1
|
Markin A, Ciacci Zanella G, Arendsee ZW, Zhang J, Krueger KM, Gauger PC, Vincent Baker AL, Anderson TK. Reverse-zoonoses of 2009 H1N1 pandemic influenza A viruses and evolution in United States swine results in viruses with zoonotic potential. PLoS Pathog 2023; 19:e1011476. [PMID: 37498825 PMCID: PMC10374098 DOI: 10.1371/journal.ppat.1011476] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
The 2009 H1N1 pandemic (pdm09) lineage of influenza A virus (IAV) crosses interspecies barriers with frequent human-to-swine spillovers each year. These spillovers reassort and drift within swine populations, leading to genetically and antigenically novel IAV that represent a zoonotic threat. We quantified interspecies transmission of the pdm09 lineage, persistence in swine, and identified how evolution in swine impacted zoonotic risk. Human and swine pdm09 case counts between 2010 and 2020 were correlated and human pdm09 burden and circulation directly impacted the detection of pdm09 in pigs. However, there was a relative absence of pdm09 circulation in humans during the 2020-21 season that was not reflected in swine. During the 2020-21 season, most swine pdm09 detections originated from human-to-swine spillovers from the 2018-19 and 2019-20 seasons that persisted in swine. We identified contemporary swine pdm09 representatives of each persistent spillover and quantified cross-reactivity between human seasonal H1 vaccine strains and the swine strains using a panel of monovalent ferret antisera in hemagglutination inhibition (HI) assays. The swine pdm09s had variable antigenic reactivity to vaccine antisera, but each swine pdm09 clade exhibited significant reduction in cross-reactivity to one or more of the human seasonal vaccine strains. Further supporting zoonotic risk, we showed phylogenetic evidence for 17 swine-to-human transmission events of pdm09 from 2010 to 2021, 11 of which were not previously classified as variants, with each of the zoonotic cases associated with persistent circulation of pdm09 in pigs. These data demonstrate that reverse-zoonoses and evolution of pdm09 in swine results in viruses that are capable of zoonotic transmission and represent a potential pandemic threat.
Collapse
Affiliation(s)
- Alexey Markin
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Giovana Ciacci Zanella
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Zebulun W Arendsee
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Karen M Krueger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Amy L Vincent Baker
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| | - Tavis K Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America
| |
Collapse
|
2
|
Pamornchainavakul N, Paploski IAD, Makau DN, Kikuti M, Rovira A, Lycett S, Corzo CA, VanderWaal K. Mapping the Dynamics of Contemporary PRRSV-2 Evolution and Its Emergence and Spreading Hotspots in the U.S. Using Phylogeography. Pathogens 2023; 12:740. [PMID: 37242410 PMCID: PMC10222675 DOI: 10.3390/pathogens12050740] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The repeated emergence of new genetic variants of PRRSV-2, the virus that causes porcine reproductive and respiratory syndrome (PRRS), reflects its rapid evolution and the failure of previous control efforts. Understanding spatiotemporal heterogeneity in variant emergence and spread is critical for future outbreak prevention. Here, we investigate how the pace of evolution varies across time and space, identify the origins of sub-lineage emergence, and map the patterns of the inter-regional spread of PRRSV-2 Lineage 1 (L1)-the current dominant lineage in the U.S. We performed comparative phylogeographic analyses on subsets of 19,395 viral ORF5 sequences collected across the U.S. and Canada between 1991 and 2021. The discrete trait analysis of multiple spatiotemporally stratified sampled sets (n = 500 each) was used to infer the ancestral geographic region and dispersion of each sub-lineage. The robustness of the results was compared to that of other modeling methods and subsampling strategies. Generally, the spatial spread and population dynamics varied across sub-lineages, time, and space. The Upper Midwest was a main spreading hotspot for multiple sub-lineages, e.g., L1C and L1F, though one of the most recent emergence events (L1A(2)) spread outwards from the east. An understanding of historical patterns of emergence and spread can be used to strategize disease control and the containment of emerging variants.
Collapse
Affiliation(s)
- Nakarin Pamornchainavakul
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.P.); (I.A.D.P.); (D.N.M.); (M.K.); (A.R.); (C.A.C.)
| | - Igor A. D. Paploski
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.P.); (I.A.D.P.); (D.N.M.); (M.K.); (A.R.); (C.A.C.)
| | - Dennis N. Makau
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.P.); (I.A.D.P.); (D.N.M.); (M.K.); (A.R.); (C.A.C.)
| | - Mariana Kikuti
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.P.); (I.A.D.P.); (D.N.M.); (M.K.); (A.R.); (C.A.C.)
| | - Albert Rovira
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.P.); (I.A.D.P.); (D.N.M.); (M.K.); (A.R.); (C.A.C.)
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN 55108, USA
| | - Samantha Lycett
- Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK;
| | - Cesar A. Corzo
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.P.); (I.A.D.P.); (D.N.M.); (M.K.); (A.R.); (C.A.C.)
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN 55108, USA; (N.P.); (I.A.D.P.); (D.N.M.); (M.K.); (A.R.); (C.A.C.)
| |
Collapse
|
3
|
Burgher Pulgaron Y, Provost C, Pesant MJ, Gagnon CA. Porcine Circovirus Modulates Swine Influenza Virus Replication in Pig Tracheal Epithelial Cells and Porcine Alveolar Macrophages. Viruses 2023; 15:v15051207. [PMID: 37243291 DOI: 10.3390/v15051207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The pathogenesis of porcine circovirus type 2b (PCV2b) and swine influenza A virus (SwIV) during co-infection in swine respiratory cells is poorly understood. To elucidate the impact of PCV2b/SwIV co-infection, newborn porcine tracheal epithelial cells (NPTr) and immortalized porcine alveolar macrophages (iPAM 3D4/21) were co-infected with PCV2b and SwIV (H1N1 or H3N2 genotype). Viral replication, cell viability and cytokine mRNA expression were determined and compared between single-infected and co-infected cells. Finally, 3'mRNA sequencing was performed to identify the modulation of gene expression and cellular pathways in co-infected cells. It was found that PCV2b significantly decreased or improved SwIV replication in co-infected NPTr and iPAM 3D4/21 cells, respectively, compared to single-infected cells. Interestingly, PCV2b/SwIV co-infection synergistically up-regulated IFN expression in NPTr cells, whereas in iPAM 3D4/21 cells, PCV2b impaired the SwIV IFN induced response, both correlating with SwIV replication modulation. RNA-sequencing analyses revealed that the modulation of gene expression and enriched cellular pathways during PCV2b/SwIV H1N1 co-infection is regulated in a cell-type-dependent manner. This study revealed different outcomes of PCV2b/SwIV co-infection in porcine epithelial cells and macrophages and provides new insights on porcine viral co-infections pathogenesis.
Collapse
Affiliation(s)
- Yaima Burgher Pulgaron
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Chantale Provost
- Molecular Diagnostic Laboratory, Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Marie-Jeanne Pesant
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Carl A Gagnon
- Swine and Poultry Infectious Diseases Research Center (CRIPA-FRQ), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- Molecular Diagnostic Laboratory, Centre de Diagnostic Vétérinaire de l'Université de Montréal (CDVUM), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
4
|
Aubrey L, Barron-Castillo U, Detmer S, Zhou Y. A Bivalent Live Attenuated Influenza Virus Vaccine Protects against Drifted H1N2 and H3N2 Clinical Isolates in Swine. Viruses 2022; 15:46. [PMID: 36680086 PMCID: PMC9861596 DOI: 10.3390/v15010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Influenza A viruses (IAVs) can cause a highly contagious respiratory disease for many mammalian species. In pigs, IAVs cause high morbidity and low mortality disease in susceptible populations that can have significant financial and production impacts. They can also present opportunities for mutations and gene reassortment, producing influenza strains with pandemic potential. Therefore, it is very important to prevent and control influenza infection in pigs, and the chief way to do so is through vaccination. The subtypes of IAV most prevalent in swine across the world are H1N1, H1N2, and H3N2; however, genetic diversity of these viruses can vary greatly by region. We previously developed an elastase-dependent bivalent live attenuated vaccine using two Canadian swine influenza A virus (swIAV) isolates, A/Swine/Alberta/SD0191/2016 (H1N2) [SD191] and A/Swine/Saskatchewan/SD0069/2015 (H3N2) [SD69], which provided protection against homologous strains. In this study, we demonstrate that this vaccine extends protection in pigs to more current, drifted non-homologous H1N2 and H3N2 strains, A/Swine/MB/SD0467/2019 (H1N2) [SD467] and A/Swine/AB/SD0435/2019 (H3N2) [SD435]. The vaccine elicited a robust immune response in the serum and the lung and reduced viral replication as well as lung pathology associated with these strains. Therefore, this bivalent vaccine remains a strong candidate that would be beneficial to the swine influenza vaccine market in North America.
Collapse
Affiliation(s)
- Lauren Aubrey
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
| | - Ulises Barron-Castillo
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Susan Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
- Vaccinology and Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| |
Collapse
|
5
|
Venkatesh D, Anderson TK, Kimble JB, Chang J, Lopes S, Souza CK, Pekosz A, Shaw-Saliba K, Rothman RE, Chen KF, Lewis NS, Vincent Baker AL. Antigenic Characterization and Pandemic Risk Assessment of North American H1 Influenza A Viruses Circulating in Swine. Microbiol Spectr 2022; 10:e0178122. [PMID: 36318009 PMCID: PMC9769642 DOI: 10.1128/spectrum.01781-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/07/2022] [Indexed: 12/23/2022] Open
Abstract
The first pandemic of the 21st century was caused by an H1N1 influenza A virus (IAV) introduced from pigs into humans, highlighting the importance of swine as reservoirs for pandemic viruses. Two major lineages of swine H1 circulate in North America: the 1A classical swine lineage (including that of the 2009 H1N1 pandemic) and the 1B human seasonal-like lineage. Here, we investigated the evolution of these H1 IAV lineages in North American swine and their potential pandemic risk. We assessed the antigenic distance between the HA of representative swine H1 and human seasonal vaccine strains (1978 to 2015) in hemagglutination inhibition (HI) assays using a panel of monovalent antisera raised in pigs. Antigenic cross-reactivity varied by strain but was associated with genetic distance. Generally, the swine 1A lineage viruses that seeded the 2009 H1 pandemic were antigenically most similar to the H1 pandemic vaccine strains, with the exception of viruses in the genetic clade 1A.1.1.3, which had a two-amino acid deletion mutation near the receptor-binding site, which dramatically reduced antibody recognition. The swine 1B lineage strains, which arose from previously circulating (pre-2009 pandemic) human seasonal viruses, were more antigenically similar to pre-2009 human seasonal H1 vaccine viruses than post-2009 strains. Human population immunity was measured by cross-reactivity in HI assays to representative swine H1 strains. There was a broad range of titers against each swine strain that was not associated with age, sex, or location. However, there was almost no cross-reactivity in human sera to the 1A.1.1.3 and 1B.2.1 genetic clades of swine viruses, and the 1A.1.1.3 and 1B.2.1 clades were also the most antigenically distant to the human vaccine strains. Our data demonstrate that the antigenic distances of representative swine strains from human vaccine strains represent an important part of the rational assessment of swine IAV for zoonotic risk research and pandemic preparedness prioritization. IMPORTANCE Human H1 influenza A viruses (IAV) spread to pigs in North America, resulting in a sustained circulation of two major groups of H1 viruses in swine. We quantified the genetic diversity of H1 in swine and measured antigenic phenotypes. We demonstrated that the swine H1 lineages were significantly different from the human vaccine strains and that this antigenic dissimilarity increased over time as the viruses evolved in swine. Pandemic preparedness vaccine strains for human vaccines also demonstrated a loss in similarity with contemporary swine strains. Human sera revealed a range of responses to swine IAV, including two groups of viruses with little to no immunity. The surveillance and risk assessment of IAV diversity in pig populations are essential to detect strains with reduced immunity in humans and provide critical information for pandemic preparedness.
Collapse
Affiliation(s)
| | | | | | - Jennifer Chang
- National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Sara Lopes
- Royal Veterinary College, London, United Kingdom
| | | | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kathryn Shaw-Saliba
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard E. Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kuan-Fu Chen
- Department of Emergency Medicine of Chang Gung Memorial Hospital at Keelung, Keelung City, Taiwan
| | - Nicola S. Lewis
- Royal Veterinary College, London, United Kingdom
- OIE/FAO International Reference Laboratory for Avian Influenza, Swine Influenza and Newcastle Disease, Animal and Plant Health Agency (APHA), Weybridge, Addlestone, Surrey, United Kingdom
| | | |
Collapse
|
6
|
Hill NJ, Bishop MA, Trovão NS, Ineson KM, Schaefer AL, Puryear WB, Zhou K, Foss AD, Clark DE, MacKenzie KG, Gass JD, Borkenhagen LK, Hall JS, Runstadler JA. Ecological divergence of wild birds drives avian influenza spillover and global spread. PLoS Pathog 2022; 18:e1010062. [PMID: 35588106 PMCID: PMC9119557 DOI: 10.1371/journal.ppat.1010062] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/01/2022] [Indexed: 01/21/2023] Open
Abstract
The diversity of influenza A viruses (IAV) is primarily hosted by two highly divergent avian orders: Anseriformes (ducks, swans and geese) and Charadriiformes (gulls, terns and shorebirds). Studies of IAV have historically focused on Anseriformes, specifically dabbling ducks, overlooking the diversity of hosts in nature, including gull and goose species that have successfully adapted to human habitats. This study sought to address this imbalance by characterizing spillover dynamics and global transmission patterns of IAV over 10 years at greater taxonomic resolution than previously considered. Furthermore, the circulation of viral subtypes in birds that are either host-adapted (low pathogenic H13, H16) or host-generalist (highly pathogenic avian influenza—HPAI H5) provided a unique opportunity to test and extend models of viral evolution. Using Bayesian phylodynamic modelling we uncovered a complex transmission network that relied on ecologically divergent bird hosts. The generalist subtype, HPAI H5 was driven largely by wild geese and swans that acted as a source for wild ducks, gulls, land birds, and domestic geese. Gulls were responsible for moving HPAI H5 more rapidly than any other host, a finding that may reflect their long-distance, pelagic movements and their immuno-naïve status against this subtype. Wild ducks, long viewed as primary hosts for spillover, occupied an optimal space for viral transmission, contributing to geographic expansion and rapid dispersal of HPAI H5. Evidence of inter-hemispheric dispersal via both the Pacific and Atlantic Rims was detected, supporting surveillance at high latitudes along continental margins to achieve early detection. Both neutral (geographic expansion) and non-neutral (antigenic selection) evolutionary processes were found to shape subtype evolution which manifested as unique geographic hotspots for each subtype at the global scale. This study reveals how a diversity of avian hosts contribute to viral spread and spillover with the potential to improve surveillance in an era of rapid global change. Our study provides novel insights into the biology of influenza A virus (IAV), which is timely in view of the unusually large number of animal and human cases of highly pathogenic avian influenza (HPAI) H5 across Europe, Asia, Africa and North America. Currently we face challenges with predicting how the avian reservoir will influence IAV spread because the mechanisms by which different subtypes disperse are not well understood. Our study sought to address this knowledge gap by systematically comparing the evolutionary dynamics that drive IAV transmission across subtypes and bird hosts with the goal of identifying spillover pathways at the wild-domestic interface. By analyzing the evolution of IAV over 10 years at greater taxonomic resolution than previously considered, we uncovered a complex transmission network that relied on ecologically divergent bird hosts. Domestic birds were responsible for slow but steady range expansion of HPAI H5, while wild birds such as geese, swans, gulls and ducks contibuted to rapid but episodic dispersal via uniquely different pathways. By assessing how virus-host systems are coupled, findings from this study have the potential to refine and enhance global surveillance and outbreak prediction.
Collapse
Affiliation(s)
- Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, Massachusetts, United States of America
- * E-mail:
| | - Mary Anne Bishop
- Prince William Sound Science Center, Cordova, Alaska, United States of America
| | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katherine M. Ineson
- U.S. Fish and Wildlife Service, Hadley, Massachusetts, United States of America
| | - Anne L. Schaefer
- Prince William Sound Science Center, Cordova, Alaska, United States of America
| | - Wendy B. Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| | - Katherine Zhou
- College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexa D. Foss
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| | - Daniel E. Clark
- Division of Water Supply Protection, Massachusetts Department of Conservation and Recreation, West Boylston, Massachusetts, United States of America
| | - Kenneth G. MacKenzie
- Division of Water Supply Protection, Massachusetts Department of Conservation and Recreation, West Boylston, Massachusetts, United States of America
| | - Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| | - Laura K. Borkenhagen
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| | - Jeffrey S. Hall
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
7
|
Genetic and Antigenic Characterization of an Expanding H3 Influenza A Virus Clade in U.S. Swine Visualized by Nextstrain. mSphere 2022; 7:e0099421. [PMID: 35766502 PMCID: PMC9241524 DOI: 10.1128/msphere.00994-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetically distinct clades of influenza A virus (IAV) in swine undermine efforts to control the disease. Swine producers commonly use vaccines, and vaccine strains are selected by identifying the most common hemagglutinin (HA) gene from viruses detected in a farm or a region.
Collapse
|
8
|
Chauhan RP, Gordon ML. Review of genome sequencing technologies in molecular characterization of influenza A viruses in swine. J Vet Diagn Invest 2022; 34:177-189. [PMID: 35037523 PMCID: PMC8921814 DOI: 10.1177/10406387211068023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The rapidly evolving antigenic diversity of influenza A virus (IAV) genomes in swine makes it imperative to detect emerging novel strains and track their circulation. We analyzed in our review the sequencing technologies used for subtyping and characterizing swine IAV genomes. Google Scholar, PubMed, and International Nucleotide Sequence Database Collaboration (INSDC) database searches identified 216 studies that have utilized Sanger, second-, and third-generation sequencing techniques to subtype and characterize swine IAV genomes up to 31 March 2021. Sanger dideoxy sequencing was by far the most widely used sequencing technique for generating either full-length (43.0%) or partial (31.0%) IAV genomes in swine globally; however, in the last decade, other sequencing platforms such as Illumina have emerged as serious competitors for the generation of whole-genome sequences of swine IAVs. Although partial HA and NA gene sequences were sufficient to determine swine IAV subtypes, whole-genome sequences were critical for determining reassortments and identifying unusual or less frequently occurring IAV subtypes. The combination of Sanger and second-generation sequencing technologies also greatly improved swine IAV characterization. In addition, the rapidly evolving third-generation sequencing platform, MinION, appears promising for on-site, real-time sequencing of complete swine IAV genomes. With a higher raw read accuracy, the use of the MinION could enhance the scalability of swine IAV testing in the field and strengthen the swine IAV disease outbreak response.
Collapse
Affiliation(s)
| | - Michelle L. Gordon
- Michelle L. Gordon, School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, 719 Umbilo Rd, Durban 4001, South Africa.
| |
Collapse
|
9
|
Terrier O, Si-Tahar M, Ducatez M, Chevalier C, Pizzorno A, Le Goffic R, Crépin T, Simon G, Naffakh N. Influenza viruses and coronaviruses: Knowns, unknowns, and common research challenges. PLoS Pathog 2021; 17:e1010106. [PMID: 34969061 PMCID: PMC8718010 DOI: 10.1371/journal.ppat.1010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies. We outline multidisciplinary approaches and technological innovations that need to be harnessed in order to improve preparedeness to the next pandemic.
Collapse
Affiliation(s)
- Olivier Terrier
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Mustapha Si-Tahar
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Inserm U1100, Research Center for Respiratory Diseases (CEPR), Université de Tours, Tours, France
| | - Mariette Ducatez
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- IHAP, UMR1225, Université de Toulouse, ENVT, INRAE, Toulouse, France
| | - Christophe Chevalier
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Université Paris-Saclay, UVSQ, INRAE, VIM, Equipe Virus Influenza, Jouy-en-Josas, France
| | - Andrés Pizzorno
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Ronan Le Goffic
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Université Paris-Saclay, UVSQ, INRAE, VIM, Equipe Virus Influenza, Jouy-en-Josas, France
| | - Thibaut Crépin
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Gaëlle Simon
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Nadia Naffakh
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- RNA Biology and Influenza Virus Unit, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| |
Collapse
|
10
|
Ramesh A, Bailey ES, Ahyong V, Langelier C, Phelps M, Neff N, Sit R, Tato C, DeRisi JL, Greer AG, Gray GC. Metagenomic characterization of swine slurry in a North American swine farm operation. Sci Rep 2021; 11:16994. [PMID: 34417469 PMCID: PMC8379149 DOI: 10.1038/s41598-021-95804-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/30/2021] [Indexed: 12/21/2022] Open
Abstract
Modern day large-scale, high-density farming environments are inherently susceptible to viral outbreaks, inadvertently creating conditions that favor increased pathogen transmission and potential zoonotic spread. Metagenomic sequencing has proven to be a useful tool for characterizing the microbial burden in both people, livestock, and environmental samples. International efforts have been successful at characterizing pathogens in commercial farming environments, especially swine farms, however it is unclear whether the full extent of microbial agents have been adequately captured or is representative of farms elsewhere. To augment international efforts we performed metagenomic next-generation sequencing on nine swine slurry and three environmental samples from a United States of America (U.S.A.) farm operation, characterized the microbial composition of slurry, and identified novel viruses. We assembled a remarkable total of 1792 viral genomes, of which 554 were novel/divergent. We assembled 1637 Picobirnavirus genome segments, of which 538 are novel. In addition, we discovered 10 new viruses belonging to a novel taxon: porcine Statoviruses; which have only been previously reported in human, macaques, mouse, and cows. We assembled 3 divergent Posaviruses and 3 swine Picornaviruses. In addition to viruses described, we found other eukaryotic genera such as Entamoeba and Blastocystis, and bacterial genera such as Listeria, Treponema, Peptoclostridium and Bordetella in the slurry. Of these, two species Entamoeba histolytica and Listeria monocytogenes known to cause human disease were detected. Further, antimicrobial resistance genes such as tetracycline and MLS (macrolide, lincosamide, streptogramin) were also identified. Metagenomic surveillance in swine fecal slurry has great potential for novel and antimicrobial resistant pathogen detection.
Collapse
Affiliation(s)
- Akshaya Ramesh
- Weill Institute for Neurosciences, University of California, San Francisco, CA, 94158, USA.,Department of Neurology, University of California, San Francisco, CA, 94158, USA.,Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Emily S Bailey
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. .,Julia Jones Matthews Department of Public Health, Texas Tech University Health Sciences Center, Abilene, TX, USA.
| | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Charles Langelier
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.,Division of Infectious Diseases, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Maira Phelps
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Norma Neff
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Rene Sit
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Cristina Tato
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, CA, 94158, USA
| | - Annette G Greer
- Department of Bioethics and Interdisciplinary Studies, Brody School of Medicine, North Carolina Agromedicine Institute, East Carolina University, Greenville, NC, USA
| | - Gregory C Gray
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Global Health Institute, Duke University, Durham, NC, USA.,Emerging Infectious Disease Program, Duke-NUS Medical School, Singapore, Singapore.,Global Health Center, Duke Kunshan University, Kunshan, China
| |
Collapse
|
11
|
Tabaszewski P, Gorecki P, Markin A, Anderson T, Eulenstein O. Consensus of All Solutions for Intractable Phylogenetic Tree Inference. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:149-161. [PMID: 31613775 DOI: 10.1109/tcbb.2019.2947051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solving median tree problems is a classic approach for inferring species trees from a collection of discordant gene trees. Median tree problems are typically NP-hard and dealt with by local search heuristics. Unfortunately, such heuristics generally lack provable correctness and precision. Algorithmic advances addressing this uncertainty have led to exact dynamic programming formulations suitable to solve a well-studied group of median tree problems for smaller phylogenetic analyses. However, these formulations allow computing only very few optimal species trees out of possibly many such trees, and phylogenetic studies often require the analysis of all optimal solutions through their consensus tree. Here, we describe a significant algorithmic modification of the dynamic programming formulations that compute the cluster counts of all optimal species trees from which various types of consensus trees can be efficiently computed. Through experimental studies, we demonstrate that our parallel implementation of the modified dynamic programming formulation is more efficient than a previous implementation of the original formulation. Finally, we show that the parallel implementation can rapidly identify novel reassorted influenza A viruses potentially facilitating pandemic preparedness efforts.
Collapse
|
12
|
Kanji JN, Pabbaraju K, Croxen M, Detmer S, Bastien N, Li Y, Majer A, Keshwani H, Zelyas N, Achebe I, Jones C, Rutz M, Jacobs A, Lehman K, Hinshaw D, Tipples G. Characterization of Swine Influenza A(H1N2) Variant, Alberta, Canada, 2020. Emerg Infect Dis 2021; 27:3045-3051. [PMID: 34808085 PMCID: PMC8632177 DOI: 10.3201/eid2712.210298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Influenza strains circulating among swine populations can cause outbreaks in humans. In October 2020, we detected a variant influenza A subtype H1N2 of swine origin in a person in Alberta, Canada. We initiated a public health, veterinary, and laboratory investigation to identify the source of the infection and determine whether it had spread. We identified the probable source as a local pig farm where a household contact of the index patient worked. Phylogenetic analysis revealed that the isolate closely resembled strains found at that farm in 2017. Retrospective and prospective surveillance using molecular testing did not identify any secondary cases among 1,532 persons tested in the surrounding area. Quick collaboration between human and veterinary public health practitioners in this case enabled a rapid response to a potential outbreak.
Collapse
|
13
|
Landreth S, Detmer S, Gerdts V, Zhou Y. A bivalent live attenuated influenza virus vaccine protects against H1N2 and H3N2 viral infection in swine. Vet Microbiol 2020; 253:108968. [PMID: 33418392 DOI: 10.1016/j.vetmic.2020.108968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/20/2020] [Indexed: 11/26/2022]
Abstract
Swine Influenza A virus (swIAV) poses a substantial burden to the swine industry due to its highly contagious nature, acute viral disease, and ability to cause up to 100 % morbidity. Currently, North American swine are predominately infected with three subtypes of swIAV: H1N1, H1N2, and H3N2. The ability of influenza viruses to cross both directions between humans and swine means that both human and swine-origin viruses as well as new reassortant viruses can pose a substantial public health or pandemic threat. Since the primary method of protection and control against influenza is through vaccination, more effective, new vaccine platforms need to be developed. This study uses two Canadian swIAV isolates, A/Swine/Alberta/SD0191/2016 (H1N2) [SD191] and A/Swine/Saskatchewan/SD0069/2015 (H3N2) [SD69] to design a bivalent live attenuated influenza virus vaccine (LAIV) through reverse genetics. The hemagglutinin (HA) cleavage site from both SD191-WT and SD69-WT were engineered from a trypsin-sensitive to an elastase-sensitive motif, to generate SD191-R342V and SD69-K345V, respectively. The elastase dependent SD191-R342V virus possesses a mutation from arginine to valine at amino acid (aa) 342 on HA, whereas the elastase dependent SD69-K345V virus possesses a mutation from lysine to valine at aa 345 on HA. Both elastase dependent swIAVs are completely dependent on elastase, display comparable growth properties to the wild type (WT) viruses, are genetically stable in vitro, and entirely non-virulent in pigs. Moreover, when these elastase dependent swIAVs were administered together in pigs, they were found to stimulate antibody responses and IFN-γ secreting cells, as well as prevent viral replication and lung pathology associated with WT H1N2 and H3N2 swIAV challenge. Therefore, this bivalent LAIV demonstrates the strong candidacy to protect swine against the predominant influenza subtypes in North America.
Collapse
Affiliation(s)
- Shelby Landreth
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
| | - Susan Detmer
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
| | - Yan Zhou
- Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, S7N 5E3, Canada.
| |
Collapse
|
14
|
A Heterogeneous Swine Show Circuit Drives Zoonotic Transmission of Influenza A Viruses in the United States. J Virol 2020; 94:JVI.01453-20. [PMID: 32999022 DOI: 10.1128/jvi.01453-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/22/2020] [Indexed: 11/20/2022] Open
Abstract
Influenza pandemics are associated with severe morbidity, mortality, and social and economic disruption. Every summer in the United States, youths attending agricultural fairs are exposed to genetically diverse influenza A viruses (IAVs) circulating in exhibition swine, resulting in over 450 lab-confirmed zoonotic infections since 2010. Exhibition swine represent a small, defined population (∼1.5% of the U.S. herd), presenting a realistic opportunity to mitigate a pandemic threat by reducing IAV transmission in the animals themselves. Through intensive surveillance and genetic sequencing of IAVs in exhibition swine in six U.S. states in 2018 (n = 212), we characterized how a heterogeneous circuit of swine shows, comprising fairs with different sizes and geographic coverage, facilitates IAV transmission among exhibition swine and into humans. Specifically, we identified the role of an early-season national show in the propagation and spatial dissemination of a specific virus (H1δ-2) that becomes dominant among exhibition swine and is associated with the majority of zoonotic infections in 2018. These findings suggest that a highly targeted mitigation strategy, such as postponing swine shows for 1 to 2 weeks following the early-season national show, could potentially reduce IAV transmission in exhibition swine and spillover into humans, and this merits further study.IMPORTANCE The varying influenza A virus (IAV) exposure and infection status of individual swine facilitates introduction, transmission, and dissemination of diverse IAVs. Since agricultural fairs bring people into intimate contact with swine, they provide a unique interface for zoonotic transmission of IAV. Understanding the dynamics of IAV transmission through exhibition swine is critical to mitigating the high incidence of variant IAV cases reported in association with agricultural fairs. We used genomic sequences from our exhibition swine surveillance to characterize the hemagglutinin and full genotypic diversity of IAV at early-season shows and the subsequent dissemination through later-season agricultural fairs. We were able to identify a critical time point with important implications for downstream IAV and zoonotic transmission. With improved understanding of evolutionary origins of zoonotic IAV, we can inform public health mitigation strategies to ultimately reduce zoonotic IAV transmission and risk of pandemic IAV emergence.
Collapse
|
15
|
Genetic and Antigenic Evolution of European Swine Influenza A Viruses of HA-1C (Avian-Like) and HA-1B (Human-Like) Lineages in France from 2000 to 2018. Viruses 2020; 12:v12111304. [PMID: 33202972 PMCID: PMC7697621 DOI: 10.3390/v12111304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
This study evaluated the genetic and antigenic evolution of swine influenza A viruses (swIAV) of the two main enzootic H1 lineages, i.e., HA-1C (H1av) and -1B (H1hu), circulating in France between 2000 and 2018. SwIAV RNAs extracted from 1220 swine nasal swabs were hemagglutinin/neuraminidase (HA/NA) subtyped by RT-qPCRs, and 293 virus isolates were sequenced. In addition, 146 H1avNy and 105 H1huNy strains were submitted to hemagglutination inhibition tests. H1avN1 (66.5%) and H1huN2 (25.4%) subtypes were predominant. Most H1 strains belonged to HA-1C.2.1 or -1B.1.2.3 clades, but HA-1C.2, -1C.2.2, -1C.2.3, -1B.1.1, and -1B.1.2.1 clades were also detected sporadically. Within HA-1B.1.2.3 clade, a group of strains named "Δ146-147" harbored several amino acid mutations and a double deletion in HA, that led to a marked antigenic drift. Phylogenetic analyses revealed that internal segments belonged mainly to the "Eurasian avian-like lineage", with two distinct genogroups for the M segment. In total, 17 distinct genotypes were identified within the study period. Reassortments of H1av/H1hu strains with H1N1pdm virus were rarely evidenced until 2018. Analysis of amino acid sequences predicted a variability in length of PB1-F2 and PA-X proteins and identified the appearance of several mutations in PB1, PB1-F2, PA, NP and NS1 proteins that could be linked to virulence, while markers for antiviral resistance were identified in N1 and N2. Altogether, diversity and evolution of swIAV recall the importance of disrupting the spreading of swIAV within and between pig herds, as well as IAV inter-species transmissions.
Collapse
|
16
|
Deblanc C, Quéguiner S, Gorin S, Chastagner A, Hervé S, Paboeuf F, Simon G. Evaluation of the Pathogenicity and the Escape from Vaccine Protection of a New Antigenic Variant Derived from the European Human-Like Reassortant Swine H1N2 Influenza Virus. Viruses 2020; 12:E1155. [PMID: 33053905 PMCID: PMC7599989 DOI: 10.3390/v12101155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
The surveillance of swine influenza A viruses in France revealed the emergence of an antigenic variant following deletions and mutations that are fixed in the HA-encoding gene of the European human-like reassortant swine H1N2 lineage. In this study, we compared the outcomes of the parental (H1huN2) and variant (H1huN2Δ146-147) virus infections in experimentally-inoculated piglets. Moreover, we assessed and compared the protection that was conferred by an inactivated vaccine currently licensed in Europe. Three groups of five unvaccinated or vaccinated piglets were inoculated with H1huN2 or H1huN2Δ146-147 or mock-inoculated, respectively. In unvaccinated piglets, the variant strain induced greater clinical signs than the parental virus, in relation to a higher inflammatory response that involves TNF-α production and a huge afflux of granulocytes into the lung. However, both infections led to similar levels of virus excretion and adaptive (humoral and cellular) immune responses in blood. The vaccinated animals were clinically protected from both infectious challenges and did not exhibit any inflammatory responses, regardless the inoculated virus. However, whereas vaccination prevented virus shedding in H1huN2-infected animals, it did not completely inhibit the multiplication of the variant strain, since live virus particles were detected in nasal secretions that were taken from H1huN2Δ146-147-inoculated vaccinated piglets. This difference in the level of vaccine protection was probably related to the poorer ability of the post-vaccine antibodies to neutralize the variant virus than the parental virus, even though post-vaccine cellular immunity appeared to be equally effective against both viruses. These results suggest that vaccine antigens would potentially need to be updated if this variant becomes established in Europe.
Collapse
Affiliation(s)
- Céline Deblanc
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (S.G.); (A.C.); (S.H.); (G.S.)
| | - Stéphane Quéguiner
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (S.G.); (A.C.); (S.H.); (G.S.)
| | - Stéphane Gorin
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (S.G.); (A.C.); (S.H.); (G.S.)
| | - Amélie Chastagner
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (S.G.); (A.C.); (S.H.); (G.S.)
| | - Séverine Hervé
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (S.G.); (A.C.); (S.H.); (G.S.)
| | - Frédéric Paboeuf
- SPF Pig Production and Experimentation, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France;
| | - Gaëlle Simon
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.Q.); (S.G.); (A.C.); (S.H.); (G.S.)
| |
Collapse
|
17
|
Reddy BL, Saier MHJ. The Causal Relationship between Eating Animals and Viral Epidemics. Microb Physiol 2020; 30:2-8. [PMID: 32957108 PMCID: PMC7573891 DOI: 10.1159/000511192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022]
Abstract
For decades it has been known that infectious agents including pathogenic protozoans, bacteria, and viruses, adapted to a particular animal host, can mutate to gain the ability to infect another host, and the mechanisms involved have been studied in great detail. Although an infectious agent in one animal can alter its host range with relative ease, no example of a plant virus changing its host organism to an animal has been documented. One prevalent pathway for the transmission of infectious agents between hosts involves ingestion of the flesh of one organism by another. In this article we document numerous examples of viral and prion diseases transmitted by eating animals. We suggest that the occurrence of cross-species viral epidemics can be substantially reduced by shifting to a more vegetarian diet and enforcing stricter laws that ban the slaughter and trade of wild and endangered species.
Collapse
Affiliation(s)
- Bhaskara L Reddy
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California, USA
| | - Milton H Jr Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, California, USA,
| |
Collapse
|
18
|
Chauhan RP, Gordon ML. A Systematic Review Analyzing the Prevalence and Circulation of Influenza Viruses in Swine Population Worldwide. Pathogens 2020; 9:pathogens9050355. [PMID: 32397138 PMCID: PMC7281378 DOI: 10.3390/pathogens9050355] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
The global anxiety and a significant threat to public health due to the current COVID-19 pandemic reiterate the need for active surveillance for the zoonotic virus diseases of pandemic potential. Influenza virus due to its wide host range and zoonotic potential poses such a significant threat to public health. Swine serve as a “mixing vessel” for influenza virus reassortment and evolution which as a result may facilitate the emergence of new strains or subtypes of zoonotic potential. In this context, the currently available scientific data hold a high significance to unravel influenza virus epidemiology and evolution. With this objective, the current systematic review summarizes the original research articles and case reports of all the four types of influenza viruses reported in swine populations worldwide. A total of 281 articles were found eligible through screening of PubMed and Google Scholar databases and hence were included in this systematic review. The highest number of research articles (n = 107) were reported from Asia, followed by Americas (n = 97), Europe (n = 55), Africa (n = 18), and Australia (n = 4). The H1N1, H1N2, H3N2, and A(H1N1)pdm09 viruses were the most common influenza A virus subtypes reported in swine in most countries across the globe, however, few strains of influenza B, C, and D viruses were also reported in certain countries. Multiple reports of the avian influenza virus strains documented in the last two decades in swine in China, the United States, Canada, South Korea, Nigeria, and Egypt provided the evidence of interspecies transmission of influenza viruses from birds to swine. Inter-species transmission of equine influenza virus H3N8 from horse to swine in China expanded the genetic diversity of swine influenza viruses. Additionally, numerous reports of the double and triple-reassortant strains which emerged due to reassortments among avian, human, and swine strains within swine further increased the genetic diversity of swine influenza viruses. These findings are alarming hence active surveillance should be in place to prevent future influenza pandemics.
Collapse
|
19
|
Sobolev I, Kurskaya O, Leonov S, Kabilov M, Alikina T, Alekseev A, Yushkov Y, Saito T, Uchida Y, Mine J, Shestopalov A, Sharshov K. Novel reassortant of H1N1 swine influenza virus detected in pig population in Russia. Emerg Microbes Infect 2020; 8:1456-1464. [PMID: 31603050 PMCID: PMC6818105 DOI: 10.1080/22221751.2019.1673136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pigs play an important role in interspecies transmission of the influenza virus, particularly as "mixing vessels" for reassortment. Two influenza A/H1N1 virus strains, A/swine/Siberia/1sw/2016 and A/swine/Siberia/4sw/2017, were isolated during a surveillance of pigs from private farms in Russia from 2016 to 2017. There was a 10% identity difference between the HA and NA nucleotide sequences of isolated strains and the most phylogenetically related sequences (human influenza viruses of 1980s). Simultaneously, genome segments encoding internal proteins were found to be phylogenetically related to the A/H1N1pdm09 influenza virus. In addition, two amino acids (129-130) were deleted in the HA of A/swine/Siberia/4sw/2017 compared to that of A/swine/Siberia/1sw/2016 HA.
Collapse
Affiliation(s)
- Ivan Sobolev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine , Novosibirsk , Russia
| | - Olga Kurskaya
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine , Novosibirsk , Russia
| | - Sergey Leonov
- Siberian Federal Scientific Centre of Agro- BioTechnologies , Krasnoobsk , Russia
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia
| | - Tatyana Alikina
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk , Russia
| | - Alexander Alekseev
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine , Novosibirsk , Russia
| | - Yuriy Yushkov
- Siberian Federal Scientific Centre of Agro- BioTechnologies , Krasnoobsk , Russia
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health , Tsukuba , Japan
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health , Tsukuba , Japan
| | - Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health , Tsukuba , Japan
| | - Alexander Shestopalov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine , Novosibirsk , Russia
| | - Kirill Sharshov
- Department of Experimental Modeling and Pathogenesis of Infectious Diseases, Federal Research Center of Fundamental and Translational Medicine , Novosibirsk , Russia
| |
Collapse
|
20
|
Walia RR, Anderson TK, Vincent AL. Regional patterns of genetic diversity in swine influenza A viruses in the United States from 2010 to 2016. Influenza Other Respir Viruses 2019; 13:262-273. [PMID: 29624873 PMCID: PMC6468071 DOI: 10.1111/irv.12559] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Regular spatial and temporal analyses of the genetic diversity and evolutionary patterns of influenza A virus (IAV) in swine inform control efforts and improve animal health. Initiated in 2009, the USDA passively surveils IAV in U.S. swine, with a focus on subtyping clinical respiratory submissions, sequencing the hemagglutinin (HA) and neuraminidase (NA) genes at a minimum, and sharing these data publicly. OBJECTIVES In this study, our goal was to quantify and describe regional and national patterns in the genetic diversity and evolution of IAV in U.S. swine from 2010 to 2016. METHODS A comprehensive phylogenetic and epidemiological analysis of publicly available HA and NA genes generated by the USDA surveillance system collected from January 2010 to December 2016 was conducted. RESULTS The dominant subtypes and genetic clades detected during the study period were H1N1 (H1-γ/1A.3.3.3, N1-classical, 29%), H1N2 (H1-δ1/1B.2.2, N2-2002, 27%), and H3N2 (H3-IV-A, N2-2002, 15%), but many other minor clades were also maintained. Year-round circulation was observed, with a primary epidemic peak in October-November and a secondary epidemic peak in March-April. Partitioning these data into 5 spatial zones revealed that genetic diversity varied regionally and was not correlated with aggregated national patterns of HA/NA diversity. CONCLUSIONS These data suggest that vaccine composition and control efforts should consider IAV diversity within swine production regions in addition to aggregated national patterns.
Collapse
Affiliation(s)
- Rasna R. Walia
- Virus and Prion Research UnitNational Animal Disease CenterUSDA‐ARSAmesIAUSA
| | - Tavis K. Anderson
- Virus and Prion Research UnitNational Animal Disease CenterUSDA‐ARSAmesIAUSA
| | - Amy L. Vincent
- Virus and Prion Research UnitNational Animal Disease CenterUSDA‐ARSAmesIAUSA
| |
Collapse
|
21
|
Chamba Pardo FO, Schelkopf A, Allerson M, Morrison R, Culhane M, Perez A, Torremorell M. Breed-to-wean farm factors associated with influenza A virus infection in piglets at weaning. Prev Vet Med 2018; 161:33-40. [PMID: 30466656 DOI: 10.1016/j.prevetmed.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022]
Abstract
Breed-to-wean pig farms play an important role in spreading influenza A virus (IAV) because suckling piglets maintain, diversify and transmit IAV at weaning to other farms. Understanding the nature and extent of which farm factors drive IAV infection in piglets is a prerequisite to reduce the burden of influenza in swine. We evaluated the association between IAV infection in piglets at weaning and farm factors including farm features, herd management practices and gilt- and piglet-specific management procedures performed at the farm. Voluntarily enrolled breed-to-wean farms (n = 83) agreed to share IAV diagnostic testing and farm data from July 2011 through March 2017 including data obtained via the administration of a survey. There were 23% IAV RT-PCR positive samples of the 12,814 samples submitted for IAV testing within 2989 diagnostic submissions with 30% positive submissions. Among all the factors evaluated (n = 24), and considering the season-adjusted multivariable analysis, only sow IAV vaccination and gilt IAV status at entry significantly reduced (p-value<0.05) IAV infections in piglets at weaning. Results from this study indicate that veterinarians and producers could manage these identified factors to reduce the burden of influenza in piglets prior to wean and perhaps, reduce the spread of IAV to other farms and people.
Collapse
Affiliation(s)
- Fabian Orlando Chamba Pardo
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | - Adam Schelkopf
- Health Department, Pipestone Veterinary Services, 1300 South Highway 75, PO Box 188, Pipestone, MN 56164, USA.
| | - Matthew Allerson
- Health and Research Department, Holden Farms Inc., 457 375th street, Dennison, MN 55018, USA.
| | - Robert Morrison
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | - Marie Culhane
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | - Andres Perez
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| | - Montserrat Torremorell
- Veterinary Population Medicine Department, University of Minnesota, 335 AS/VM, 1988 Fitch Ave., St. Paul, MN 55108, USA.
| |
Collapse
|