1
|
Tikhomirova A, McNabb ER, Petterlin L, Bellamy GL, Lin KH, Santoso CA, Daye ES, Alhaddad FM, Lee KP, Roujeinikova A. Campylobacter jejuni virulence factors: update on emerging issues and trends. J Biomed Sci 2024; 31:45. [PMID: 38693534 PMCID: PMC11064354 DOI: 10.1186/s12929-024-01033-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Campylobacter jejuni is a very common cause of gastroenteritis, and is frequently transmitted to humans through contaminated food products or water. Importantly, C. jejuni infections have a range of short- and long-term sequelae such as irritable bowel syndrome and Guillain Barre syndrome. C. jejuni triggers disease by employing a range of molecular strategies which enable it to colonise the gut, invade the epithelium, persist intracellularly and avoid detection by the host immune response. The objective of this review is to explore and summarise recent advances in the understanding of the C. jejuni molecular factors involved in colonisation, invasion of cells, collective quorum sensing-mediated behaviours and persistence. Understanding the mechanisms that underpin the pathogenicity of C. jejuni will enable future development of effective preventative approaches and vaccines against this pathogen.
Collapse
Affiliation(s)
- Alexandra Tikhomirova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Emmylee R McNabb
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Luca Petterlin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Georgia L Bellamy
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kyaw H Lin
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Christopher A Santoso
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ella S Daye
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Fatimah M Alhaddad
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Kah Peng Lee
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia
| | - Anna Roujeinikova
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne, VIC, 3800, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
2
|
Adrianza A, Pourfarrokh N, Choi H, Hwang M, Lukey J, Jinadatha C, Navarathna DH. Campylobacter coli bacteremia associated with diarrhea. IDCases 2023; 31:e01734. [PMID: 36911871 PMCID: PMC9992746 DOI: 10.1016/j.idcr.2023.e01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023] Open
Abstract
Campylobacter coli (C. coli) is a gram negative, non-spore forming, mobile, curved, or spiral-shaped rod organisms and one of the most common gastrointestinal human pathogens. Campylobacter very rarely causes bacteremia. However, there are reports of bloodstream infection of C. coli and most of the Campylobacterbacteremia have been found among immunocompromised patients. In this study, a case of C. coli blood stream infection that was associated with diarrhea in an immunocompetent patient.
Collapse
Affiliation(s)
- Andres Adrianza
- Department of Pathology And Laboratory Medicine, Baylor Scott & White medical Center, Temple, TX, USA
| | - Niloufar Pourfarrokh
- Department of Pathology And Laboratory Medicine, Baylor Scott & White medical Center, Temple, TX, USA
| | - Hosoon Choi
- Department of Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Munok Hwang
- Department of Research, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Janell Lukey
- Department of Pathology and Laboratory Medicine Services, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Chetan Jinadatha
- Department of Research, Central Texas Veterans Health Care System, Temple, TX, USA.,Department of Medicine, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Dhammika H Navarathna
- Department of Pathology and Laboratory Medicine Services, Central Texas Veterans Health Care System, Temple, TX, USA
| |
Collapse
|
3
|
Løchen A, Truscott JE, Croucher NJ. Analysing pneumococcal invasiveness using Bayesian models of pathogen progression rates. PLoS Comput Biol 2022; 18:e1009389. [PMID: 35176026 PMCID: PMC8901055 DOI: 10.1371/journal.pcbi.1009389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/07/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022] Open
Abstract
The disease burden attributable to opportunistic pathogens depends on their prevalence in asymptomatic colonisation and the rate at which they progress to cause symptomatic disease. Increases in infections caused by commensals can result from the emergence of "hyperinvasive" strains. Such pathogens can be identified through quantifying progression rates using matched samples of typed microbes from disease cases and healthy carriers. This study describes Bayesian models for analysing such datasets, implemented in an RStan package (https://github.com/nickjcroucher/progressionEstimation). The models converged on stable fits that accurately reproduced observations from meta-analyses of Streptococcus pneumoniae datasets. The estimates of invasiveness, the progression rate from carriage to invasive disease, in cases per carrier per year correlated strongly with the dimensionless values from meta-analysis of odds ratios when sample sizes were large. At smaller sample sizes, the Bayesian models produced more informative estimates. This identified historically rare but high-risk S. pneumoniae serotypes that could be problematic following vaccine-associated disruption of the bacterial population. The package allows for hypothesis testing through model comparisons with Bayes factors. Application to datasets in which strain and serotype information were available for S. pneumoniae found significant evidence for within-strain and within-serotype variation in invasiveness. The heterogeneous geographical distribution of these genotypes is therefore likely to contribute to differences in the impact of vaccination in between locations. Hence genomic surveillance of opportunistic pathogens is crucial for quantifying the effectiveness of public health interventions, and enabling ongoing meta-analyses that can identify new, highly invasive variants.
Collapse
Affiliation(s)
- Alessandra Løchen
- Department of Infectious Disease Epidemiology, School of Public Health, St. Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, White City Campus, Imperial College London, London, United Kingdom
| | - James E. Truscott
- Department of Infectious Disease Epidemiology, School of Public Health, St. Mary’s Campus, Imperial College London, London, United Kingdom
| | - Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, School of Public Health, St. Mary’s Campus, Imperial College London, London, United Kingdom
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, White City Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Gomes CN, Campioni F, Vilela FP, Duque SS, Falcão JP. Campylobacter coli strains from Brazil can invade phagocytic and epithelial cells and induce IL-8 secretion. Braz J Microbiol 2021; 52:859-867. [PMID: 33590448 PMCID: PMC8105435 DOI: 10.1007/s42770-021-00450-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/06/2021] [Indexed: 11/27/2022] Open
Abstract
Campylobacter spp. have been a predominant cause of bacterial foodborne gastroenteritis worldwide, causing substantial costs to public healthcare systems. This study aimed to assess the invasion and pro-inflammatory cytokine production capacity of Campylobacter coli strains isolated in Brazil. A total of 50 C. coli isolated from different sources in Brazil were analyzed for their capacity of invasion in Caco-2 and U-937 cell lines. The production of pro-inflammatory cytokines was quantitatively measured in response to C. coli. All the strains studied showed invasion percentage ≥ 40% in polarized Caco-2 cells. In U-937 cells assay, 35 of 50 C. coli strains studied showed invasion percentage ≥ 50%. A significant increase in IL-8 production by infected U-937 cells was observed for 17.5% of the C. coli isolates. The high percentages of invasion in Caco-2 and U-937 cells observed for all studied strains, plus the increased production of IL-8 by U-937 cells against some strains, highlighted the pathogenic potential of the C. coli studied and bring extremely relevant data since it has never been reported for strains isolated in Brazil and there are a few data for C. coli in the literature.
Collapse
Affiliation(s)
- Carolina N Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fábio Campioni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Felipe P Vilela
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Sheila S Duque
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto Oswaldo Cruz-IOC, Pavilhão Rocha Lima, sala 516, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Juliana P Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
5
|
Luijkx YMCA, Bleumink NMC, Jiang J, Overkleeft HS, Wösten MMSM, Strijbis K, Wennekes T. Bacteroides fragilis fucosidases facilitate growth and invasion of Campylobacter jejuni in the presence of mucins. Cell Microbiol 2020; 22:e13252. [PMID: 32827216 PMCID: PMC7685106 DOI: 10.1111/cmi.13252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
The enteropathogenic bacterium, Campylobacter jejuni, was considered to be non‐saccharolytic, but recently it emerged that l‐fucose plays a central role in C. jejuni virulence. Half of C. jejuni clinical isolates possess an operon for l‐fucose utilisation. In the intestinal tract, l‐fucose is abundantly available in mucin O‐linked glycan structures, but C. jejuni lacks a fucosidase enzyme essential to release the l‐fucose. We set out to determine how C. jejuni can gain access to these intestinal l‐fucosides. Growth of the fuc + C. jejuni strains, 129,108 and NCTC 11168, increased in the presence of l‐fucose while fucose permease knockout strains did not benefit from additional l‐fucose. With fucosidase assays and an activity‐based probe, we confirmed that Bacteriodes fragilis, an abundant member of the intestinal microbiota, secretes active fucosidases. In the presence of mucins, C. jejuni was dependent on B. fragilis fucosidase activity for increased growth. Campylobacter jejuni invaded Caco‐2 intestinal cells that express complex O‐linked glycan structures that contain l‐fucose. In infection experiments, C. jejuni was more invasive in the presence of B. fragilis and this increase is due to fucosidase activity. We conclude that C. jejuni fuc + strains are dependent on exogenous fucosidases for increased growth and invasion.
Collapse
Affiliation(s)
- Yvette M C A Luijkx
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nancy M C Bleumink
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jianbing Jiang
- Leiden institute of Chemistry, Leiden University, Leiden, The Netherlands.,Health Science Center, School of Pharmacy, Shenzhen University, Shenzhen, China
| | | | - Marc M S M Wösten
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department Biomolecular Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tom Wennekes
- Department Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Mehat JW, La Ragione RM, van Vliet AHM. Campylobacter jejuni and Campylobacter coli autotransporter genes exhibit lineage-associated distribution and decay. BMC Genomics 2020; 21:314. [PMID: 32306949 PMCID: PMC7168839 DOI: 10.1186/s12864-020-6704-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/27/2020] [Indexed: 11/17/2022] Open
Abstract
Background Campylobacter jejuni and Campylobacter coli are major global causes of bacterial gastroenteritis. Whilst several individual colonisation and virulence factors have been identified, our understanding of their role in the transmission, pathogenesis and ecology of Campylobacter has been hampered by the genotypic and phenotypic diversity within C. jejuni and C. coli. Autotransporter proteins are a family of outer membrane or secreted proteins in Gram-negative bacteria such as Campylobacter, which are associated with virulence functions. In this study we have examined the distribution and predicted functionality of the previously described capC and the newly identified, related capD autotransporter gene families in Campylobacter. Results Two capC-like autotransporter families, designated capC and capD, were identified by homology searches of genomes of the genus Campylobacter. Each family contained four distinct orthologs of CapC and CapD. The distribution of these autotransporter genes was determined in 5829 C. jejuni and 1347 C. coli genomes. Autotransporter genes were found as intact, complete copies and inactive formats due to premature stop codons and frameshift mutations. Presence of inactive and intact autotransporter genes was associated with C. jejuni and C. coli multi-locus sequence types, but for capC, inactivation was independent from the length of homopolymeric tracts in the region upstream of the capC gene. Inactivation of capC or capD genes appears to represent lineage-specific gene decay of autotransporter genes. Intact capC genes were predominantly associated with the C. jejuni ST-45 and C. coli ST-828 generalist lineages. The capD3 gene was only found in the environmental C. coli Clade 3 lineage. These combined data support a scenario of inter-lineage and interspecies exchange of capC and subsets of capD autotransporters. Conclusions In this study we have identified two novel, related autotransporter gene families in the genus Campylobacter, which are not uniformly present and exhibit lineage-specific associations and gene decay. The distribution and decay of the capC and capD genes exemplifies the erosion of species barriers between certain lineages of C. jejuni and C. coli, probably arising through co-habitation. This may have implications for the phenotypic variability of these two pathogens and provide opportunity for new, hybrid genotypes to emerge.
Collapse
Affiliation(s)
- Jai W Mehat
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.
| | - Roberto M La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK.
| |
Collapse
|
7
|
Xi D, Alter T, Einspanier R, Sharbati S, Gölz G. Campylobacter jejuni genes Cj1492c and Cj1507c are involved in host cell adhesion and invasion. Gut Pathog 2020; 12:8. [PMID: 32064001 PMCID: PMC7011364 DOI: 10.1186/s13099-020-00347-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022] Open
Abstract
Background Campylobacter jejuni (C. jejuni) has been assigned as an important food-borne pathogen for human health but many pathogenicity factors of C. jejuni and human host cell responses related to the infection have not yet been adequately clarified. This study aimed to determine further C. jejuni pathogenicity factors and virulence genes based on a random mutagenesis approach. A transposon mutant library of C. jejuni NCTC 11168 was constructed and the ability of individual mutants to adhere to and invade human intestinal epithelial cells was evaluated compared to the wild type. We identified two mutants of C. jejuni possessing altered phenotypes with transposon insertions in the genes Cj1492c and Cj1507c. Cj1492c is annotated as a two-component sensor and Cj1507c is described as a regulatory protein. However, functions of both mutated genes are not clarified so far. Results In comparison to the wild type, Cj::1492c and Cj::1507c showed around 70-80% relative motility and Cj::1492c had around 3-times enhanced adhesion and invasion rates whereas Cj::1507c had significantly impaired adhesive and invasive capability. Moreover, Cj::1492c had a longer lag phase and slower growth rate while Cj::1507c showed similar growth compared to the wild type. Between 5 and 24 h post infection, more than 60% of the intracellular wild type C. jejuni were eliminated in HT-29/B6 cells, however, significantly fewer mutants were able to survive intracellularly. Nevertheless, no difference in host cell viability and induction of the pro-inflammatory chemokine IL-8 were determined between both mutants and the wild type. Conclusion We conclude that genes regulated by Cj1507c have an impact on efficient adhesion, invasion and intracellular survival of C. jejuni in HT-29/B6 cells. Furthermore, potential signal sensing by Cj1492c seems to lead to limiting attachment and hence internalisation of C. jejuni. However, as the intracellular survival capacities are reduced, we suggest that signal sensing by Cj1492c impacts several processes related to pathogenicity of C. jejuni.
Collapse
Affiliation(s)
- De Xi
- 1Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Thomas Alter
- 2Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - Ralf Einspanier
- 1Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Soroush Sharbati
- 1Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Greta Gölz
- 2Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Characteristic dysbiosis of gut microbiota of Chinese patients with diarrhea-predominant irritable bowel syndrome by an insight into the pan-microbiome. Chin Med J (Engl) 2019; 132:889-904. [PMID: 30958430 PMCID: PMC6595763 DOI: 10.1097/cm9.0000000000000192] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Irritable bowel syndrome (IBS) is reported associated with the alteration of gut microbial composition termed as dysbiosis. However, the pathogenic mechanism of IBS remains unclear, while the studies of Chinese individuals are scarce. This study aimed to understand the concept of dysbiosis among patients with Chinese diarrhea-predominant IBS (IBS-D), as a degree of variance between the gut microbiomes of IBS-D population and that of a healthy population. Methods: The patients with IBS-D were recruited (assessed according to the Rome III criteria, by IBS symptom severity score) from the Outpatient Department of Gastroenterology of Peking University Third Hospital, and volunteers as healthy controls (HCs) were enrolled, during 2013. The 16S rRNA sequences were extracted from fecal samples. Ribosomal database project resources, basic local alignment search tool, and SparCC software were used to obtain the phylotype composition of samples and the internal interactions of the microbial community. Herein, the non-parametric test, Wilcoxon rank-sum test was carried out to find the statistical significance between HC and IBS-D groups. All the P values were adjusted to q values to decrease the error rate. Results: The study characterized the gut microbiomes of Chinese patients with IBS-D, and demonstrated that the dysbiosis could be characterized as directed alteration of the microbiome composition leading to greater disparity between relative abundance of two phyla, Bacteroidetes (Z = 4.77, q = 1.59 × 10–5) and Firmicutes (Z = –3.87, q = 5.83 × 10–4). Moreover, it indicated that the IBS symptom features were associated with the dysbiosis of whole gut microbiome, instead of one or several certain genera even they were dominating. Two genera, Bacteroides and Lachnospiracea incertae sedis, were identified as the core genera, meanwhile, the non-core genera contribute to a larger pan-microbiome of the gut microbiome. Furthermore, the dysbiosis in patients with IBS-D was associated with a reduction of network complexity of the interacted microbial community (HC vs. IBS-D: 639 vs. 154). The disordered metabolic functions of patients with IBS-D were identified as the potential influence of gut microbiome on the host (significant difference with q < 0.01 between HC and IBS-D). Conclusions: This study supported the view of the potential influence of gut microbiome on the symptom of Chinese patients with IBS-D, and further characterized dysbiosis in Chinese patients with IBS-D, thus provided more pathological evidences for IBS-D with the further understanding of dysbiosis.
Collapse
|
9
|
Johansson C, Nilsson A, Kaden R, Rautelin H. Campylobacter coli Clade 3 Isolates Induce Rapid Cell Death In Vitro. Appl Environ Microbiol 2019; 85:e02993-18. [PMID: 30578266 PMCID: PMC6384112 DOI: 10.1128/aem.02993-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Campylobacter bacteria are major human enteropathogens. Campylobacter coli shows less genetic diversity than C. jejuni and clusters into three clades, of which clade 1 includes most human and farm animal isolates, while environmental C. coli isolates mainly belong to clades 2 and 3. Recently, we sequenced the whole genomes of eight C. coli clade 2 and 3 isolates cultivated from water, and here we studied their interaction with human HT-29 colon cancer cells compared to that of clinical clade 1 isolates. All C. coli clade 3 isolates already caused cell necrosis 1 to 2 h after inoculation, whereas none of the clade 1 and 2 isolates analyzed induced cell death. Isolates from clades 2 and 3 adhered to epithelial cells better than clade 1 isolates, but all isolates induced similar levels of interleukin-8 (IL-8). Alignment and phylogenetic analysis of the translated putative virulence genes cadF, flpA, iamA, ciaB, and ceuE revealed clade-specific protein sequence variations, with clade 1 and 2 sequences being more closely related and clade 3 sequences being further apart, in general. Moreover, when RNA levels were measured, clade 3 isolates showed significantly lower levels of expression of cadF, iamA, and ceuE than clade 2 isolates, while flpA expression levels were higher in clade 3 isolates. The cytolethal distending toxin genes were also expressed in clades 2 and 3, although there was no difference between clades. Our findings demonstrate differences between the effects of C. coli clade 1, 2, and 3 isolates on human cells and suggest that C. coli clade 3 might be more virulent than clade 2 due to the observed cytotoxicity.IMPORTANCECampylobacter coli is a common zoonotic cause of gastroenteritis in humans worldwide. The majority of infections are caused by C. coli clade 1 isolates, whereas infections due to clade 2 and 3 isolates are rare. Whether this depends on a low prevalence of clade 2 and 3 isolates in reservoirs important for human infections or their lower ability to cause human disease is unknown. Here, we studied the effects of C. coli clade 2 and 3 isolates on a human cell line. These isolates adhered to human cells to a higher degree than clinical clade 1 isolates. Furthermore, we could show that C. coli clade 3 isolates rapidly induced cell death, suggesting differences in the virulence of C. coli The exact mechanism of cell death remains to be revealed, but selected genes showed interesting clade-specific expression patterns.
Collapse
Affiliation(s)
- Cecilia Johansson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - René Kaden
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hilpi Rautelin
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Wheeler NE, Blackmore T, Reynolds AD, Midwinter AC, Marshall J, French NP, Savoian MS, Gardner PP, Biggs PJ. Genomic correlates of extraintestinal infection are linked with changes in cell morphology in Campylobacter jejuni. Microb Genom 2019; 5:e000251. [PMID: 30777818 PMCID: PMC6421344 DOI: 10.1099/mgen.0.000251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/16/2018] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni is the most common cause of bacterial diarrheal disease in the world. Clinical outcomes of infection can range from asymptomatic infection to life-threatening extraintestinal infections. This variability in outcomes for infected patients has raised questions as to whether genetic differences between C. jejuni isolates contribute to their likelihood of causing severe disease. In this study, we compare the genomes of ten C. jejuni isolates that were implicated in extraintestinal infections with reference gastrointestinal isolates, in order to identify unusual patterns of sequence variation associated with infection outcome. We identified a collection of genes that display a higher burden of uncommon mutations in invasive isolates compared with gastrointestinal close relatives, including some that have been previously linked to virulence and invasiveness in C. jejuni. Among the top genes identified were mreB and pgp1, which are both involved in determining cell shape. Electron microscopy confirmed morphological differences in isolates carrying unusual sequence variants of these genes, indicating a possible relationship between extraintestinal infection and changes in cell morphology.
Collapse
Affiliation(s)
- Nicole E. Wheeler
- Center for Genomic Pathogen Surveillance, Wellcome Sanger Institute, Hinxton, UK
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | | | - Angela D. Reynolds
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Jonathan Marshall
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Nigel P. French
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Palmerston North, New Zealand
| | - Matthew S. Savoian
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Paul P. Gardner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| | - Patrick J. Biggs
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- New Zealand Genomics Ltd (NZGL – as Massey Genome Service) Massey University, Palmerston North, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand
| |
Collapse
|
11
|
Farfán M, Lártiga N, Benavides MB, Alegría-Morán R, Sáenz L, Salcedo C, Lapierre L. Capacity to adhere to and invade human epithelial cells, as related to the presence of virulence genes in, motility of, and biofilm formation of Campylobacter jejuni strains isolated from chicken and cattle. Can J Microbiol 2018; 65:126-134. [PMID: 30339767 DOI: 10.1139/cjm-2018-0503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Campylobacter jejuni is a zoonotic pathogen transmitted through the "farm to fork" route. Outbreaks are generally associated with the consumption of chicken meat; however, dairy cows, birds, wild and domestic food animals, and pets are other important sources. Currently, there are not enough data comparing the virulence of strains isolated from these reservoirs. In this study, we compared C. jejuni strains isolated from broiler chickens and dairy cattle by determining their ability to adhere to and invade in vitro human colonic epithelial cells in the T84 cell line with their motility, formation of biofilms, and presence of eight virulence genes. A Wilcoxon Rank Sum test was performed to establish the relationship between presence of the studied genes and cellular invasion and adhesion, as well as differences between the animal species of origin of the isolate. A Spearman correlation was performed to assess the relationship between invasion and motility, along with invasion and biofilm generation. The virB11 gene was positively associated with the adherence capacity of the strains (mean difference = 0.21, p = 0.006), and strains isolated from chickens showed a significant difference for adherence compared with strains isolated from cattle (p = 0.0001). Our results indicate that strains of C. jejuni have a difference in their adherence capacity depending on the animal reservoir from which they came, with chicken isolates displaying higher virulence than dairy cattle isolates.
Collapse
Affiliation(s)
- Mauricio Farfán
- a Faculty of Medicine, University of Chile, Antonio Varas 360, Providencia, Santiago, Chile
| | - Natalia Lártiga
- a Faculty of Medicine, University of Chile, Antonio Varas 360, Providencia, Santiago, Chile.,b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - María Belén Benavides
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Raúl Alegría-Morán
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Leonardo Sáenz
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Cristal Salcedo
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Lisette Lapierre
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| |
Collapse
|
12
|
Van TTH, Elshagmani E, Gor MC, Anwar A, Scott PC, Moore RJ. Induction of spotty liver disease in layer hens by infection with Campylobacter hepaticus. Vet Microbiol 2017; 199:85-90. [DOI: 10.1016/j.vetmic.2016.12.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/04/2016] [Accepted: 12/27/2016] [Indexed: 11/30/2022]
|
13
|
Day CJ, King RM, Shewell LK, Tram G, Najnin T, Hartley-Tassell LE, Wilson JC, Fleetwood AD, Zhulin IB, Korolik V. A direct-sensing galactose chemoreceptor recently evolved in invasive strains of Campylobacter jejuni. Nat Commun 2016; 7:13206. [PMID: 27762269 PMCID: PMC5080441 DOI: 10.1038/ncomms13206] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 09/13/2016] [Indexed: 11/09/2022] Open
Abstract
A rare chemotaxis receptor, Tlp11, has been previously identified in invasive strains of Campylobacter jejuni, the most prevalent cause of bacterial gastroenteritis worldwide. Here we use glycan and small-molecule arrays, as well as surface plasmon resonance, to show that Tlp11 specifically interacts with galactose. Tlp11 is required for the chemotactic response of C. jejuni to galactose, as shown using wild type, allelic inactivation and addition mutants. The inactivated mutant displays reduced virulence in vivo, in a model of chicken colonization. The Tlp11 sensory domain represents the first known sugar-binding dCache_1 domain, which is the most abundant family of extracellular sensors in bacteria. The Tlp11 signalling domain interacts with the chemotaxis scaffolding proteins CheV and CheW, and comparative genomic analysis indicates a likely recent evolutionary origin for Tlp11. We propose to rename Tlp11 as CcrG, Campylobacter ChemoReceptor for Galactose.
Collapse
Affiliation(s)
- Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland QLD 4222, Australia
| | - Rebecca M King
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland QLD 4222, Australia
| | - Lucy K Shewell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland QLD 4222, Australia
| | - Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland QLD 4222, Australia
| | - Tahria Najnin
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland QLD 4222, Australia
| | - Lauren E Hartley-Tassell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland QLD 4222, Australia
| | - Jennifer C Wilson
- School of Medical Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland QLD 4222, Australia
| | - Aaron D Fleetwood
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Igor B Zhulin
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA.,Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37861, USA
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Queensland QLD 4222, Australia.,School of Medical Science, Griffith University, Gold Coast Campus, Gold Coast, Queensland QLD 4222, Australia
| |
Collapse
|
14
|
Dwivedi R, Nothaft H, Garber J, Xin Kin L, Stahl M, Flint A, van Vliet AHM, Stintzi A, Szymanski CM. L-fucose influences chemotaxis and biofilm formation in Campylobacter jejuni. Mol Microbiol 2016; 101:575-89. [PMID: 27145048 DOI: 10.1111/mmi.13409] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/15/2016] [Indexed: 11/28/2022]
Abstract
Campylobacter jejuni and Campylobacter coli are zoonotic pathogens once considered asaccharolytic, but are now known to encode pathways for glucose and fucose uptake/metabolism. For C. jejuni, strains with the fuc locus possess a competitive advantage in animal colonization models. We demonstrate that this locus is present in > 50% of genome-sequenced strains and is prevalent in livestock-associated isolates of both species. To better understand how these campylobacters sense nutrient availability, we examined biofilm formation and chemotaxis to fucose. C. jejuni NCTC11168 forms less biofilms in the presence of fucose, although its fucose permease mutant (fucP) shows no change. In a newly developed chemotaxis assay, both wild-type and the fucP mutant are chemotactic towards fucose. C. jejuni 81-176 naturally lacks the fuc locus and is unable to swim towards fucose. Transfer of the NCTC11168 locus into 81-176 activated fucose uptake and chemotaxis. Fucose chemotaxis also correlated with possession of the pathway for C. jejuni RM1221 (fuc+) and 81116 (fuc-). Systematic mutation of the NCTC11168 locus revealed that Cj0485 is necessary for fucose metabolism and chemotaxis. This study suggests that components for fucose chemotaxis are encoded within the fuc locus, but downstream signals only in fuc + strains, are involved in coordinating fucose availability with biofilm development.
Collapse
Affiliation(s)
- Ritika Dwivedi
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Harald Nothaft
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Jolene Garber
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Lin Xin Kin
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| | - Martin Stahl
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Annika Flint
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Arnoud H M van Vliet
- Institute of Food Research, Gut Health and Food Safety Programme, Norwich Research Park, Norwich, NR4 7UA, UK
| | - Alain Stintzi
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Christine M Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
| |
Collapse
|
15
|
Saint-Cyr MJ, Guyard-Nicodème M, Messaoudi S, Chemaly M, Cappelier JM, Dousset X, Haddad N. Recent Advances in Screening of Anti-Campylobacter Activity in Probiotics for Use in Poultry. Front Microbiol 2016; 7:553. [PMID: 27303366 PMCID: PMC4885830 DOI: 10.3389/fmicb.2016.00553] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022] Open
Abstract
Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Campylobacter species involved in this infection usually include the thermotolerant species Campylobacter jejuni. The major reservoir for C. jejuni leading to human infections is commercial broiler chickens. Poultry flocks are frequently colonized by C. jejuni without any apparent symptoms. Risk assessment analyses have identified the handling and consumption of poultry meat as one of the most important sources of human campylobacteriosis, so elimination of Campylobacter in the poultry reservoir is a crucial step in the control of this foodborne infection. To date, the use of probiotics has demonstrated promising results to reduce Campylobacter colonization. This review provides recent insights into methods used for probiotic screening to reduce the prevalence and colonization of Campylobacter at the farm level. Different eukaryotic epithelial cell lines are employed to screen probiotics with an anti-Campylobacter activity and yield useful information about the inhibition mechanism involved. These in vitro virulence models involve only human intestinal or cervical cell lines whereas the use of avian cell lines could be a preliminary step to investigate mechanisms of C. jejuni colonization in poultry in the presence of probiotics. In addition, in vivo trials to evaluate the effect of probiotics on Campylobacter colonization are conducted, taking into account the complexity introduced by the host, the feed, and the microbiota. However, the heterogeneity of the protocols used and the short time duration of the experiments lead to results that are difficult to compare and draw conclusions at the slaughter-age of broilers. Nevertheless, the combined approach using complementary in vitro and in vivo tools (cell cultures and animal experiments) leads to a better characterization of probiotic strains and could be employed to assess reduced Campylobacter spp. colonization in chickens if some parameters are optimized.
Collapse
Affiliation(s)
| | - Muriel Guyard-Nicodème
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | - Soumaya Messaoudi
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Marianne Chemaly
- Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, Université Bretagne LoirePloufragan, France
| | | | - Xavier Dousset
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| | - Nabila Haddad
- SECALIM Unit UMR1014, Oniris, INRA, Université Bretagne LoireNantes, France
| |
Collapse
|
16
|
Genetic Similarity Using MLST Amongst Campylobacter jejuni Isolates from Children with Diarrhea Symptoms and Broilers. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40011-016-0720-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Molecular Characterization, Antimicrobial Resistance and Caco-2 Cell Invasion Potential of Campylobacter jejuni/coli from Young Children with Diarrhea. Pediatr Infect Dis J 2016; 35:330-4. [PMID: 26627197 DOI: 10.1097/inf.0000000000001016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Campylobacter is a major cause of bacterial gastroenteritis worldwide. Young children represent a particular age group affected by Campylobacter infection because of their limited diets and weak immune systems. METHODS In this study, a total of 110 Campylobacter (80 Campylobacter jejuni and 30 Campylobacter coli) isolated from children younger than 5 years of age with diarrhea in Shanghai, China in 2011 were examined for their genetic relationship and antimicrobial susceptibility. The presence of virulence genes and its association with invasion potential in Caco-2 cell were also determined. RESULTS Multilocus sequence typing revealed 62 sequence types (STs) under 14 clonal complexes from C. jejuni and 15 STs under 2 clonal complexes from C. coli. High resistance rates among the 110 isolates were observed to nalidixic acid (88.2%), ciprofloxacin (87.3%) and tetracycline (87.3%), followed by ampicillin (30.9%), gentamicin (28.2%), clindamycin (21.8%), erythromycin (21.8%) and chloramphenicol (8.2%). Compared with that of C. jejuni (32.5%), a larger proportion of C. coli (83.3%) were resistant to multiple antimicrobials, including 16 isolates of ST-828 complex resistant to 6 antimicrobials: ciprofloxacin, clindamycin, erythromycin, gentamicin, nalidixic acid and tetracycline. Furthermore, 57 Campylobacter isolates were selected based on their distinct STs and the presence of virulence genes to determine their abilities to adhere to and invade Caco-2 cells. The level of invasion varied widely among isolates and had relatively weak correlation with the genotype data. CONCLUSION Our findings provided baseline data on Campylobacter among young children. Active surveillance of Campylobacter is needed to better understand the epidemiology and antimicrobial resistance trends of this significant pathogen to help control and protect young children from such infections.
Collapse
|
18
|
Oh E, McMullen L, Jeon B. High Prevalence of Hyper-Aerotolerant Campylobacter jejuni in Retail Poultry with Potential Implication in Human Infection. Front Microbiol 2015; 6:1263. [PMID: 26617597 PMCID: PMC4641907 DOI: 10.3389/fmicb.2015.01263] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/30/2015] [Indexed: 12/04/2022] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses around the world. Since C. jejuni is microaerophilic and sensitive to oxygen, aerotolerance is important in the transmission of C. jejuni to humans via foods under aerobic conditions. In this study, 70 C. jejuni strains were isolated from retail raw chicken meats and were subject to multilocus sequence typing (MLST) analysis. In the aerotolerance testing by aerobic shaking at 200 rpm, 50 (71.4%) isolates survived after 12 h (i.e., aerotolerant), whereas 20 (28.6%) isolates did not (i.e., aerosensitive). Interestingly, further aerobic cultivation showed that 25 (35.7%) isolates still survived even after 24 h of vigorous aerobic shaking (i.e., hyper-aerotolerant). Compared to aerosensitive strains, the hyper-aerotolerant strains exhibited increased resistance to oxidative stress, both peroxide and superoxide. A mutation of ahpC in hyper-aerotolerant strains significantly impaired aerotolerance, indicating oxidative stress defense plays an important role in hyper-aerotolerance. The aerotolerant and hyper-aerotolerant strains were primarily classified into MLST clonal complexes (CCs)-21 and -45, which are known to be the major CCs implicated in human gastroenteritis. Compared to the aerosensitive strains, CC-21 was more dominant than CC-45 in aerotolerant and hyper-aerotolerant strains. The findings in this study revealed that hyper-aerotolerant C. jejuni is highly prevalent in raw chicken meats. The enhanced aerotolerance in C. jejuni would impact human infection by increasing possibilities of the foodborne transmission of C. jejuni under aerobic conditions.
Collapse
Affiliation(s)
- Euna Oh
- School of Public Health, University of Alberta Edmonton, AB, Canada
| | - Lynn McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
19
|
Baig A, McNally A, Dunn S, Paszkiewicz KH, Corander J, Manning G. Genetic import and phenotype specific alleles associated with hyper-invasion in Campylobacter jejuni. BMC Genomics 2015; 16:852. [PMID: 26497129 PMCID: PMC4619573 DOI: 10.1186/s12864-015-2087-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/15/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Campylobacter jejuni is a major zoonotic pathogen, causing gastroenteritis in humans. Invasion is an important pathogenesis trait by which C. jejuni causes disease. Here we report the genomic analysis of 134 strains to identify traits unique to hyperinvasive isolates. METHODS A total of 134 C. jejuni genomes were used to create a phylogenetic tree to position the hyperinvasive strains. Comparative genomics lead to the identification of mosaic capsule regions. A pan genome approach led to the discovery of unique loci, or loci with unique alleles, to the hyperinvasive strains. RESULTS Phylogenetic analysis showed that the hyper-invasive phenotype is a generalist trait. Despite the fact that hyperinvasive strains are only distantly related based on the whole genome phylogeny, they all possess genes within the capsule region with high identity to capsule genes from C. jejuni subsp. doylei and C. lari. In addition there were genes unique to the hyper-invasive strains with identity to non-C. jejuni genes, as well as allelic variants of mainly pathogenesis related genes already known in the other C. jejuni. In particular, the sequence of flagella genes, flgD-E and flgL were highly conserved amongst the hyper-invasive strains and divergent from sequences in other C. jejuni. A novel cytolethal distending toxin (cdt) operon was also identified as present in all hyper-invasive strains in addition to the classic cdt operon present in other C. jejuni. CONCLUSIONS Overall, the hyper-invasive phenotype is strongly linked to the presence of orthologous genes from other Campylobacter species in their genomes, notably within the capsule region, in addition to the observed association with unique allelic variants in flagellar genes and the secondary cdt operon which is unlikely under random sharing of accessory alleles in separate lineages.
Collapse
Affiliation(s)
- Abiyad Baig
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | - Alan McNally
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | - Steven Dunn
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| | | | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| | - Georgina Manning
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
20
|
Comparative analysis of antimicrobial resistance and genetic diversity of Campylobacter from broilers slaughtered in Poland. Int J Food Microbiol 2015; 210:24-32. [PMID: 26092707 DOI: 10.1016/j.ijfoodmicro.2015.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/12/2015] [Accepted: 06/09/2015] [Indexed: 02/01/2023]
Abstract
In the current study, the relationship of Campylobacter jejuni and Campylobacter coli strains isolated at slaughter was investigated using comparative analysis of antimicrobial resistance (AMR), virulence gene (VG) and PFGE profiling. A total of 254 Campylobacter isolates from poultry caeca and corresponding carcasses, including 139 C. jejuni and 115 C. coli strains were tested. The most prevalent resistance profiles observed in C. jejuni were ciprofloxacin, nalidixic acid and tetracycline (46 out of 139, 33.1% isolates) as well as ciprofloxacin, nalidixic acid, tetracycline and streptomycin among C. coli strains (34 out of 115, 29.6%). Multi-resistance was found more frequently among C. coli than C. jejuni (P<0.05). The presence of 11 virulence genes exhibited 19 different VG profiles in Campylobacter isolates tested. All Campylobacter strains were classified into 154 different PFGE types. Among them, 56 profiles (28 C. jejuni and 28 C. coli) were common for at least two isolates including 9 clusters covering from 4 to 9 strains. Campylobacter composite types generated by a combination of 154 PFGE types, 10 AMR profiles and 19 VG patterns divided 178 distinct types with 95% similarity. The majority of the composite profiles (76 for C. jejuni and 58 for C. coli; 75.3% in total) included only one bacterial isolate. Furthermore, 11 pairs of C. jejuni and 12 pairs of C. coli from caeca and the corresponding carcasses isolated from the same places possessed the identical PFGE, AMR and VG patterns. This study demonstrated that C. jejuni and C. coli isolated from poultry in Poland showed to have a high genetic diversity and a weak clonal population structure. However, the composite analysis revealed a strong evidence for cross-contamination of chicken carcasses during the slaughter process. Additionally, our results confirm that Campylobacter may easily contaminate poultry carcasses at slaughter process and spread around country. More than half of Campylobacter strains tested (50.4%) were resistant to at least two classes of antimicrobials, i.e. quinolones and tetracyclines, which may cause a public health risk.
Collapse
|
21
|
Shyaka A, Kusumoto A, Chaisowwong W, Okouchi Y, Fukumoto S, Yoshimura A, Kawamoto K. Virulence characterization of Campylobacter jejuni isolated from resident wild birds in Tokachi area, Japan. J Vet Med Sci 2015; 77:967-72. [PMID: 25843040 PMCID: PMC4565820 DOI: 10.1292/jvms.15-0090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The prevalence of Campylobacter jejuni in wild birds is a potential hazard for human and animal health. The aim of this study was to establish the prevalence of C. jejuni in wild birds in Tokachi area, Hokkaido, Japan and investigate their virulence in vitro. In total, 173 cloacal swabs from individual wild birds were collected for the detection of Campylobacter spp. Thirty four samples (19.7%) were positive for Campylobacter of which 94.1% (32/34 samples) were C. jejuni. Additionally, one C. coli and one C. fetus were isolated. Seven C. jejuni isolates (one from crows and the other from pigeons) had important virulence genes including all three CDT genes (cdtA, cdtB and cdtC) and flaA, flaB, ciaB and cadF,
and the other isolates were lacking cdtA gene. Further studies on in vitro virulence-associated phenotypes, such as motility assay on soft agar and invasion assay in Caco-2 cells, were performed. The wild bird C. jejuni isolates adhered and invaded human cells. Although the numbers of viable intracellular bacteria of wild bird isolates were lower than a type strain NCTC11168, they persisted at 48-hr and underwent replication in host cells.
Collapse
Affiliation(s)
- Anselme Shyaka
- Section of Food Microbiology and Immunology, Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine, 2-11 Inada, Obihiro, Hokkaido 080-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Aguilar C, Jiménez-Marín Á, Martins RP, Garrido JJ. Interaction between Campylobacter and intestinal epithelial cells leads to a different proinflammatory response in human and porcine host. Vet Immunol Immunopathol 2014; 162:14-23. [DOI: 10.1016/j.vetimm.2014.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 09/02/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
|
23
|
Kilcoyne M, Twomey ME, Gerlach JQ, Kane M, Moran AP, Joshi L. Campylobacter jejuni strain discrimination and temperature-dependent glycome expression profiling by lectin microarray. Carbohydr Res 2014; 389:123-33. [PMID: 24680511 DOI: 10.1016/j.carres.2014.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 01/30/2014] [Accepted: 02/02/2014] [Indexed: 11/26/2022]
Abstract
Gram-negative Campylobacter jejuni is the leading cause of bacterial gastroenteritis in humans worldwide and the most frequently identified infectious trigger in patients developing Guillain-Barré syndrome (GBS). While C. jejuni is pathogenic in humans, it is a commensal in avian hosts. Bacterial cell surface carbohydrates are important virulence factors and play roles in adherence, colonisation and infection. The mechanisms leading to infection or persistent colonisation of C. jejuni are not well understood but host temperature may provide an important stimulus for specific adaptation. Thus, examination of the modulation of the total surface glycome of C. jejuni in response to temperature may help shed light on commensal and pathogenic mechanisms for this species. C. jejuni strains 81116 and 81-176 were cultured at 37 and 42°C to simulate human and avian host conditions, respectively, and whole cells were profiled on lectin microarrays constructed to include a wide range of binding specificities. C. jejuni 81116 profiles indicated that the previously characterised lipopolysaccharide (LPS)-like molecule and N-linked glycans were the predominantly recognised cell surface structures while capsular polysaccharide (CPS), lipooligosaccharides (LOS) and N-linked glycosylation were best recognised for strain 81-176 at 37°C. The profiles of both strains varied and were distinguishable at both temperatures. At the higher temperature, reduced dominance of the LPS-like structure was associated with strain 81116 and a change in the relative distribution of CPS and LOS structures was indicated for strain 81-176. This change in LOS molecular mass species distribution between temperatures was confirmed by SDS-PAGE analysis. Additionally, opposite behaviour of certain lectins was noted between the plate agglutination assay and the microarray platform. Insights into the important glycosylation involved in C. jejuni host cell tropism at different growth temperatures were gained using the lectin microarray platform.
Collapse
Affiliation(s)
- Michelle Kilcoyne
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland.
| | - Marcus E Twomey
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Jared Q Gerlach
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Marian Kane
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | - Anthony P Moran
- Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Lokesh Joshi
- Glycoscience Group, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| |
Collapse
|
24
|
Zautner AE, Masanta WO, Tareen AM, Weig M, Lugert R, Groß U, Bader O. Discrimination of multilocus sequence typing-based Campylobacter jejuni subgroups by MALDI-TOF mass spectrometry. BMC Microbiol 2013; 13:247. [PMID: 24195572 PMCID: PMC4228279 DOI: 10.1186/1471-2180-13-247] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/30/2013] [Indexed: 11/26/2022] Open
Abstract
Background Campylobacter jejuni, the most common bacterial pathogen causing gastroenteritis, shows a wide genetic diversity. Previously, we demonstrated by the combination of multi locus sequence typing (MLST)-based UPGMA-clustering and analysis of 16 genetic markers that twelve different C. jejuni subgroups can be distinguished. Among these are two prominent subgroups. The first subgroup contains the majority of hyperinvasive strains and is characterized by a dimeric form of the chemotaxis-receptor Tlp7m+c. The second has an extended amino acid metabolism and is characterized by the presence of a periplasmic asparaginase (ansB) and gamma-glutamyl-transpeptidase (ggt). Results Phyloproteomic principal component analysis (PCA) hierarchical clustering of MALDI-TOF based intact cell mass spectrometry (ICMS) spectra was able to group particular C. jejuni subgroups of phylogenetic related isolates in distinct clusters. Especially the aforementioned Tlp7m+c+ and ansB+/ ggt+ subgroups could be discriminated by PCA. Overlay of ICMS spectra of all isolates led to the identification of characteristic biomarker ions for these specific C. jejuni subgroups. Thus, mass peak shifts can be used to identify the C. jejuni subgroup with an extended amino acid metabolism. Conclusions Although the PCA hierarchical clustering of ICMS-spectra groups the tested isolates into a different order as compared to MLST-based UPGMA-clustering, the isolates of the indicator-groups form predominantly coherent clusters. These clusters reflect phenotypic aspects better than phylogenetic clustering, indicating that the genes corresponding to the biomarker ions are phylogenetically coupled to the tested marker genes. Thus, PCA clustering could be an additional tool for analyzing the relatedness of bacterial isolates.
Collapse
Affiliation(s)
- Andreas Erich Zautner
- UMG-Labor/Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ellström P, Feodoroff B, Hänninen ML, Rautelin H. Lipooligosaccharide locus class of Campylobacter jejuni: sialylation is not needed for invasive infection. Clin Microbiol Infect 2013; 20:524-9. [PMID: 24102802 PMCID: PMC4235400 DOI: 10.1111/1469-0691.12382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 11/30/2022]
Abstract
Campylobacter jejuni is a highly diverse enteropathogen that is commonly detected worldwide. It can sometimes cause bacteraemia, but the bacterial characteristics facilitating bloodstream infection are not known. A total of 73 C. jejuni isolates, consecutively collected from blood-borne infections during a 10-year period all over Finland and for which detailed clinical information of the patients were available, were included. We screened the isolates by PCR for the lipooligosaccharide (LOS) locus class and for the presence of the putative virulence genes ceuE, ciaB, fucP, and virB11. The isolates were also tested for γ-glutamyl transpeptidase production. The results were analysed with respect to the clinical characteristics of the patients, and the multilocus sequence types (MLSTs) and serum resistance of the isolates. LOS locus classes A, B, and C, which carry genes for sialylation of LOS, were detected in only 23% of the isolates. These isolates were not more resistant to human serum than those with the genes of non-sialylated LOS locus classes, but were significantly more prevalent among patients with underlying diseases (p 0.02). The fucose permease gene fucP was quite uncommon, but was associated with the isolates with the potential to sialylate LOS (p <0.0001). LOS locus classes and some of the putative virulence factors were associated with MLST clonal complexes. Although some of the bacterial characteristics studied here have been suggested to be important for the invasiveness of C. jejuni, they did not explain why the clinical isolates in the present study were able to cause bacteraemia.
Collapse
Affiliation(s)
- P Ellström
- Department of Medical Sciences, Clinical Bacteriology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
26
|
Molecular methods to investigate adhesion, transmigration, invasion and intracellular survival of the foodborne pathogen Campylobacter jejuni. J Microbiol Methods 2013; 95:8-23. [DOI: 10.1016/j.mimet.2013.06.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 01/08/2023]
|
27
|
A Real-Time PCR/SYBR Green I Method for the Rapid Quantification of Salmonella enterica in Poultry Meat. FOOD ANAL METHOD 2013. [DOI: 10.1007/s12161-013-9583-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Ellström P, Feodoroff B, Hänninen ML, Rautelin H. Characterization of clinical Campylobacter jejuni isolates with special emphasis on lipooligosaccharide locus class, putative virulence factors and host response. Int J Med Microbiol 2013; 303:134-9. [PMID: 23528202 DOI: 10.1016/j.ijmm.2013.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/15/2013] [Accepted: 01/27/2013] [Indexed: 10/27/2022] Open
Abstract
Recent studies have indicated a role of the lipooligosaccharide (LOS) of Campylobacter jejuni in the severe neurological Guillain Barré syndrome, as well as in development of more severe symptoms of acute enteritis. We evaluated the role of the LOS locus class in C. jejuni infection among 163 enteritis patients. The prevalence of LOS locus classes differed according to the origin of the isolates. Furthermore, LOS locus classes A and B were significantly associated with susceptibility or resistance to ciprofloxacin and doxycycline. However, our results do not corroborate earlier findings that isolates with potential to sialylate LOS might be associated with more severe symptoms of enteritis. Instead, in an infection model, such isolates gave weaker epithelial IL-8 responses than nonsialylated isolates. Absence of the iron transport protein encoded by the gene ceuE as well as the putative fucose permease gene cj0486 was associated with increased in vitro IL-8 secretion.
Collapse
Affiliation(s)
- Patrik Ellström
- Department of Medical Sciences, Clinical Bacteriology, University of Uppsala, S-75185 Uppsala, Sweden.
| | | | | | | |
Collapse
|
29
|
Clark CG, Grant CCR, Pollari F, Marshall B, Moses J, Tracz DM, Gilmour MW. Effects of the Campylobacter jejuni CJIE1 prophage homologs on adherence and invasion in culture, patient symptoms, and source of infection. BMC Microbiol 2012; 12:269. [PMID: 23167543 PMCID: PMC3519530 DOI: 10.1186/1471-2180-12-269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/12/2012] [Indexed: 09/03/2023] Open
Abstract
Background Prophages of enteric bacteria are frequently of key importance for the biology, virulence, or host adaptation of their host. Some C. jejuni isolates carry homologs of the CJIE1 (CMLP 1) prophage that carry cargo genes potentially involved in virulence. Possible role(s) of CJIE1 homologs in the biology and virulence of C. jejuni were therefore investigated by using in vitro cell culture assays and by assessing the association of C. jejuni isolates with and without these prophages with patients’ symptoms, with source, and with clonal lineages within the C. jejuni population. Results Four C. jejuni isolates, three carrying the CJIE1-like prophage and one without, were tested in cell culture assays for adherence and invasion. Both adherence and invasion of C. jejuni to cells in culture were increased by the presence of the CJIE1-family prophage. Differences in motility and growth rate did not appear to be responsible. The CJIE1 prophage was present in 23% of isolates from human and non-human sources combined that were obtained through sentinel-site surveillance, and the distribution of CJIE1 in this population showed modest clonal associations. There was no correlation between the presence of the CJIE1 prophage in C. jejuni and patient symptoms, although there was some statistical support for lower rates of abdominal pain and fever when the prophage was present. Little evidence was found for a role of the prophage in host adaptation or host specificity. Conclusion These biological effects suggest that the presence of the prophage may be a marker for differential virulence of some C. jejuni isolates. Ongoing research into the effects of the prophage on protein expression may provide additional insights into the roles the prophage may play in the biology of its host bacterium.
Collapse
Affiliation(s)
- Clifford G Clark
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3R2, Canada.
| | | | | | | | | | | | | |
Collapse
|
30
|
King RM, Day CJ, Hartley-Tassell LE, Connerton IF, Tiralongo J, McGuckin MA, Korolik V. Carbohydrate binding and gene expression byin vitroandin vivopropagatedCampylobacter jejuniafter Immunomagnetic Separation. J Basic Microbiol 2012; 53:240-50. [DOI: 10.1002/jobm.201100466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/04/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Rebecca M. King
- Institute for Glycomics; Griffith University Gold Coast Campus; Queensland; Australia
| | - Christopher J. Day
- Institute for Glycomics; Griffith University Gold Coast Campus; Queensland; Australia
| | | | - Ian F. Connerton
- School of Biosciences, Faculty of Science; University of Nottingham, Sutton Bonington Campus; Loughborough, Leicestershire; United Kingdom
| | - Joe Tiralongo
- Institute for Glycomics; Griffith University Gold Coast Campus; Queensland; Australia
| | - Michael A. McGuckin
- Mucosal Diseases Program; Mater Medical Research Institute and The University of Queensland; South Brisbane, Queensland; Australia
| | - Victoria Korolik
- Institute for Glycomics; Griffith University Gold Coast Campus; Queensland; Australia
| |
Collapse
|
31
|
Association of Campylobacter jejuni metabolic traits with multilocus sequence types. Appl Environ Microbiol 2012; 78:5550-4. [PMID: 22660710 DOI: 10.1128/aem.01023-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this study, we describe the association of three Campylobacter jejuni metabolism-related traits, γ-glutamyl-transpeptidase (GGT), fucose permease (fucP), and secreted L-asparaginase [ansB(s)], with multilocus sequence types (STs). A total of 710 C. jejuni isolates with known STs were selected and originated from humans, poultry, bovines, and the environment. Among these isolates, we found 31.1% to produce GGT and 49.3% and 30.3% to be positive for ansB(s) and fucP, respectively. The combination of GGT production, the presence of ansB(s), and the absence of fucP was associated with ST-22, ST-586, and the ST-45 and ST-283 clonal complexes (CCs), which were the main STs and CCs found among the human and chicken isolates. The ST-21 CC was associated with the presence of fucP and was the major CC among the bovine isolates. Although the ST-61 CC was the second major CC among the bovine isolates, these isolates did not have any of the markers studied, making the role of fucP in bovine gut colonization questionable. The ST-45 CC was subdivided into three groups that were attributed solely to ST-45. One group showed a marker combination described previously, another group was found to be positive for ansB(s) only, and the third group did not have any of the markers studied. These results suggest that the host association of these markers seems to be indirect and may arise as a consequence of host-ST and -CC associations. Thus, a representative collection of STs should be tested to draw sensible conclusions in similar studies.
Collapse
|
32
|
Cj1136 is required for lipooligosaccharide biosynthesis, hyperinvasion, and chick colonization by Campylobacter jejuni. Infect Immun 2012; 80:2361-70. [PMID: 22508861 DOI: 10.1128/iai.00151-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Campylobacter jejuni is a major cause of bacterial food-borne enteritis worldwide, and invasion into intestinal epithelial cells is an important virulence mechanism. Recently we reported the identification of hyperinvasive C. jejuni strains and created a number of transposon mutants of one of these strains, some of which exhibited reduced invasion into INT-407 and Caco-2 cells. In one such mutant the transposon had inserted into a homologue of cj1136, which encodes a putative galactosyltransferase according to the annotation of the C. jejuni NCTC11168 genome. In the current study, we investigated the role of cj1136 in C. jejuni virulence, lipooligosaccharide (LOS) biosynthesis, and host colonization by targeted mutagenesis and complementation of the mutation. The cj1136 mutant showed a significant reduction in invasion into human intestinal epithelial cells compared to the wild-type strain 01/51. Invasion levels were partially restored on complementing the mutation. The inactivation of cj1136 resulted in the production of truncated LOS, while biosynthesis of a full-length LOS molecule was restored in the complemented strain. The cj1136 mutant showed an increase in sensitivity to the bile salts sodium taurocholate and sodium deoxycholate and significantly increased sensitivity to polymyxin B compared to the parental strain. Importantly, the ability of the mutant to colonize 1-day-old chicks was also significantly impaired. This study confirms that a putative galactosyltransferase encoded by cj1136 is involved in LOS biosynthesis and is important for C. jejuni virulence, as disruption of this gene and the resultant truncation of LOS affect both colonization in vivo and invasiveness in vitro.
Collapse
|
33
|
Louwen R, van Baarlen P, van Vliet AHM, van Belkum A, Hays JP, Endtz HP. Campylobacter bacteremia: a rare and under-reported event? Eur J Microbiol Immunol (Bp) 2012; 2:76-87. [PMID: 24611124 DOI: 10.1556/eujmi.2.2012.1.11] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 12/12/2022] Open
Abstract
Bacteria belonging to the species Campylobacter are the most common cause of bacterial diarrhoea in humans. The clinical phenotype associated with Campylobacter infections ranges from asymptomatic conditions to severe colitis and bacteremia. In susceptible patients, Campylobacter infections are associated with significant morbidity and mortality, with both host factors and bacterial factors being involved in the pathogenesis of bacteremia. In the host, age, gender and immune-compromising conditions may predispose for Campylobacter infections, whilst the most important bacterial determinants mentioned in the literature are cytotoxin production and flagellar motility. The role of sialylated lipo-oligosaccharide (LOS) and serum resistance in bacteremia is inconclusive at this time, and the clinical significance of Campylobacter bacteremia is not yet fully understood. More emphasis on the detection of Campylobacter species from blood cultures in susceptible patients at risk for Campylobacter infections will increase our understanding of the pathogenesis and the relevance of Campylobacter bacteremia.
Collapse
|
34
|
Sanad YM, Kassem II, Liu Z, Lin J, Lejeune JT, Rajashekara G. Occurrence of the invasion associated marker (iam) in Campylobacter jejuni isolated from cattle. BMC Res Notes 2011; 4:570. [PMID: 22208406 PMCID: PMC3289066 DOI: 10.1186/1756-0500-4-570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 12/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The invasion associated marker (iam) has been detected in the majority of invasive Campylobacter jejuni retrieved from humans. Furthermore, the detection of iam in C. jejuni isolated from two important hosts, humans and chickens, suggested a role for this marker in C. jejuni's colonization of multiple hosts. However, no data exist regarding the occurrence of this marker in C. jejuni isolated from non-poultry food-animals such as cattle, an increasingly important source for human infections. Since little is known about the genetics associated with C. jejuni's capability for colonizing physiologically disparate hosts, we investigated the occurrence of the iam in C. jejuni isolated from cattle and assessed the potential of iam-containing cattle and human isolates for chicken colonization and human cell invasion. RESULTS Simultaneous RAPD typing and iam-specific PCR analysis of 129 C. jejuni isolated from 1171 cattle fecal samples showed that 8 (6.2%) of the isolates were iam-positive, while 7 (54%) of human-associated isolates were iam-positive. The iam sequences were mostly heterogeneous and occurred in diverse genetic backgrounds. All iam-positive isolates were motile and possessed important genes (cadF, ciaB, cdtB) associated with adhesion and virulence. Although certain iam-containing isolates invaded and survived in INT-407 cells in high numbers and successfully colonized live chickens, there was no clear association between the occurrence, allelic sequence, and expression levels of the iam and the aforementioned phenotypes. CONCLUSIONS We show that the prevalence of iam in cattle C. jejuni is relatively lower as compared to isolates occurring in humans and chickens. In addition, iam was polymorphic and certain alleles occur in cattle isolates that were capable of colonizing and invading chickens and human intestinal cells, respectively. However, the iam did not appear to contribute to the cattle-associated C. jejuni's potential for invasion and intracellular survival in human intestinal cells as well as chicken colonization.
Collapse
Affiliation(s)
- Yasser M Sanad
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH 44691, USA.
| | | | | | | | | | | |
Collapse
|
35
|
CmeR-dependent gene Cj0561c is induced more effectively by bile salts than the CmeABC efflux pump in both human and poultry Campylobacter jejuni strains. Res Microbiol 2011; 162:991-8. [DOI: 10.1016/j.resmic.2011.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/05/2011] [Indexed: 11/23/2022]
|
36
|
Wassenaar TM. Following an imaginary Campylobacter population from farm to fork and beyond: a bacterial perspective. Lett Appl Microbiol 2011; 53:253-63. [PMID: 21762185 DOI: 10.1111/j.1472-765x.2011.03121.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been known for decades that poultry meat is the most common single source for campylobacteriosis, yet the problem has not been solved. This review identifies some of the reasons why our attempts to reduce the incidence of this pathogen have largely failed. Based on the literature, the events a virtual population of Campylobacter may encounter, from growing in the gut of a broiler to eventually infecting humans and causing disease, are reviewed. Most steps in the farm-to-fork process are well studied, though there are gaps in our knowledge about survival and spread of Campylobacter populations before they enter the farm. Key events in the farm-to-fork chain that are suitable targets for prevention and control, to reduce food-borne campylobacteriosis, are indicated. Novel insights into the pathogenic mechanism responsible for disease in humans are summarized, which hypothesize that an overactive immune response is the reason for the typical inflammatory diarrhoea. A role of genetic microheterogeneity within a clonal population in this chain of events is being proposed here. The human host is not necessary for the survival of the bacterial species, nor have these bacteria specifically evolved to cause disease in that host. More likely, the species evolved for a commensal life in birds, and human disease can be considered as collateral damage owing to an unfortunate host-microbe interaction. The indirect environmental burden that results from poultry production should not be ignored as it may pose a diffuse, but possibly significant risk factor for disease.
Collapse
Affiliation(s)
- T M Wassenaar
- Molecular Microbiology and Genomics Consultants, Zotzenheim, Germany.
| |
Collapse
|
37
|
L-fucose utilization provides Campylobacter jejuni with a competitive advantage. Proc Natl Acad Sci U S A 2011; 108:7194-9. [PMID: 21482772 DOI: 10.1073/pnas.1014125108] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Campylobacter jejuni is a prevalent gastrointestinal pathogen in humans and a common commensal of poultry. When colonizing its hosts, C. jejuni comes into contact with intestinal carbohydrates, including L-fucose, released from mucin glycoproteins. Several strains of C. jejuni possess a genomic island (cj0480c-cj0490) that is up-regulated in the presence of both L-fucose and mucin and allows for the utilization of L-fucose as a substrate for growth. Strains possessing this genomic island show increased growth in the presence of L-fucose and mutation of cj0481, cj0486, and cj0487 results in the loss of the ability to grow on this substrate. Furthermore, mutants in the putative fucose permease (cj0486) are deficient in fucose uptake and demonstrate a competitive disadvantage when colonizing the piglet model of human disease, which is not paralleled in the colonization of poultry. This identifies a previously unrecorded metabolic pathway in select strains of C. jejuni associated with a virulent lifestyle.
Collapse
|
38
|
Epidemiological association of different Campylobacter jejuni groups with metabolism-associated genetic markers. Appl Environ Microbiol 2011; 77:2359-65. [PMID: 21278270 DOI: 10.1128/aem.02403-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this study, multilocus sequence typing (MLST) was combined with the genetic detection of six genetic markers, ansB, dmsA, ggt, cj1585c, cjj81176-1367/71 (cj1365c), and the two-gene marker tlp7 (cj0951c plus cj0952c), to assess if their presence correlated with different C. jejuni clonal groups. Using a collection of 266 C. jejuni isolates from (in decreasing order of sample size) humans, chickens, cattle, and turkeys, it was further investigated whether the resulting genotypes correlated with the isolation source. We found combinations of the six marker genes to be mutually exclusive, and their patterns of presence or absence correlated to some degree with animal source. Together with MLST results, the obtained genotypes could be segregated into six groups. An association was identified for ansB, dmsA, and ggt with the MLST-clonal complexes (MLST-CC) 22, 42, 45, and 283, which formed the most prominent group, in which chickens were the most prevalent animal source. Two other groups, characterized by the presence of cj1585c, cjj81176-1367/71, and the two-gene marker tlp7, associated with either MLST-CC 21 or 61, were overrepresented in isolates of bovine origin. Mutually exclusive marker gene combinations were observed for ansB, dmsA, and ggt, typically found in CC 45 and the related CC 22, 42, and 283, whereas the other three marker genes were found mostly in CC 21, 48, and 206. The presence of the two-gene marker tlp7, which is typical for MLST 21 and 53 as well as for MLST-CC 61, strongly correlates with a bovine host; this is interpreted as an example of host adaptation. In cases of C. jejuni outbreaks, these genetic markers could be helpful for more effective source tracking.
Collapse
|
39
|
Moorhead SM, Griffiths MW. Expression and characterization of cell-signalling molecules in Campylobacter jejuni. J Appl Microbiol 2011; 110:786-800. [PMID: 21205102 DOI: 10.1111/j.1365-2672.2010.04934.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIMS This study investigated the production and effects of cell-signalling compounds on selected survival and virulence mechanisms of Campylobacter jejuni. METHODS AND RESULTS The production of Autoinducer 1 (AI-1) compounds by Camp. jejuni was investigated in-vitro using a variety of available AI-1 bioassays. We further examined the role of a range of commercially available homoserine lactones (HSL) and a novel compound (cjA) isolated from Camp. jejuni. The selected attributes included the transformation to a viable but nonculturable (VBNC) state, biofilm formation, interleukin 8 (IL-8) stimulation in INT-407 cells and virulence gene expression as determined by qRT-PCR. This study is the first to report an HSL or HSL mimic produced by Camp. jejuni. Short chained HSLs and the novel compound cjA prolonged the delay to a VBNC state as well as inhibiting biofilm formation and the majority of HSLs examined and the HSL mimic cjA significantly affected virulence gene expression as well as increasing the production of IL-8 in challenged INT-407 cells. CONCLUSIONS Despite the lack of a homologous HSL kinase or sensor, Camp. jejuni appears to produce, as well as detect, exogenous signalling molecules and respond accordingly to aid in the survival and virulence capabilities of this micro-organism. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests that Camp. jejuni is able to detect and utilize as well as possibly produce cell-signalling molecules that enhance both survival and virulence attributes. This possibility opens a new field in the search for Camp. jejuni reduction and elimination strategies.
Collapse
Affiliation(s)
- S M Moorhead
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
40
|
Phenotypic and genotypic evidence for L-fucose utilization by Campylobacter jejuni. J Bacteriol 2010; 193:1065-75. [PMID: 21193610 DOI: 10.1128/jb.01252-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Campylobacter jejuni remains among the leading causes of bacterial food-borne illness. The current understanding of Campylobacter physiology suggests that it is asaccharolytic and is unable to catabolize exogenous carbohydrates. Contrary to this paradigm, we provide evidence for l-fucose utilization by C. jejuni. The fucose phenotype, shown in chemically defined medium, is strain specific and linked to an 11-open reading frame (ORF) plasticity region of the bacterial chromosome. By constructing a mutation in fucP (encoding a putative fucose permease), one of the genes in the plasticity region, we found that this locus is required for fucose utilization. Consistent with their function in fucose utilization, transcription of the genes in the locus is highly inducible by fucose. PCR screening revealed a broad distribution of this genetic locus in strains derived from various host species, and the presence of this locus was consistently associated with fucose utilization. Birds inoculated with the fucP mutant strain alone were colonized at a level comparable to that by the wild-type strain; however, in cocolonization experiments, the mutant was significantly outcompeted by the wild-type strain when birds were inoculated with a low dose (10⁵ CFU per bird). This advantage was not observed when birds were inoculated at a higher inoculum dose (10⁸ CFU per bird). These results demonstrated a previously undescribed substrate that supports growth of C. jejuni and identified the genetic locus associated with the utilization of this substrate. These findings substantially enhance our understanding of the metabolic repertoire of C. jejuni and the role of metabolic diversity in Campylobacter pathobiology.
Collapse
|
41
|
Feodoroff B, Ellström P, Hyytiäinen H, Sarna S, Hänninen ML, Rautelin H. Campylobacter jejuni isolates in Finnish patients differ according to the origin of infection. Gut Pathog 2010; 2:22. [PMID: 21171986 PMCID: PMC3022560 DOI: 10.1186/1757-4749-2-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/20/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Campylobacter jejuni is a significant cause of bacterial enteritis worldwide. Very little is known about the pathogenicity mechanisms and virulence factors of this important enteropathogen. C. jejuni isolates from 166 Finnish patients, collected from July to December in 2006, were studied for the presence of putative virulence factors and susceptibility to antimicrobials. Isolates were tested for production of γ-glutamyltransferase (GGT) as well as the presence of genes ceuE, cgtB, ciaB, cj0486, pldA, virB11, wlaN, and the gene cluster cdtABC. Bacterial characteristics were compared to information on foreign travel history as well as information on the course and the symptoms of disease obtained from questionnaires returned by patients. RESULTS Except for one domestic isolate, antimicrobial resistance was only detected in isolates of foreign origin. Univariate analyses showed association between bloody stools and both GGT production (p = 0.025) and the presence of cgtB (p = 0.034). Multivariate analysis verified that GGT production was more prevalent in domestic isolates (p < 0.0001), while the genes cj0486 (p < 0.0001) and ceuE (p < 0.0001) were associated with C. jejuni isolates of foreign origin. CONCLUSIONS The results indicate that imported and domestic C. jejuni isolates differ significantly in several aspects from each other.
Collapse
Affiliation(s)
- Benjamin Feodoroff
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, FIN-00014, Helsinki, Finland
| | - Patrik Ellström
- Department of Medical Sciences, University of Uppsala, S-75185 Uppsala, Sweden
| | - Heidi Hyytiäinen
- Department of Food and Environmental Hygiene, University of Helsinki, PO Box 66, FIN-00014, Helsinki, Finland
| | - Seppo Sarna
- Department of Public Health, University of Helsinki, Mannerheimintie 172, PO Box 41, FIN-00014, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food and Environmental Hygiene, University of Helsinki, PO Box 66, FIN-00014, Helsinki, Finland
| | - Hilpi Rautelin
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, FIN-00014, Helsinki, Finland
- Department of Medical Sciences, University of Uppsala, S-75185 Uppsala, Sweden
- Helsinki University Central Hospital Laboratory, Helsinki, Finland
| |
Collapse
|
42
|
Fernández-Cruz A, Muñoz P, Mohedano R, Valerio M, Marín M, Alcalá L, Rodriguez-Créixems M, Cercenado E, Bouza E. Campylobacter bacteremia: clinical characteristics, incidence, and outcome over 23 years. Medicine (Baltimore) 2010; 89:319-330. [PMID: 20827109 DOI: 10.1097/md.0b013e3181f2638d] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Campylobacter is a very rare cause of bloodstream infection, although it has been found relatively frequently in patients infected with human immunodeficiency virus (HIV). The impact of highly active antiretroviral therapy (HAART) and new forms of immunosuppression on the incidence of Campylobacter bacteremia has not been sufficiently assessed. In this study we analyzed the incidence and microbiologic and clinical characteristics of Campylobacter bacteremia over 23 years.We reviewed the clinical records of all patients who had Campylobacter bacteremia from 1985 to 2007. Available strains were reidentified using universal polymerase chain reaction (PCR).During the study period, there were 71 episodes of Campylobacter bacteremia in 63 patients (0.24% of all bloodstream infections), and the incidence remained stable (mean, 0.06/1000 admissions per year and 0.47/100,000 inhabitants per year). Median age was 52 years (interquartile range, 31.25-72.5 yr), and 82% of patients were male. The underlying conditions included liver disease (21/64, 32.8%), HIV infection (15/64, 23.4%), malignancy (7/64, 10.9%), solid organ transplantation (2/64, 3%), hypogammaglobulinemia (10/64, 15.6%), and other (18/64, 31.2%). Twelve patients shared more than 1 underlying condition. Campylobacter bacteremia was community acquired in 81% of the episodes. The origin of the bloodstream infection was abdominal (43.5%), primary (26%), or extraintestinal (31%: respiratory 15%, cellulitis 4.8%, urinary 8%, other 3%). C jejuni was recovered in 66% of cases, C fetus in 19%, and C coli in 12%.Universal PCR was performed on 14 available strains. Molecular and conventional identification matched in 8 isolates. In contrast, molecular methods classified as C fetus (n = 2) and C jejuni (n = 1) 3 strains formerly identified only to genus level as Campylobacter species. In another 3 isolates, molecular identification was not consistent with the phenotypic identification (C fetus identified as C jejuni).Complications appeared in 23.9% of patients. Quinolone resistance was observed in 50% of the isolates. Only 37.8% of patients received appropriate empirical therapy. Mortality was 16.4%, although it was higher in HIV-infected patients than uninfected patients (33% vs. 10%; p = 0.04), in cases of hospital-acquired Campylobacter bacteremia compared with community-acquired cases (38.5% vs. 9.4%; p = 0.02), and in the presence of complications compared with patients without complications (100% vs. 0%; p < 0.001). The incidence of recurrence was 5% (3 patients with humoral immunodeficiency). There was a higher proportion of HIV-infected patients among patients with Campylobacter bacteremia in the pre-HAART era (1985-1996) than in the HAART era (1997-2007)-27.5% (11/40) vs. 14.3% (4/28)-although the difference was not statistically significant. Debilitating diseases such as chronic obstructive pulmonary disease emerged as predisposing conditions in the HAART era (0% before HAART era vs. 14.3% in HAART era; p = 0.032).Campylobacter bacteremia is no longer a significant disease of HIV-positive patients on HAART, but often affects other immunocompromised patients as well. Campylobacter bacteremia has an extraintestinal origin in as many as 31% of cases, and humoral immunodeficiency must be sought in patients with recurrent episodes. Quinolones should not be considered for empirical therapy.
Collapse
Affiliation(s)
- Ana Fernández-Cruz
- From Department of Microbiology and Infectious Diseases (AFC, PM, RM*, MV, MM, LA, MRC, EC, EB), Hospital General Universitario Gregorio Marañón, Universidad Complutense de Madrid, Madrid; *presently at Hospital Severo Ochoa (RM), Leganés, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES) (PM, MM, LA, MRC, EC, EB)
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Friis C, Wassenaar TM, Javed MA, Snipen L, Lagesen K, Hallin PF, Newell DG, Toszeghy M, Ridley A, Manning G, Ussery DW. Genomic characterization of Campylobacter jejuni strain M1. PLoS One 2010; 5:e12253. [PMID: 20865039 PMCID: PMC2928727 DOI: 10.1371/journal.pone.0012253] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/22/2010] [Indexed: 11/18/2022] Open
Abstract
Campylobacter jejuni strain M1 (laboratory designation 99/308) is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas. Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1.
Collapse
Affiliation(s)
- Carsten Friis
- Department of Systems Biology, The Technical University of Denmark, Lyngby, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Campylobacter jejuni induces an anti-inflammatory response in human intestinal epithelial cells through activation of phosphatidylinositol 3-kinase/Akt pathway. Vet Microbiol 2010; 148:75-83. [PMID: 20863633 DOI: 10.1016/j.vetmic.2010.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 08/09/2010] [Accepted: 08/16/2010] [Indexed: 01/31/2023]
Abstract
Campylobacter jejuni (C. jejuni) is the most common cause of human acute bacterial gastroenteritis. Poultry is a major reservoir of C. jejuni and considered an important source of human infections, thus, it is important to understand the host response to C. jejuni from chicken origin. In this study, we demonstrated firstly that a chicken isolate SC11 colonized chicks faster than clinical isolate NCTC11168. Using the SC11, we further studied the host responds to C. jejuni in terms of inflammatory response and involvement of cellular signaling pathways. Infection of C. jejuni SC11 was able to activate phosphatidylinositol 3-kinase (PI3K)/Akt pathway and induce pro-inflammatory interleukin-8 (IL-8) as well as anti-inflammatory cytokine IL-10 in human intestinal epithelial cell line Colo 205. The signalling pathways PI3K/Akt and mitogen-activated protein (MAP) kinases ERK and p38 were involved in C. jejuni-induced IL-8 and IL-10 expression. Inhibition of PI3K resulted in augmentation of C. jejuni-induced IL-8 production, concomitant with down-regulation of IL-10 mRNA, indicating an anti-inflammatory response was activated and associated with the activation of P13K/Akt. Similar effect was observed for cytolethal distending toxin (CDT) deficient mutants. Moreover, we demonstrated that heat-killed bacteria were able to induce IL-8 and IL-10 expression to a lower level than live bacteria. We therefore conclude that C. jejuni activate a PI3K/Akt-dependent anti-inflammatory pathway in human intestinal epithelial cells which may benefit the intracellular survival of C. jejuni during infection.
Collapse
|
45
|
Thakur S, Zhao S, McDermott PF, Harbottle H, Abbott J, English L, Gebreyes WA, White DG. Antimicrobial Resistance, Virulence, and Genotypic Profile Comparison ofCampylobacter jejuniandCampylobacter coliIsolated from Humans and Retail Meats. Foodborne Pathog Dis 2010; 7:835-44. [DOI: 10.1089/fpd.2009.0487] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Shaohua Zhao
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Patrick F. McDermott
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Heather Harbottle
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Jason Abbott
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Linda English
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Wondwossen A. Gebreyes
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - David G. White
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| |
Collapse
|
46
|
Havelaar AH, Brul S, de Jong A, de Jonge R, Zwietering MH, ter Kuile BH. Future challenges to microbial food safety. Int J Food Microbiol 2010; 139 Suppl 1:S79-94. [DOI: 10.1016/j.ijfoodmicro.2009.10.015] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 10/09/2009] [Accepted: 10/14/2009] [Indexed: 11/29/2022]
|
47
|
Scientific Opinion on Quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1437] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
48
|
Nielsen H, Persson S, Olsen KEP, Ejlertsen T, Kristensen B, Schønheyder HC. Bacteraemia with Campylobacter jejuni: no association with the virulence genes iam, cdtB, capA or virB. Eur J Clin Microbiol Infect Dis 2010; 29:357-8. [PMID: 20101515 DOI: 10.1007/s10096-009-0863-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 12/11/2009] [Indexed: 10/19/2022]
Abstract
The role of bacterial genes in the determination of the clinical spectrum of Campylobacter jejuni infection is unclear. We compared clinical isolates from invasive blood-stream infection with stool isolates from gastroenteritis and found no association of the putative virulence genes iam, capA, virB and cdtB with clinical presentation.
Collapse
Affiliation(s)
- H Nielsen
- Department of Infectious Diseases, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark.
| | | | | | | | | | | |
Collapse
|
49
|
Javed MA, Grant AJ, Bagnall MC, Maskell DJ, Newell DG, Manning G. Transposon mutagenesis in a hyper-invasive clinical isolate of Campylobacter jejuni reveals a number of genes with potential roles in invasion. MICROBIOLOGY-SGM 2009; 156:1134-1143. [PMID: 20035004 DOI: 10.1099/mic.0.033399-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Transposon mutagenesis has been applied to a hyper-invasive clinical isolate of Campylobacter jejuni, 01/51. A random transposon mutant library was screened in an in vitro assay of invasion and 26 mutants with a significant reduction in invasion were identified. Given that the invasion potential of C. jejuni is relatively poor compared to other enteric pathogens, the use of a hyper-invasive strain was advantageous as it greatly facilitated the identification of mutants with reduced invasion. The location of the transposon insertion in 23 of these mutants has been determined; all but three of the insertions are in genes also present in the genome-sequenced strain NCTC 11168. Eight of the mutants contain transposon insertions in one region of the genome (approximately 14 kb), which when compared with the genome of NCTC 11168 overlaps with one of the previously reported plasticity regions and is likely to be involved in genomic variation between strains. Further characterization of one of the mutants within this region has identified a gene that might be involved in adhesion to host cells.
Collapse
Affiliation(s)
- Muhammad Afzal Javed
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Mary C Bagnall
- Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Diane G Newell
- Veterinary Laboratories Agency (Weybridge), New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Georgina Manning
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
50
|
Havelaar AH, van Pelt W, Ang CW, Wagenaar JA, van Putten JPM, Gross U, Newell DG. Immunity to Campylobacter: its role in risk assessment and epidemiology. Crit Rev Microbiol 2009; 35:1-22. [PMID: 19514906 DOI: 10.1080/10408410802636017] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Acquired immunity is an important factor in the epidemiology of campylobacteriosis in the developing world, apparently limiting symptomatic infection to children of less than two years. However, also in developed countries the highest incidence is observed in children under five years and the majority of Campylobacter infections are asymptomatic, which may be related to the effects of immunity and/or the ingested doses. Not accounting for immunity in epidemiological studies may lead to biased results due to the misclassification of Campylobacter-exposed but apparently healthy persons as unexposed. In risk assessment studies, health risks may be overestimated when immunity is neglected.
Collapse
Affiliation(s)
- Arie H Havelaar
- Centre for Infectious Diseases Control Netherlands, National Institute for Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | | | | | | | | | | | | |
Collapse
|