1
|
Li S, Du Z, Ma H, Cai L, Liu X, He J. Mendelian randomization provides causal association between COVID-19 and thyroid cancer: insights from a multi-cancer analysis. Front Oncol 2024; 14:1419020. [PMID: 39319057 PMCID: PMC11419959 DOI: 10.3389/fonc.2024.1419020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Since the onset of the COVID-19 pandemic, the SARS-CoV-2 virus has caused over 600 million confirmed infections and more than 6.8 million deaths worldwide, with ongoing implications for human health. COVID-19 has been extensively documented to have extrapulmonary manifestations due to the widespread expression of necessary ACE2 receptors in the human body. Nevertheless, the association between COVID-19 and cancer risk remains inadequately explored. This study employs Mendelian randomization (MR) methods to examine the causal relationship between genetic variations associated with COVID-19 and the risk of developing cancer. The findings indicate that COVID-19 has negligible impact on most cancer risks. Interestingly, a higher COVID-19 impact is associated with a decreased risk of thyroid cancer. In summary, our findings demonstrate a genetic correlation between COVID-19 and thyroid cancer, contributing to our understanding of the interplay between COVID-19 and cancer risk.
Collapse
Affiliation(s)
- Shuhong Li
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, China
| | - Zedong Du
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, China
| | - Hui Ma
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, China
| | - Liang Cai
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, China
| | - Xiao Liu
- Department of Oncology, Chengdu Second People’s Hospital, Chengdu, China
| | - Jie He
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Lu S, Zhou Y, Hu Y, Wang J, Li H, Lin Y, Wang D, Xian J, Zhao S, Ma J, Zhu Z, Yang S, Meng Q, Kang Y, Chen B, Li W. Metatranscriptomic analysis revealed Prevotella as a potential biomarker of oropharyngeal microbiomes in SARS-CoV-2 infection. Front Cell Infect Microbiol 2023; 13:1161763. [PMID: 37333851 PMCID: PMC10272425 DOI: 10.3389/fcimb.2023.1161763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Background and objectives Disease severity and prognosis of coronavirus disease 2019 (COVID-19) disease with other viral infections can be affected by the oropharyngeal microbiome. However, limited research had been carried out to uncover how these diseases are differentially affected by the oropharyngeal microbiome of the patient. Here, we aimed to explore the characteristics of the oropharyngeal microbiota of COVID-19 patients and compare them with those of patients with similar symptoms. Methods COVID-19 was diagnosed in patients through the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Characterization of the oropharyngeal microbiome was performed by metatranscriptomic sequencing analyses of oropharyngeal swab specimens from 144 COVID-19 patients, 100 patients infected with other viruses, and 40 healthy volunteers. Results The oropharyngeal microbiome diversity in patients with SARS-CoV-2 infection was different from that of patients with other infections. Prevotella and Aspergillus could play a role in the differentiation between patients with SARS-CoV-2 infection and patients with other infections. Prevotella could also influence the prognosis of COVID-19 through a mechanism that potentially involved the sphingolipid metabolism regulation pathway. Conclusion The oropharyngeal microbiome characterization was different between SARS-CoV-2 infection and infections caused by other viruses. Prevotella could act as a biomarker for COVID-19 diagnosis and of host immune response evaluation in SARS-CoV-2 infection. In addition, the cross-talk among Prevotella, SARS-CoV-2, and sphingolipid metabolism pathways could provide a basis for the precise diagnosis, prevention, control, and treatment of COVID-19.
Collapse
Affiliation(s)
- Sifen Lu
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongzhao Zhou
- Department of Integrated Care Management Center, Frontier Science Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ya Hu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Wang
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Honghao Li
- Department of Hospital Management, West China Hospital, Sichuan University, Chengdu, China
| | - Yifei Lin
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Denian Wang
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinghong Xian
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Shengmei Zhao
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Jinmin Ma
- Beijing Genomics Institution (BGI)-PathoGenesis Pharmaceutical Technology, Beijing Genomics Institution (BGI)-Shenzhen, Shenzhen, China
| | - Zhongyi Zhu
- Beijing Genomics Institution (BGI)-PathoGenesis Pharmaceutical Technology, Beijing Genomics Institution (BGI)-Shenzhen, Shenzhen, China
| | - Shengying Yang
- Department of Computer and Software, Jincheng College of Chengdu, Chengdu, China
| | - Qinghui Meng
- Beijing Milu Ecological Research Center, Beijing Research Institute of Science and Technology, Beijing, China
| | - Yulin Kang
- Institute of Environmental Information, Chinese Research academy of Environmental Sciences, Beijing, China
| | - Bojiang Chen
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Integrated Care Management Center, Frontier Science Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
An observational multi-centric COVID-19 sequelae study among health care workers. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2023; 10:100129. [PMID: 36531928 PMCID: PMC9744681 DOI: 10.1016/j.lansea.2022.100129] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Background India has seen more than 43 million confirmed cases of COVID-19 as of April 2022, with a recovery rate of 98.8%, resulting in a large section of the population including the healthcare workers (HCWs), susceptible to develop post COVID sequelae. This study was carried out to assess the nature and prevalence of medical sequelae following COVID-19 infection, and risk factors, if any. Methods This was an observational, multicenter cross-sectional study conducted at eight tertiary care centers. The consenting participants were HCWs between 12 and 52 weeks post discharge after COVID-19 infection. Data on demographics, medical history, clinical features of COVID-19 and various symptoms of COVID sequelae was collected through specific questionnaire. Finding Mean age of the 679 eligible participants was 31.49 ± 9.54 years. The overall prevalence of COVID sequelae was 30.34%, with fatigue (11.5%) being the most common followed by insomnia (8.5%), difficulty in breathing during activity (6%) and pain in joints (5%). The odds of having any sequelae were significantly higher among participants who had moderate to severe COVID-19 (OR 6.51; 95% CI 3.46-12.23) and lower among males (OR 0.55; 95% CI 0.39-0.76). Besides these, other predictors for having sequelae were age (≥45 years), presence of any comorbidity (especially hypertension and asthma), category of HCW (non-doctors vs doctors) and hospitalisation due to COVID-19. Interpretation Approximately one-third of the participants experienced COVID sequelae. Severity of COVID illness, female gender, advanced age, co-morbidity were significant risk factors for COVID sequelae. Funding This work is a part of Indian Council for Medical Research (ICMR)- Rational Use of Medicines network. No additional financial support was received from ICMR to carry out the work, for study materials, medical writing, and APC.
Collapse
Key Words
- ACE2, Angiotensin-converting enzyme 2
- AE, Adverse events
- BMI, Body mass index
- CAD, Coronary artery disease
- CI, Confidence interval
- COVID sequelae
- COVID-19
- COVID-19, Corona virus disease 2019
- CTRI, Clinical Trials Registry- India
- DASS-21, Depression, Anxiety, and Stress Scale-21
- ENT, Ear, nose, and throat
- GERD, Gastroesophageal reflux disease
- HCQ, Hydroxychloroquine
- HCW, Health care worker
- ICMR, Indian council of medical research
- ICMR-RUMC
- Long COVID
- MOHFW, Ministry of Health and Family Welfare, Govt. of India
- NICE, National Institute for Health and Clinical Excellence
- OR, Odds ratio
- PCOS, Polycystic Ovarian Disease
- PLOG, Polymerase gamma-related disorders
- RHD, Rheumatic heart disease
- RUMC, Rational use of medicine center
- SARS-CoV-2
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- WHO, World Health Organization
- p-value, Probability value
Collapse
|
4
|
Halfmann PJ, Minor NR, Haddock III LA, Maddox R, Moreno GK, Braun KM, Baker DA, Riemersa KK, Prasad A, Alman KJ, Lambert MC, Florek K, Bateman A, Westergaard R, Safdar N, Andes DR, Kawaoka Y, Fida M, Yao JD, Friedrich TC, O’Connor DH. Evolution of a globally unique SARS-CoV-2 Spike E484T monoclonal antibody escape mutation in a persistently infected, immunocompromised individual. Virus Evol 2022; 9:veac104. [PMID: 37692895 PMCID: PMC10491860 DOI: 10.1093/ve/veac104] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 09/12/2023] Open
Abstract
Prolonged infections in immunocompromised individuals may be a source for novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, particularly when both the immune system and antiviral therapy fail to clear the infection and enable within-host evolution. Here we describe a 486-day case of SARS-CoV-2 infection in an immunocompromised individual. Following monotherapy with the monoclonal antibody Bamlanivimab, the individual's virus acquired resistance, likely via the earliest known occurrence of Spike amino acid variant E484T. Recently, E484T has arisen again as a derivative of E484A in the Omicron Variant of Concern, supporting the hypothesis that prolonged infections can give rise to novel variants long before they become prevalent in the human population.
Collapse
Affiliation(s)
- Peter J Halfmann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - Nicholas R Minor
- Department of Pathology and Laboratory Medicine, 3170 UW Medical Foundation Centennial Building (MFCB), 1685 Highland Avenue, Madison, WI 53705, USA
| | - Luis A Haddock III
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - Robert Maddox
- Department of Pathology and Laboratory Medicine, 3170 UW Medical Foundation Centennial Building (MFCB), 1685 Highland Avenue, Madison, WI 53705, USA
| | - Gage K Moreno
- Department of Pathology and Laboratory Medicine, 3170 UW Medical Foundation Centennial Building (MFCB), 1685 Highland Avenue, Madison, WI 53705, USA
| | - Katarina M Braun
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - David A Baker
- Department of Pathology and Laboratory Medicine, 3170 UW Medical Foundation Centennial Building (MFCB), 1685 Highland Avenue, Madison, WI 53705, USA
| | - Kasen K Riemersa
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - Ankur Prasad
- Division of Allergy, Pulmonary and Critical Care Medicine, School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705-2281, USA
| | - Kirsten J Alman
- University of Wisconsin Division of Infectious Disease, Room 5275-07C, 1685 Highland Avenue, Madison, WI 53705, USA
| | - Matthew C Lambert
- University of Wisconsin Division of Infectious Disease, Room 5275-07C, 1685 Highland Avenue, Madison, WI 53705, USA
| | - Kelsey Florek
- Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, PO Box 7996, Madison, WI 53707, USA
| | - Allen Bateman
- Wisconsin State Laboratory of Hygiene, 2601 Agriculture Drive, PO Box 7996, Madison, WI 53707, USA
| | - Ryan Westergaard
- Department of Medicine, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, USA
| | - Nasia Safdar
- Department of Medicine, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, USA
| | - David R Andes
- Department of Medicine, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - Madiha Fida
- Division of Infectious Diseases, Mayo Clinic, 200 First St. SW, Rochester, Rochester, Minnesota 55905, USA
| | - Joseph D Yao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA
| | - David H O’Connor
- Department of Pathology and Laboratory Medicine, 3170 UW Medical Foundation Centennial Building (MFCB), 1685 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
5
|
Bubeníkova J, Futas J, Oppelt J, Plasil M, Vodicka R, Burger PA, Horin P. The natural cytotoxicity receptor (NCR) genes in the family Felidae. HLA 2022; 100:597-609. [PMID: 36056773 DOI: 10.1111/tan.14803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
Natural killer (NK) cells belong to the innate immune system. The germline-encoded natural killer cell receptors represent activating and inhibitory receptors regulating multiple NK cell activities. The natural cytotoxicity receptors (NCRs) are activating natural cytotoxicity triggering receptors 1, 2 and 3 (NKp46, NKp44, and NKp30), encoded by the genes NCR1, NCR2, and NCR3, respectively. NCRs may be expressed in different cell types engaged in mechanisms of innate and adaptive immunity. The family Felidae, comprising the domestic cat and a wide variety of free-ranging species represents a well-suited model for biomedical and evolutionary studies. We characterized the NCR1, NCR2 and NCR3 genes in a panel of felid species. We confirmed the presence of potentially functional genes NCR1, NCR2 and NCR3 in all species. All three genes are conserved within the family and are similar to other phylogenetically related mammalian families. The NCR1 and NCR2 phylogenetic trees based on both nucleotide and protein sequences corresponded to the current zoological taxonomy, with some exceptions suggesting effects of different selection pressures in some species. Highly conserved NCR3 sequences did not allow a robust phylogenetic analysis. Most interspecific differences both at the nucleotide and protein level were found in NCR2. Within species, the most polymorphic CDS was detected in NCR1. Selection analyses indicated the effects of purifying selection on individual amino acid sites in all three genes. In stray cats, a rather high intraspecific diversity was observed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jana Bubeníkova
- Dept. of Animal Genetics, VETUNI Brno, Brno, Czech Republic.,Research Group Animal Immunogenomics, CEITEC - VETUNI Brno, Brno, Czech Republic
| | - Jan Futas
- Dept. of Animal Genetics, VETUNI Brno, Brno, Czech Republic.,Research Group Animal Immunogenomics, CEITEC - VETUNI Brno, Brno, Czech Republic
| | - Jan Oppelt
- Research Group Animal Immunogenomics, CEITEC - VETUNI Brno, Brno, Czech Republic
| | - Martin Plasil
- Research Group Animal Immunogenomics, CEITEC - VETUNI Brno, Brno, Czech Republic
| | | | - Pamela A Burger
- Research Institute of Wildlife Ecology, VETMEDUNI Vienna, Vienna, Austria
| | - Petr Horin
- Dept. of Animal Genetics, VETUNI Brno, Brno, Czech Republic.,Research Group Animal Immunogenomics, CEITEC - VETUNI Brno, Brno, Czech Republic
| |
Collapse
|
6
|
Wing PAC, Prange-Barczynska M, Cross A, Crotta S, Orbegozo Rubio C, Cheng X, Harris JM, Zhuang X, Johnson RL, Ryan KA, Hall Y, Carroll MW, Issa F, Balfe P, Wack A, Bishop T, Salguero FJ, McKeating JA. Hypoxia inducible factors regulate infectious SARS-CoV-2, epithelial damage and respiratory symptoms in a hamster COVID-19 model. PLoS Pathog 2022; 18:e1010807. [PMID: 36067210 PMCID: PMC9481176 DOI: 10.1371/journal.ppat.1010807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Understanding the host pathways that define susceptibility to Severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) infection and disease are essential for the design of new therapies. Oxygen levels in the microenvironment define the transcriptional landscape, however the influence of hypoxia on virus replication and disease in animal models is not well understood. In this study, we identify a role for the hypoxic inducible factor (HIF) signalling axis to inhibit SARS-CoV-2 infection, epithelial damage and respiratory symptoms in the Syrian hamster model. Pharmacological activation of HIF with the prolyl-hydroxylase inhibitor FG-4592 significantly reduced infectious virus in the upper and lower respiratory tract. Nasal and lung epithelia showed a reduction in SARS-CoV-2 RNA and nucleocapsid expression in treated animals. Transcriptomic and pathological analysis showed reduced epithelial damage and increased expression of ciliated cells. Our study provides new insights on the intrinsic antiviral properties of the HIF signalling pathway in SARS-CoV-2 replication that may be applicable to other respiratory pathogens and identifies new therapeutic opportunities.
Collapse
Affiliation(s)
- Peter A. C. Wing
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Maria Prange-Barczynska
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Amy Cross
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Xiaotong Cheng
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - James M. Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel L. Johnson
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Kathryn A. Ryan
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Yper Hall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Miles W. Carroll
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Radcliffe Department of Surgery, University of Oxford, United Kingdom
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tammie Bishop
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Ludwig institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Francisco J. Salguero
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury, United Kingdom
| | - Jane A. McKeating
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Smith AP, Williams EP, Plunkett TR, Selvaraj M, Lane LC, Zalduondo L, Xue Y, Vogel P, Channappanavar R, Jonsson CB, Smith AM. Time-Dependent Increase in Susceptibility and Severity of Secondary Bacterial Infections During SARS-CoV-2. Front Immunol 2022; 13:894534. [PMID: 35634338 PMCID: PMC9134015 DOI: 10.3389/fimmu.2022.894534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate infection with the SARS-CoV-2 USA-WA1/2020 strain increased the risk of pneumococcal (type 2 strain D39) coinfection in a time-dependent, but sex-independent, manner in the transgenic K18-hACE2 mouse model of COVID-19. Bacterial coinfection increased lethality when the bacteria was initiated at 5 or 7 d post-virus infection (pvi) but not at 3 d pvi. Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.
Collapse
Affiliation(s)
- Amanda P. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Taylor R. Plunkett
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Muneeswaran Selvaraj
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lindey C. Lane
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Lillian Zalduondo
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yi Xue
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Rudragouda Channappanavar
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
8
|
Smith AP, Williams EP, Plunkett TR, Selvaraj M, Lane LC, Zalduondo L, Xue Y, Vogel P, Channappanavar R, Jonsson CB, Smith AM. Time-Dependent Increase in Susceptibility and Severity of Secondary Bacterial Infection during SARS-CoV-2 Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.28.482305. [PMID: 35262077 PMCID: PMC8902874 DOI: 10.1101/2022.02.28.482305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate SARS-CoV-2 infection increased the risk of pneumococcal coinfection in a time-dependent, but sexindependent, manner in the transgenic K18-hACE mouse model of COVID-19. Bacterial coinfection was not established at 3 d post-virus, but increased lethality was observed when the bacteria was initiated at 5 or 7 d post-virus infection (pvi). Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.
Collapse
Affiliation(s)
- Amanda P. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Evan P. Williams
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Taylor R. Plunkett
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Muneeswaran Selvaraj
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lindey C. Lane
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lillian Zalduondo
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yi Xue
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Peter Vogel
- Animal Resources Center and Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rudragouda Channappanavar
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Colleen B. Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amber M. Smith
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
- Institute for the Study of Host-Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
9
|
Lee JY, Wing PAC, Gala DS, Noerenberg M, Järvelin AI, Titlow J, Zhuang X, Palmalux N, Iselin L, Thompson MK, Parton RM, Prange-Barczynska M, Wainman A, Salguero FJ, Bishop T, Agranoff D, James W, Castello A, McKeating JA, Davis I. Absolute quantitation of individual SARS-CoV-2 RNA molecules provides a new paradigm for infection dynamics and variant differences. eLife 2022; 11:74153. [PMID: 35049501 PMCID: PMC8776252 DOI: 10.7554/elife.74153] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
Despite an unprecedented global research effort on SARS-CoV-2, early replication events remain poorly understood. Given the clinical importance of emergent viral variants with increased transmission, there is an urgent need to understand the early stages of viral replication and transcription. We used single-molecule fluorescence in situ hybridisation (smFISH) to quantify positive sense RNA genomes with 95% detection efficiency, while simultaneously visualising negative sense genomes, subgenomic RNAs, and viral proteins. Our absolute quantification of viral RNAs and replication factories revealed that SARS-CoV-2 genomic RNA is long-lived after entry, suggesting that it avoids degradation by cellular nucleases. Moreover, we observed that SARS-CoV-2 replication is highly variable between cells, with only a small cell population displaying high burden of viral RNA. Unexpectedly, the B.1.1.7 variant, first identified in the UK, exhibits significantly slower replication kinetics than the Victoria strain, suggesting a novel mechanism contributing to its higher transmissibility with important clinical implications.
Collapse
Affiliation(s)
- Jeffrey Y Lee
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Peter AC Wing
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), The University of OxfordOxfordUnited Kingdom
| | - Dalia S Gala
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Marko Noerenberg
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom,MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Aino I Järvelin
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Joshua Titlow
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Louisa Iselin
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Mary Kay Thompson
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Richard M Parton
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| | - Maria Prange-Barczynska
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Ludwig Institute for Cancer Research, The University of OxfordOxfordUnited Kingdom
| | - Alan Wainman
- Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom
| | | | - Tammie Bishop
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Ludwig Institute for Cancer Research, The University of OxfordOxfordUnited Kingdom
| | - Daniel Agranoff
- Department of Infectious Diseases, University Hospitals Sussex NHS Foundation TrustBrightonUnited Kingdom
| | - William James
- Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom,James & Lillian Martin Centre, Sir William Dunn School of Pathology, The University of OxfordOxfordUnited Kingdom
| | - Alfredo Castello
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom,MRC-University of Glasgow Centre for Virus Research, The University of GlasgowGlasgowUnited Kingdom
| | - Jane A McKeating
- Nuffield Department of Medicine, The University of OxfordOxfordUnited Kingdom,Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI), The University of OxfordOxfordUnited Kingdom
| | - Ilan Davis
- Department of Biochemistry, The University of OxfordOxfordUnited Kingdom
| |
Collapse
|
10
|
Batista CM, Foti L. Anti-SARS-CoV-2 and anti-cytokine storm neutralizing antibody therapies against COVID-19: Update, challenges, and perspectives. Int Immunopharmacol 2021; 99:108036. [PMID: 34371330 PMCID: PMC8330556 DOI: 10.1016/j.intimp.2021.108036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has been declared by the World Health Organization (WHO) as a pandemic since March 2020. This disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The only available tools to avoid contamination and transmission of this virus are physical distancing, the use of N95 and surgical masks, and hand hygiene. Vaccines are another essential tool to reduce the impact of the pandemic, though these present challenges in terms of production and logistics, particularly in underdeveloped and developing countries. One of the critical early research findings is the interaction of the spike virus protein with the angiotensin-converting enzyme 2 (ACE2) human receptor. Developing strategies to block this interaction has therefore been identified as a way to treat this infection. Neutralizing antibodies (nAbs) have emerged as a therapeutic approach since the pandemic started. Infected patients may be asymptomatic or present with mild symptoms, and others may evolve to moderate or severe disease, leading to death. An immunological phenomenon known as cytokine storm has been observed in patients with severe disease characterized by a proinflammatory cytokine cascade response that leads to lung injury. Thus, some treatment strategies focus on anti-cytokine storm nAbs. This review summarizes the latest advances in research and clinical trials, challenges, and perspectives on antibody-based treatments (ABT) as therapies against COVID-19.
Collapse
Affiliation(s)
| | - Leonardo Foti
- Laboratory of Trypanosomatids Molecular and Systemic Biology, Brazil.
| |
Collapse
|
11
|
Krsak M, Harry BL, Palmer BE, Franco-Paredes C. Postinfectious Immunity After COVID-19 and Vaccination Against SARS-CoV-2. Viral Immunol 2021; 34:504-509. [PMID: 34227891 DOI: 10.1089/vim.2021.0054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Early results suggest that SARS-CoV-2 vaccines are highly effective for the prevention of COVID-19. Unfortunately, until we can safely, rapidly, and affordably vaccinate enough people to achieve collective immunity, we cannot afford to disregard the benefits of naturally acquired immunity in those, whose prior documented infections have already run their course. As long as the vaccine manufacturing, supply, or administration are limited in capacity, vaccination of individuals with naturally acquired immunity at the expense of others without any immune protection is inherently inequitable, and violates the principle of justice in biomedical ethics. Any preventable disease acquired during the period of such unnecessary delay in vaccination should not be overlooked, as it may and will result in some additional morbidity, mortality, related hospitalizations, and expense. Low vaccine production capacity complicated by inefficiencies in vaccine administration suggests, that vaccinating preferentially those without any prior protection will result in fewer natural infections more rapidly.
Collapse
Affiliation(s)
- Martin Krsak
- Divisions of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brian L Harry
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brent E Palmer
- Divisions of Allergy and Clinical Immunology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Carlos Franco-Paredes
- Divisions of Infectious Diseases, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Hospital Infantil de México, Federico Gomez, México City, Mexico
| |
Collapse
|
12
|
Zhang C, Forsdyke DR. Potential Achilles heels of SARS-CoV-2 are best displayed by the base order-dependent component of RNA folding energy. Comput Biol Chem 2021; 94:107570. [PMID: 34500325 PMCID: PMC8410225 DOI: 10.1016/j.compbiolchem.2021.107570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/29/2022]
Abstract
The base order-dependent component of folding energy has revealed a highly conserved region in HIV-1 genomes that associates with RNA structure. This corresponds to a packaging signal that is recognized by the nucleocapsid domain of the Gag polyprotein. Long viewed as a potential HIV-1 "Achilles heel," the signal can be targeted by a new antiviral compound. Although SARS-CoV-2 differs in many respects from HIV-1, the same technology displays regions with a high base order-dependent folding energy component, which are also highly conserved. This indicates structural invariance (SI) sustained by natural selection. While the regions are often also protein-encoding (e. g. NSP3, ORF3a), we suggest that their nucleic acid level functions can be considered potential "Achilles heels" for SARS-CoV-2, perhaps susceptible to therapies like those envisaged for AIDS. The ribosomal frameshifting element scored well, but higher SI scores were obtained in other regions, including those encoding NSP13 and the nucleocapsid (N) protein.
Collapse
Affiliation(s)
- Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L3N6, Canada.
| |
Collapse
|
13
|
Honore PM, Redant S, Preseau T, Kaefer K, Barreto Gutierrez L, Attou R, Gallerani A, De Bels D. A Study Revealed That a High Percentage of Patients With Severe COVID-19 With Viral RNAaemia Had Significantly Worse Outcomes, and This Is the First Report About the Risk Factors of Viral RNAaemia in Patients With COVID-19: We Are Not Sure! Chest 2021; 160:e85-e86. [PMID: 34246395 PMCID: PMC8261019 DOI: 10.1016/j.chest.2021.02.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Patrick M Honore
- ICU Department, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium.
| | - Sebastien Redant
- ICU Department, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - Thierry Preseau
- ED Department, Centre Hospitalier Universitaire Brugmann, ULB University, Brussels, Belgium
| | - Keitiane Kaefer
- ICU Department, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | | | - Rachid Attou
- ICU Department, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - Andrea Gallerani
- ICU Department, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| | - David De Bels
- ICU Department, Centre Hospitalier Universitaire Brugmann, Brussels, Belgium
| |
Collapse
|
14
|
Jones TC, Biele G, Mühlemann B, Veith T, Schneider J, Beheim-Schwarzbach J, Bleicker T, Tesch J, Schmidt ML, Sander LE, Kurth F, Menzel P, Schwarzer R, Zuchowski M, Hofmann J, Krumbholz A, Stein A, Edelmann A, Corman VM, Drosten C. Estimating infectiousness throughout SARS-CoV-2 infection course. Science 2021; 373:eabi5273. [PMID: 34035154 PMCID: PMC9267347 DOI: 10.1126/science.abi5273] [Citation(s) in RCA: 312] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/21/2021] [Indexed: 12/20/2022]
Abstract
Two elementary parameters for quantifying viral infection and shedding are viral load and whether samples yield a replicating virus isolate in cell culture. We examined 25,381 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Germany, including 6110 from test centers attended by presymptomatic, asymptomatic, and mildly symptomatic (PAMS) subjects, 9519 who were hospitalized, and 1533 B.1.1.7 lineage infections. The viral load of the youngest subjects was lower than that of the older subjects by 0.5 (or fewer) log10 units, and they displayed an estimated ~78% of the peak cell culture replication probability; in part this was due to smaller swab sizes and unlikely to be clinically relevant. Viral loads above 109 copies per swab were found in 8% of subjects, one-third of whom were PAMS, with a mean age of 37.6 years. We estimate 4.3 days from onset of shedding to peak viral load (108.1 RNA copies per swab) and peak cell culture isolation probability (0.75). B.1.1.7 subjects had mean log10 viral load 1.05 higher than that of non-B.1.1.7 subjects, and the estimated cell culture replication probability of B.1.1.7 subjects was higher by a factor of 2.6.
Collapse
Affiliation(s)
- Terry C Jones
- Institute of Virology, Charité--Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, U.K
| | - Guido Biele
- Norwegian Institute of Public Health, 0473 Oslo, Norway
- University of Oslo, 0315 Oslo, Norway
| | - Barbara Mühlemann
- Institute of Virology, Charité--Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Talitha Veith
- Institute of Virology, Charité--Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Julia Schneider
- Institute of Virology, Charité--Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Jörn Beheim-Schwarzbach
- Institute of Virology, Charité--Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Tobias Bleicker
- Institute of Virology, Charité--Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Julia Tesch
- Institute of Virology, Charité--Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Marie Luisa Schmidt
- Institute of Virology, Charité--Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Leif Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, and Department of Medicine I, University Medical Centre Hamburg-Eppendorf, 20359 Hamburg, Germany
| | - Peter Menzel
- Labor Berlin-Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Rolf Schwarzer
- Labor Berlin-Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Marta Zuchowski
- Labor Berlin-Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Jörg Hofmann
- Labor Berlin-Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Andi Krumbholz
- Institute for Infection Medicine, Christian-Albrechts-Universität zu Kiel and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, 24106 Kiel, Germany
| | - Angela Stein
- Labor Berlin-Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Anke Edelmann
- Labor Berlin-Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Victor Max Corman
- Institute of Virology, Charité--Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité--Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
| |
Collapse
|
15
|
Ramakrishnan RK, Kashour T, Hamid Q, Halwani R, Tleyjeh IM. Unraveling the Mystery Surrounding Post-Acute Sequelae of COVID-19. Front Immunol 2021; 12:686029. [PMID: 34276671 PMCID: PMC8278217 DOI: 10.3389/fimmu.2021.686029] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
More than one year since its emergence, corona virus disease 2019 (COVID-19) is still looming large with a paucity of treatment options. To add to this burden, a sizeable subset of patients who have recovered from acute COVID-19 infection have reported lingering symptoms, leading to significant disability and impairment of their daily life activities. These patients are considered to suffer from what has been termed as “chronic” or “long” COVID-19 or a form of post-acute sequelae of COVID-19, and patients experiencing this syndrome have been termed COVID-19 long-haulers. Despite recovery from infection, the persistence of atypical chronic symptoms, including extreme fatigue, shortness of breath, joint pains, brain fogs, anxiety and depression, that could last for months implies an underlying disease pathology that persist beyond the acute presentation of the disease. As opposed to the direct effects of the virus itself, the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to be largely responsible for the appearance of these lasting symptoms, possibly through facilitating an ongoing inflammatory process. In this review, we hypothesize potential immunological mechanisms underlying these persistent and prolonged effects, and describe the multi-organ long-term manifestations of COVID-19.
Collapse
Affiliation(s)
- Rakhee K Ramakrishnan
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Tarek Kashour
- Department of Cardiac Sciences, King Fahad Cardiac Center, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, McGill University, Montreal, QC, Canada
| | - Rabih Halwani
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Imad M Tleyjeh
- Infectious Diseases Section, Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, United States.,Division of Epidemiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
16
|
López-Mendoza H, Montañés A, Moliner-Lahoz FJ. Disparities in the Evolution of the COVID-19 Pandemic between Spanish Provinces. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5085. [PMID: 34064938 PMCID: PMC8151898 DOI: 10.3390/ijerph18105085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022]
Abstract
Spain experienced a second wave of the COVID-19 pandemic in autumn 2020, which has been approached with different measures by regional authorities. We analyze the presence of convergence in the cumulative incidence for 14 days (CI14) in provinces and self-governing cities. The Phillips-Sul methodology was used to study the grouping of behavior between provinces, and an ordered logit model was estimated to understand the forces that drive creating the different convergence clubs. We reject the presence of a single pattern of behavior in the evolution of the CI14 across territories. Four statistically different convergence clubs and an additional province (Madrid) with divergent behavior are observed. Provinces with developed agricultural and industrial economic sectors, high mobility, and a high proportion of Central and South American immigrants had the highest level of CI14. We show that the transmission of the virus is not homogeneous in the Spanish national territory. Our results are helpful for identifying differences in determinants that could explain the pandemic's evolution and for formulating hypotheses about the effectiveness of implemented measures.
Collapse
Affiliation(s)
- Héctor López-Mendoza
- Directorate-General of Public Health, Aragon Department of Health, 50017 Zaragoza, Spain;
- Preventive Medicine and Public Health Department, Lozano Blesa University Hospital, 50009 Zaragoza, Spain;
| | - Antonio Montañés
- Economic Analysis Department, University of Zaragoza, 50005 Zaragoza, Spain
| | - F. Javier Moliner-Lahoz
- Preventive Medicine and Public Health Department, Lozano Blesa University Hospital, 50009 Zaragoza, Spain;
| |
Collapse
|
17
|
|
18
|
Neto MLR, da Silva CGL, do Socorro Vieira dos Santos M, Cândido EL, de Lima MAP, de França Lacerda Pinheiro S, Junior RFFP, Teixeira CS, Machado SSF, Pinheiro LFG, de Sousa GO, Galvão LMA, Gomes KGS, Medeiros KA, Diniz LA, de Oliveira ÍGP, Santana JRP, Rocha MAB, Damasceno IA, Cordeiro TL, da Silva Sales W. Epidemiology and Etiopathogeny of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1352:45-71. [DOI: 10.1007/978-3-030-85109-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|