Réunion, 97400 Saint-Denis, France; (A.-L.S.S.); (P.G.)
| |
Collapse
|
37
|
Chetta M, Cammarota AL, De Marco M, Bukvic N, Marzullo L, Rosati A. The Continuous Adaptive Challenge Played by Arboviruses: An In Silico Approach to Identify a Possible Interplay between Conserved Viral RNA Sequences and Host RNA Binding Proteins (RBPs). Int J Mol Sci 2023; 24:11051. [PMID: 37446229 DOI: 10.3390/ijms241311051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Climate change and globalization have raised the risk of vector-borne disease (VBD) introduction and spread in various European nations in recent years. In Italy, viruses carried by tropical vectors have been shown to cause viral encephalitis, one of the symptoms of arboviruses, a spectrum of viral disorders spread by arthropods such as mosquitoes and ticks. Arboviruses are currently causing alarm and attention, and the World Health Organization (WHO) has released recommendations to adopt essential measures, particularly during the hot season, to restrict the spreading of the infectious agents among breeding stocks. In this scenario, rapid analysis systems are required, because they can quickly provide information on potential virus-host interactions, the evolution of the infection, and the onset of disabling clinical symptoms, or serious illnesses. Such systems include bioinformatics approaches integrated with molecular evaluation. Viruses have co-evolved different strategies to transcribe their own genetic material, by changing the host's transcriptional machinery, even in short periods of time. The introduction of genetic alterations, particularly in RNA viruses, results in a continuous adaptive fight against the host's immune system. We propose an in silico pipeline method for performing a comprehensive motif analysis (including motif discovery) on entire genome sequences to uncover viral sequences that may interact with host RNA binding proteins (RBPs) by interrogating the database of known RNA binding proteins, which play important roles in RNA metabolism and biological processes. Indeed, viral RNA sequences, able to bind host RBPs, may compete with cellular RNAs, altering important metabolic processes. Our findings suggest that the proposed in silico approach could be a useful and promising tool to investigate the complex and multiform clinical manifestations of viral encephalitis, and possibly identify altered metabolic pathways as targets of pharmacological treatments and innovative therapeutic protocols.
Collapse
Affiliation(s)
- Massimiliano Chetta
- U.O.C. Medical and Laboratory Genetics, A.O.R.N., Cardarelli, 80131 Naples, Italy
| | - Anna Lisa Cammarota
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
| | - Margot De Marco
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| | - Nenad Bukvic
- Medical Genetics Section, University Hospital Consortium Corporation Polyclinics of Bari, 70124 Bari, Italy
| | - Liberato Marzullo
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| | - Alessandra Rosati
- Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84084 Baronissi, SA, Italy
- FIBROSYS s.r.l. Academic Spin-Off, University of Salerno, 84084 Baronissi, Italy
| |
Collapse
|
38
|
Lin G, Zhang Y. Mutations in the non-structural protein coding region regulate gene expression from replicon RNAs derived from Venezuelan equine encephalitis virus. Biotechnol Lett 2023:10.1007/s10529-023-03379-7. [PMID: 37266878 DOI: 10.1007/s10529-023-03379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/14/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023]
Abstract
Self-replicating RNA (repRNA) derived from Venezuelan equine encephalitis (VEE) virus is a promising platform for gene therapy and confers prolonged gene expression due to its self-replicating capability, but repRNA suffers from a suboptimal transgene expression level due to its induction of intracellular innate response which may result in inhibition of translation. To improve transgene expression of repRNA, we introduced point mutations in the non-structural protein 1-4 (nsP1-4) coding region of VEE replicon vectors. As a proof of concept, inflammatory cytokines served as genes of interest and were cloned in their wild type and several mutant replicon vectors, followed by transfection in mammalian cells. Our data show that VEE replicons bearing nsP1GGAC-nsP2T or nsP1GGAC-nsP2AT mutations in the nsP1-4 coding region could significantly reduce the recognition by innate immunity as evidenced by the decreased production of type I interferon, and enhance transgene expression in host cells. Thus, the newly discovered mutant VEE replicon vectors could serve as promising gene expression platforms to advance VEE-derived repRNA-based gene therapies.
Collapse
Affiliation(s)
- Guibin Lin
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Yuan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, Guangdong, China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
39
|
Paschoalino M, Marinho MDS, Santos IA, Grosche VR, Martins DOS, Rosa RB, Jardim ACG. An update on the development of antiviral against Mayaro virus: from molecules to potential viral targets. Arch Microbiol 2023; 205:106. [PMID: 36881172 PMCID: PMC9990066 DOI: 10.1007/s00203-023-03441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Mayaro virus (MAYV), first isolated in 1954 in Trinidad and Tobago islands, is the causative agent of Mayaro fever, a disease characterized by fever, rashes, headaches, myalgia, and arthralgia. The infection can progress to a chronic condition in over 50% of cases, with persistent arthralgia, which can lead to the disability of the infected individuals. MAYV is mainly transmitted through the bite of the female Haemagogus spp. mosquito genus. However, studies demonstrate that Aedes aegypti is also a vector, contributing to the spread of MAYV beyond endemic areas, given the vast geographical distribution of the mosquito. Besides, the similarity of antigenic sites with other Alphavirus complicates the diagnoses of MAYV, contributing to underreporting of the disease. Nowadays, there are no antiviral drugs available to treat infected patients, being the clinical management based on analgesics and non-steroidal anti-inflammatory drugs. In this context, this review aims to summarize compounds that have demonstrated antiviral activity against MAYV in vitro, as well as discuss the potentiality of viral proteins as targets for the development of antiviral drugs against MAYV. Finally, through rationalization of the data presented herein, we wish to encourage further research encompassing these compounds as potential anti-MAYV drug candidates.
Collapse
Affiliation(s)
- Marina Paschoalino
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Igor Andrade Santos
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Daniel Oliveira Silva Martins
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil
| | - Rafael Borges Rosa
- Institute Aggeu Magalhães, Fiocruz Pernambuco, Recife, Pernambuco, Brazil.,Rodents Animal Facilities Complex, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil. .,Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
40
|
Lin HC, Chiao DJ, Shu PY, Lin HT, Hsiung CC, Lin CC, Kuo SC. Development of a Novel Chikungunya Virus-Like Replicon Particle for Rapid Quantification and Screening of Neutralizing Antibodies and Antivirals. Microbiol Spectr 2023; 11:e0485422. [PMID: 36856407 PMCID: PMC10101068 DOI: 10.1128/spectrum.04854-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Chikungunya fever is a mosquito-transmitted infectious disease that induces rash, myalgia, and persistent incapacitating arthralgia. At present, no vaccines or antiviral therapies specific to Chikungunya virus (CHIKV) infection have been approved, and research is currently restricted to biosafety level 3 containment. CHIKV-like replicon particles (VRPs) are single-cycle infectious particles containing viral structure proteins, as well as a defective genome to provide a safe surrogate for living CHIKV to facilitate the testing of vaccines and antivirals. However, inefficient RNA transfection and the potential emergence of the competent virus through recombination in mammalian cells limit VRP usability. This study describes a transfection-free system for the safe packaging of CHIK VRP with all necessary components via transduction of mosquito cell lines using a single baculovirus vector. We observed the release of substantial quantities of mosquito cell-derived CHIK VRP (mos-CHIK VRP) from baculovirus-transduced mosquito cell lines. The VRPs were shown to recapitulate viral replication and subgenomic dual reporter expression (enhanced green fluorescent protein [eGFP] and luciferase) in infected host cells. Interestingly, the rapid expression kinetics of the VRP-expressing luciferase reporter (6 h) makes it possible to use mos-CHIK VRPs for the rapid quantification of VRP infection. Treatment with antivirals (suramin or 6-azauridine) or neutralizing antibodies (monoclonal antibodies [MAbs] or patient sera) was shown to inhibit mos-CHIK VRP infection in a dose-dependent manner. Ease of manufacture, safety, scalability, and high throughput make mos-CHIK VRPs a highly valuable vehicle for the study of CHIKV biology, the detection of neutralizing (NT) antibody activity, and the screening of antivirals against CHIKV. IMPORTANCE This study proposes a transfection-free system that enables the safe packaging of CHIK VRPs with all necessary components via baculovirus transduction. Those mosquito cell-derived CHIK VRP (mos-CHIK VRPs) were shown to recapitulate viral replication and subgenomic dual reporter (enhanced green fluorescent protein [eGFP] and luciferase) expression in infected host cells. Rapid expression kinetics of the VRP-expressing luciferase reporter (within hours) opens the door to using mos-CHIK VRPs for the rapid quantification of neutralizing antibody and antiviral activity against CHIKV. To the best of our knowledge, this is the first study to report a mosquito cell-derived alphavirus VRP system. Note that this system could also be applied to other arboviruses to model the earliest event in arboviral infection in vertebrates.
Collapse
Affiliation(s)
- Hui-Chung Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Der-Jiang Chiao
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hui-Tsu Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chu Hsiung
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chang-Chi Lin
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Szu-Cheng Kuo
- Institute of Preventive Medicine, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
41
|
Prosser O, Stonehouse NJ, Tuplin A. Inhibition of Chikungunya virus genome replication by targeting essential RNA structures within the virus genome. Antiviral Res 2023; 211:105523. [PMID: 36603772 DOI: 10.1016/j.antiviral.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Chikungunya virus (CHIKV) is a pathogenic arbovirus spread by Aedes spp. mosquitos. CHIKV has a wide global prevalence and represents a significant health burden in affected populations. Symptoms of CHIKV infection include fever, rashes and debilitating joint and muscle pain, which can persist for several months to years in some patients. To date, there remains no vaccine or specific antiviral therapy against this important human pathogen. Based on our previously published structural and phenotypic analysis of the 5' region of the CHIKV genome, we designed a panel of locked nucleic acid oligonucleotides to bind structured RNA replication elements within the virus genome, which are essential for efficient CHIKV replication. Using electromobility shift assays, we confirmed the relative binding efficiencies of each LNA to target CHIKV genomic RNA. We then went on to demonstrate, using both sub-genomic replicon and infectious virus systems, that targeting individual RNA replication elements inhibits CHIKV genome replication and production of infectious virus. Time course assays demonstrated that LNAs can access the CHIKV replication complex and virus genome, during active virus replication. For the first time, these findings show that functional RNA elements can be specifically targeted during the CHIKV lifecycle and consequently represent potential novel antiviral targets.
Collapse
Affiliation(s)
- Oliver Prosser
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicola J Stonehouse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
42
|
Ogorek TJ, Golden JE. Advances in the Development of Small Molecule Antivirals against Equine Encephalitic Viruses. Viruses 2023; 15:413. [PMID: 36851628 PMCID: PMC9958955 DOI: 10.3390/v15020413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Venezuelan, western, and eastern equine encephalitic alphaviruses (VEEV, WEEV, and EEEV, respectively) are arboviruses that are highly pathogenic to equines and cause significant harm to infected humans. Currently, human alphavirus infection and the resulting diseases caused by them are unmitigated due to the absence of approved vaccines or therapeutics for general use. These circumstances, combined with the unpredictability of outbreaks-as exemplified by a 2019 EEE surge in the United States that claimed 19 patient lives-emphasize the risks posed by these viruses, especially for aerosolized VEEV and EEEV which are potential biothreats. Herein, small molecule inhibitors of VEEV, WEEV, and EEEV are reviewed that have been identified or advanced in the last five years since a comprehensive review was last performed. We organize structures according to host- versus virus-targeted mechanisms, highlight cellular and animal data that are milestones in the development pipeline, and provide a perspective on key considerations for the progression of compounds at early and later stages of advancement.
Collapse
Affiliation(s)
- Tyler J. Ogorek
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jennifer E. Golden
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
43
|
Activity, Template Preference, and Compatibility of Components of RNA Replicase of Eastern Equine Encephalitis Virus. J Virol 2023; 97:e0136822. [PMID: 36533950 PMCID: PMC9888243 DOI: 10.1128/jvi.01368-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Eastern equine encephalitis virus (EEEV) usually cycles between Culiseta melanura mosquitoes and birds; however, it can also infect humans. EEEV has a positive-sense RNA genome that, in infected cells, serves as an mRNA for the P1234 polyprotein. P1234 undergoes a series of precise cleavage events producing four nonstructural proteins (nsP1-4) representing subunits of the RNA replicase. Here, we report the construction and properties of a trans-replicase for EEEV. The template RNA of EEEV was shown to be replicated by replicases of diverse alphaviruses. The EEEV replicase, on the other hand, demonstrated limited ability in replicating template RNAs originating from alphaviruses of the Semliki Forest virus complex. The replicase of EEEV was also successfully reconstructed from P123 and nsP4 components. The ability of EEEV P123 to form functional RNA replicases with heterologous nsP4s was more efficient using EEEV template RNA than heterologous alphavirus template RNA. This finding indicates that unlike with previously studied Semliki Forest complex alphaviruses, P123 and/or its processing products have a leading role in EEEV template RNA recognition. Infection of HEK293T cells harboring the EEEV template RNA with EEEV or Western equine encephalitis virus prominently activated expression of a reporter encoded in the template RNA; the effect was much smaller for infection with other alphaviruses and not detectable upon flavivirus infection. At the same time, EEEV infection resulted only in a limited activation of the template RNA of chikungunya virus. Thus, cells harboring reporter-carrying template RNAs can be used as sensitive and selective biosensors for different alphaviruses. IMPORTANCE Infection of EEEV in humans can cause serious neurologic disease with an approximately 30% fatality rate. Although human infections are rare, a record-breaking number was documented in 2019. The replication of EEEV has a unique requirement for host factors but is poorly studied, partly because the virus requires biosafety level 3 facilities which can limit the scope of experiments; at the same time, these studies are crucial for developing antiviral approaches. The EEEV trans-replicase developed here contributes significantly to research on EEEV, providing a safe and versatile tool for studying the virus RNA replication. Using this system, the compatibility of EEEV replicase components with counterparts from other alphaviruses was analyzed. The obtained data can be used to develop unique biosensors that provide alternative methods for detection, identification, quantitation, and neutralization of viable alphaviruses that are compatible with high throughput, semiautomated approaches.
Collapse
|
44
|
Zimmerman O, Holmes AC, Kafai NM, Adams LJ, Diamond MS. Entry receptors - the gateway to alphavirus infection. J Clin Invest 2023; 133:e165307. [PMID: 36647825 PMCID: PMC9843064 DOI: 10.1172/jci165307] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alphaviruses are enveloped, insect-transmitted, positive-sense RNA viruses that infect humans and other animals and cause a range of clinical manifestations, including arthritis, musculoskeletal disease, meningitis, encephalitis, and death. Over the past four years, aided by CRISPR/Cas9-based genetic screening approaches, intensive research efforts have focused on identifying entry receptors for alphaviruses to better understand the basis for cellular and species tropism. Herein, we review approaches to alphavirus receptor identification and how these were used for discovery. The identification of new receptors advances our understanding of viral pathogenesis, tropism, and evolution and is expected to contribute to the development of novel strategies for prevention and treatment of alphavirus infection.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Diamond
- Department of Medicine
- Department of Pathology and Immunology
- Department of Molecular Microbiology, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
45
|
Ruiz UEA, Santos IA, Grosche VR, Fernandes RS, de Godoy AS, Torres JDA, Freire MCLC, Mesquita NCDMR, Guevara-Vega M, Nicolau-Junior N, Sabino-Silva R, Mineo TWP, Oliva G, Jardim ACG. Imidazonaphthyridine effects on Chikungunya virus replication: Antiviral activity by dependent and independent of interferon type 1 pathways. Virus Res 2023; 324:199029. [PMID: 36565816 PMCID: PMC10194360 DOI: 10.1016/j.virusres.2022.199029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The Chikungunya virus (CHIKV) causes Chikungunya fever, a disease characterized by symptoms such as arthralgia/polyarthralgia. Currently, there are no antivirals approved against CHIKV, emphasizing the need to develop novel therapies. The imidazonaphthyridine compound (RO8191), an interferon-α (IFN-α) agonist, was reported as a potent inhibitor of HCV. Here RO8191 was investigated for its potential to inhibit CHIKV replication in vitro. RO8191 inhibited CHIKV infection in BHK-21 and Vero-E6 cells with a selectivity index (SI) of 12.3 and 37.3, respectively. Additionally, RO8191 was capable to protect cells against CHIKV infection, inhibit entry by virucidal activity, and strongly impair post-entry steps of viral replication. An effect of RO8191 on CHIKV replication was demonstrated in BHK-21 through type-1 IFN production mechanism and in Vero-E6 cells which has a defective type-1 IFN production, also suggesting a type-1 IFN independent mode of action. Molecular docking calculations demonstrated interactions of RO8191 with the CHIKV E proteins, corroborated by the ATR-FTIR assay, and with non-structural proteins, supported by the CHIKV-subgenomic replicon cells assay.
Collapse
Affiliation(s)
| | - Igor Andrade Santos
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Victória Riquena Grosche
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil; Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, SP, Brazil
| | | | | | | | | | | | - Marco Guevara-Vega
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Nilson Nicolau-Junior
- Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Robinson Sabino-Silva
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Glaucius Oliva
- Sao Carlos Institute of Physics, University of Sao Paulo (USP), São Carlos, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Science, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil; Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Campus São José do Rio Preto, SP, Brazil.
| |
Collapse
|
46
|
Syzdykova L, Zauatbayeva G, Keyer V, Ramanculov Y, Arsienko R, Shustov AV. Process for production of chimeric antigen receptor-transducing lentivirus particles using infection with replicon particles containing self-replicating RNAs. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
47
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
48
|
Chaudhary M, Sehgal D. In silico identification of natural antiviral compounds as a potential inhibitor of chikungunya virus non-structural protein 3 macrodomain. J Biomol Struct Dyn 2022; 40:11560-11570. [PMID: 34355667 DOI: 10.1080/07391102.2021.1960195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chikungunya Virus (CHIKV) is having a major impact on humans with potentially life-threatening and debilitating arthritis. The lack of a specific antiviral drug against the CHIKV disease has created an alarming situation to identify or develop potent chemical molecules for its remedial measures. Antiviral therapies for viral diseases are generally expensive and have adverse side effects. Plant-based antiviral natural compounds are the most suitable and best alternative of current antiviral drugs because of less toxicity. In the present study, non-structural protein 3 macrodomain (nsP3MD) of the CHIKV that is essential for virus replication has been selected for anti CHIKV drug target. The compounds were identified using molecular docking, virtual screening and further evaluated by molecular dynamics (MD) simulation studies. The binding mechanism of each compound was analyzed considering the stability and energetic parameter. We have found six plant-based natural antiviral compounds Baicalin, Rutaecarpine, Amentoflavone, Apigetrin, Luteoloside, and Baloxavir as strong inhibitors of nsP3MD of CHIKV. ADMET prediction and target analysis of the selected compounds showed drug likeliness of these compounds. MD simulation studies indicated energetically favorable complex formation between nsP3MD and the selected antiviral compounds. Furthermore, the structural effects on these substitutions were analyzed using the principles of each trajectory, which validated the interaction studies. Our analysis suggests a very high probability of these compounds to inhibit nsP3MD of CHIKV and could be evaluated for Chikungunya fever drug development. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Meenakshi Chaudhary
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Deepak Sehgal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
49
|
Kim T, Abraham R, Pieterse L, Yeh JX, Griffin DE. Cell-Type-Dependent Role for nsP3 Macrodomain ADP-Ribose Binding and Hydrolase Activity during Chikungunya Virus Infection. Viruses 2022; 14:v14122744. [PMID: 36560748 PMCID: PMC9787352 DOI: 10.3390/v14122744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chikungunya virus (CHIKV) causes outbreaks of rash, arthritis, and fever associated with neurologic complications, where astrocytes are preferentially infected. A determinant of virulence is the macrodomain (MD) of nonstructural protein 3 (nsP3), which binds and removes ADP-ribose (ADPr) from ADP-ribosylated substrates and regulates stress-granule disruption. We compared the replication of CHIKV 181/25 (WT) and MD mutants with decreased ADPr binding and hydrolase (G32S) or increased ADPr binding and decreased hydrolase (Y114A) activities in C8-D1A astrocytic cells and NSC-34 neuronal cells. WT CHIKV replication was initiated more rapidly with earlier nsP synthesis in C8-D1A than in NSC-34 cells. G32S established infection, amplified replication complexes, and induced host-protein synthesis shut-off less efficiently than WT and produced less infectious virus, while Y114A replication was close to WT. However, G32S mutation effects on structural protein synthesis were cell-type-dependent. In NSC-34 cells, E2 synthesis was decreased compared to WT, while in C8-D1A cells synthesis was increased. Excess E2 produced by G32S-infected C8-D1A cells was assembled into virus particles that were less infectious than those from WT or Y114A-infected cells. Because nsP3 recruits ADP-ribosylated RNA-binding proteins in stress granules away from translation-initiation factors into nsP3 granules where the MD hydrolase can remove ADPr, we postulate that suboptimal translation-factor release decreased structural protein synthesis in NSC-34 cells while failure to de-ADP-ribosylate regulatory RNA-binding proteins increased synthesis in C8-D1A cells.
Collapse
|
50
|
Pourseif MM, Masoudi-Sobhanzadeh Y, Azari E, Parvizpour S, Barar J, Ansari R, Omidi Y. Self-amplifying mRNA vaccines: Mode of action, design, development and optimization. Drug Discov Today 2022; 27:103341. [PMID: 35988718 DOI: 10.1016/j.drudis.2022.103341] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 07/14/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The mRNA-based vaccines are quality-by-design (QbD) immunotherapies that provide safe, tunable, scalable, streamlined and potent treatment possibilities against different types of diseases. The self-amplifying mRNA (saRNA) vaccines, as a highly advantageous class of mRNA vaccines, are inspired by the intracellular self-multiplication nature of some positive-sense RNA viruses. Such vaccine platforms provide a relatively increased expression level of vaccine antigen(s) together with self-adjuvanticity properties. Lined with the QbD saRNA vaccines, essential optimizations improve the stability, safety, and immunogenicity of the vaccine constructs. Here, we elaborate on the concepts and mode-of-action of mRNA and saRNA vaccines, articulate the potential limitations or technical bottlenecks, and explain possible solutions or optimization methods in the process of their design and development.
Collapse
Affiliation(s)
- Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosef Masoudi-Sobhanzadeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Azari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rais Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA.
| |
Collapse
|