1
|
Hogan AM, Motnenko A, Rahman ASMZ, Cardona ST. Cell envelope structural and functional contributions to antibiotic resistance in Burkholderia cenocepacia. J Bacteriol 2024; 206:e0044123. [PMID: 38501654 PMCID: PMC11025338 DOI: 10.1128/jb.00441-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Antibiotic activity is limited by the physical construction of the Gram-negative cell envelope. Species of the Burkholderia cepacia complex (Bcc) are known as intrinsically multidrug-resistant opportunistic pathogens with low permeability cell envelopes. Here, we re-examined a previously performed chemical-genetic screen of barcoded transposon mutants in B. cenocepacia K56-2, focusing on cell envelope structural and functional processes. We identified structures mechanistically important for resistance to singular and multiple antibiotic classes. For example, susceptibility to novobiocin, avibactam, and the LpxC inhibitor, PF-04753299, was linked to the BpeAB-OprB efflux pump, suggesting these drugs are substrates for this pump in B. cenocepacia. Defects in peptidoglycan precursor synthesis specifically increased susceptibility to cycloserine and revealed a new putative amino acid racemase, while defects in divisome accessory proteins increased susceptibility to multiple β-lactams. Additionally, disruption of the periplasmic disulfide bond formation system caused pleiotropic defects on outer membrane integrity and β-lactamase activity. Our findings highlight the layering of resistance mechanisms in the structure and function of the cell envelope. Consequently, we point out processes that can be targeted for developing antibiotic potentiators.IMPORTANCEThe Gram-negative cell envelope is a double-layered physical barrier that protects cells from extracellular stressors, such as antibiotics. The Burkholderia cell envelope is known to contain additional modifications that reduce permeability. We investigated Burkholderia cell envelope factors contributing to antibiotic resistance from a genome-wide view by re-examining data from a transposon mutant library exposed to an antibiotic panel. We identified susceptible phenotypes for defects in structures and functions in the outer membrane, periplasm, and cytoplasm. Overall, we show that resistance linked to the cell envelope is multifaceted and provides new targets for the development of antibiotic potentiators.
Collapse
Affiliation(s)
- Andrew M. Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Silvia T. Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Maydaniuk DT, Martens B, Iqbal S, Hogan AM, Lorente Cobo N, Motnenko A, Truong D, Liyanage SH, Yan M, Prehna G, Cardona ST. The mechanism of action of auranofin analogs in B. cenocepacia revealed by chemogenomic profiling. Microbiol Spectr 2024; 12:e0320123. [PMID: 38206016 PMCID: PMC10846046 DOI: 10.1128/spectrum.03201-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
Drug repurposing efforts led to the discovery of bactericidal activity in auranofin, a gold-containing drug used to treat rheumatoid arthritis. Auranofin kills Gram-positive bacteria by inhibiting thioredoxin reductase, an enzyme that scavenges reactive oxygen species (ROS). Despite the presence of thioredoxin reductase in Gram-negative bacteria, auranofin is not always active against them. It is not clear whether the lack of activity in several Gram-negative bacteria is due to the cell envelope barrier or the presence of other ROS protective enzymes such as glutathione reductase (GOR). We previously demonstrated that chemical analogs of auranofin (MS-40 and MS-40S), but not auranofin, are bactericidal against the Gram-negative Burkholderia cepacia complex. Here, we explore the targets of auranofin, MS-40, and MS-40S in Burkholderia cenocepacia and elucidate the mechanism of action of the auranofin analogs by a genome-wide, randomly barcoded transposon screen (BarSeq). Auranofin and its analogs inhibited the B. cenocepacia thioredoxin reductase and induced ROS but did not inhibit the bacterial GOR. Genome-wide, BarSeq analysis of cells exposed to MS-40 and MS-40S compared to the ROS inducers arsenic trioxide, diamide, hydrogen peroxide, and paraquat revealed common and unique mediators of drug susceptibility. Furthermore, deletions of gshA and gshB that encode enzymes in the glutathione biosynthetic pathway led to increased susceptibility to MS-40 and MS-40S. Overall, our data suggest that the auranofin analogs kill B. cenocepacia by inducing ROS through inhibition of thioredoxin reductase and that the glutathione system has a role in protecting B. cenocepacia against these ROS-inducing compounds.IMPORTANCEThe Burkholderia cepacia complex is a group of multidrug-resistant bacteria that can cause infections in the lungs of people with the autosomal recessive disease, cystic fibrosis. Specifically, the bacterium Burkholderia cenocepacia can cause severe infections, reducing lung function and leading to a devastating type of sepsis, cepacia syndrome. This bacterium currently does not have an accepted antibiotic treatment plan because of the wide range of antibiotic resistance. Here, we further the research on auranofin analogs as antimicrobials by finding the mechanism of action of these potent bactericidal compounds, using a powerful technique called BarSeq, to find the global response of the cell when exposed to an antimicrobial.
Collapse
Affiliation(s)
| | - Brielle Martens
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Sarah Iqbal
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Andrew M. Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Neil Lorente Cobo
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Dang Truong
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, USA
| | - Sajani H. Liyanage
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, USA
- Department of Medical Microbiology & Infectious Disease, University of Manitoba, Winnipeg, Canada
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts, Lowell, Massachusetts, USA
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Silvia T. Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology & Infectious Disease, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
3
|
Sass AM, Coenye T. The Small RNA NcS25 Regulates Biological Amine-Transporting Outer Membrane Porin BCAL3473 in Burkholderia cenocepacia. mSphere 2023; 8:e0008323. [PMID: 36971554 PMCID: PMC10117139 DOI: 10.1128/msphere.00083-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Regulation of porin expression in bacteria is complex and often involves small-RNA regulators. Several small-RNA regulators have been described for Burkholderia cenocepacia, and this study aimed to characterize the biological role of the conserved small RNA NcS25 and its cognate target, outer membrane protein BCAL3473. The B. cenocepacia genome carries a large number of genes encoding porins with yet-uncharacterized functions. Expression of the porin BCAL3473 is strongly repressed by NcS25 and activated by other factors, such as a LysR-type regulator and nitrogen-depleted growth conditions. The porin is involved in transport of arginine, tyrosine, tyramine, and putrescine across the outer membrane. Porin BCAL3473, with NcS25 as a major regulator, plays an important role in the nitrogen metabolism of B. cenocepacia. IMPORTANCE Burkholderia cenocepacia is a Gram-negative bacterium which causes infections in immunocompromised individuals and in people with cystic fibrosis. A low outer membrane permeability is one of the factors giving it a high level of innate resistance to antibiotics. Porins provide selective permeability for nutrients, and antibiotics can also traverse the outer membrane by this means. Knowing the properties and specificities of porin channels is therefore important for understanding resistance mechanisms and for developing new antibiotics and could help in overcoming permeability issues in antibiotic treatment.
Collapse
Affiliation(s)
- Andrea M. Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Badr A, Eltobgy M, Krause K, Hamilton K, Estfanous S, Daily KP, Abu Khweek A, Hegazi A, Anne MNK, Carafice C, Robledo-Avila F, Saqr Y, Zhang X, Bonfield TL, Gavrilin MA, Partida-Sanchez S, Seveau S, Cormet-Boyaka E, Amer AO. CFTR Modulators Restore Acidification of Autophago-Lysosomes and Bacterial Clearance in Cystic Fibrosis Macrophages. Front Cell Infect Microbiol 2022; 12:819554. [PMID: 35252032 PMCID: PMC8890004 DOI: 10.3389/fcimb.2022.819554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) human and mouse macrophages are defective in their ability to clear bacteria such as Burkholderia cenocepacia. The autophagy process in CF (F508del) macrophages is halted, and the underlying mechanism remains unclear. Furthermore, the role of CFTR in maintaining the acidification of endosomal and lysosomal compartments in CF cells has been a subject of debate. Using 3D reconstruction of z-stack confocal images, we show that CFTR is recruited to LC3-labeled autophagosomes harboring B. cenocepacia. Using several complementary approaches, we report that CF macrophages display defective lysosomal acidification and degradative function for cargos destined to autophagosomes, whereas non-autophagosomal cargos are effectively degraded within acidic compartments. Notably, treatment of CF macrophages with CFTR modulators (tezacaftor/ivacaftor) improved the autophagy flux, lysosomal acidification and function, and bacterial clearance. In addition, CFTR modulators improved CFTR function as demonstrated by patch-clamp. In conclusion, CFTR regulates the acidification of a specific subset of lysosomes that specifically fuse with autophagosomes. Therefore, our study describes a new biological location and function for CFTR in autophago-lysosomes and clarifies the long-standing discrepancies in the field.
Collapse
Affiliation(s)
- Asmaa Badr
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Clinical Pathology Department, College of Medicine, Mansoura University, Mansoura, Egypt
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Kathrin Krause
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
| | - Kaitlin Hamilton
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Kylene P. Daily
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Arwa Abu Khweek
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Ahmad Hegazi
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Midhun N. K. Anne
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Frank Robledo-Avila
- Center for Microbial Pathogenesis, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Youssra Saqr
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Xiaoli Zhang
- Center for Biostatistics, Ohio State University, Columbus, OH, United States
| | - Tracey L. Bonfield
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mikhail A. Gavrilin
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Columbus, OH, United States
| | | | - Stephanie Seveau
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Estelle Cormet-Boyaka
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Amal O. Amer
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
Rahman ASMZ, Timmerman L, Gallardo F, Cardona ST. Identification of putative essential protein domains from high-density transposon insertion sequencing. Sci Rep 2022; 12:962. [PMID: 35046497 PMCID: PMC8770471 DOI: 10.1038/s41598-022-05028-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022] Open
Abstract
A first clue to gene function can be obtained by examining whether a gene is required for life in certain standard conditions, that is, whether a gene is essential. In bacteria, essential genes are usually identified by high-density transposon mutagenesis followed by sequencing of insertion sites (Tn-seq). These studies assign the term "essential" to whole genes rather than the protein domain sequences that encode the essential functions. However, genes can code for multiple protein domains that evolve their functions independently. Therefore, when essential genes code for more than one protein domain, only one of them could be essential. In this study, we defined this subset of genes as "essential domain-containing" (EDC) genes. Using a Tn-seq data set built-in Burkholderia cenocepacia K56-2, we developed an in silico pipeline to identify EDC genes and the essential protein domains they encode. We found forty candidate EDC genes and demonstrated growth defect phenotypes using CRISPR interference (CRISPRi). This analysis included two knockdowns of genes encoding the protein domains of unknown function DUF2213 and DUF4148. These putative essential domains are conserved in more than two hundred bacterial species, including human and plant pathogens. Together, our study suggests that essentiality should be assigned to individual protein domains rather than genes, contributing to a first functional characterization of protein domains of unknown function.
Collapse
Affiliation(s)
| | - Lukas Timmerman
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
| | - Flyn Gallardo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
6
|
Methodological tools to study species of the genus Burkholderia. Appl Microbiol Biotechnol 2021; 105:9019-9034. [PMID: 34755214 PMCID: PMC8578011 DOI: 10.1007/s00253-021-11667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022]
Abstract
Bacteria belonging to the Burkholderia genus are extremely versatile and diverse. They can be environmental isolates, opportunistic pathogens in cystic fibrosis, immunocompromised or chronic granulomatous disease patients, or cause disease in healthy people (e.g., Burkholderia pseudomallei) or animals (as in the case of Burkholderia mallei). Since the genus was separated from the Pseudomonas one in the 1990s, the methodological tools to study and characterize these bacteria are evolving fast. Here we reviewed the techniques used in the last few years to update the taxonomy of the genus, to study gene functions and regulations, to deepen the knowledge on the drug resistance which characterizes these bacteria, and to elucidate their mechanisms to establish infections. The availability of these tools significantly impacts the quality of research on Burkholderia and the choice of the most appropriated is fundamental for a precise characterization of the species of interest. Key points • Updated techniques to study the genus Burkholderia were reviewed. • Taxonomy, genomics, assays, and animal models were described. • A comprehensive overview on recent advances in Burkholderia studies was made.
Collapse
|
7
|
Improved Dynamic Range of a Rhamnose-Inducible Promoter for Gene Expression in Burkholderia spp. Appl Environ Microbiol 2021; 87:e0064721. [PMID: 34190606 DOI: 10.1128/aem.00647-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A diverse genetic toolkit is critical for understanding bacterial physiology and genotype-phenotype relationships. Inducible promoter systems are an integral part of this toolkit. In Burkholderia and related species, the l-rhamnose-inducible promoter is among the first choices due to its tight control and the lack of viable alternatives. To improve upon its maximum activity and dynamic range, we explored the effect of promoter system modifications in Burkholderia cenocepacia with a LacZ-based reporter. By combining the bacteriophage T7 gene 10 stem-loop and engineered rhaI transcription factor-binding sites, we obtained a rhamnose-inducible system with a 6.5-fold and 3.0-fold increases in maximum activity and dynamic range, respectively, compared to the native promoter. We then added the modified promoter system to pSCrhaB2 and pSC201, common genetic tools used for plasmid-based and chromosome-based gene expression, respectively, in Burkholderia, creating pSCrhaB2plus and pSC201plus. We demonstrated the utility of pSCrhaB2plus for gene expression in B. thailandensis, B. multivorans, and B. vietnamiensis and used pSC201plus to control highly expressed essential genes from the chromosome of B. cenocepacia. The utility of the modified system was demonstrated as we recovered viable mutants to control ftsZ, rpoBC, and rpsF, whereas the unmodified promoter was unable to control rpsF. The modified expression system allowed control of an essential gene depletion phenotype at lower levels of l-rhamnose, the inducer. pSCRhaB2plus and pSC201plus are expected to be valuable additions to the genetic toolkit for Burkholderia and related species. IMPORTANCE Species of Burkholderia are dually recognized as being of attractive biotechnological potential but also opportunistic pathogens for immunocompromised individuals. Understanding the genotype-phenotype relationship is critical for synthetic biology approaches in Burkholderia to disentangle pathogenic from beneficial traits. A diverse genetic toolkit, including inducible promoters, is the foundation for these investigations. Thus, we sought to improve on the commonly used rhamnose-inducible promoter system. Our modifications resulted in both higher levels of heterologous protein expression and broader control over highly expressed essential genes in B. cenocepacia. The significance of our work is in expanding the genetic toolkit to enable more comprehensive studies into Burkholderia and related bacteria.
Collapse
|
8
|
Transposon sequencing analysis of Bradyrhizobium diazoefficiens 110spc4. Sci Rep 2021; 11:13211. [PMID: 34168197 PMCID: PMC8225791 DOI: 10.1038/s41598-021-92534-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
Bradyrhizobium diazoefficiens USDA110 is one of the most effective nitrogen-fixing symbionts of soybeans. Here we carried out a large-scale transposon insertion sequencing (Tn-seq) analysis of strain Bd110spc4, which is derived from USDA110, with the goal of increasing available resources for identifying genes crucial for the survival of this plant symbiont under diverse conditions. We prepared two transposon (Tn) insertion libraries of Bd110spc4 with 155,042 unique Tn insertions when the libraries were combined, which is an average of one insertion every 58.7 bp of the reference USDA110 genome. Application of bioinformatic filtering steps to remove genes too small to be expected to have Tn insertions, resulted in a list of genes that were classified as putatively essential. Comparison of this gene set with genes putatively essential for the growth of the closely related alpha-proteobacterium, Rhodopseudomonas palustris, revealed a small set of five genes that may be collectively essential for closely related members of the family Bradyrhizobiaceae. This group includes bacteria with diverse lifestyles ranging from plant symbionts to animal-associated species to free-living species.
Collapse
|
9
|
Lee HH, Park J, Jung H, Seo YS. Pan-Genome Analysis Reveals Host-Specific Functional Divergences in Burkholderia gladioli. Microorganisms 2021; 9:1123. [PMID: 34067383 PMCID: PMC8224644 DOI: 10.3390/microorganisms9061123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Burkholderia gladioli has high versatility and adaptability to various ecological niches. Here, we constructed a pan-genome using 14 genome sequences of B. gladioli, which originate from different niches, including gladiolus, rice, humans, and nature. Functional roles of core and niche-associated genomes were investigated by pathway enrichment analyses. Consequently, we inferred the uniquely important role of niche-associated genomes in (1) selenium availability during competition with gladiolus host; (2) aromatic compound degradation in seed-borne and crude oil-accumulated environments, and (3) stress-induced DNA repair system/recombination in the cystic fibrosis-niche. We also identified the conservation of the rhizomide biosynthetic gene cluster in all the B. gladioli strains and the concentrated distribution of this cluster in human isolates. It was confirmed the absence of complete CRISPR/Cas system in both plant and human pathogenic B. gladioli and the presence of the system in B. gladioli living in nature, possibly reflecting the inverse relationship between CRISPR/Cas system and virulence.
Collapse
Affiliation(s)
- Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Jungwook Park
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
- Environmental Microbiology Research Team, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Korea
| | - Hyejung Jung
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (H.-H.L.); (J.P.); (H.J.)
| |
Collapse
|
10
|
Luo H, Lin Y, Liu T, Lai FL, Zhang CT, Gao F, Zhang R. DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Res 2021; 49:D677-D686. [PMID: 33095861 PMCID: PMC7779065 DOI: 10.1093/nar/gkaa917] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Essential genes refer to genes that are required by an organism to survive under specific conditions. Studies of the minimal-gene-set for bacteria have elucidated fundamental cellular processes that sustain life. The past five years have seen a significant progress in identifying human essential genes, primarily due to the successful use of CRISPR/Cas9 in various types of human cells. DEG 15, a new release of the Database of Essential Genes (www.essentialgene.org), has provided major advancements, compared to DEG 10. Specifically, the number of eukaryotic essential genes has increased by more than fourfold, and that of prokaryotic ones has more than doubled. Of note, the human essential-gene number has increased by more than tenfold. Moreover, we have developed built-in analysis modules by which users can perform various analyses, such as essential-gene distributions between bacterial leading and lagging strands, sub-cellular localization distribution, enrichment analysis of gene ontology and KEGG pathways, and generation of Venn diagrams to compare and contrast gene sets between experiments. Additionally, the database offers customizable BLAST tools for performing species- and experiment-specific BLAST searches. Therefore, DEG comprehensively harbors updated human-curated essential-gene records among prokaryotes and eukaryotes with built-in tools to enhance essential-gene analysis.
Collapse
Affiliation(s)
- Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Yan Lin
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Tao Liu
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Fei-Liao Lai
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Chun-Ting Zhang
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China.,Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
11
|
Zgurskaya HI, Rybenkov VV. Permeability barriers of Gram-negative pathogens. Ann N Y Acad Sci 2020; 1459:5-18. [PMID: 31165502 PMCID: PMC6940542 DOI: 10.1111/nyas.14134] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 12/13/2022]
Abstract
Most clinical antibiotics do not have efficacy against Gram-negative pathogens, mainly because these cells are protected by the permeability barrier comprising the two membranes with active efflux. The emergence of multidrug-resistant Gram-negative strains threatens the utility even of last resort therapeutic treatments. Significant efforts at different levels of resolution are currently focused on finding a solution to this nonpermeation problem and developing new approaches to the optimization of drug activities against multidrug-resistant pathogens. The exceptional efficiency of the Gram-negative permeability barrier is the result of a complex interplay between the two opposing fluxes of drugs across the two membranes. In this review, we describe the current state of understanding of the problem and the recent advances in theoretical and empirical approaches to characterization of drug permeation and active efflux in Gram-negative bacteria.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
12
|
Panta PR, Kumar S, Stafford CF, Billiot CE, Douglass MV, Herrera CM, Trent MS, Doerrler WT. A DedA Family Membrane Protein Is Required for Burkholderia thailandensis Colistin Resistance. Front Microbiol 2019; 10:2532. [PMID: 31827463 PMCID: PMC6849406 DOI: 10.3389/fmicb.2019.02532] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Colistin is a “last resort” antibiotic for treatment of infections caused by some multidrug resistant Gram-negative bacterial pathogens. Resistance to colistin varies between bacterial species. Some Gram-negative bacteria such as Burkholderia spp. are intrinsically resistant to very high levels of colistin with minimal inhibitory concentrations (MIC) often above 0.5 mg/ml. We have previously shown DedA family proteins YqjA and YghB are conserved membrane transporters required for alkaline tolerance and resistance to several classes of dyes and antibiotics in Escherichia coli. Here, we show that a DedA family protein in Burkholderia thailandensis (DbcA; DedA of Burkholderia required for colistin resistance) is a membrane transporter required for resistance to colistin. Mutation of dbcA results in >100-fold greater sensitivity to colistin. Colistin resistance is often conferred via covalent modification of lipopolysaccharide (LPS) lipid A. Mass spectrometry of lipid A of ΔdbcA showed a sharp reduction of aminoarabinose in lipid A compared to wild type. Complementation of colistin sensitivity of B. thailandensis ΔdbcA was observed by expression of dbcA, E. coli yghB or E. coli yqjA. Many proton-dependent transporters possess charged amino acids in transmembrane domains that take part in the transport mechanism and are essential for function. Site directed mutagenesis of conserved and predicted membrane embedded charged amino acids suggest that DbcA functions as a proton-dependent transporter. Direct measurement of membrane potential shows that B. thailandensis ΔdbcA is partially depolarized suggesting that loss of protonmotive force can lead to alterations in LPS structure and severe colistin sensitivity in this species.
Collapse
Affiliation(s)
- Pradip R Panta
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Sujeet Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Caroline F Stafford
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Caitlin E Billiot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Martin V Douglass
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - Carmen M Herrera
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia College of Veterinary Medicine, Athens, GA, United States
| | - William T Doerrler
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
13
|
Efflux Pumps of Burkholderia thailandensis Control the Permeability Barrier of the Outer Membrane. Antimicrob Agents Chemother 2019; 63:AAC.00956-19. [PMID: 31383661 DOI: 10.1128/aac.00956-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/28/2019] [Indexed: 01/27/2023] Open
Abstract
Burkholderia comprises species that are significant biothreat agents and common contaminants of pharmaceutical production facilities. Their extreme antibiotic resistance affects all classes of antibiotics, including polycationic polymyxins and aminoglycosides. The major underlying mechanism is the presence of two permeability barriers, the outer membrane with modified lipid A moieties and active drug efflux pumps. The two barriers are thought to be mechanistically independent and act synergistically to reduce the intracellular concentrations of antibiotics. In this study, we analyzed the interplay between active efflux pumps and the permeability barrier of the outer membrane in Burkholderia thailandensis We found that three efflux pumps, AmrAB-OprA, BpeEF-OprC, and BpeAB-OprB, of B. thailandensis are expressed under standard laboratory conditions and provide protection against multiple antibiotics, including polycationic polymyxins. Our results further suggest that the inactivation of AmrAB-OprA or BpeAB-OprB potentiates the antibacterial activities of antibiotics not only by reducing their efflux, but also by increasing their uptake into cells. Mass spectrometry analyses showed that in efflux-deficient B. thailandensis cells, lipid A species modified with 4-amino-4-deoxy-l-aminoarabinose are significantly less abundant than in the parent strain. Taken together, our results suggest that changes in the outer membrane permeability due to alterations in lipid A structure could be contributing factors in antibiotic hypersusceptibilities of B. thailandensis cells lacking AmrAB-OprA and BpeAB-OprB efflux pumps.
Collapse
|
14
|
Morinière L, Lecomte S, Gueguen E, Bertolla F. In vitro exploration of the Xanthomonas hortorum pv. vitians genome using transposon insertion sequencing and comparative genomics to discriminate between core and contextual essential genes. Microb Genom 2019; 7. [PMID: 33760724 PMCID: PMC8627662 DOI: 10.1099/mgen.0.000546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The essential genome of a bacterium encompasses core genes associated with basic cellular processes and conditionally essential genes dependent upon environmental conditions or the genetic context. Comprehensive knowledge of those gene sets allows for a better understanding of fundamental bacterial biology and offers new perspectives for antimicrobial drug research against detrimental bacteria such as pathogens. We investigated the essential genome of Xanthomonas hortorum pv. vitians, a gammaproteobacterial plant pathogen of lettuce (Lactuca sativa L.) which belongs to the plant-pathogen reservoir genus Xanthomonas and is affiliated to the family Xanthomonadaceae. No practical means of disease control or prevention against this pathogen is currently available, and its molecular biology is virtually unknown. To reach a comprehensive overview of the essential genome of X. hortorum pv. vitians LM16734, we developed a mixed approach combining high-quality full genome sequencing, saturated transposon insertion sequencing (Tn-Seq) in optimal growth conditions, and coupled computational analyses such as comparative genomics, synteny assessment and phylogenomics. Among the 370 essential loci identified by Tn-Seq, a majority was bound to critical cell processes conserved across bacteria. The remaining genes were either related to specific ecological features of Xanthomonas or Xanthomonadaceae species, or acquired through horizontal gene transfer of mobile genetic elements and associated with ancestral parasitic gene behaviour and bacterial defence systems. Our study sheds new light on our usual concepts about gene essentiality and is pioneering in the molecular and genomic study of X. hortorum pv. vitians.
Collapse
Affiliation(s)
- Lucas Morinière
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Solène Lecomte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Erwan Gueguen
- Univ Lyon, Université Claude Bernard Lyon 1, INSA, CNRS, UMR Microbiologie, Adaptation, Pathogénie, F 69622 Villeurbanne, France
| | - Franck Bertolla
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| |
Collapse
|
15
|
Fathy Mohamed Y, Scott NE, Molinaro A, Creuzenet C, Ortega X, Lertmemongkolchai G, Tunney MM, Green H, Jones AM, DeShazer D, Currie BJ, Foster LJ, Ingram R, De Castro C, Valvano MA. A general protein O-glycosylation machinery conserved in Burkholderia species improves bacterial fitness and elicits glycan immunogenicity in humans. J Biol Chem 2019; 294:13248-13268. [PMID: 31350337 DOI: 10.1074/jbc.ra119.009671] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
The Burkholderia genus encompasses many Gram-negative bacteria living in the rhizosphere. Some Burkholderia species can cause life-threatening human infections, highlighting the need for clinical interventions targeting specific lipopolysaccharide proteins. Burkholderia cenocepacia O-linked protein glycosylation has been reported, but the chemical structure of the O-glycan and the machinery required for its biosynthesis are unknown and could reveal potential therapeutic targets. Here, using bioinformatics approaches, gene-knockout mutants, purified recombinant proteins, LC-MS-based analyses of O-glycans, and NMR-based structural analyses, we identified a B. cenocepacia O-glycosylation (ogc) gene cluster necessary for synthesis, assembly, and membrane translocation of a lipid-linked O-glycan, as well as its structure, which consists of a β-Gal-(1,3)-α-GalNAc-(1,3)-β-GalNAc trisaccharide. We demonstrate that the ogc cluster is conserved in the Burkholderia genus, and we confirm the production of glycoproteins with similar glycans in the Burkholderia species: B. thailandensis, B. gladioli, and B. pseudomallei Furthermore, we show that absence of protein O-glycosylation severely affects bacterial fitness and accelerates bacterial clearance in a Galleria mellonella larva infection model. Finally, our experiments revealed that patients infected with B. cenocepacia, Burkholderia multivorans, B. pseudomallei, or Burkholderia mallei develop O-glycan-specific antibodies. Together, these results highlight the importance of general protein O-glycosylation in the biology of the Burkholderia genus and its potential as a target for inhibition or immunotherapy approaches to control Burkholderia infections.
Collapse
Affiliation(s)
- Yasmine Fathy Mohamed
- Wellcome-Wolfson Institute of Experimental Medicine, Queen's University Belfast, Belfast BT97BL, United Kingdom; Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21561 Alexandria, Egypt
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples, Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Carole Creuzenet
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ximena Ortega
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ganjana Lertmemongkolchai
- Centre for Research and Development of Medical Diagnostic Laboratories, Mekong Health Sciences Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Michael M Tunney
- Halo Research Group, School of Pharmacy, Queen's University Belfast, Belfast BT97BL, United Kingdom
| | - Heather Green
- Manchester Adult Cystic Fibrosis Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester M23 9LT, United Kingdom
| | - Andrew M Jones
- Manchester Adult Cystic Fibrosis Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester M23 9LT, United Kingdom
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702
| | - Bart J Currie
- Menzies School of Health Research and Infectious Diseases Department, Royal Darwin Hospital, Darwin 0818, Northern Territory, Australia
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T1Z4, Canada
| | - Rebecca Ingram
- Wellcome-Wolfson Institute of Experimental Medicine, Queen's University Belfast, Belfast BT97BL, United Kingdom
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Miguel A Valvano
- Wellcome-Wolfson Institute of Experimental Medicine, Queen's University Belfast, Belfast BT97BL, United Kingdom; Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
16
|
Competitive Fitness of Essential Gene Knockdowns Reveals a Broad-Spectrum Antibacterial Inhibitor of the Cell Division Protein FtsZ. Antimicrob Agents Chemother 2018; 62:AAC.01231-18. [PMID: 30297366 PMCID: PMC6256756 DOI: 10.1128/aac.01231-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/01/2018] [Indexed: 12/26/2022] Open
Abstract
To streamline the elucidation of antibacterial compounds' mechanism of action, comprehensive high-throughput assays interrogating multiple putative targets are necessary. However, current chemogenomic approaches for antibiotic target identification have not fully utilized the multiplexing potential of next-generation sequencing. Here, we used Illumina sequencing of transposon insertions to track the competitive fitness of a Burkholderia cenocepacia library containing essential gene knockdowns. Using this method, we characterized a novel benzothiadiazole derivative, 10126109 (C109), with antibacterial activity against B. cenocepacia, for which whole-genome sequencing of low-frequency spontaneous drug-resistant mutants had failed to identify the drug target. By combining the identification of hypersusceptible mutants and morphology screening, we show that C109 targets cell division. Furthermore, fluorescence microscopy of bacteria harboring green fluorescent protein (GFP) cell division protein fusions revealed that C109 prevents divisome formation by altering the localization of the essential cell division protein FtsZ. In agreement with this, C109 inhibited both the GTPase and polymerization activities of purified B. cenocepacia FtsZ. C109 displayed antibacterial activity against Gram-positive and Gram-negative cystic fibrosis pathogens, including Mycobacterium abscessus C109 effectively cleared B. cenocepacia infection in the Caenorhabditis elegans model and exhibited additive interactions with clinically relevant antibiotics. Hence, C109 is an enticing candidate for further drug development.
Collapse
|
17
|
Debbabi S, Groleau MC, Létourneau M, Narayanan C, Gosselin LL, Iddir M, Gagnon J, Doucet N, Déziel E, Chatenet D. Antibacterial properties of the pituitary adenylate cyclase-activating polypeptide: A new human antimicrobial peptide. PLoS One 2018; 13:e0207366. [PMID: 30462698 PMCID: PMC6248945 DOI: 10.1371/journal.pone.0207366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/30/2018] [Indexed: 02/04/2023] Open
Abstract
The Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), a polycationic, amphiphilic and helical neuropeptide, is well known for its neuroprotective actions and cell penetrating properties. In the present study, we evaluated the potent antibacterial property of PACAP38 and related analogs against various bacterial strains. Interestingly, PACAP38 and related analogs can inhibit the growth of various bacteria including Escherichia coli (JM109), Bacillus subtilis (PY79), and the pathogenic Burkholderia cenocepacia (J2315). Investigation of the mechanism of action suggested that a PACAP metabolite, identified as PACAP(9–38), might indeed be responsible for the observed PACAP38 antibacterial action. Surprisingly, PACAP(9–38), which does not induce haemolysis, exhibits an increased specificity toward Burkholderia cenocepacia J2315 compared to other tested bacteria. Finally, the predisposition of PACAP(9–38) to adopt a π-helix conformation rather than an α-helical conformation like PACAP38 could explain this gain in specificity. Overall, this study has revealed a new function for PACAP38 and related derivatives that can be added to its pleiotropic biological activities. This innovative study could therefore pave the way toward the development of new therapeutic agents against multiresistant bacteria, and more specifically the Burkholderia cenocepacia complex.
Collapse
Affiliation(s)
- Somia Debbabi
- INRS–Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada
| | | | - Myriam Létourneau
- INRS–Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada
| | - Chitra Narayanan
- INRS–Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada
| | - Laura-Lee Gosselin
- INRS–Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada
| | - Mustapha Iddir
- INRS–Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada
| | - Jacinthe Gagnon
- INRS–Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada
| | - Nicolas Doucet
- INRS–Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada
| | - Eric Déziel
- INRS–Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada
- * E-mail: (DC); (ED)
| | - David Chatenet
- INRS–Institut Armand-Frappier, Université du Québec, Ville de Laval, Canada
- * E-mail: (DC); (ED)
| |
Collapse
|
18
|
The Mla Pathway Plays an Essential Role in the Intrinsic Resistance of Burkholderia cepacia Complex Species to Antimicrobials and Host Innate Components. J Bacteriol 2018; 200:JB.00156-18. [PMID: 29986943 DOI: 10.1128/jb.00156-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/02/2018] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance is a threat to our modern society, and new strategies leading to the identification of new molecules or targets to combat multidrug-resistant pathogens are needed. Species of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc), Burkholderia pseudomallei, and Burkholderia mallei, can be highly pathogenic and are intrinsically resistant to multiple classes of antibiotics. Bcc species are nonetheless sensitive to extracellular products released by Pseudomonas aeruginosa in interspecies competition. We screened for Burkholderia transposon mutants with increased sensitivity to P. aeruginosa spent medium and identified multiple mutants in genes sharing homology with the Mla pathway. Insertional mutants in representative genes of the Bcc Mla pathway had a compromised cell membrane and were more sensitive to various extracellular stresses, including antibiotics and human serum. More precisely, mla mutants in the Bcc species Burkholderia cenocepacia and Burkholderia dolosa were more susceptible to Gram-positive antibiotics (i.e., macrolides and rifampin), fluoroquinolones, tetracyclines, and chloramphenicol. Genetic complementation of mlaC insertional mutants restored cell permeability and resistance to Gram-positive antibiotics. Importantly, Bcc mla mutants were not universally weaker strains since their susceptibilities to other classes of antibiotics were unaffected. Although cell permeability of homologous mla mutants in Escherichia coli or P. aeruginosa was also impaired, they were not more sensitive to Gram-positive antibiotics or other antimicrobials as was observed in Bcc mla mutants. Together, the data suggest that the Mla pathway in Burkholderia may play a different biological role, which could potentially represent a Burkholderia-specific drug target in combination therapy with antibiotic adjuvants.IMPORTANCE The outer membrane of Gram-negative bacteria acts as an effective barrier against toxic compounds, and therefore compromising this structure could increase sensitivity to currently available antibiotics. In this study, we show that the Mla pathway, a system involved in maintaining the integrity of the outer membrane, is genetically and functionally different in Burkholderia cepacia complex species compared to that in other proteobacteria. Mutants in mla genes of Burkholderia cenocepacia or Burkholderia dolosa were sensitive to Gram-positive antibiotics, while this effect was not observed in Escherichia coli or Pseudomonas aeruginosa The Mla pathway in Burkholderia species may represent an ideal genus-specific target to address their intrinsic antimicrobial resistances.
Collapse
|
19
|
Wong YC, Abd El Ghany M, Ghazzali RNM, Yap SJ, Hoh CC, Pain A, Nathan S. Genetic Determinants Associated With in Vivo Survival of Burkholderia cenocepacia in the Caenorhabditis elegans Model. Front Microbiol 2018; 9:1118. [PMID: 29896180 PMCID: PMC5987112 DOI: 10.3389/fmicb.2018.01118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
A Burkholderia cenocepacia infection usually leads to reduced survival and fatal cepacia syndrome in cystic fibrosis patients. The identification of B. cenocepacia essential genes for in vivo survival is key to designing new anti-infectives therapies. We used the Transposon-Directed Insertion Sequencing (TraDIS) approach to identify genes required for B. cenocepacia survival in the model infection host, Caenorhabditis elegans. A B. cenocepacia J2315 transposon pool of ∼500,000 mutants was used to infect C. elegans. We identified 178 genes as crucial for B. cenocepacia survival in the infected nematode. The majority of these genes code for proteins of unknown function, many of which are encoded by the genomic island BcenGI13, while other gene products are involved in nutrient acquisition, general stress responses and LPS O-antigen biosynthesis. Deletion of the glycosyltransferase gene wbxB and a histone-like nucleoid structuring (H-NS) protein-encoding gene (BCAL0154) reduced bacterial accumulation and attenuated virulence in C. elegans. Further analysis using quantitative RT-PCR indicated that BCAL0154 modulates B. cenocepacia pathogenesis via transcriptional regulation of motility-associated genes including fliC, fliG, flhD, and cheB1. This screen has successfully identified genes required for B. cenocepacia survival within the host-associated environment, many of which are potential targets for developing new antimicrobials.
Collapse
Affiliation(s)
- Yee-Chin Wong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Moataz Abd El Ghany
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.,The Westmead Institute for Medical Research and The Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, NSW, Australia
| | - Raeece N M Ghazzali
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Arnab Pain
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|